EP2053690A1 - Radome with integrated plasma shutter - Google Patents

Radome with integrated plasma shutter Download PDF

Info

Publication number
EP2053690A1
EP2053690A1 EP08018110A EP08018110A EP2053690A1 EP 2053690 A1 EP2053690 A1 EP 2053690A1 EP 08018110 A EP08018110 A EP 08018110A EP 08018110 A EP08018110 A EP 08018110A EP 2053690 A1 EP2053690 A1 EP 2053690A1
Authority
EP
European Patent Office
Prior art keywords
radome
plasma
electrodes
antenna
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08018110A
Other languages
German (de)
French (fr)
Other versions
EP2053690B1 (en
Inventor
Kay Dittrich
Joachim Dr. Kaiser
Robert Sekora
Herbert Zippold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP2053690A1 publication Critical patent/EP2053690A1/en
Application granted granted Critical
Publication of EP2053690B1 publication Critical patent/EP2053690B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/422Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/425Housings not intimately mechanically associated with radiating elements, e.g. radome comprising a metallic grid

Definitions

  • the invention relates to a radome with integrated plasma closure according to the preamble of claim 1.
  • the radome is designed to be electromagnetically transparent only in the desired frequency range and / or only at times when the antenna is active.
  • Frequency-selective radomes can be realized with different methods, depending on the requirement profile. Specifically, the use of one or more thin structured metal layers, so-called frequency-selective layers (FSS), which have a pronounced frequency dependence of the electromagnetic transparency is, for example, from US 6,218,978 known.
  • FSS frequency-selective layers
  • Switchable radomes can be realized in different ways.
  • mechanical closure systems are known in which diaphragms are pushed in front of the antenna.
  • Another approach is to introduce layers into the radome whose surface impedance is variable, such as through the use of PIN diodes or photoresistors in accordance with DE 39 20 110 C2 ,
  • the variable layer can be electrically conductive and thus reflective or electrically insulating and thus transparent.
  • a plasma layer is electric conductive, and depending on the charge density in the plasma, a sufficiently high electrical conductivity for reflection or attenuation of electromagnetic waves can be achieved. This behavior is already used for plasma-based antennas, see eg US 5,182,496 , By switching the plasma on and off, the desired switching operation can be achieved.
  • plasma capture involves the question of integrating the plasma volume into the radome structure.
  • a plasma shutter system has become known in which the space between the antenna and radome is filled with a plasma.
  • Another concept according to the DE 43 36 841 C1 assumes plasma-filled tubes in front of the antenna, where the plasma is generated by lateral, not in the field of view of the antenna lying electrodes.
  • a disadvantage of the latter concept is the fact that the closure element relative to the radon is a separate component, so that the stability of the radome is reduced by the installation of the closure element.
  • the integration of the closure element in the radome also leads to additional Radarstreuzentren the radome, which affects the radar signature unfavorable.
  • the two electrodes for plasma generation are arranged laterally on the narrow sides of the plasma-guiding layer, which reduces the homogeneity of the electromagnetic field within the plasma-guiding layer.
  • the invention has for its object to provide a radome with integrated plasma shutter to protect the antenna against unwanted radiation incidence, with which the structural strength and the radar signature of the radome are not adversely affected.
  • the present invention is based on the concept of integrating the plasma-guiding layer in the honeycomb core of the sandwiched radome structure and causing the plasma to be generated by electrodes that are RF-transparent at least in the operating frequency range of the antenna.
  • cover plates of the sandwich structure delimiting the plasma layer thus themselves form part of the load-bearing radome primary structure, and the honeycomb structure containing the plasma-guiding layer forms a structural bond with the cover plates.
  • An HF-transparent electrode is in particular formed like a layer and can e.g. be realized in the form of a grid-shaped layer.
  • the lattice constant is selected such that HF transparency is ensured, at least in the operating frequency range of the antenna (for a radar antenna, for example, in the range from 8 to 12 GHz).
  • more complex periodic structures are possible, such as circular or annular slots in a continuous metal layer.
  • Another possibility is to use an electrically low-conductivity layer whose reflection factor is included in the radome design.
  • the electrodes are realized as frequency-selective layers.
  • slot-type types of frequency-selective layers can be used in which a continuous metal layer has structured slots.
  • These layers can be designed as bandpass filters, so that the own operating frequencies of the antenna system are transmitted through the radome, but other frequencies are reflected or absorbed.
  • the radome 1 As in Fig. 1
  • the radome 1 according to the invention with integrated plasma shutter covers an underlying antenna system 2. It is equipped with a plasma-guiding layer 3 located in or directly on the radome, the plasma being conveyed via electrodes (in FIG Fig. 1 not shown) is excited from frequency-selective layers.
  • Fig. 1 shows the principal mechanism of action.
  • the antenna system 2 is shown in this case as a pivoting radar antenna, but without limitation of generality, any other electromagnetically active antenna system, such as a communication antenna, a radar warning receiver or a jammer, be mounted under the radome.
  • the geometry of the Radome 1 is usually based on geometric requirements for radar signature reduction of the outer shape.
  • the basic principle known per se for the use of a plasma layer 3 as a variable reflector is based on the fact that the plasma-guiding layer 3 is located between a plasma state (FIG Fig. 1 ) and a recombined state ( Figure a) in Fig. 1 ) can be switched back and forth.
  • the plasma state which is generated by applying the voltage to the electrodes
  • the plasma-guiding layer 3 becomes electrically conductive and reflects all the incident electromagnetic waves 7, 8.
  • the plasma-conducting layer is electrically nonconductive and thus electromagnetically transparent. Accordingly, the shaft 5 passes through the radome.
  • the plasma state is always set. Only in times in which the antenna is active, is switched to the recombined plasma state.
  • the plasma is generated by arranged on the radome, layer-shaped frequency-selective electrodes, which are permeable to electromagnetic radiation only within a certain frequency range, namely the operating frequency range of the antenna. This results in the recombined state of the plasma protection against the ingress of unwanted radiation. This is with the radiation 4 in Fig. 1 a) indicated, which is reflected at a frequency-selective layer.
  • Fig. 2 shows the construction of the radome according to the invention in detail.
  • the plasma-guiding layer comprises a honeycomb core 9 (in this case with cells of hexagonal cross section), which is embedded between the two layered electrodes 10, 11.
  • the plasma-carrying layer with the adjacent electrodes is in turn mounted between the cover layers 12, 13 of the radome structure.
  • the honeycomb core 9 in contrast to known approaches the plasma-conducting layer, ie the honeycomb core 9, with the cover layers 12, 13 has a structural bond.
  • Cellular shapes of hexagonal cross-section are generally particularly suitable for the honeycomb core. But other cell forms, e.g. with triangular or square cell cross sections are possible.
  • a peripheral frame 21 is attached to the edge which serves to connect the radome to the surrounding structure.
  • the radome is divided into an electromagnetically transparent part 19 and an electromagnetically non-transparent part 20, which may be electromagnetically closed in a special embodiment by a continuous electrically conductive layer 22.
  • additional protective layers 14 may be attached against rain erosion.
  • additional frequency-selective layers in the Radomdeck Anlagenen 12,13 or on the surface of the radome are conceivable to adjust the bandpass behavior more precisely.
  • the electrodes 10,11 are formed in layers and consist in the embodiment shown of frequency-selective layers. Particularly suitable as electrodes are slot-type types of frequency-selective layers in which a continuous metal layer has structured slots. In the embodiment shown, the two electrodes 10, 11 each have a regular pattern formed by cross-shaped slots. Such layers can be designed as a bandpass filter, that is, the own operating frequencies of the antenna system 2 are transmitted through the radome 1, but other frequencies reflected or absorbed. Because of their RF transparency in the range of the operating frequencies of the antenna, the electrodes can be easily arranged in the field of view of the antenna.
  • the honeycomb In order for a gas mixture suitable for the generation of a plasma to be introduced into the plasma-guiding layer at a suitable negative pressure, the honeycomb is perforated 15 and thus permeable to air in its plane, so that flushing of the plasma-guiding layer with a suitable gas mixture through one or more connections 18 and suction is possible until reaching the necessary negative pressure to generate the plasma. After setting the desired gas mixture and pressure levels, the connection (s) is closed, this process can be repeated at appropriate intervals for maintenance purposes.
  • the honeycomb 9 is also additionally coated with a protective layer in order to avoid removal of the honeycomb material by the aggressive plasma.
  • the two frequency-selective layers 10, 11 serving as electrodes are connected to a high-voltage source 17 via a switching device 16, so that when the high voltage is applied, the plasma in the plasma-guiding layer can be ignited.
  • Fig. 3 shows the schematic structure according to Fig. 2 in three-dimensional representation.
  • the plasma-guiding layer is not a conventional honeycomb but a so-called folding honeycomb 5, as described in US Pat US 5,028,474 , is described.
  • Such folded honeycombs are formed by bending a flat, closed material layer at defined bend lines.
  • the folding honeycomb 30 is integrated instead of the normal honeycomb in the Radomiscus with the two outer layers 12,13 and the optional protective layers 14.
  • additional frequency-selective layers are integrated in or on the Radomiscus.
  • Folded honeycombs are characterized by the fact that the honeycomb structure can form continuous airways and the folding honeycomb can therefore be ventilated. The need for conventional honeycomb perforation can be eliminated.
  • folding honeycomb by definition can be developed, so that the electrodes of frequency-selective layers can be applied directly to both sides of the honeycomb material before folding the honeycomb.
  • the electrodes 31 are applied to the flat honeycomb feedstock 32 on both sides of frequency-selective layers between the later fold lines 36, for example, printed. Rows of electrodes of the same polarity are connected in parallel by short conductor tracks 34, so that the rows connected in parallel can be contacted from the side together. In this case, in each case the same polarity should be applied to both sides of the honeycomb material at opposite electrodes in order to avoid electrical breakdown by the honeycomb material.
  • Fig. 6 shows the structure of the radome according to the invention according to Fig. 4 and 5 in three-dimensional representation.

Abstract

The radome (1) has an integrated plasma closure comprising a plasma guiding layer and electrodes (10, 11) for plasma excitation, where the radome has a sandwich structure with a honeycomb core (9) and cover plates (12, 13). The plasma guiding layer is contained in the honeycomb core. The electrodes are arranged between the honeycomb core and the cover plates, and are high frequency (HF) transparent in an operating frequency range of an antenna. The electrodes comprise frequency-selective layers, which are applied as band pass filters in the operating frequency range of the antenna.

Description

Die Erfindung betrifft ein Radom mit darin integriertem Plasmaverschluss nach dem Oberbegriff des Patentanspruch 1.The invention relates to a radome with integrated plasma closure according to the preamble of claim 1.

Antennen (z.B. von Radargeräten, aber auch von anderen Sensoren oder Kommunikationseinrichtungen) an Fluggeräten, aber auch an Schiffen oder Bodenstationen werden oft durch elektromagnetisch transparente Abdeckungen, so genannte Radome, von der Umwelt abgeschottet. Bei Radomen von militärischen Fluggeräten besteht dabei das Problem, das die für den Betrieb des darunter liegenden Antennensystems notwendige elektromagnetische Transparenz des Radoms dieses auch mehr oder weniger durchgängig für andere, unerwünschte elektromagnetische Wellen macht. Als Konsequenz daraus ergibt sich:

  • Die Radarsignatur eines Radoms mit darunter liegender Antenne ist in der Regel aufgrund der Reflexionen aus dem Radominneren wesentlich höher als die Radarsignatur, die sich aus der Außengeometrie des Radoms bei leitfähiger bzw. radarabsorbierender Ausgestaltung ergeben würde.
  • Die Antenne und die umgebenden Einbauten werden ungehindert durch in das Radom eindringende Störstrahlung beaufschlagt. Diese Störstrahlung kann entweder gezielt auf die Antenne und die umgebenden Einbauten gerichtet sein (z.B. von einem Störsender), oder von beliebigen Quellen stammen (z.B. von anderen Radargeräten oder anderen Strahlungsquellen).
Antennas (eg of radar devices, but also of other sensors or communication devices) on aircraft, but also on ships or ground stations are often shielded from the environment by electromagnetically transparent covers, so-called radomes. In the case of radomes of military aircraft there is the problem that makes the necessary for the operation of the underlying antenna system electromagnetic transparency of the radome this also more or less consistent for other unwanted electromagnetic waves. As a consequence, it follows:
  • The radar signature of a radome with underlying antenna is usually much higher than the radar signature, which would result from the outer geometry of the radome in conductive or radar-absorbing design due to the reflections from the Radominneren.
  • The antenna and the surrounding internals are exposed unimpeded by interfering radiation penetrating into the radome. This interfering radiation can either be directed to the antenna and the surrounding internals (eg from a jammer), or originate from any sources (eg from other radars or other radiation sources).

Diese Problematik kann gemildert oder ganz verhindert werden, wenn das Radom nur in dem gewünschten Frequenzbereich und/oder nur zu den Zeiten, in denen die Antenne aktiv ist, elektromagnetisch transparent gestaltet wird.This problem can be mitigated or completely prevented if the radome is designed to be electromagnetically transparent only in the desired frequency range and / or only at times when the antenna is active.

Um dies zu erreichen, sind bereits verschiedene Verfahren bekannt:

  • So genannte frequenzselektive Radome weisen eine Abhängigkeit der elektromagnetischen Transparenz als Funktion der Frequenz auf, so dass der eigene Arbeitsfrequenzbereich mehr oder weniger ungehindert durch das Radom hindurchgelassen wird, andere Frequenzbereiche jedoch geblockt bzw. stark gedämpft werden. Je nach Design und Anforderung kann es sich bei dem durch das frequenzselektive Radom gebildeten Frequenzfilter um ein Bandpass-, ein Hochpass- oder ein Tiefpass-Verhalten handeln.
  • Schaltbare Radome können zwischen einem elektromagnetisch transparentem und einem elektromagnetisch reflektierenden oder absorbierenden Zustand hin- und hergeschaltet werden.
To achieve this, various methods are already known:
  • So-called frequency-selective radomes have a dependence of electromagnetic transparency as a function of frequency, so that the own working frequency range is more or less freely passed through the radome, but other frequency ranges are blocked or greatly attenuated. Depending on the design and requirement, the frequency filter formed by the frequency-selective radome may be a bandpass, highpass, or lowpass response.
  • Switchable radomes can be switched between an electromagnetically transparent and an electromagnetically reflecting or absorbing state.

Frequenzselektive Radome können, je nach Anforderungsprofil, mit unterschiedlichen Methoden realisiert werden. Speziell die Verwendung von einer oder mehreren dünnen strukturierten Metallschichten, sogenannten Frequenzselektiven Schichten (FSS), die eine ausgeprägte Frequenzabhängigkeit der elektromagnetischen Transparenz aufweisen, ist z.B. aus der US 6,218,978 bekannt.Frequency-selective radomes can be realized with different methods, depending on the requirement profile. Specifically, the use of one or more thin structured metal layers, so-called frequency-selective layers (FSS), which have a pronounced frequency dependence of the electromagnetic transparency is, for example, from US 6,218,978 known.

Schaltbare Radome können auf verschiedene Arten und Weisen realisiert werden. So sind mechanische Verschlusssysteme bekannte, bei denen Blenden vor die Antenne geschoben werden. Ein anderer Antritt besteht in dem Einführen von Schichten in das Radom, deren Flächenimpedanz variabel ist, etwa durch den Einsatz von PIN Dioden oder von Photowiderständen gemäß DE 39 20 110 C2 . Damit kann je nach Schaltzustand die variable Schicht elektrisch leitfähig und damit reflektierend oder elektrisch isolierend und damit transparent wirken.Switchable radomes can be realized in different ways. Thus, mechanical closure systems are known in which diaphragms are pushed in front of the antenna. Another approach is to introduce layers into the radome whose surface impedance is variable, such as through the use of PIN diodes or photoresistors in accordance with DE 39 20 110 C2 , Thus, depending on the switching state, the variable layer can be electrically conductive and thus reflective or electrically insulating and thus transparent.

Ein weiterer Ansatz zur Realisierung einer variablen Schicht ist die Verwendung einer Schicht bzw. eines Volumens aus Plasma. Eine Plasmaschicht ist elektrisch leitend, und je nach Ladungsdichte im Plasma kann eine ausreichend hohe elektrische Leitfähigkeit zur Reflexion bzw. Dämpfung von elektromagnetischen Wellen erreicht werden. Dieses Verhalten wird bereits für plasma-basierte Antennen benutzt, siehe z.B. US 5,182,496 . Durch Ein- und Ausschalten des Plasmas kann der gewünschte Schaltvorgang erreicht werden.Another approach to realizing a variable layer is to use a layer or volume of plasma. A plasma layer is electric conductive, and depending on the charge density in the plasma, a sufficiently high electrical conductivity for reflection or attenuation of electromagnetic waves can be achieved. This behavior is already used for plasma-based antennas, see eg US 5,182,496 , By switching the plasma on and off, the desired switching operation can be achieved.

Prinzipiell besteht bei einem Plasmaverschluss die Frage der Integration des Plasmavolumens in den Radomaufbau. Von der russischen Akademie der Wissenschaften ist ein Plasmaverschlussystem bekannt geworden, bei dem der Raum zwischen Antenne und Radom mit einem Plasma gefüllt wird. Ein anderes Konzept gemäß der DE 43 36 841 C1 geht von plasmagefüllten Röhren vor der Antenne aus, bei denen das Plasma durch seitliche, nicht im Sichtbereich der Antenne liegende Elektroden erzeugt wird. Nachteilig an dem letztgenannten Konzept ist die Tatsache, dass das Verschlusselement gegenüber dem Radon ein separates Bauteil darstellt, so dass die Stabilität des Radoms durch den Einbau des Verschlusselements herabgesetzt wird. Die Integration des Verschlusselements in das Radom führt außerdem zu zusätzlichen Radarstreuzentren am Radom, was die Radarsignatur ungünstig beeinflusst. Darüber hinaus sind die beiden Elektroden zur Plasmaerzeugung seitlich an den Schmalseiten der plasmaführenden Schicht angeordnet, was die Homogenität des elektromagnetischen Feldes innerhalb der plasmaführenden Schicht vermindert.In principle, plasma capture involves the question of integrating the plasma volume into the radome structure. From the Russian Academy of Sciences, a plasma shutter system has become known in which the space between the antenna and radome is filled with a plasma. Another concept according to the DE 43 36 841 C1 assumes plasma-filled tubes in front of the antenna, where the plasma is generated by lateral, not in the field of view of the antenna lying electrodes. A disadvantage of the latter concept is the fact that the closure element relative to the radon is a separate component, so that the stability of the radome is reduced by the installation of the closure element. The integration of the closure element in the radome also leads to additional Radarstreuzentren the radome, which affects the radar signature unfavorable. In addition, the two electrodes for plasma generation are arranged laterally on the narrow sides of the plasma-guiding layer, which reduces the homogeneity of the electromagnetic field within the plasma-guiding layer.

Der Erfindung liegt die Aufgabe zugrunde, ein Radom mit integriertem Plasmaverschluss zum Schutz der Antenne gegen unerwünschten Strahlungseinfall zu schaffen, mit dem die Strukturfestigkeit und die Radarsignatur des Radoms nicht negativ beeinflusst werden.The invention has for its object to provide a radome with integrated plasma shutter to protect the antenna against unwanted radiation incidence, with which the structural strength and the radar signature of the radome are not adversely affected.

Diese Aufgabe wird mit dem Gegenstand des Patentanspruch 1 gelöst. Vorteilhafte Ausführungen der Erfindung sind Gegenstand von Unteransprüchen.This object is achieved with the subject of claim 1. Advantageous embodiments of the invention are the subject of dependent claims.

Die vorliegende Erfindung beruht auf dem Konzept, die plasmaführende Schicht in den Wabenkern der als Sandwich ausgebildeten Radomstruktur zu integrieren und die Generierunq des Plasmas durch Elektroden zu bewirken, die zumindest im Betriebsfrequenzbereich der Antenne HF-transparent sind.The present invention is based on the concept of integrating the plasma-guiding layer in the honeycomb core of the sandwiched radome structure and causing the plasma to be generated by electrodes that are RF-transparent at least in the operating frequency range of the antenna.

Die die Plasmaschicht begrenzenden Deckplatten der Sandwichstruktur bilden somit selbst einen Teil der lastaufnehmenden Radom-Primärstruktur und die Wabenstruktur, welche die plasmaführende Schicht enthält, bildet mit den Deckplatten einen strukturellen Verbund.The cover plates of the sandwich structure delimiting the plasma layer thus themselves form part of the load-bearing radome primary structure, and the honeycomb structure containing the plasma-guiding layer forms a structural bond with the cover plates.

Diese Vorgehensweisweise hat eine Reihe von Vorteilen gegenüber den bislang bekannten Verfahren:

  • Durch die Integration des Plasmavolumens in den Kern eines Radomaufbaus weist die äußere Grenzfläche des Plasmavolumens nahezu dieselbe Geometrie wie die Radomschale auf, und kann damit auf der Basis der etablierten Regeln zur Formgebung geometrisch in ihrer Radarsignatur getarnt werden.
  • Da der Plasmaverschluss selbst Teil der lastaufnehmenden Primärstruktur des Radoms ist, bewirkt der Plasmaverschluss keine Schwächung der Radomstruktur.
  • Der Plasmaverschluss ist ohne die Erzeugung zusätzlicher Streuzentren in das Radom integrierbar.
  • Aufgrund der Transparenz der Elektroden können diese im Sichtfeld der Antenne angeordnet werden. Die Homogenität des elektromagnetischen Feldes innerhalb der plasmaführenden Schicht wird somit verbessert, so dass eine zuverlässige und präzise Steuerung des Plasmazustands möglich ist.
This procedure has a number of advantages over the previously known methods:
  • By integrating the plasma volume into the core of a radome assembly, the outer interface of the plasma volume has nearly the same geometry as the radome shell, and thus can be disguised geometrically in its radar signature based on the established rules of shaping.
  • Since the plasma closure itself is part of the load-bearing primary structure of the radome, the plasma closure does not weaken the radome structure.
  • The plasma shutter can be integrated into the radome without the creation of additional scattering centers.
  • Due to the transparency of the electrodes, these can be arranged in the field of view of the antenna. The homogeneity of the electromagnetic field within the plasma-guiding layer is thus improved, so that a reliable and precise control of the plasma state is possible.

Eine HF-transparente Elektrode ist insbesondere schichtartig ausgebildet und kann z.B. in Form einer gitterförmigen Schicht realisiert werden. Dabei wird die Gitterkonstante so gewählt wird, dass HF-Transparenz zumindest im Betriebsfrequenzbereich der Antenne (für eine Radarantenne z.B. im Bereich von 8 bis 12 GHz) gewährleistet ist. Neben einer reinen Gitteranordnung sind auch komplexere periodische Strukturen möglich, wie etwa kreis- oder ringförmige Schlitze in einer durchgehenden Metallschicht. Eine weitere Möglichkeit besteht darin, eine elektrisch niedrig leitende Schicht zu verwenden, deren Reflexionsfaktor in die Radomauslegung einbezogen wird.An HF-transparent electrode is in particular formed like a layer and can e.g. be realized in the form of a grid-shaped layer. In this case, the lattice constant is selected such that HF transparency is ensured, at least in the operating frequency range of the antenna (for a radar antenna, for example, in the range from 8 to 12 GHz). In addition to a pure grid arrangement, more complex periodic structures are possible, such as circular or annular slots in a continuous metal layer. Another possibility is to use an electrically low-conductivity layer whose reflection factor is included in the radome design.

In einer besonders vorteilhaften Ausführung werden die Elektroden als frequenzselektive Schichten realisiert. Hierbei können insbesondere schlitzartige Typen frequenzselektiver Schichten eingesetzt werden, bei denen eine durchgängige Metallschicht strukturierte Schlitze aufweist. Diese Schichten können als Bandpassfilter ausgelegt werden, so dass die eigenen Betriebsfrequenzen des Antennensystems durch das Radom hindurchgelassen werden, andere Frequenzen aber reflektiert oder auch absorbiert werden.In a particularly advantageous embodiment, the electrodes are realized as frequency-selective layers. In particular, slot-type types of frequency-selective layers can be used in which a continuous metal layer has structured slots. These layers can be designed as bandpass filters, so that the own operating frequencies of the antenna system are transmitted through the radome, but other frequencies are reflected or absorbed.

Der Einsatz frequenzselektiver Schichten hat insbesondere die folgenden Vorteile:

  • Die Kombination von frequenzselektiven Schichten und Plasmaverschluss erlaubt es, die Bandpass-Charakteristik einer FSS mit dem Schaltverhalten des Plasmavolumens zu verbinden und somit den Schutz gegenüber unerwünschter Strahlung weiter zu verbessern.
  • Da die Elektroden zur Plasmaerzeugung gleichzeitig als FSS des Bandpassradoms dienen können, stören sie die Bandpass-Funktion des Radoms nicht, sondern bewirken diese selbst.
  • Die Elektroden aus frequenzselektiven Schichten können ohne Einschränkungen des Betriebs der Antenne im Sichtfeld der Antenne angeordnet sein.
The use of frequency-selective layers has the following advantages in particular:
  • The combination of frequency-selective layers and plasma closure allows the band-pass characteristics of an FSS to be combined with the switching behavior of the plasma volume, thus further improving the protection against unwanted radiation.
  • Since the electrodes for plasma generation can simultaneously serve as FSS of the bandpass radome, they do not interfere with the bandpass function of the radome, but cause it itself.
  • The electrodes of frequency-selective layers can be arranged in the field of view of the antenna without restrictions on the operation of the antenna.

Die Erfindung wird anhand konkreter Ausführungsbeispiele unter Bezugnahme auf Fig. näher erläutert. Es zeigen:

Fig. 1
den prinzipiellen Wirkmechanismus des erfindungsgemäßen Radoms:
a) im rekombinierten Zustand des Plasmas,
b) im Plasmazustand,
Fig. 2
den Aufbau eines erfindungsgemäßen Radoms mit integriertem Plasmaverschluss in schematischer Darstellung,
Fig. 3
eine räumliche Darstellung des Radoms nach Fig. 2,
Fig. 4
den Aufbau einer weiteren Ausführung des erfindungsgemäßen Radoms mit Faltwabe als Kern,
Fig. 5
eine schematische Darstellung zur Herstellung eines erfindungsgemäßen Radoms mit Faltwabenkern nach Fig. 4,
Fig. 6
eine räumliche Darstellung des Radoms mit Faltwabenkern nach Fig. 4.
The invention will be explained in more detail with reference to concrete exemplary embodiments with reference to FIG. Show it:
Fig. 1
the principal mode of action of the radome according to the invention:
a) in the recombined state of the plasma,
b) in the plasma state,
Fig. 2
the construction of a radome according to the invention with integrated plasma shutter in a schematic representation,
Fig. 3
a spatial representation of the radome after Fig. 2 .
Fig. 4
the construction of a further embodiment of the invention radome with folded honeycomb core,
Fig. 5
a schematic representation of the production of a radome according to the invention with folded honeycomb core according to Fig. 4 .
Fig. 6
a spatial representation of the radome with folded honeycomb core Fig. 4 ,

Wie in Fig. 1 dargestellt, überdeckt das erfindungsgemäße Radom 1 mit integriertem Plasmaverschluss ein darunterliegendes Antennensystem 2. Es ist mit einer im oder direkt an dem Radom befindlichen plasmaführenden Schicht 3 ausgestattet, wobei das Plasma über Elektroden (in Fig. 1 nicht dargestellt) aus frequenzselektiven Schichten angeregt wird.As in Fig. 1 The radome 1 according to the invention with integrated plasma shutter covers an underlying antenna system 2. It is equipped with a plasma-guiding layer 3 located in or directly on the radome, the plasma being conveyed via electrodes (in FIG Fig. 1 not shown) is excited from frequency-selective layers.

Fig. 1 zeigt den prinzipiellen Wirkmechanismus. Das Antennensystem 2 ist in diesem Fall als schwenkbare Radarantenne dargestellt, ohne Einschränkung der Allgemeinheit kann jedoch jedes andere elektromagnetisch wirksame Antennensystem, etwa eine Kommunikationsantenne, ein Radarwarnempfänger oder ein Störsender, unter dem Radom angebracht werden. Die Geometrie des Radoms 1 orientiert sich üblicherweise an geometrischen Anforderungen zur Radarsignaturminderung der äußeren Gestalt. Fig. 1 shows the principal mechanism of action. The antenna system 2 is shown in this case as a pivoting radar antenna, but without limitation of generality, any other electromagnetically active antenna system, such as a communication antenna, a radar warning receiver or a jammer, be mounted under the radome. The geometry of the Radome 1 is usually based on geometric requirements for radar signature reduction of the outer shape.

Das an sich bekannte Grundprinzip der Verwendung einer Plasmaschicht 3 als variabler Reflektor beruht darauf, dass die plasmaführende Schicht 3 zwischen einem Plasmazustand (Abb. b in Fig. 1) und einem rekombinierten Zustand (Abb. a) in Fig. 1) hin- und hergeschaltet werden kann. Im Plasmazustand, der durch Anlegen der Spannung an die Elektroden erzeugt wird, wird die plasmaführende Schicht 3 elektrisch leitfähig und reflektiert alle einfallenden elektromagnetischen Wellen 7,8. Im rekombinierten Zustand ist die plasmaführende Schicht elektrisch nichtleitend und damit elektromagnetisch transparent. Dementsprechend durchtritt die Welle 5 das Radom.The basic principle known per se for the use of a plasma layer 3 as a variable reflector is based on the fact that the plasma-guiding layer 3 is located between a plasma state (FIG Fig. 1 ) and a recombined state (Figure a) in Fig. 1 ) can be switched back and forth. In the plasma state, which is generated by applying the voltage to the electrodes, the plasma-guiding layer 3 becomes electrically conductive and reflects all the incident electromagnetic waves 7, 8. In the recombined state, the plasma-conducting layer is electrically nonconductive and thus electromagnetically transparent. Accordingly, the shaft 5 passes through the radome.

Im Einsatz wird grundsätzlich der Plasmazustand eingestellt. Nur in Zeiten, in denen die Antenne aktiv ist, wird in den rekombinierten Plasmazustand umgeschaltet.In use, the plasma state is always set. Only in times in which the antenna is active, is switched to the recombined plasma state.

Das Plasma wird durch am Radom angeordnete, schichtförmige frequenzselektive Elektroden erzeugt, welche nur innerhalb eines bestimmten Frequenzbereichs, nämlich dem Betriebsfrequenzbereich der Antenne, für elektromagnetische Strahlung durchlässig sind. Dadurch ergibt sich auch im rekombinierten Zustand des Plasmas ein Schutz gegen den Einfall unerwünschter Strahlung. Dies ist mit der Strahlung 4 in Fig. 1 a) angedeutet, die an einer frequenzselektiven Schicht reflektiert wird.The plasma is generated by arranged on the radome, layer-shaped frequency-selective electrodes, which are permeable to electromagnetic radiation only within a certain frequency range, namely the operating frequency range of the antenna. This results in the recombined state of the plasma protection against the ingress of unwanted radiation. This is with the radiation 4 in Fig. 1 a) indicated, which is reflected at a frequency-selective layer.

Fig. 2 zeigt den erfindungsgemäßen Aufbau des Radoms im Detail. Die plasmaführende Schicht umfasst erfindungsgemäß einem Wabenkern 9 (hier mit Zellen aus sechseckigem Querschnitt), der zwischen den beiden schichtförmigen Elektroden 10,11 eingebettet ist. Die plasmaführende Schicht mit den angrenzenden Elektroden ist wiederum zwischen den Deckschichten 12,13 der Radomstruktur angebracht. Im Gegensatz zu bekannten Lösungsansätzen bildet die plasmaführende Schicht, d.h. der Wabenkern 9, mit den Deckschichten 12,13 einen strukturellen Verbund. Fig. 2 shows the construction of the radome according to the invention in detail. According to the invention, the plasma-guiding layer comprises a honeycomb core 9 (in this case with cells of hexagonal cross section), which is embedded between the two layered electrodes 10, 11. The plasma-carrying layer with the adjacent electrodes is in turn mounted between the cover layers 12, 13 of the radome structure. In contrast to known approaches the plasma-conducting layer, ie the honeycomb core 9, with the cover layers 12, 13 has a structural bond.

Besonders geeignet für den Wabenkern sind generell Zellformen mit sechseckigem Querschnitt (z.B. in der Form eines gleichseitigen Sechseckes - sogenannte Honeycombs). Aber auch andere Zellformen, z.B. mit dreieckigen oder viereckigen Zellenquerschnitten sind möglich.Cellular shapes of hexagonal cross-section (e.g., in the shape of an equilateral hexagon - so-called honeycombs) are generally particularly suitable for the honeycomb core. But other cell forms, e.g. with triangular or square cell cross sections are possible.

Optional ist am Rand noch ein umlaufender Rahmen 21 angebracht der zum Anschluss des Radoms an die umgebende Struktur dient. Damit teilt sich das Radom in einen elektromagnetisch transparenten Teil 19 und in einen elektromagnetisch nicht transparenten Teil 20 auf, welcher in einer speziellen Ausführung durch eine durchgehende elektrisch leitfähige Schicht 22 elektromagnetisch verschlossen sein kann. Auf der Außenseite können optional noch zusätzliche Schutzschichten 14 gegen Regenerosion angebracht sein. Auch sind zusätzliche frequenzselektive Schichten in den Radomdeckschichten 12,13 oder an der Oberfläche des Radoms denkbar, um das Bandpassverhalten noch genauer einzustellen.Optionally, a peripheral frame 21 is attached to the edge which serves to connect the radome to the surrounding structure. Thus, the radome is divided into an electromagnetically transparent part 19 and an electromagnetically non-transparent part 20, which may be electromagnetically closed in a special embodiment by a continuous electrically conductive layer 22. On the outside, optional additional protective layers 14 may be attached against rain erosion. Also, additional frequency-selective layers in the Radomdeckschichten 12,13 or on the surface of the radome are conceivable to adjust the bandpass behavior more precisely.

Die Elektroden 10,11 sind schichtförmig ausgebildet und bestehen in der gezeigten Ausführung aus frequenzselektiven Schichten. Besonders als Elektroden geeignet sind schlitzartige Typen frequenzselektiver Schichten, bei denen eine durchgängige Metallschicht strukturierte Schlitze aufweist. In der gezeigten Ausführung weisen die beiden Elektroden 10,11 jeweils ein regelmäßiges Muster, gebildet aus kreuzförmigen Schlitzen auf. Derartige Schichten können als Bandpassfilter ausgelegt sein, das heißt die eigenen Betriebsfrequenzen des Antennensystems 2 werden durch das Radom 1 hindurchgelassen, andere Frequenzen aber reflektiert oder auch absorbiert. Wegen ihrer HF-Transparenz im Bereich der Betriebsfrequenzen der Antenne können die Elektroden problemlos im Sichtfeld der Antenne angeordnet werden.The electrodes 10,11 are formed in layers and consist in the embodiment shown of frequency-selective layers. Particularly suitable as electrodes are slot-type types of frequency-selective layers in which a continuous metal layer has structured slots. In the embodiment shown, the two electrodes 10, 11 each have a regular pattern formed by cross-shaped slots. Such layers can be designed as a bandpass filter, that is, the own operating frequencies of the antenna system 2 are transmitted through the radome 1, but other frequencies reflected or absorbed. Because of their RF transparency in the range of the operating frequencies of the antenna, the electrodes can be easily arranged in the field of view of the antenna.

Damit ein für die Erzeugung eines Plasmas geeignetes Gasgemisch bei einem geeigneten Unterdruck in die plasmaführende Schicht eingebracht werden kann, ist die Wabe perforiert 15 und damit in ihrer Ebene luftdurchlässig, so dass durch einen oder mehrere Anschlüsse 18 ein Spülen der plasmaführenden Schicht mit einem geeigneten Gasgemisch sowie ein Absaugen bis zum Erreichen des notwendigen Unterdrucks zur Generierung des Plasmas möglich wird. Nach Einstellung des gewünschten Gasgemischs und Druckniveaus wird der oder die Anschlüsse verschlossen, dieser Vorgang kann zu Wartungszwecken in geeigneten Zeitabständen wiederholt werden.In order for a gas mixture suitable for the generation of a plasma to be introduced into the plasma-guiding layer at a suitable negative pressure, the honeycomb is perforated 15 and thus permeable to air in its plane, so that flushing of the plasma-guiding layer with a suitable gas mixture through one or more connections 18 and suction is possible until reaching the necessary negative pressure to generate the plasma. After setting the desired gas mixture and pressure levels, the connection (s) is closed, this process can be repeated at appropriate intervals for maintenance purposes.

Falls nötig, ist die Wabe 9 auch zusätzlich mit einer Schutzschicht beschichtet, um einen Abtrag des Wabenmaterials durch das aggressive Plasma zu vermeiden.If necessary, the honeycomb 9 is also additionally coated with a protective layer in order to avoid removal of the honeycomb material by the aggressive plasma.

Die beiden als Elektroden dienenden frequenzselektiven Schichten 10,11 sind über eine Schaltvorrichtung 16 mit einer Hochspannungsquelle 17 verbunden, so dass bei Anlegen der Hochspannung das Plasma in der plasmaführenden Schicht zünden kann.The two frequency-selective layers 10, 11 serving as electrodes are connected to a high-voltage source 17 via a switching device 16, so that when the high voltage is applied, the plasma in the plasma-guiding layer can be ignited.

Fig. 3 zeigt den schematischen Aufbau gemäß Fig. 2 in dreidimensionaler Darstellung. Fig. 3 shows the schematic structure according to Fig. 2 in three-dimensional representation.

Eine weitere Variante ergibt sich, in dem als plasmaführende Schicht keine konventionelle Wabe, sondern eine sogenannte Faltwabe 5 ist, wie sie in der US 5,028,474 , beschrieben ist. Derartige Faltwaben entstehen durch Knicken einer ebenen, geschlossenen Materialschicht an definierten Knicklinien.A further variant results in which the plasma-guiding layer is not a conventional honeycomb but a so-called folding honeycomb 5, as described in US Pat US 5,028,474 , is described. Such folded honeycombs are formed by bending a flat, closed material layer at defined bend lines.

Wie in Fig. 4 dargestellt, wird die Faltwabe 30 anstelle der normalen Wabe in den Radomaufbau mit den beiden Deckschichten 12,13 und den optionalen Schutzschichten 14 integriert. In diesem Fall ist es sogar besonders vorteilhaft, die Elektroden 31 aus frequenzselektiven Schichten direkt auf die Oberfläche der Faltwabe 30 aufzubringen. In diesem Fall können zur Erreichung einer bestimmten Bandpasscharakteristik des Radoms zusätzliche frequenzselektive Schichten in bzw. auf den Radomaufbau integriert werden.As in Fig. 4 shown, the folding honeycomb 30 is integrated instead of the normal honeycomb in the Radomaufbau with the two outer layers 12,13 and the optional protective layers 14. In this case, it is even particularly advantageous to apply the electrodes 31 of frequency-selective layers directly to the surface of the folded honeycomb 30. In this case, to achieve a certain bandpass characteristic of the radome additional frequency-selective layers are integrated in or on the Radomaufbau.

Faltwaben zeichnen sich dadurch aus, dass die Wabenstruktur durchgängige Luftwege bilden können und die Faltwabe daher belüftet werden kann. Die bei herkömmlichen Waben notwendige Perforierung kann damit entfallen. Zudem sind Faltwaben per Definition abwickelbar, so dass die Elektroden aus frequenzselektiven Schichten vor dem Falten der Wabe direkt auf beide Seiten des Wabenmaterials aufgebracht werden können.Folded honeycombs are characterized by the fact that the honeycomb structure can form continuous airways and the folding honeycomb can therefore be ventilated. The need for conventional honeycomb perforation can be eliminated. In addition, folding honeycomb by definition can be developed, so that the electrodes of frequency-selective layers can be applied directly to both sides of the honeycomb material before folding the honeycomb.

Wie in Fig. 5 dargestellt, werden auf das ebene Wabenausgangsmaterial 32 beidseitig die Elektroden 31 aus frequenzselektiven Schichten zwischen die späteren Knicklinien 36 aufgebracht, z.B. gedruckt. Reihen von Elektroden mit gleicher Polarität werden dabei durch kurze Leiterbahnen 34 parallel geschaltet, so dass die parallel geschalteten Reihen von der Seite her gemeinsam kontaktiert werden können. Dabei sollte auf beiden Seiten des Wabenmaterials bei gegenüberliegenden Elektroden jeweils die gleiche Polarität anliegen, um einen elektrischen Durchschlag durch das Wabenmaterial zu vermeiden.As in Fig. 5 shown, the electrodes 31 are applied to the flat honeycomb feedstock 32 on both sides of frequency-selective layers between the later fold lines 36, for example, printed. Rows of electrodes of the same polarity are connected in parallel by short conductor tracks 34, so that the rows connected in parallel can be contacted from the side together. In this case, in each case the same polarity should be applied to both sides of the honeycomb material at opposite electrodes in order to avoid electrical breakdown by the honeycomb material.

Das so vorbehandelte ebene Wabenmaterial wird dann, nach Vorprägung der Knicklinien zur Faltwabe 30 zusammengeschoben.The thus pre-treated flat honeycomb material is then pushed together after Präprägung the fold lines to the folding honeycomb 30.

Fig. 6 zeigt den Aufbau des erfindungsgemäßen Radoms gemäß Fig. 4 und 5 in dreidimensionaler Darstellung. Fig. 6 shows the structure of the radome according to the invention according to Fig. 4 and 5 in three-dimensional representation.

Claims (6)

Radom (1) mit darin integriertem Plasmaverschluss, welcher eine plasmaführende Schicht sowie Elektroden (10,11) zur Plasmaanregung umfasst, dadurch gekennzeichnet, dass das Radom (1) eine Sandwichstruktur aus Wabenkern (9) und Deckplatten (12,13) aufweist, wobei die plasmaführende Schicht im Wabenkern (9) der Sandwichstruktur enthalten ist und die Elektroden (10,11) zumindest im Betriebsfrequenzbereich der Antenne (2) HF-transparent sind.Radome (1) with plasma shutter integrated therein, which comprises a plasma-guiding layer and electrodes (10, 11) for plasma excitation, characterized in that the radome (1) has a sandwich structure of honeycomb core (9) and cover plates (12, 13) the plasma-guiding layer is contained in the honeycomb core (9) of the sandwich structure and the electrodes (10, 11) are HF-transparent at least in the operating frequency range of the antenna (2). Radom (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Elektroden (10,11) aus frequenzselektiven Schichten bestehen, die als Bandpassfilter im Betriebsfrequenzbereich der Antenne ausgelegt sind.Radome (1) according to claim 1, characterized in that the electrodes (10,11) consist of frequency-selective layers, which are designed as a band-pass filter in the operating frequency range of the antenna. Radom (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Elektroden (10,11) auf den Deckplatten (12,13) angeordnet sind.Radome (1) according to claim 1 or 2, characterized in that the electrodes (10,11) on the cover plates (12,13) are arranged. Radom (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Elektroden (12,13) auf den Wänden des Wabenkerns (9) angeordnet sind.Radome (1) according to claim 1 or 2, characterized in that the electrodes (12, 13) are arranged on the walls of the honeycomb core (9). Radom (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Wabenkern eine Faltwabe (30) ist.Radome (1) according to one of the preceding claims, characterized in that the honeycomb core is a folded honeycomb (30). Radom (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Wände des Wabenkerns (9) perforiert sind.Radome (1) according to one of claims 1 to 4, characterized in that the walls of the honeycomb core (9) are perforated.
EP08018110A 2007-10-26 2008-10-16 Radome with integrated plasma shutter Active EP2053690B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007051243A DE102007051243B3 (en) 2007-10-26 2007-10-26 Radome with integrated plasma shutter

Publications (2)

Publication Number Publication Date
EP2053690A1 true EP2053690A1 (en) 2009-04-29
EP2053690B1 EP2053690B1 (en) 2011-08-03

Family

ID=40028954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08018110A Active EP2053690B1 (en) 2007-10-26 2008-10-16 Radome with integrated plasma shutter

Country Status (3)

Country Link
US (1) US8159407B2 (en)
EP (1) EP2053690B1 (en)
DE (1) DE102007051243B3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494475A (en) * 2018-07-13 2019-03-19 中国航空工业集团公司济南特种结构研究所 A kind of multi-layer honeycomb structure with enhancing radome root rigidity

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403271B2 (en) 2010-08-24 2013-03-26 Lockheed Martin Corporation Passive robust flow control micro device
US8636254B2 (en) 2010-09-29 2014-01-28 Lockheed Martin Corporation Dynamically controlled cross flow instability inhibiting assembly
FR2966983B1 (en) * 2010-10-29 2012-12-28 Thales Sa MULTILAYER WALL FOR SELECTIVE RADOME IN FREQUENCY.
KR101544832B1 (en) * 2011-04-26 2015-08-17 한국전자통신연구원 Apparatus and method for shielding jamming signal
US9257743B2 (en) * 2012-02-16 2016-02-09 Lockheed Martin Corporation System and method for providing a frequency selective radome
US8890765B1 (en) 2012-04-21 2014-11-18 The United States Of America As Represented By The Secretary Of The Navy Antenna having an active radome
WO2014171866A1 (en) * 2013-04-18 2014-10-23 Saab Ab A protective arrangement for protection against high power microwaves
JP6211374B2 (en) * 2013-10-11 2017-10-11 三菱重工業株式会社 Radio wave selection structure and radio wave selection method
US9608321B2 (en) * 2013-11-11 2017-03-28 Gogo Llc Radome having localized areas of reduced radio signal attenuation
US9568280B1 (en) * 2013-11-25 2017-02-14 Lockheed Martin Corporation Solid nose cone and related components
US9534868B1 (en) 2014-06-03 2017-01-03 Lockheed Martin Corporation Aerodynamic conformal nose cone and scanning mechanism
JP6249906B2 (en) * 2014-08-28 2017-12-20 三菱電機株式会社 Array antenna device
DE102015014256B4 (en) 2015-11-05 2020-06-18 Airbus Defence and Space GmbH Microelectronic module for cleaning a surface, modular array and method for cleaning a surface
US10270160B2 (en) * 2016-04-27 2019-04-23 Topcon Positioning Systems, Inc. Antenna radomes forming a cut-off pattern
DE102016008945A1 (en) * 2016-07-26 2018-02-01 Airbus Defence and Space GmbH Microelectronic module for modifying the electromagnetic signature of a surface, modular array and method for changing the electromagnetic signature of a surface
US10770785B2 (en) * 2017-04-05 2020-09-08 Smartsky Networks LLC Plasma radome with flexible density control
US10784571B2 (en) * 2017-06-16 2020-09-22 Raytheon Company Dielectric-encapsulated wideband metal radome
WO2019134599A1 (en) * 2018-01-08 2019-07-11 深圳光启尖端技术有限责任公司 Antenna cover
RU2738429C1 (en) * 2020-04-24 2020-12-14 Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина» Antenna fairing
RU2738428C1 (en) * 2020-04-24 2020-12-14 Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина» Antenna fairing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3920110A1 (en) * 1989-06-20 1991-02-07 Dornier Luftfahrt Radome or radar absorber with adjustable transparency - has photosensitive layer with inside light source controlling EM state from reflection to transparency
US5028474A (en) 1989-07-25 1991-07-02 Czaplicki Ronald M Cellular core structure providing gridlike bearing surfaces on opposing parallel planes of the formed core
US5182496A (en) 1992-04-07 1993-01-26 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for forming an agile plasma mirror effective as a microwave reflector
DE4336841C1 (en) 1993-10-28 1995-05-04 Deutsche Aerospace Cover for radar antennas
US6218978B1 (en) 1994-06-22 2001-04-17 British Aerospace Public Limited Co. Frequency selective surface

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5574471A (en) * 1982-09-07 1996-11-12 Radant Systems, Inc. Electromagnetic energy shield
US5621423A (en) * 1983-08-29 1997-04-15 Radant Systems, Inc. Electromagnetic energy shield
US4684954A (en) * 1985-08-19 1987-08-04 Radant Technologies, Inc. Electromagnetic energy shield
DE4002951A1 (en) * 1990-02-01 1991-08-08 Medicoat Ag Niederrohrdorf SOLID ELECTROLYTE - FUEL CELL AND METHOD FOR THE PRODUCTION THEREOF
DE4140944A1 (en) * 1991-12-12 1993-06-17 Deutsche Aerospace ABSORBER FOR ELECTROMAGNETIC RADIATION
PL324520A1 (en) * 1995-07-18 1998-06-08 Univ Leuven Kath Collapsible honeycomb structure
US6870517B1 (en) * 2003-08-27 2005-03-22 Theodore R. Anderson Configurable arrays for steerable antennas and wireless network incorporating the steerable antennas
US6767606B2 (en) * 2002-08-29 2004-07-27 The Boeing Company Vented cell structure and fabrication method
US7292191B2 (en) * 2004-06-21 2007-11-06 Theodore Anderson Tunable plasma frequency devices
US7755254B2 (en) * 2006-12-04 2010-07-13 Ngk Insulators, Ltd. Honeycomb-type piezoelectric/electrostrictive element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3920110A1 (en) * 1989-06-20 1991-02-07 Dornier Luftfahrt Radome or radar absorber with adjustable transparency - has photosensitive layer with inside light source controlling EM state from reflection to transparency
DE3920110C2 (en) 1989-06-20 1991-07-18 Dornier Luftfahrt Gmbh, 8000 Muenchen, De
US5028474A (en) 1989-07-25 1991-07-02 Czaplicki Ronald M Cellular core structure providing gridlike bearing surfaces on opposing parallel planes of the formed core
US5182496A (en) 1992-04-07 1993-01-26 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for forming an agile plasma mirror effective as a microwave reflector
DE4336841C1 (en) 1993-10-28 1995-05-04 Deutsche Aerospace Cover for radar antennas
US6218978B1 (en) 1994-06-22 2001-04-17 British Aerospace Public Limited Co. Frequency selective surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494475A (en) * 2018-07-13 2019-03-19 中国航空工业集团公司济南特种结构研究所 A kind of multi-layer honeycomb structure with enhancing radome root rigidity

Also Published As

Publication number Publication date
EP2053690B1 (en) 2011-08-03
DE102007051243B3 (en) 2009-04-09
US8159407B2 (en) 2012-04-17
US20090109115A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
EP2053690B1 (en) Radome with integrated plasma shutter
EP0594809B1 (en) Radio antenna arrangement located next to vehicle window panes
DE102016101583B4 (en) Radom
DE60015822T2 (en) Multi-lobe antenna with frequency-selective or polarization-sensitive zones
EP2890655B1 (en) Coated pane with partially uncoated sections
EP3029770B1 (en) Planar antenna with cover
DE60202778T2 (en) ELECTROMAGNETIC WINDOW
EP3533108B1 (en) Radome wall for communication applications
DE2362913C3 (en) Spiral antenna
DE102021100501A1 (en) Battery pack
EP3178129A1 (en) Multi-structure broadband monopole antenna for two frequency bands in the decimeter wave range separated by a frequency gap, for motor vehicles
DE3218690C1 (en) Biconical omnidirectional antenna
EP2144363A1 (en) Microwave generator
DE202022107107U1 (en) Integrated base station antenna
EP2375491A1 (en) Leaky-wave antenna
DE2339533A1 (en) ARTIFICIAL DIELECTRIC FOR CONTROL OF ANTENNA DIAGRAMS
DE3431986A1 (en) POLARIZATION SEPARATING REFLECTOR
DE3048703A1 (en) "QUASIOPTIC FREQUENCY DIPLEXER"
EP1145368B1 (en) Bifocal planar antenna
EP2485329B1 (en) Array antenna
DE102017218832A1 (en) Door for a household microwave oven
EP0042611B1 (en) Conductive screen for circularly polarising electromagnetic waves
EP3621423A1 (en) Device for filtering electromagnetic radiation, air and spacecraft and method for producing said device
EP3277060B1 (en) Microelectronic module for modifying the electromagnetic signature of a surface, module array and method for modifying the electromagnetic signature of a surface
DE112020006270T5 (en) FREQUENCY-SELECTIVE SURFACE ELEMENT, FREQUENCY-SELECTIVE SURFACE AND ELECTROMAGNETIC WAVE ABSORBER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20090922

17P Request for examination filed

Effective date: 20090826

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008004360

Country of ref document: DE

Effective date: 20111006

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008004360

Country of ref document: DE

Effective date: 20120504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008004360

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

Effective date: 20140814

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20180605

Ref country code: FR

Ref legal event code: CD

Owner name: EADS DEUTSCHLAND GMBH, DE

Effective date: 20180605

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231024

Year of fee payment: 16

Ref country code: DE

Payment date: 20231020

Year of fee payment: 16