EP0042611B1 - Conductive screen for circularly polarising electromagnetic waves - Google Patents

Conductive screen for circularly polarising electromagnetic waves Download PDF

Info

Publication number
EP0042611B1
EP0042611B1 EP81104792A EP81104792A EP0042611B1 EP 0042611 B1 EP0042611 B1 EP 0042611B1 EP 81104792 A EP81104792 A EP 81104792A EP 81104792 A EP81104792 A EP 81104792A EP 0042611 B1 EP0042611 B1 EP 0042611B1
Authority
EP
European Patent Office
Prior art keywords
grid structure
antenna
plane
conductor grid
circular polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81104792A
Other languages
German (de)
French (fr)
Other versions
EP0042611A1 (en
Inventor
Erich Dipl.-Ing. Kandler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0042611A1 publication Critical patent/EP0042611A1/en
Application granted granted Critical
Publication of EP0042611B1 publication Critical patent/EP0042611B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/425Housings not intimately mechanically associated with radiating elements, e.g. radome comprising a metallic grid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • H01Q15/244Polarisation converters converting a linear polarised wave into a circular polarised wave

Definitions

  • the invention relates to a single-layer or multilayer conductor grid structure arranged in a non-flat surface in front of the radiation aperture of an antenna for converting electromagnetic waves with a given linear polarization into those with circular polarization.
  • radar devices in particular target radar devices
  • linear polarization since this allows the greatest range to be achieved under normal conditions.
  • rain cloud echo signals which have a spectral distribution similar to that of destination echo signals cannot be distinguished from "real" destination echo signals.
  • circular polarization rain cloud echo signals are strongly attenuated and it is easier to distinguish between flight destinations and rain clouds.
  • the linear polarization of an antenna is converted into circular polarization in many cases, for example by means of a polarization grating attached in front of the radiation aperture, which is usually integrated into the radome.
  • Such known circular polarization gratings for example those described in U.S. Patent No. 3,754,271, are flat.
  • DE-A-2 800 101 discloses a curved conductor grid structure which is arranged in front of a waveguide opening and converts the linear to circular polarization.
  • This grid consisting of parallel meandering lines has the shape of a half cylinder and thus runs in a non-flat surface in front of the radiation aperture. All meandering lines of the grid have approximately the same amplitudes and also approximately the same distances from one another. The lattice can be thought of as a level, regular meandering line structure being laid over the curved surface.
  • deviations from the circular polarization in the direction of an elliptical polarization occur, particularly in the case of grids with a more curved shape.
  • the object of the invention is to provide an arbitrarily curved conductor grid structure which can be built into an existing radome and works without any loss in terms of circular polarization capability.
  • this object is achieved in that the geometric course of the grating structure on the non-flat surface is determined by the projection of a fictitious grating structure arranged in the aperture plane and generating a circular polarization onto the non-flat surface.
  • the basic idea of the invention is to transfer the conductor structures used in flat circular polarization gratings by projection onto non-flat, in particular curved, surfaces.
  • a polarization grating also works without any loss in terms of the circular polarization capability if it is introduced into any non-planar, that is to say also strongly curved, surface such that its course of the projection of a planar, in corresponds to the grating attached to the radiation aperture plane. Compens sations when dimensioning the grid conductor width or spacing, for example in the outer grid area, are not required; they would even significantly reduce the quality of the circular polarization, since this would result in conductor dimensions which would lead to phase changes causing elliptical polarization.
  • the lattice structure can consist, for example, of continuous lines, meander lines, rows of rectangular lines or the like.
  • the grid shows a circular polarization grating according to the invention at the top in a side view and below in a plan view, which is of conical shape and can be integrated with the radome of the reflector mirror of a target follower radar antenna.
  • the grid consists of metallic conductors 1, which run in a straight line and parallel to one another both in the top view and in the side view and have the same distances from one another.
  • the parameter for the line spacing is designated k.
  • a similar circular polarization grating is shown in side view and top view in FIG. 2.
  • the grating structure does not consist of straight, but of meandering metal conductors 2. These run parallel to one another in plan view and side view with respect to their main direction of expansion and have the same spacing from one another. To simplify the drawing, only a small part of the lattice structure is shown as a meandering line.
  • a similar circular polarization grating also shows a side view and a top view in FIG. 3.
  • the grating structure according to FIG. 1 consists of a line-rectangular pattern. This pattern is designed in such a way that lines and rows of rectangles running parallel to one another are provided both in the top view and in the side view, two rows of rectangles always being immediately adjacent and only then a line following again.
  • the individual rectangles are denoted by 3 and the lines by 4, only a few rectangles being indicated in this figure.
  • FIG. 4 shows the development of the surface of the cone with the circular polarization grating according to FIG. 1.
  • the lines of this grating structure are also designated 1 in FIG. 4.
  • the development of the conical surface according to FIG. 4 is obtained by cutting open the conical surface according to FIG. 1, starting from an edge point 5, 6 on the conical base surface up to the tip 7 of the conical surface.
  • the two points 5 and 6 which fall apart in the development coincide in the actual conical lateral surface according to FIG. 1.
  • the point 7 of the development of the conical surface forms the tip of the conical circular polarization grating according to FIG. 1.
  • FIGS. 5 and 6 show similar developments of the conical surface for the circular polarization grating according to FIGS. 2 and 3.
  • curved line patterns that are explicit in the form of mathematical equations given a flat surface of a circular polarization grating can be projected onto the conical surface to form a circular polarization grating in the form of a conical shell.
  • Fig. 7 shows the development of a conical surface on which a flat sine line with its base line was projected.
  • a curved base line 8 in this area of the cone shell, around which a distorted sine line 9 runs.
  • d. H. connect points 5 and 6 with each other so that a tip 7 is formed, so there would be a straight and vertical base line 8 around which an undistorted sine line 9 swings when viewed from above and from the side of the conical surface.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

Die Erfindung bezieht sich auf eine in einer nicht ebenen Fläche vor der Strahlungsapertur einer Antenne angeordnete ein- oder mehrschichtige Leitergitterstruktur zur Umwandlung elektromagnetischer Wellen mit einer gegebenen linearen Polarisation in solche mit zirkularer Polarisation.The invention relates to a single-layer or multilayer conductor grid structure arranged in a non-flat surface in front of the radiation aperture of an antenna for converting electromagnetic waves with a given linear polarization into those with circular polarization.

Beispielsweise Radargeräte, insbesondere Zielfolgeradargeräte, werden oft für lineare Polarisation gebaut, da mit dieser unter Normalbedingungen die größte Reichweite erzielt werden kann. Mit einer linear polarisierten Antenne kann man aber Regenwolken-Echosignale, die eine ähnliche Spektralverteilung wie Flugziel-Echosignale haben, von »echten« Flugziel-Echosignalen nicht unterscheiden. Bei Verwendung von Zirkularpolarisation werden dagegen Regenwolken-Echosignale stark gedämpft und es ist eine Unterscheidung zwischen Flugzielen und Regenwolken leichter möglich. Es wird deswegen in vielen Fällen die Linearpolarisation einer Antenne, beispielsweise durch ein vor der Strahlungsapertur angebrachtes Polarisationsgitter, welches in das Radom gewöhnlich integriert ist, in Zirkularpolarisation umgewandelt. Solche bekannten und beispielsweise in der US-Patentschrift 3 754 271 beschriebenen Zirkularpolarisationsgittersind eben ausgebildet.For example, radar devices, in particular target radar devices, are often built for linear polarization, since this allows the greatest range to be achieved under normal conditions. With a linearly polarized antenna, however, rain cloud echo signals which have a spectral distribution similar to that of destination echo signals cannot be distinguished from "real" destination echo signals. On the other hand, when using circular polarization, rain cloud echo signals are strongly attenuated and it is easier to distinguish between flight destinations and rain clouds. For this reason, the linear polarization of an antenna is converted into circular polarization in many cases, for example by means of a polarization grating attached in front of the radiation aperture, which is usually integrated into the radome. Such known circular polarization gratings, for example those described in U.S. Patent No. 3,754,271, are flat.

Ein solches ebenes Zirkularpolarisationsgitter läßt sich jedoch häufig in ein bereits bestehendes, gekrümmtes Radom vor einer Strahlungsapertur wegen der dort verfügbaren Einbaumaße nicht einbauen.However, such a flat circular polarization grating can often not be installed in an existing, curved radome in front of a radiation aperture because of the installation dimensions available there.

Aus DE-A-2 800 101 ist eine vor einer Hohlleiteröffnung angeordnete, gekrümmte Leitergitterstruktur bekannt, die lineare in zirkulare Polarisation umwandelt. Dieses aus parallel verlaufenden Mäanderlinien bestehende Gitter hat die Form eines Halbzylinders und verläuft somit in einer nicht ebenen Fläche vor der Strahlungsapertur. Alle Mäanderlinien des Gitters haben dabei etwa gleiche Amplituden und auch etwa gleiche Abstände voneinander. Das Gitter läßt sich so entstanden denken, daß eine ebene, regelmäßige Mäanderlinien-Struktur über die gekrümmte Fläche gelegt wird. Es hat sich jedoch herausgestellt, daß bei dieser bekannten Ausführung eines gekrümmten Zirkularpolarisationsgitters sich insbesondere bei stärker gekrümmten Gittern Abweichungen von der Zirkularpolarisation in Richtung auf eine elliptische Polarisation einstellen.DE-A-2 800 101 discloses a curved conductor grid structure which is arranged in front of a waveguide opening and converts the linear to circular polarization. This grid consisting of parallel meandering lines has the shape of a half cylinder and thus runs in a non-flat surface in front of the radiation aperture. All meandering lines of the grid have approximately the same amplitudes and also approximately the same distances from one another. The lattice can be thought of as a level, regular meandering line structure being laid over the curved surface. However, it has been found that in this known embodiment of a curved circular polarization grating, deviations from the circular polarization in the direction of an elliptical polarization occur, particularly in the case of grids with a more curved shape.

Aufgabe der Erfindung ist es, eine beliebig gekrümmte Leitergitterstruktur zu schaffen, die sich in ein bereits bestehendes Radom einbauen läßt und ohne Einbuße hinsichtlich der Zirkular-Polarisationsfähigkeit arbeitet.The object of the invention is to provide an arbitrarily curved conductor grid structure which can be built into an existing radome and works without any loss in terms of circular polarization capability.

Gemäß der Erfindung wird diese Aufgabe dadurch gelöst, daß der geometrische Verlauf der Gitterstruktur auf der nicht ebenen Fläche durch die Projektion einer fiktiven, in der Aperturebene angeordneten und eine zirkulare Polarisation erzeugenden Gitterstruktur auf die nicht ebene Fläche bestimmt ist.According to the invention, this object is achieved in that the geometric course of the grating structure on the non-flat surface is determined by the projection of a fictitious grating structure arranged in the aperture plane and generating a circular polarization onto the non-flat surface.

Der Grundgedanke der Erfindung besteht darin, die bei ebenen Zirkularpolarisationsgittern verwendeten Leiterstrukturen durch Projektion auf nicht ebene, insbesondere gekrümmte Flächen zu übertragen.The basic idea of the invention is to transfer the conductor structures used in flat circular polarization gratings by projection onto non-flat, in particular curved, surfaces.

Aus US-A-3 907 565 ist es in anderem Zusammenhang bekannt, eine Spiralantenne auf der Oberfläche eines Radoms so anzuordnen, daß diese Spiralantenne, sofern sie auf eine ebene Fläche projiziert wird, geometrisch richtig verläuft. Die Voraussetzungen, die zum einen bei der Spiralantenne nach der US-A-3 907 565 und zum anderen beim Polarisationsgitter nach der Erfindung vorliegen, lassen sich aber nicht vergleichen. In der US-A-3 907 565 ist erkannt worden, daß die Anbringung einer ebenen Spiralantenne innerhalb eines kuppelförmigen Radoms zu verhältnismäßig ungünstigen Strahlungseigenschaften führt, weil zwischen der Antennenebene und der gekrümmten Radomfläche ein freier, über seine Ausdehnung nicht konstanter Luftraum entsteht, der Diskontinuitäten im Mikrowellen-Frequenzbereich ergibt. Es wurde nun versucht, zur Vermeidung dieser Diskontinuitäten die Spiralantenne entsprechend dem Radom mitzuformen. Dabei wurde festgestellt, daß eine Krümmung der Spiralantenne bis zu einem bestimmten Grad deren Strahlungsverhalten nicht allzu sehr stört. Diese Betrachtung gilt auch für denjenigen Fall, bei dem die Spiralantennenkonfiguration durch Projektion einer ebenen Spiralantenne auf die Radomoberfläche entstanden ist und damit bei senkrechter Draufsicht auf das Radom von oben identisch mit der ebenen Spiralantenne erscheint. Nicht mehr akzeptabel in ihrem Strahlungsverhalten ist allerdings die Antenne dann, wenn die Krümmung des Radoms größer ist, was z. B. bei einer Flugzeug-Radarnase gewöhnlich der Fall ist. Die Verbreiterung der Spirallinien in den äußeren Bereichen der Antenne ist dann so groß, daß die einwandfreie Funktion der Antenne nicht mehr gewährleistet ist. Es werden dannn keine ebenen Wellen mehr abgestrahlt. Diese Schwierigkeiten lassen sich erwiesenermaßen nur dadurch vermeiden, daß im zu projizierenden Bild die Dicke der Spiralbahnen nach außen hin kompensiert, d. h. verringert wird. Es müssen also bei der bekannten Antenne ab einer bestimmten Krümmung eigens Maßnahmen getroffen werden, durch welche die Spiralbahnen auf der Radomoberfläche zumindest angenähert so aussehen, als sei eine an sich ebene Spiralantenne auf die gewölbte Radomoberfläche aufgeklebt.From US-A-3 907 565 it is known in another context to arrange a spiral antenna on the surface of a radome in such a way that this spiral antenna, provided that it is projected onto a flat surface, runs geometrically correctly. The prerequisites that exist on the one hand in the spiral antenna according to US Pat. No. 3,907,565 and on the other hand in the polarization grating according to the invention cannot be compared. It has been recognized in US-A-3 907 565 that the attachment of a plane spiral antenna within a dome-shaped radome leads to relatively unfavorable radiation properties because a free air space, which is not constant over its extension, results in discontinuities between the antenna plane and the curved radome surface results in the microwave frequency range. In order to avoid these discontinuities, attempts have now been made to shape the spiral antenna in accordance with the radome. It was found that a curvature of the spiral antenna up to a certain degree does not disturb its radiation behavior too much. This consideration also applies to the case in which the spiral antenna configuration was created by projecting a flat spiral antenna onto the radome surface and thus appears identical to the flat spiral antenna from above when the radome is viewed vertically from above. However, the antenna is no longer acceptable in terms of its radiation behavior if the curvature of the radome is greater. B. is usually the case with an aircraft radar nose. The widening of the spiral lines in the outer areas of the antenna is then so large that the proper functioning of the antenna can no longer be guaranteed. No more plane waves are then emitted. It has been proven that these difficulties can only be avoided by compensating the thickness of the spiral tracks towards the outside in the image to be projected. H. is reduced. With the known antenna, specific measures must be taken from a certain curvature, by means of which the spiral tracks on the radome surface look at least approximately as if a spiral antenna, which is flat per se, were glued to the curved radome surface.

Bei der Erfindung dagegen ist erkannt worden, daß ein Polarisationsgitter auch dann ohne jegliche Einbuße hinsichtlich der Zirkular-Polarisationsfähigkeit arbeitet, wenn es so in eine beliebige, nicht ebene, also auch stark gekrümmte Fläche eingebracht ist, daß sein Verlauf der Projektion eines ebenen, in der Strahlungsaperturebene angebrachten Gitters entspricht. Kompensationen bei der Bemessung der Gitterleiterbreite oder -abstände, beispielsweise im äußeren Gitterbereich, sind nicht erforderlich; sie würden die Qualität der Zirkular-Polarisation sogar erheblich verringern, da sich dann Leiterabmessungen ergeben, die zu elliptische Polarisation hervorrufenden Phasenveränderungen führen würden. Diese Unterschiede zwischen dem Polarisationsgitter nach der Erfindung einerseits und der Spiralantenne andererseits bei stärker gekrümmter, mittels geometrischer Projektion aus einer ebenen Form entstandener Ausführungen ergeben sich deswegen, weil das Gitter vor einer eine ebene Welle abgebenden Strahlungsapertur angebracht ist, wogegen die Spiralantenne selbst eine Strahlungsquelle bildet.In the case of the invention, on the other hand, it has been recognized that a polarization grating also works without any loss in terms of the circular polarization capability if it is introduced into any non-planar, that is to say also strongly curved, surface such that its course of the projection of a planar, in corresponds to the grating attached to the radiation aperture plane. Compens sations when dimensioning the grid conductor width or spacing, for example in the outer grid area, are not required; they would even significantly reduce the quality of the circular polarization, since this would result in conductor dimensions which would lead to phase changes causing elliptical polarization. These differences between the polarization grating according to the invention, on the one hand, and the spiral antenna, on the other hand, in the case of more curved designs which have arisen from a flat shape by means of geometric projection, arise because the grating is mounted in front of a radiation aperture emitting a plane wave, whereas the spiral antenna itself forms a radiation source .

Als Metallstrukturen werden für das Gitter wegen der wirtschaftlichen Herstellung auf Flächen aufgeätzte Muster in zweckmäßiger Weise häufiger verwendet als rostartige Lamellengitter und dergleichen. Deshalb ist es zweckmäßig, als gekrümmte Fläche die Kegelmantelfläche auszuwählen, die durch Aufrollen der in einer ebenen Fläche geätzten Metallstrukturen gebildet werden kann. Beim kegelmantelförmigen Zirkular- polarisationsgitter tritt bei der Herstellung zwar das Problem auf, das ebene Muster in der Kegelgrundfläche auf die Kegelmantelfläche zu projizieren. Da die Leiterschichten nicht ohne weiteres in Kegelform hergestellt werden können, wickelt man die Kegelmantelfläche in vorteilhafter Weise in die ebene Form ab. Das gleiche Herstellungsprinzip gilt für andere, nicht ebene Flächen, auf denen das anzufertigende Zirkular- polarisationsgitter verlaufen soll.As metal structures for the lattice, because of the economical production, patterns etched onto surfaces are advantageously used more frequently than rust-like lamellar lattices and the like. It is therefore expedient to select the conical outer surface as the curved surface, which can be formed by rolling up the metal structures etched in a flat surface. In the case of a circular polarization grating in the form of a cone shell, the problem arises during production of projecting the flat pattern in the base area of the cone onto the surface of the cone shell. Since the conductor layers cannot easily be produced in the shape of a cone, the conical surface is advantageously unwound into the flat shape. The same manufacturing principle applies to other, non-flat surfaces on which the circular polarization grating to be produced should run.

Für die insbesondere bei Zielfolgeradareinrichtungen übliche Frequenzbandbreite kommen verschiedene Leitermuster des Zirkularpolarisationsgitters in Frage. Die Gitterstruktur kann beispielsweise aus stetigen Linien, Mäanderlinien, aneinandergereihten Rechteckzeilen oder dergleichen bestehen.Various conductor patterns of the circular polarization grating come into question for the frequency bandwidth which is customary, in particular, for target tracking radar devices. The lattice structure can consist, for example, of continuous lines, meander lines, rows of rectangular lines or the like.

Die Erfindung wird im folgenden anhand von mehreren, in sieben Figuren dargestellten Ausführungsbeispielen näher erläutert. Es zeigt

  • Fig. 1 untereinander in Seitenansicht und Draufsicht ein kegelmantelförmiges Zirkularpolarisationsgitter nach der Erfindung mit einer Linienstruktur,
  • Fig. untereinander in Seitenansicht und Draufsicht ein kegelmantelförmiges Zirkularpolarisationsgitter nach der Erfindung mit Mäanderstrukturen,
  • Fig. untereinander in Seitenansicht und Draufsicht ein kegelmantelförmiges Zirkularpolarisationsgitter nach der Erfindung mit Linien-Rechteck-Muster,
  • Fig. 4 die Abwicklung der Kegelmantelfläche des Gitters nach Fig. 1,
  • Fig. die Abwicklung der Kegelmantelfläche des Gitters nach Fig. 2,
  • Fig. 6 die Abwicklung der Kegelmantelfläche des Gitters nach Fig. 3 und
  • Fig. 7 die Abwicklung einer Kegelmantelfläche, auf welche als einfaches Beispiel eine Sinuslinie mit ihrer Grundlinie projiziert wurde.
The invention is explained in more detail below on the basis of several exemplary embodiments shown in seven figures. It shows
  • 1 is a side view and top view of a circular polarization grating according to the invention with a line structure,
  • FIG. 1 a side view and top view of a circular polarization grating in the shape of a cone shell according to the invention with meandering structures, FIG.
  • FIG. 1 shows a side view and a top view of one another, a cone-shaped circular polarization grating according to the invention with a line-rectangular pattern, FIG.
  • 4 shows the development of the conical surface of the grating according to FIG. 1,
  • 2 shows the development of the conical outer surface of the grid according to FIG. 2,
  • Fig. 6 shows the development of the tapered surface of the grid according to Fig. 3 and
  • 7 shows the development of a conical surface on which a sine line with its base line was projected as a simple example.

Fig. 1 zeigt oben in einer Seitenansicht und darunter in einer Draufsicht ein Zirkular-Polarisationsgitter nach der Erfindung, welches kegelmantelförmig ausgebildet und mit dem Radom des Reflektorspiegels einer Zielfolgeradarantenne integrierbar ist. Das Gitter besteht aus metallischen Leitern 1, welche sowohl in der Draufsicht als auch in der Seitenansicht geradlinig und parallel zueinander verlaufen und gleiche Abstände zueinander aufweisen. Der Parameter für den Linienabstand ist mit k bezeichnet.1 shows a circular polarization grating according to the invention at the top in a side view and below in a plan view, which is of conical shape and can be integrated with the radome of the reflector mirror of a target follower radar antenna. The grid consists of metallic conductors 1, which run in a straight line and parallel to one another both in the top view and in the side view and have the same distances from one another. The parameter for the line spacing is designated k.

Ein ähnliches Zirkular-Polarisationsgitter zeigt in Seitenansicht und Draufsicht die Fig. 2. Hierbei besteht jedoch die Gitterstruktur nicht aus geradlinigen, sondern aus mäanderförmig ausgebildeten Metalleitern 2. Diese verlaufen in Draufsicht und Seitenansicht bezüglich ihrer Hauptausdehnungsrichtung parallel zueinander und weisen gleiche Abstände untereinander auf. Zur Vereinfachung der Zeichnung ist nur ein kleiner Teil der Gitterstruktur als Mäanderlinie dargestellt.A similar circular polarization grating is shown in side view and top view in FIG. 2. Here, however, the grating structure does not consist of straight, but of meandering metal conductors 2. These run parallel to one another in plan view and side view with respect to their main direction of expansion and have the same spacing from one another. To simplify the drawing, only a small part of the lattice structure is shown as a meandering line.

Ein ähnliches Zirkular-Polarisationsgitter zeigt ebenfalls in Seitenansicht und Draufsicht die Fig. 3. Im Unterschied zu den vorher beschriebenen Ausführungsbeispielen besteht die Gitterstruktur nach Fig. jedoch aus einem Linien-Rechteck-Muster. Dieses Muster ist so ausgebildet, daß sowohl in der Draufsicht als auch in der Seitenansicht zueinander parallel verlaufende Linien und Rechteckreihen vorgesehen sind, wobei stets zwei Rechteckreihen unmittelbar benachbart sind und erst dann wieder eine Linie folgt. Die einzelnen Rechtecke sind mit 3 und die Linien mit 4 bezeichnet, wobei auch in dieser Figur nur einige Rechtecke angedeutet sind.A similar circular polarization grating also shows a side view and a top view in FIG. 3. In contrast to the previously described exemplary embodiments, the grating structure according to FIG. 1 consists of a line-rectangular pattern. This pattern is designed in such a way that lines and rows of rectangles running parallel to one another are provided both in the top view and in the side view, two rows of rectangles always being immediately adjacent and only then a line following again. The individual rectangles are denoted by 3 and the lines by 4, only a few rectangles being indicated in this figure.

Bei den vorstehend beschriebenen kegelförmigen Zirkular-Polarisationsgittern tritt - wie bereits erwähnt - das Problem auf, das ebene Muster in der Kegelgrundfläche auf die Kegelmantelfläche zu projizieren. Da die Gitterstruktur nicht in der Kegelmantelform hergestellt werden kann, wird diese Kegelmantelfläche dazu in die ebene Form abgewickelt.With the conical circular polarization gratings described above, as already mentioned, the problem arises of projecting the planar pattern in the cone base onto the conical surface. Since the lattice structure cannot be manufactured in the shape of a cone, this surface of the cone is unwound into the flat shape.

Fig. 4 zeigt die Abwicklung der Kegelmantelfläche mit dem Zirkular-Polarisationsgitter nach Fig. 1. Die Linien dieser Gitterstruktur sind in Fig. 4 ebenfalls mit 1 bezeichnet. Die Abwicklung der Kegelmantelfläche nach Fig.4 ergibt sich durch Aufschneiden des Kegelmantels nach Fig. 1, ausgehend von einem Randpunkt 5, 6 an der Kegelgrundfläche bis zur Spitze 7 der Kegelmantelfläche. Die beiden in der Abwicklung auseinanderfallenden Punkte 5 und 6 fallen bei der tatsächlichen Kegelmantelfläche gemäß Fig. 1 zusammen. Der Punkt 7 der Abwicklung der Kegelmantelfläche bildet die Spitze des kegelmantelförmigen Zirkular-Polarisationsgitters nach Fig. 1.FIG. 4 shows the development of the surface of the cone with the circular polarization grating according to FIG. 1. The lines of this grating structure are also designated 1 in FIG. 4. The development of the conical surface according to FIG. 4 is obtained by cutting open the conical surface according to FIG. 1, starting from an edge point 5, 6 on the conical base surface up to the tip 7 of the conical surface. The two points 5 and 6 which fall apart in the development coincide in the actual conical lateral surface according to FIG. 1. The point 7 of the development of the conical surface forms the tip of the conical circular polarization grating according to FIG. 1.

Die Fig. 5 und 6 zeigen gleichartige Abwicklungen der Kegelmantelfläche für die Zirkular- Polarisationsgitter nach den Fig. 2 und 3.5 and 6 show similar developments of the conical surface for the circular polarization grating according to FIGS. 2 and 3.

Auch gekrümmte Linien-Muster, die in Form von mathematischen Gleichungen explizit für die ebene Fläche eines Zirkular-Polarisationsgitters gegeben sind, können auf den Kegelmantel zur Ausbildung eines kegelmantelförmigen Zirkular- Polarisationsgitters projiziert werden.Also curved line patterns that are explicit in the form of mathematical equations given a flat surface of a circular polarization grating can be projected onto the conical surface to form a circular polarization grating in the form of a conical shell.

Fig. 7 zeigt die Abwicklung einer Kegelmantelfläche, auf welche eine ebene Sinuslinie mit deren Grundlinie projiziert wurde. In der Abwicklung ergibt sich dann in diesem Bereich des Kegelmantels eine gekrümmte Grundlinie 8, um die eine verzerrte Sinuslinie 9 verläuft. Würde man die in Fig. 7 dargestellte Abwicklung zu einer tatsächlichen Kegelmantelfläche zusammenrollen, d. h. die Punkte 5 und 6 miteinander verbinden, so daß sich eine Spitze 7 bildet, so ergäbe sich bei Draufsicht und Seitenansicht auf die Kegelmantelfäche eine geradlinige und senkrechte Grundlinie 8, um welche eine unverzerrte Sinuslinie 9 schwingt.Fig. 7 shows the development of a conical surface on which a flat sine line with its base line was projected. In the development, there is a curved base line 8 in this area of the cone shell, around which a distorted sine line 9 runs. Would you roll up the development shown in Fig. 7 to an actual conical surface, d. H. connect points 5 and 6 with each other so that a tip 7 is formed, so there would be a straight and vertical base line 8 around which an undistorted sine line 9 swings when viewed from above and from the side of the conical surface.

Die in den Ausführungsbeispielen nach Fig. 1 bis 3 dargestellten oder ähnliche, hinsichtlich ihrer Oberflächengestalt passend ausgebildete Zirkular-Polarisationsgitter lassen sich ohne Schwierigkeiten in bereits bestehende Radome, z. B. einer Zeilfolgeradarantenne, einbauen, bei denen aufgrund der verfügbaren Einbaumaße ein ebenes Zirkular-Polarisationsgitter nicht verwendet werden kann. Eine elektrische Einbuße ist durch eine Gestaltung des Gitters nach der Erfindung nicht gegeben.The illustrated in the exemplary embodiments according to FIGS. 1 to 3 or similar circular polarization gratings which are appropriately designed with regard to their surface shape can be easily inserted into already existing radomes, e.g. B. a line follower radar antenna, in which due to the available installation dimensions, a flat circular polarization grating cannot be used. An electrical loss is not given by a design of the grid according to the invention.

Claims (7)

1. A single- or multi-layered conductor grid structure (1) arranged on a non-plane surface in front of the radiation aperture of an antenna to convert electromagnetic waves having a given linear polarisation into waves having a circular polarisation, characterized in that the geometrical course of the grid structure (1) on the non-plane surface is determined by the projection onto the non-plane surface of a fictitious grid structure producing a circular polarisation if arranged in the paerture plane.
2. A conductor grid structure as claimed in claim 1 for use in a reflector antenna having a radiation aperture shaped as a circular surface, characterized in that the non-plane surface is a cone-shaped shell surface which projects externally before the radiation aperture and whose axis of symmetry coincides with the mid-vertical on the radiation aperture (= cone base).
3. A conductor grid structure as claimed in claim 2, characterized by production in a plane winding-up form and subsequent assembly or rolling-up of this form, as the case may be.
4. A conductor grid structure as claimed in claim 3, characterized by metal strips etched into the plane winding-up form.
5. A conductor grid structure as claimed in one of the preceding claims, characterized by continuous lines (1), meandering lines (2), joined rectangular lines (3) or the like.
6. A conductor grid structure as claimed in one of the preceding claims, characterized by its use as an aperture cover of an antenna.
7. An conductor grid structure as claimed in claim 6, characterized by integration into the aperture cover of the reflector of a tracking radar antenna.
EP81104792A 1980-06-24 1981-06-22 Conductive screen for circularly polarising electromagnetic waves Expired EP0042611B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3023561 1980-06-24
DE3023561A DE3023561C2 (en) 1980-06-24 1980-06-24 Conductor grid structure for converting the polarization of electromagnetic waves

Publications (2)

Publication Number Publication Date
EP0042611A1 EP0042611A1 (en) 1981-12-30
EP0042611B1 true EP0042611B1 (en) 1984-09-19

Family

ID=6105321

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81104792A Expired EP0042611B1 (en) 1980-06-24 1981-06-22 Conductive screen for circularly polarising electromagnetic waves

Country Status (3)

Country Link
US (1) US4437099A (en)
EP (1) EP0042611B1 (en)
DE (1) DE3023561C2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3027094C2 (en) * 1980-07-17 1987-03-19 Siemens AG, 1000 Berlin und 8000 München Repolarization device for generating circularly polarized electromagnetic waves
US5973833A (en) * 1997-08-29 1999-10-26 Lightware, Inc. High efficiency polarizing converter
DE10049410A1 (en) * 2000-10-05 2002-04-11 Siemens Ag Mobile phone with multi-band antenna
JP5955234B2 (en) * 2013-01-17 2016-07-20 三菱電機株式会社 Polarizer
GB2517290B (en) * 2013-07-09 2016-12-28 The Sec Dep For Foreign And Commonwealth Affairs Conductive meander-line and patch pattern for a circular polariser

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1240529A (en) * 1968-08-09 1971-07-28 British Aircraft Corp Ltd Polarisers
US3576581A (en) * 1968-08-15 1971-04-27 Gen Dynamics Corp Radomes
JPS4934648U (en) * 1972-06-30 1974-03-27
US3754271A (en) * 1972-07-03 1973-08-21 Gte Sylvania Inc Broadband antenna polarizer
US3907565A (en) * 1973-12-26 1975-09-23 Bendix Corp Process for manufacturing domed spiral antennas
NL180623C (en) * 1977-01-12 1987-08-17 Philips Nv EXPOSURE FOR AN AERIAL.

Also Published As

Publication number Publication date
US4437099A (en) 1984-03-13
DE3023561C2 (en) 1986-01-02
EP0042611A1 (en) 1981-12-30
DE3023561A1 (en) 1982-01-14

Similar Documents

Publication Publication Date Title
EP0042612B1 (en) Arrangement for transforming the polarization of electromagnetic waves
EP0044502B1 (en) Polarising device for conversion of linearly polarised into circularly polarised electromagnetic waves, mounted in front of a parabolic reflector antenna
DE2354754C2 (en) Radome
DE2354550A1 (en) DOUBLE CIRCULAR ANTENNA
DE60308409T2 (en) MULTI-STREAM LENS WITH PHOTONIC BELT MATERIAL
DE2362913C3 (en) Spiral antenna
DE102013005001A1 (en) Broadband monopole antenna for two frequency bands separated by a frequency gap in the decimeter wave range for vehicles
DE3218690C1 (en) Biconical omnidirectional antenna
DE2509923A1 (en) ANTENNA ARRANGEMENT FOR RADIATING DIRECTIONAL BEAM CHARACTERISTICS
DE3217437A1 (en) MICROWAVE DIRECTIONAL ANTENNA FROM A DIELECTRIC LINE
EP0042611B1 (en) Conductive screen for circularly polarising electromagnetic waves
DE3027093C2 (en) Polarizing device for generating circularly polarized electromagnetic waves
EP3474374A1 (en) Antenna system for circular polarised satellite radio signals on a vehicle
DE2925063C2 (en) Radar antenna with integrated IFF antenna
DE2139216C3 (en) Directional antenna arrangement, consisting of a main reflector mirror and two primary radiator systems and a method for producing a dielectric reflector plate
DE102005003685B4 (en) Antenna with reflector
DE2821699C2 (en) Antenna with at least two independent radiation sources
DE1791195A1 (en) Directional antenna
DE69712769T2 (en) HIGH FREQUENCY ANTENNA
DE977843C (en) Directional antenna for high frequency waves
EP0021193A1 (en) Combined antenna system
DE3529914A1 (en) Microwave aerial
DE2632030C2 (en)
DE3726309A1 (en) Radar camouflage of aircraft antennas
DE3328115C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH FR GB IT NL

17P Request for examination filed

Effective date: 19811028

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH FR GB IT LI NL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870630

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890630

Ref country code: CH

Effective date: 19890630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920521

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920626

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930630

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19930630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930622