EP2039223A2 - Plaque de cuisson permettant la détection de la température d'un article culinaire - Google Patents

Plaque de cuisson permettant la détection de la température d'un article culinaire

Info

Publication number
EP2039223A2
EP2039223A2 EP07803856A EP07803856A EP2039223A2 EP 2039223 A2 EP2039223 A2 EP 2039223A2 EP 07803856 A EP07803856 A EP 07803856A EP 07803856 A EP07803856 A EP 07803856A EP 2039223 A2 EP2039223 A2 EP 2039223A2
Authority
EP
European Patent Office
Prior art keywords
cooking
cooking plate
inductive
measuring
culinary article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07803856A
Other languages
German (de)
English (en)
Inventor
Jocelyn Bonnel
Noël BURAIS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEB SA
Original Assignee
SEB SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEB SA filed Critical SEB SA
Publication of EP2039223A2 publication Critical patent/EP2039223A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/746Protection, e.g. overheat cutoff, hot plate indicator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/05Heating plates with pan detection means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Definitions

  • the present invention relates to the field of cooking plates, in particular those allowing the detection of the temperature of a culinary article. From a general point of view, it is a question of determining the temperature of a culinary article so as to optimize the cooking of a food, or to protect the cooking utensil, and this independently of the size of the article .
  • the invention relates to a cooking plate adapted to receive a cooking utensil and comprising a measuring system which is adapted to measure the temperature of the culinary article, and which comprises measuring means and control means.
  • Such a plate is well known to those skilled in the art, in particular by the example given in the prior art document JP 5344926.
  • This document describes a cooking system comprising a cooking utensil and a cooking plate. cooking.
  • the culinary article is equipped with a thermosensitive means, and a secondary coil forming a closed circuit with the thermosensitive means.
  • the cooking plate is provided with a primary coil, a high frequency generation means inducing a current in the secondary coil, and a temperature sensing means which determines the temperature of the cooking utensil according to the current level flowing in the primary coil.
  • the culinary article comprises at its bottom a sensor cooperating with a second sensor located in or on the hob.
  • the sensor of the culinary article is essentially a multilayer ceramic sensor called "binary" to detect the achievement of target temperatures by abrupt modification of the dielectric constant at target temperatures.
  • the cooking plate comprises a set of sensors, or electrodes, capacitively connected to the sensor dielectric located in the bottom of the cooking utensil.
  • the disadvantage of such a configuration is that it requires a particular steric arrangement for the positioning of inductive heating means and measuring means. In addition, it requires two measuring coils for a heating coil.
  • the present invention aims to overcome these disadvantages by providing a simple device, easy to use and maintenance.
  • the hob according to the invention is essentially characterized in that the measuring means comprise an electric circuit which has at least one element of inductive nature configured to inducing a magnetic field towards the culinary article and which transmits to the control means a signal resulting from the action of the induced magnetic field on electrically conductive thermosensitive means of the culinary article, the control means comprising at least one corresponding model the thermal behavior of the thermosensitive means, and being configured to convert the value of the transmitted signal into a temperature from the model.
  • the temperature of the culinary article can be measured accurately, since the resistivity varies continuously with temperature and this is more representative of the temperature of the food since it is directly on the food. culinary article and not on the cooking plate.
  • the measurement of the temperature can be performed during the heating of the culinary article by remote measuring means in the cooking plate without contact with the article. Thanks to the direct treatment by the electronics of the hob, it is not necessary to introduce this electronics (measurement, transmission ...) in a handle of the culinary article or to come to connect a probe of temperature in contact with the culinary article and the electronics of the plate.
  • the regulation of the The temperature of the cooking utensil does not involve any signal transmission, in the sense that no means of infrared or radio communication is required between the cooking plate and the article.
  • the temperature measurements made are discrete measurements whose frequency is advantageously periodic and can be chosen, or even modulated according to the temperature or the type of non-ferromagnetic material.
  • the culinary article can be used on any conventional type of heating means (induction, radian, gas, etc.), without risk of deterioration of the heat-sensitive means.
  • FIG. 1 shows a cross section of a portion of a cooking system (in operation) comprising a -culinaire article according to an embodiment of the present invention and a cooking plate, the plate heating means cooking zone being in the heating state and the measuring means being in stop mode,
  • FIG. 2 is similar to FIG. 1, the heating means being in the off state and the measuring means in the induction mode, and
  • a cooking system 1 for cooking food includes a cooking utensil 100 adapted to receive food or a cooking fluid (water, oil ...), for example a pan or a 5, and a cooking plate 200 adapted to support the culinary article 100 and to transmit to the latter the energy required for cooking the food it contains.
  • a cooking utensil 100 adapted to receive food or a cooking fluid (water, oil ...), for example a pan or a 5, and a cooking plate 200 adapted to support the culinary article 100 and to transmit to the latter the energy required for cooking the food it contains.
  • the culinary article 100 comprises a base body 150 made from a thermally conductive base material, for example aluminum.
  • This basic body generally defines the geometric structure of the culinary article and can serve as a support for a possible interior and / or exterior coating (enamel, paint, Teflon coating ).
  • the culinary article 100 defines a receiving volume of the food to be cooked which is delimited by a bottom 101 and a side wall 102.
  • the bottom 101 of the culinary article 100 here circular in shape, has
  • At least a portion of at least one one of the faces 110, 120 of the bottom 101 has a substantially planar appearance, so as to ensure the stability of the culinary article 100 when it is placed on a horizontal surface (cooking plate 200, table, etc.).
  • the faces 110, 120 of the bottom 101 are entirely flat and the thickness of the bottom 101 is constant.
  • the bottom 101 is formed mainly by the material of the base body 150.
  • the culinary article 100 comprises heat-sensitive means 130 which conduct electricity. These heat-sensitive means are intended to enable the temperature of the culinary article 100 to be determined.
  • the material chosen for the heat-sensitive means 130 has a high variability of its p-resistivity over a given temperature range (preferably from 20.degree. C at 300 ° C.), which makes it possible to obtain precise temperature measurements.
  • the variation of resistivity p as a function of the temperature (in the given temperature range) is linear, and, in order to obtain a high precision in the measurement of the temperature, that the temperature coefficient C ⁇ is high.
  • the heat-sensitive means 130 are non-ferromagnetic means.
  • the heat-sensitive means are made of titanium.
  • the heat-sensitive means 130 are integrated in the bottom 101 of the culinary article 100.
  • the heat-sensitive means 130 have a constant thickness.
  • the heat-sensitive means 130 are formed by a thermosensitive element 130 (an insert integrated in the base body 150).
  • the heat-sensitive means 130 (here, a face of the insert 130) constitute a part of the outer wall 102 of the bottom 101 of the culinary article 100 (here the central portion), as shown in Figures 1 and 2.
  • the heat-sensitive means 130 have a symmetrical shape of revolution whose axis S is perpendicular to the plane of the bottom 101.
  • the insert 130 has the appearance of a disk which is concentric with the bottom 101 of the culinary article 100.
  • the culinary article 100 also comprises ferromagnetic means 140.
  • These ferromagnetic means 140 are intended to allow the heating of the food when the cooking plate 200 on which rests the culinary article 100 is a magnetic induction plate, and they are configured to transform an incident magnetic field (shown in Figure 1 by field lines 211) from the hotplate 200 into heat, by Joule effect (induced by eddy currents).
  • the ferromagnetic means 140 are integrated "in” Ie ⁇ -Wallpaper 101 "de the culinary article 100, and more precisely in the main body 150.
  • the ferromagnetic means 140 extend in a ring 140. They may be, for example, in the form of a grid or hot-glued capsules.
  • the heat-sensitive means 130 and the ferromagnetic means 140 are arranged relative to each other so that the heat generated by the ferromagnetic means 140 is transmitted by thermal conduction to the heat-sensitive means 130.
  • the crown 140 in ferromagnetic material is in contact with the circular insert 130 of thermosensitive material which it surrounds.
  • the cooking plate 200 includes a receiving surface 201 adapted to receive the culinary article 100 (more specifically, the lower face 120 of its bottom 101).
  • the cooking plate 200 comprises at least one focus (in this case, only one).
  • the cooking plate 200 comprises a heating system 202 and a temperature measuring system 203.
  • the heating system 202 comprises heating means 210 and regulating means 230. At each hearth are associated heating means 210 which are clean .
  • the regulation means 230 for example a microcontroller and its adapted program, allow, for example, the regulation of the heating means 210 around a setpoint, or the triggering of a timer, etc.
  • the heating means 210 are inductive.
  • they comprise an inductor, in this case an inductive heating coil 210.
  • Each focal point comprises at least one inductive heating coil 210 (in this case, only one).
  • the cooking plate 200 comprises first thermal protection means which make it possible to thermally protect the heating means 210 when they are inductive.
  • the heating system 202 is configured so that the heating means 210 provide a sequenced heating over time and pass successively and alternately in a heating state in which they generate and transmit the cooking energy, and in a state of stopping in which they no longer generate this energy.
  • the heating means 210 being inductive, they are powered by an alternating current of frequency f x modulated in amplitude by a frequency f 3 , the zero (and the adjacent area as explained below) of the corresponding modulation in the off state and the rest in the heating state.
  • a typical ⁇ ⁇ frequency is, for example, 18 to 25 kHz.
  • a typical modulation frequency is f 3 equal to 50 Hz or 60 Hz (100 Hz or 120 Hz after rectification).
  • the temperature measuring system 203 comprises measuring means 220 and control means 240.
  • the measuring means 220 comprise an electrical circuit 219 having at least one element of inductive nature 221, regardless of the nature (inductive or not) of the heating means 210.
  • the element of inductive nature is a inductor 221, in this case, an inductive measuring coil 221.
  • the inductive measuring coil 221 is disposed at the center of the induct-heating coil 210. ⁇ • -. ⁇ ---
  • the magnetic field (shown in FIG. 2 by field lines 222) generated by the inductive measurement coil 221 is of much smaller amplitude than that generated by the inductive measuring coil 210 and does not make it possible to heat a ferromagnetic material by induction.
  • the inductive measuring coil 221 makes it possible to measure by induction the intensity of the current flowing in the thermosensitive element 130 of the culinary article 100 when it is positioned on the receiving surface 201. Indeed, the inductive measuring coil 221 is comparable to the primary circuit of a transformer while the heat-sensitive means 130 of the culinary article 100 are the secondary circuit.
  • the principle of the measurement is based on the variation of the impedance Z of the electrical circuit 219 (in this case an RLC circuit comprising the measurement inductive coil 221 and a capacity capacitor C connected in series with the inductive measuring coil 221. ) as a function of the variation of the temperature of the temperature-sensitive elements 130.
  • the measuring coil 221 is characterized by an inductance L B (whose variation as a function of the temperature is sufficiently low to be neglected) and a resistor R B.
  • the value of the impedance Z of the electrical circuit 119 (primary circuit) is a function of the resistance R B of the inductive measuring coil 221 (whose value is known) and of the resistor R 3 of the secondary circuit formed by the heat-sensitive material 130 (whose value depends on the temperature).
  • thermosensitive means 130 and therefore their resistivity p (the dimensions of these means being known) and their temperature.
  • the control means 240 make it possible to determine the temperature of the culinary article 100 from the measurement of the intensity I of the current flowing in the measuring inductive coil 221, the measuring means 220 transmitting towards the control means 240 a signal of which the value is representative of the impedance Z of the circuit 119 (in this case, the intensity I of the current flowing in the inductive measuring coil 221).
  • the control means 240 comprise at least the model of the thermal behavior of the resistivity p of the thermosensitive material 130 inserted into the bottom of the culinary article 100. It is easy to understand that the use of thermosensitive means 130 with a temperature coefficient C T constant (actually or according to an acceptable approximation) in the operating temperature range of the culinary article 100 makes it possible to greatly facilitate the determination of the temperature from a value of the resistivity p, the model then being linear . In order to achieve this determination, the control means 240 advantageously comprise a microprocessor.
  • the inductive measuring coil 221 In order to facilitate the determination of the temperature (more precisely, in order to facilitate the correlation between the variation of the resistance R and the intensity I), it is advantageous for the inductive measuring coil 221 to be
  • the capacitor C is chosen as a function of the supply frequency f 2 and the inductance L B of the inductive measurement coil 221.
  • the inductive measurement coil 221 thus makes it possible to measure a variation of resistance R. who can be correlated with a temperature variation of the culinary article 100.
  • ⁇ and ⁇ r vary at the same time, it is extremely difficult to connect the variation of the resistance R measured by the inductive measuring coil 221 (in fact the intensity I) to the temperature of the article.
  • the heat-sensitive means 130 are non-ferromagnetic, the magnetic permeability ⁇ r then being comparable to 1 and not dependent on the temperature, unlike a ferromagnetic material.
  • their thickness E is chosen as a function of the frequency f 2 of the supply voltage U of the inductive measuring coil 221. so as to be greater than the penetration depth ⁇ associated with this frequency f2.
  • the frequency f 2 of the supply voltage U of the measuring inductive coil 221 can be determined as a function of the thickness E of the heat-sensitive means 130 and the desired penetration depth ⁇ .
  • the means thermosensitive 130 non-ferromagnetic titanium have a thickness of 1.2 mm for a frequency f 2 of 5OkHz.
  • thermosensitive means 130 a non-ferromagnetic material is that, in this case, the inductance L B (known) of the inductive measuring coil 221 varies little in its presence.
  • the only variable element as a function of the temperature in the impedance Z of the circuit 119 is the resistivity p of the heat-sensitive means 130 (and therefore the sole property of the thermosensitive means 130 to intervene in the measurement of the Temperature when they are made in a non-ferromagnetic material is the variation of their resistivity p), which makes it easy to obtain an accurate measurement.
  • the thermosensitive means 130 are advantageously positioned vis-à-vis the measuring inductive coil 221.
  • the surface of the thermosensitive means 130 is preferably greater than that of the inductive measurement coil 221. , which increases the reliability of the measurement.
  • the cooking plate 200 comprises second thermal protection means which make it possible to thermally protect the measuring means 220.
  • These second thermal protection means may be either specific or constituted by the first means thermal protection.
  • the heating means 210 are inductive, so as not to disturb the measurement of the temperature of the culinary article, this is preferably done around the zero crossing of the modulation of the supply current of the heating means 210, so as to avoid induction phenomena between the heating inductive means 210 and the measuring inductive means 220, even if the respective frequencies f 1 , f 2 are preferably substantially different (the frequency
  • the inductive measuring coil 221 in operation, successively and alternately passes in stop mode in which it is powered by a zero voltage (circuit
  • FIG. 3 represents, for the same arbitrary time unit, the evolution of the voltage across the coil inductive measurement 221 at a frequency f 2 and 0 the evolution of the modulated current in the inductive coil of
  • the cooking plate 200 comprises complementary measuring means (not shown) suitable for measuring the temperature of the receiving surface 201, for example means of the CTN type (means whose electrical resistivity is a function of a Negative Temperature Coefficient).
  • These complementary measuring means are connected to the temperature measurement system 203 (and more particularly to the control means 240) and make it possible to correlate the measurement made by the inductive coil of measurement 221.
  • the temperature comparison may take place only at the beginning of the heating of the culinary article 100 or at the beginning of the heating of the culinary article 100 or any time during this heating.
  • the detection of a temperature by the inductive measuring coil 220 and / or by the complementary measuring means also makes it possible to determine the attainment of a maximum target temperature generating a heating stop and thus protecting the culinary article 100.
  • the culinary article 100 is positioned on the induction hob 200.
  • the inductive heating coil 210 produces a magnetic field which induces currents in the ferromagnetic means 140 of the bottom 101 of the culinary article 100, which, by the Joule effect, heats these ferromagnetic means 140 and, by thermal conduction, the rest of the culinary article 100 , including the thermosensitive insert 130.
  • the resistivity p and the resistance R s of the heat-sensitive means 130 change, as well as the resistance R and the impedance Z of the electrical circuit 119. Due to the use of a non-ferromagnetic material as a heat-sensitive medium 130 and the supply of the inductive measuring coil 221 by a voltage U whose frequency f 2 corresponds to the resonance frequency f r of the electric circuit 119, the intensity I sent by the measuring means 220 to the means of - control
  • the temperature measurement system 203 allows the latter to easily determine the temperature of the culinary article 100 from this intensity I.
  • the temperature measurement system 203 can also be used for other functions such as the detection of the presence of a culinary article 10 on the cooking plate 200, or even its centering, or the recognition of the type of culinary article 100 or its compatibility with the cooking plate 200, combined for example with the generation of an error signal or inhibiting the heating means.
  • the presence a metal material in the vicinity of the measuring means 220 changes the impedance of the circuit 119, and this change is translated by the control means 240 without necessarily converting this impedance change temperature.
  • the present invention is not limited to the present embodiment.
  • the material used for producing the heat-sensitive means it is possible to use metals such as titanium, bismuth, molybdenum (in particular molybdenum silicon MoSi2), platinum, copper, aluminum, magnesium, zinc or nickel, or alloys. of these metals or metal ceramics, austenitic stainless steel or non-ferrous enamels.
  • the heat-sensitive means they may have another '-forma .qu'un disc', for example forming an assembly comprising at least one ring or a sum of concentric rings with the bottom center of the cooking utensil and preferably connected thermally between them. They may have a relief or cutouts (preferably, the cuts are located in the plane of the bottom of the culinary article).
  • They may also, at least in part, be covered with a material transparent to a magnetic field, such as an enamel or a paint, which forms at least part of the bottom face of the bottom of the culinary article which allows to the culinary article of power be easily cleaned without risk of deterioration of the heat-sensitive means.
  • a material transparent to a magnetic field such as an enamel or a paint
  • the heat-sensitive means may not form an insert, but may be deposited in the form of a layer (s), for example by screen printing or thermal spraying. They can also be formed by several superimposed non-ferromagnetic materials, for example rolled or layered.
  • the ferromagnetic means may be remote from the heat-sensitive means as long as the heat-sensitive means are not thermally insulated.
  • the hob could include several homes, each of which is respectively equipped with a measuring coil.
  • the cooking plate may comprise only one measuring system for all the hearths, connected by multiplexing to the different measuring coils of the hearths.
  • control means may comprise several models of thermal behavior
  • a thermal behavior model may include several thermal behavior patterns for a plurality of measurement frequencies, which
  • control means could be coupled with the control means, for example in the form of an electronic circuit, or integrated together in a microprocessor.
  • the supply voltage of the measuring means can be in the form of of a multifrequency excitation, or in the form of pulse (s) of Dirac.
  • N N natural integer (eg every five or ten seconds with a 50 Hz modulation) and stop the inverter during an ark (half a period) so as to have a zero current in the inductive heating coil without disturbing the heating of the article.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Cookers (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Baking, Grill, Roasting (AREA)

Abstract

L'invention concerne une plaque de cuisson (200) adaptée à recevoir un article culinaire (100) et comprenant un système de mesure (203) qui comprend des moyens de mesure (220) de la température de l'article (100) et des moyens de contrôle (240). Selon l'invention, les moyens de mesure (220) comprennent un circuit électrique (219) possédant au moins un élément inductif (221) configuré pour induire un champ magnétique vers l'article (100) qui comprend des moyens thermosensibles (130) électriquement conducteurs, et transmettant vers les moyens de contrôle (240) un signal dont la valeur est représentative de l'impédance (Z) du circuit (119) dépendante de la résistivité (p) des moyens thermosensibles (130), les moyens de contrôle (240) comprenant au moins un modèle correspondant au comportement thermique de cette résistivité (p), et étant configurés, pour convertir en température la valeur du signal transmis.

Description

PLAQUE DE CUISSON PERMETTANT LA DETECTION DE LA TEMPERATURE
D'UN ARTICLE CULINAIRE
La présente invention concerne le domaine des plaques de cuisson, notamment celles permettant la détection de la température d'un article culinaire. D'un point de vue général, il s'agit de déterminer la température d'un article culinaire de sorte à optimiser la cuisson d'un aliment, ou protéger l'ustensile de cuisson, et ce indépendamment de la taille de l'article.
Plus précisément, l'invention concerne une plaque de cuisson adaptée à recevoir un article culinaire et comprenant un système de mesure qui est adapté à mesurer la température de l'article culinaire, et qui comprend des moyens de mesure et des moyens de contrôle.
Une telle plaque est bien connu de l'homme du métier, notamment par l'exemple qu'en donne le document de l'état de la technique antérieure JP 5344926. Ce document décrit un système de cuisson comprenant un article culinaire et une plaque de cuisson. L'article culinaire est équipé d'un moyen thermosensible, -et d'une bobine secondaire formant un- circuit fermé avec le moyen thermosensible. La plaque de cuisson est munie d'une bobine primaire, d'un moyen de génération de hautes fréquences induisant un courant dans la bobine secondaire, et d'un moyen de détection de la température qui détermine la température dé l'article culinaire selon le niveau de courant circulant dans la bobine primaire.
L'inconvénient d'une telle configuration est qu'elle nécessite d'une part d'intégrer une bobine dans le récipient amovible, et d'autre part de positionner la bobine secondaire et le moyen thermosensible à l'intérieur d'un boîtier de protection au centre de la face supérieure du fond du récipient .
Il est également connu le document DE 4413979. Ce document divulgue un système de cuisson comprenant un article culinaire et une plaque de cuisson. L'article culinaire comprend en son fond un capteur coopérant avec un deuxième capteur situé dans ou sur la plaque de cuisson. Le capteur de l'article culinaire est essentiellement un capteur céramique multicouche dit « binaire » permettant de détecter l'atteinte de températures cibles par modification brutale de la constante diélectrique aux températures cibles . La plaque de cuisson comprend un ensemble de capteurs, ou d'électrodes, relié de manière capacitive au diélectrique du capteur situé dans le fond de l'article culinaire.
L'inconvénient d'une telle configuration est qu'elle est dédiée aux mesures capacitives et que la mesure de la température n'est pas fine à cause des contraintes des valeurs cibles . Enfin, le document US 2005/0258168 divulgue une plaque pour griller des denrées alimentaires. Cette plaque de cuisson à induction est munie d'un plateau sur lequel sont posées les denrées à griller, le plateau étant muni d'un matériau ferromagnétique pour la mesure de température .
L'inconvénient d'une telle configuration est qu'elle nécessite un arrangement stérique particulier pour le positionnement des moyens de chauffe inductifs et des moyens de mesure. En outre, elle nécessite deux bobines de mesure pour une bobine de chauffe. La présente invention a pour but de remédier à ces inconvénients en proposant un dispositif simple, facile d'utilisation et d'entretien.
Avec cet objectif en vue, la plaque de cuisson selon l'invention, par ailleurs conforme au préambule cité ci- avant, est essentiellement caractérisée en ce que les moyens de mesure comprennent un circuit électrique qui possède au moins un élément de nature inductive configuré pour induire un champ magnétique vers l'article culinaire et qui transmet vers les moyens de contrôle un signal résultant de l'action du champ magnétique induit sur des moyens thermosensibles électriquement conducteurs de l'article culinaire, les moyens de contrôle comprenant au moins un modèle correspondant au comportement thermique des moyens thermosensibles, et étant configurés pour convertir en température, à partir du modèle, la valeur du signal transmis .
Ainsi, la température de l'article culinaire peut être mesurée précisément, étant donné que la résistivité varie de façon continue en fonction de la température et cette- mesure est plus représentative de la température des aliments étant donné qu'elle se fait directement sur l'article culinaire et non sur la plaque de cuisson.
La mesure de la température peut être effectuée lors de la chauffe de l'article culinaire par des moyens de mesure déportés dans la plaque de cuisson sans contact avec l'article. Grâce au traitement direct par l'électronique de la plaque de cuisson, il n'est pas nécessaire d'introduire cette électronique (de mesure, de transmission...) dans une poignée de l'article culinaire ou de venir relier une sonde de température en contact avec l'article culinaire et l'électronique de la plaque. La régulation de la température de l'article culinaire ne fait intervenir aucune transmission de signal, au sens qu'aucun moyen de communication par infrarouge ou radio n'est nécessaire entre la plaque de cuisson et l'article. Par ailleurs, les mesures de température effectuées sont des mesures discrètes dont la fréquence est avantageusement périodique et peut être choisie, voire modulée en fonction de la température ou du type de matériau non ferromagnétique. Par ailleurs, l'article culinaire peut être utilisé sur tout type classique de moyens de chauffe (induction, radian, gaz, etc.), sans risque de détérioration des moyens thermosensibles .
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante donnée à titre d'exemple illustratif et non limitatif et faite en référence aux figures annexées dans lesquelles :
- la figure 1 représente une coupe transversale d'une partie d'un système de cuisson (en fonctionnement) comprenant un article -culinaire conforme à un mode de réalisation de la présente invention et une plaque de cuisson, les moyens de chauffe de la plaque de cuisson étant en état de chauffage et les moyens de mesure étant en mode d' arrêt,
- la figure 2 est similaire à la figure 1, les moyens de chauffe étant en état d' arrêt et les moyens de mesure en mode d'induction, et
- la figure 3 représente le principe général de l'évolution de la tension dans les moyens de mesure et du courant dans les moyens de chauffe. Comme on peut le voir aux figures 1 et 2, un système de cuisson 1 pour cuire des aliments comprend un article culinaire 100 adapté à recevoir des aliments ou un fluide de cuisson (eau, huile...) , par exemple une poêle ou une 5 casserole, et une plaque de cuisson 200 adaptée à supporter l'article culinaire 100 et à transmettre à ce dernier l'énergie nécessaire pour la cuisson de l'aliment qu'il contient.
Comme représenté sur les figures 1 et 2 , l'article0 culinaire 100 comprend un corps de base 150, réalisé à partir d'un matériau de base conducteur thermique, par exemple de l'aluminium. Ce corps de base définit généralement la structure géométrique de l'article culinaire et peut servir de support à un éventuel5 revêtement intérieur et/ou extérieur (émail, peinture, revêtement Téflon...) .
L'article culinaire 100 définit un volume de réception de l'aliment à cuire qui est délimité par un fond 101 et une paroi latérale 102. Le fond 101 de0 l'article culinaire 100, ici de forme circulaire, possède
' • une face interne (ou face supérieure) 110 destinée à être en contact avec les aliments et une face externe (ou face inférieure) 120 destinée à être au contact avec la plaque de cuisson 200. Au moins une partie d'au moins l'une des faces 110, 120 du fond 101 présente un aspect sensiblement plan, de sorte à assurer la stabilité de l'article culinaire 100 lorsque celui-ci est posé sur une surface horizontale (plaque de cuisson 200, table, etc.). Ici, les faces 110,120 du fond 101 sont entièrement planes et l'épaisseur du fond 101 est constante. Ici, le fond 101 est formé principalement par le matériau du corps de base 150.
L'article culinaire 100 comprend des moyens thermosensibles 130 qui sont conducteurs d'électricité. Ces moyens thermosensibles sont destinés à permettre la détermination de la température de l'article culinaire 100. De préférence, le matériau choisi pour les moyens thermosensibles 130 présente une variabilité élevée de sa résistivité p sur une gamme de température donnée (de préférence de 200C à 3000C), ce qui permet d'obtenir des mesures précises de température. Par ailleurs, afin de faciliter les calculs permettant la détermination de la température, il est préférable que la variation de résistivité p en fonction de la température (dans la gamme de température donnée) soit linéaire, et, afin d'obtenir une grande précision dans le mesure de la température, que le coefficient de température Cτ soit élevé. Par ailleurs, de préférence et pour des raisons exposées ultérieurement, les moyens thermosensibles 130 sont des moyens non ferromagnétiques. Pour toutes ces raisons, dans le présent mode de réalisation, les moyens thermosensibles sont en titane.
Les moyens thermosensibles 130 sont intégrés dans le fond 101 de l'article culinaire 100. Dans le présent mode de réalisation, les moyens thermosensibles 130 ont une épaisseur constante. Ici, les moyens thermosensibles 130 sont formés par un élément thermosensible 130 (un insert intégré dans le corps de base 150) . De préférence et pour des raisons exposées ultérieurement, les moyens thermosensibles 130 (ici, une face de l' insert 130) constituent une partie de la paroi extérieure 102 du fond 101 de l'article culinaire 100 (ici la partie centrale), comme représenté sur les figures 1 et 2.
Dans le présent mode de réalisation, les moyens thermosensibles 130 présentent une forme à symétrie de révolution dont l'axe S est perpendiculaire au plan du fond 101. En l'occurrence, l' insert 130 a l'aspect d'un disque qui est concentrique avec le fond 101 de l'article culinaire 100.
Par ailleurs, dans le présent mode de réalisation, comme illustré sur les figures 1 et 2 , l'article culinaire 100 comprend également des moyens ferromagnétiques 140. Ces moyens ferromagnétiques 140 sont destinés à permettre le chauffage des aliments quand la plaque de cuisson 200 sur laquelle repose l'article culinaire 100 est une plaque à induction magnétique, et ils sont configurés pour transformer un champ magnétique incident (représenté à la figure 1 par des lignes de champ 211) provenant de la plaque de cuisson 200 en chaleur, par effet Joule (induit par des courants de Foucault) . Dans le présent mode de réalisation, les moyens ferromagnétiques 140 sont intégrés " dans "Ie ^ -fond 101" de- l'article culinaire 100, et plus précisément dans le corps de base 150. Dans le présent mode de réalisation, les moyens ferromagnétiques 140 s'étendent selon une couronne 140. Ils peuvent se présenter, par exemple, sous forme d'une grille ou de capsules collées à chaud.
Selon l'invention, les moyens thermosensibles 130 et les moyens ferromagnétiques 140 sont agencés l'un par rapport à l'autre de sorte que la chaleur générée par les moyens ferromagnétiques 140 soit transmise par conduction thermique aux moyens thermosensibles 130. Ici, la couronne 140 en matériau ferromagnétique est en contact avec l' insert circulaire 130 en matériau thermosensible qu'elle entoure.
Comme représenté sur les figures 1 et 2, la plaque de cuisson 200 comprend une surface de réception 201 adaptée à recevoir l'article culinaire 100 (plus précisément, la face inférieure 120 de son fond 101) . La plaque de cuisson 200 comprend au moins un foyer (en l'occurrence, un seul) .
La plaque de cuisson 200 comprend un système de chauffe 202 et un système de mesure de température 203. Le système de chauffe 202 comprend des moyens de chauffe 210 et de moyens de régulation 230. A chaque foyer sont associés des moyens de chauffe 210 qui lui sont propres .
Les moyens de régulation 230, par exemple un microcontrôleur et son programme adapté, permettent, par exemple, la régulation des moyens de chauffe 210 autour d'un point de consigne, ou le déclenchement d'un minuteur, etc.
Dans le présent mode de réalisation, comme représenté aux figures 1 et 2, les moyens de chauffe 210 sont inductif-s. A cet effet, ils comprennent un inducteur, en l'espèce une bobine inductive de chauffe 210. Chaque foyer comprend au moins une bobine inductive de chauffe 210 (en l'occurrence, une seule). Par ailleurs, la plaque de cuisson 200 comprend des premiers moyens de protection thermique qui permettent de protéger thermiquement les moyens de chauffe 210 quand ils sont inductifs.
Dans le présent mode de réalisation, le système de chauffe 202 est configuré pour que les moyens de chauffe 210 fournissent une chauffe séquencée dans le temps et passent successivement et alternativement dans un état de chauffage dans lequel ils génèrent et transmettent l'énergie de cuisson, et dans un état d'arrêt dans lequel ils ne génèrent plus cette énergie. En l'occurrence, les moyens de chauffe 210 étant inductifs, ils sont alimentés par un courant alternatif de fréquence fx modulé en amplitude par une fréquence f3, le zéro (et la zone adjacente comme expliqué ci-après) de la modulation correspondant à l'état d'arrêt et le reste à l'état de chauffage. Une fréquence ±χ typique est par exemple de 18 à 25 kHz. Une modulation typique est de fréquence f3 égale à 50 Hz ou 60 Hz (100 Hz ou 120 Hz après redressement) .
Le système de mesure de température 203 comprend des moyens de mesure 220 et de moyens de contrôle 240.
Les moyens de mesure 220 comprennent un circuit électrique 219 ayant au moins un élément de nature inductive 221, indépendamment de la nature (inductive ou non) des moyens de chauffe 210. Dans le présent mode de réalisation, l'élément de nature inductive est un inducteur 221, en l'espèce, une bobine inductive de mesure 221. Comme on peut le voir aux figures 1 et 2 , la bobine inductive de mesure 221 est disposée au centre de la bobine induct-ive de chauffe 210. ~ •- . ~ ---
Le champ magnétique (représenté à la figure 2 par des lignes de champ 222) généré par la bobine inductive de mesure 221 est de bien plus faible amplitude que celui généré par la bobine inductive de mesure 210 et ne permet pas de chauffer un matériau ferromagnétique par induction.
La bobine inductive de mesure 221 permet de mesurer par induction l'intensité du courant circulant dans l'élément thermosensible 130 de l'article culinaire 100 lorsque celui-ci est positionné sur la surface de réception 201. En effet, la bobine inductive de mesure 221 est assimilable au circuit primaire d'un transformateur tandis que les moyens thermosensibles 130 de l'article culinaire 100 en sont le circuit secondaire.
Le principe de la mesure est basé sur la variation de l'impédance Z du circuit électrique 219 (en l'occurrence un circuit RLC comprenant la bobine induetive de mesure 221 et un condensateur de capacité C monté en série avec la bobine inductive de mesure 221) en fonction de la variation de la température des éléments thermosensibles 130. La bobine de mesure 221 se caractérise par une inductance LB (dont la variation en fonction de la température est suffisamment faible pour être négligée) et une résistance RB. La valeur de l'impédance Z du circuit électrique 119 (circuit primaire) est fonction de la résistance RB de la bobine inductive de mesure 221 (dont la valeur est connue) et de la résistance R3 du circuit secondaire formé par le matériau thermosensible 130 (dont la valeur dépend de la température) . Aux valeurs de la tension U appliquée au circuit électrique 119 et de l'impédance Z, correspond l'intensité I du courant circulant dans la bobine inductive de mesure 221, d'après le relation U=Z*I.
La • mesure de l'intensi-té du courant I circulant dans la bobine inductive de mesure 221 permet de déterminer l'impédance Z du circuit électrique 119 et donc la résistance R de ce circuit 119, d'en déduire la résistance Rs des moyens thermosensibles 130 et donc leur résistivité p (les dimensions de ces moyens étant connues) et leur température.
Les moyens de contrôle 240 permettent de déterminer la température de l'article culinaire 100 à partir de la mesure de l'intensité I du courant circulant dans la bobine inductive de mesure 221, les moyens de mesure 220 transmettant vers les moyens de contrôle 240 un signal dont la valeur est représentative de l' impédance Z du circuit 119 (en l'espèce, l'intensité I du courant circulant dans la bobine inductive de mesure 221) .
Les moyens de contrôle 240 comprennent au moins le 5 modèle du comportement thermique de la résistivité p du matériau thermosensible 130 inséré dans le fond de l'article culinaire 100. Il est aisé de comprendre que l'utilisation de moyens thermosensibles 130 à coefficient de température CT constant (réellement ou selon une approximation acceptable) dans la plage de températures d'utilisation de l'article culinaire 100 permet de faciliter grandement la détermination de la température à partir d'une valeur de la résistivité p, le modèle étant alors linéaire. Afin de réaliser cette détermination, les moyens de contrôle 240 comprennent avantageusement un microprocesseur .
Afin de faciliter la détermination de la température (plus précisément, afin de faciliter la corrélation entre la variation de la résistance R et de l'intensité I), il est avantageux que la bobine inductive de mesure 221 soit
-"• alimentée par une tension U --{-en. l'occurrence, -'une- tension créneau) dont la fréquence f2 correspond à la fréquence de résonance fr du circuit électrique 119 qui est égale à
1/(2Π/LB.C) : à cette fréquence, l'impédance Z du circuit électrique 119 est égale à sa résistance R, et la tension U appliquée et l'intensité I dans ce circuit 119 sont proportionnels (U=R*I) . Dans les faits, le condensateur C est choisi en fonction de la fréquence f2 d'alimentation disponible et de l'inductance LB de la bobine inductive de mesure 221. La bobine inductive de mesure 221 permet donc de mesurer une variation de résistance R qui peut être corrélée à une variation de température de l'article culinaire 100.
Par ailleurs, la résistance R3 des moyens thermosensibles 130 dépend entre autre de la profondeur de pénétration δ du champ magnétique créé par la bobine inductive de mesure 221, et cette profondeur de pénétration δ dépend à la fois de la résistivité p et de la perméabilité magnétique μr des moyens thermosensibles 130, conformément à la formule δ = /(p/π. μor • f) , où μo est la perméabilité magnétique du vide et f est la fréquence de la bobine inductive de mesure 221 (ici, f2) . Or, si ces deux propriétés δ et μr varient en même temps, il est extrêmement difficile de relier la variation de la résistance R mesurée par la bobine inductive de mesure 221 (en fait l'intensité I) à la température de l'article culinaire 100. De ce fait, on comprend aisément qu'il est très avantageux que les moyens thermosensibles 130 soient non ferromagnétiques, la perméabilité magnétique μr étant alors assimilable à 1 et ne dépendant pas de la température, contrairement à un matériau ferromagnétique. -- •- Dans les faits, une fois la nature du matériau.- non ferromagnétique des moyens thermosensibles 130 déterminée, leur épaisseur E est choisie en fonction de la fréquence f2 de la tension U d' alimentation de la bobine inductive de mesure 221 de façon à être supérieure à la profondeur de pénétration δ associée à cette fréquence f2. Réciproquement, la fréquence f2 de la tension U d'alimentation de la bobine inductive de mesure 221 peut être déterminée en fonction de l'épaisseur E des moyens thermosensibles 130 et de la profondeur de pénétration δ désirée. Dans le présent mode de réalisation, les moyens thermosensibles 130 non ferromagnétiques en titane ont une épaisseur de 1,2 mm pour une fréquence f2 de 5OkHz.
Un autre avantage d' employer comme moyen thermosensible 130 un matériau non ferromagnétique est que, dans ce cas, l'inductance LB (connue) de la bobine inductive de mesure 221 varie peu en sa présence.
Ainsi, dans ce cas particulier, le seul élément variable en fonction de la température dans l'impédance Z du circuit 119 est la résistivité p des moyens thermosensibles 130 (et donc, la seule propriété des moyens thermosensibles 130 à intervenir dans la mesure de la température quand ils sont réalisés dans un matériau non ferromagnétique est la variation de leur résistivité p) , ce qui permet d'obtenir facilement une mesure précise. Afin d'améliorer la mesure, les moyens thermosensibles 130 sont avantageusement positionnés en vis-à-vis de la bobine inductive de mesure 221. En outre, la surface des moyens thermosensibles 130 est de préférence supérieure à celle de la bobine inductive de mesure 221, ce qui augmente la fiabilité de la mesure.
Ainsi, la mesure de_' "température de l'article culinaire 100 se fait de façon indépendante de la chauffe de cet article, et peut avoir lieu dès qu'il est posé sur la plaque de cuisson 200, en dehors de toute activation des moyens de chauffe 210, et indépendamment de la taille de l'article culinaire 100.
Par ailleurs, dans le présent mode de réalisation, la plaque de cuisson 200 comprend des seconds moyens de protection thermique qui permettent de protéger thermiquement les moyens de mesure 220. Ces seconds moyens de protection thermique peuvent être soit spécifiques, soit constitués par les premiers moyens de protection thermique. Dans le présent mode de réalisation, comme les moyens de chauffe 210 sont inductifs, afin de ne pas perturber la mesure de la température de l'article culinaire, celle-ci se fait de préférence aux environs du passage à zéro de la 5 modulation du courant d' alimentation des moyens de chauffe 210, de sorte à éviter des phénomènes d'induction entre les moyens inductifs de chauffe 210 et les moyens inductifs de mesure 220, même si les fréquences fi, f2 respectives sont de préférence sensiblement différentes (les fréquences
10 peuvent être différentes ou non) .
A cet effet, et afin de ne pas être abîmée, la bobine inductive de mesure 221 en fonctionnement, passe successivement et alternativement en mode d'arrêt dans lequel elle est alimentée par une tension nulle (circuit
15 ouvert), et en mode d'induction dans lequel elle est alimentée par la tension créneau U de fréquence f2) • La figure 3 représente, pour une même unité de temps arbitraire, l'évolution de la tension aux bornes de la bobine inductive de mesure 221 selon une fréquence f2 et 0 l'évolution du courant modulé dans la bobine inductive de
'--^-chauffe- -2-10 selon une fréquence fi modulé par une- fréquence f3-
Cette figure, schématique et simulée, illustre principalement les différences entre les fréquences fi,f25 des bobines inductives de chauffe 210 et de mesure 221, et le fait que la bobine inductive de mesure 221 n'est alimentée qu' aux environs du passage à zéro de la modulation du courant de la bobine inductive de chauffe 210. 0 Dans le présent mode de réalisation, contrairement à la figure 3 représentant le principe du fonctionnement, aux environs du passage à zéro de la modulation, quand la tension de l'onduleur générant la fréquence f3 de modulation descend sous une certaine limite (par exemple 30-40V), ce dernier (par construction) s'arrête (les arches de la modulation ne sont pas aussi régulières que sur la figure 3) . De ce fait il existe un temps (une à deux millisecondes pour une modulation à 50 Hz) autour du passage au zéro théorique de la modulation où le champ de la bobine induetive de chauffe 210 est nul et donc où les moyens de chauffe 210 sont dans leur état d'arrêt. Ce temps est suffisant pour effectuer la mesure.
Dans le mode de réalisation préféré, la plaque de cuisson 200 comprend des moyens complémentaires de mesure (non représentés) adaptés à mesurer la température de la surface de réception 201, par exemple des moyens de type CTN (moyens dont la résistivité électrique est fonction d'un Coefficient de Température Négatif). Ces moyens complémentaires de mesure (classiquement utilisés dans les plaques de cuisson 200) sont reliés au système de mesure de température 203 (et plus particulièrement aux moyens de contrôle 240) et permettent de corréler la mesure effectuée par la bobine inductive de' "mesure 221-'-à 1-a mesure qu'ils effectuent et d'étalonner le système de mesure de température 203. Cette comparaison des températures peut n'avoir lieu qu'au début de la mise en chauffe de l'article culinaire 100 ou à tout moment pendant cette chauffe.
La détection d'une température par la bobine inductive de mesure 220 et/ou par les moyens complémentaires de mesure permet également de déterminer l'atteinte d'une température cible maximale générant un arrêt de chauffe et protégeant ainsi l'article culinaire 100. En utilisation, dans le présent mode de réalisation, l'article culinaire 100 est positionné sur la plaque de cuisson 200 à induction. Suite à l'activation des moyens de chauffe 210, par exemple par sélection d'une fonction ou d'un programme (mijotage, bouillir eau, cuisson à l'huile, cuisson sans matière grasses, etc.), la bobine inductive de chauffe 210 produit un champ magnétique qui induit des courants dans les moyens ferromagnétiques 140 du fond 101 de l'article culinaire 100, ce qui, par effet Joule, échauffe ces moyens ferromagnétiques 140 et, par conduction thermique, le reste de l'article culinaire 100, dont 1' insert thermosensible 130.
Avec la variation de température, la résistivité p et la résistance Rs des moyens thermosensibles 130 changent, ainsi que la résistance R et l'impédance Z du circuit électrique 119. Du fait de l'utilisation d'un matériau non ferromagnétique comme moyen thermosensible 130 et de l'alimentation de la bobine inductive de mesure 221 par une tension U dont la fréquence f2 correspond à la fréquence de résonance fr du circuit électrique 119, l'intensité I envoyée par les moyens de mesure 220 aux moyens de -contrôle
240 permet à ces derniers de déterminer aisément la température de l'article culinaire 100 à partir de cette intensité I. Par ailleurs, le système de mesure de température 203 peut être également utilisé pour d'autres fonctions comme la détection de la présence d'un article culinaire 10 sur la plaque de cuisson 200, voire son centrage, ou la reconnaissance du type d'article culinaire 100 ou de sa compatibilité avec la plaque de cuisson 200, combiné par exemple à la génération d'un signal d'erreur ou d'inhibition des moyens de chauffe. En effet, la présence d'un matériau métallique à proximité des moyens de mesure 220 modifie l'impédance du circuit 119, et cette modification est traduite par les moyens de contrôle 240 sans nécessairement convertir cette modification d'impédance en température.
La présente invention n'est pas limitée au présent mode de réalisation.
Concernant le fond de l'article culinaire, il est possible que ses faces présentent une légère concavité, que son épaisseur ne soit pas constante, que sa forme ait un aspect autre que circulaire, par exemple un aspect ovale ou rectangulaire (carré) .
Concernant le matériau utilisé pour la réalisation des moyens thermosensibles, il est possible d'utiliser des métaux tels que titane, bismuth, molybdène (notamment di silicium de molybdène MoSi2), platine, cuivre, aluminium, magnésium, zinc ou nickel, ou des alliages de ces métaux ou encore des céramiques métalliques, de l'inox austénitique ou des émaux non ferreux. Concernant les moyens thermosensibles, ils peuvent avoir une autre' -forma .qu'un disque', par exemple former un ensemble comprenant au moins une couronne ou une somme de couronnes concentriques avec le centre du fond de l'article culinaire et de préférence reliées thermiquement entre elles. Ils peuvent présenter un relief ou des découpes (de préférence, les découpes sont situées dans le plan du fond de l'article culinaire). Ils peuvent également, au moins en partie, être recouvert d'un matériau transparent à un champ magnétique, tel qu'un émail ou une peinture, qui forme une partie au moins de la face inférieure du fond de l'article culinaire ce qui permet à l'article culinaire de pouvoir être facilement nettoyé sans risque de détérioration des moyens thermosensibles.
Les moyens thermosensibles peuvent ne pas former un insert, mais être déposés sous forme de couche (s), par 5 exemple par sérigraphie ou projection thermique. Ils peuvent également être formés par plusieurs matériaux non ferromagnétiques superposés, par exemple colaminés ou déposés en couches .
Concernant les moyens ferromagnétiques, ils peuvent 10 être à distance des moyens thermosensibles, tant que les moyens thermosensibles ne sont pas isolés thermiquement .
Concernant la plaque de cuisson, celle-ci pourrait comprendre plusieurs foyers, dont chaque est respectivement équipé d'une bobine de mesure. Dans ce cas, la plaque de 15 cuisson peut ne comporter qu'un seul système de mesure pour tous les foyers, connecté par multiplexage aux différentes bobines de mesure des foyers .
Concernant les moyens de contrôle, ceux-ci peuvent comprendre plusieurs modèles de comportement thermique,
20 chaque modèle correspondant à un matériau thermosensible
: •• - -donné, de sor-te à augmenter la flexibi-1-ité d_' util-i-sation-'de la plaque de cuisson. De plus, un modèle de comportement thermique peut comprendre plusieurs schémas de comportement thermique pour une pluralité de fréquences de mesure, ce
25 qui permet alors de reconnaître le matériau thermosensible de l'article culinaire. En outre, Les moyens de contrôle pourraient être couplés avec les moyens de régulation, par exemple sous forme de circuit électronique, ou intégrés ensemble dans un microprocesseur.
30 Concernant le système de mesure, la tension d' alimentation des moyens de mesure peut être sous forme d'une excitation multifréquences, ou sous forme d' impulsion (s) de Dirac.
Afin d' avoir une mesure de la température aux environs d'au moins un passage à zéro de la modulation du courant, notamment si le temps de la détermination de la température est relativement long, il est possible d' effectuer une mesure tous les N passages à zéro de la modulation, avec N entier naturel (par exemple toutes les cinq ou dix secondes avec une modulation à 50 Hz) et d'arrêter l'onduleur pendant une arche (une demi période) de façon à avoir un courant nul dans la bobine inductive de chauffe sans perturber la chauffe de l'article.

Claims

REVENDICATIONS
1. Plaque de cuisson (200) adaptée à recevoir un article culinaire (100) et comprenant, d'une part, une système de chauffe (202) qui comporte des moyens de chauffe (210) et, d'autre part, un système de mesure (203) qui est adapté à mesurer la température de l'article culinaire (100) , et qui comprend des moyens de mesure (220) et des moyens de contrôle (240) , caractérisée en ce que les moyens de mesure (220) comprennent un circuit électrique (219) qui possède au moins un élément de nature inductive (221) distinct des moyens de chauffe (210) et configuré pour induire un champ magnétique vers l'article culinaire (100) comprenant des moyens thermosensibles (130) électriquement conducteurs dont la résistivité (p) varie avec la température, le circuit électrique (219) transmettant vers les moyens de contrôle (240) un signal dont la valeur est représentative de l'impédance (Z) du circuit (119) dépendante de la résistivité (p) des moyens thermosensibles (130) du fait de l'action du champ magnétique induit par l'élément de nature inductive (221)- desdits moyens de mesure (220) sur ces moyens thermosensibles (130), les moyens de contrôle (240) comprenant au moins un modèle correspondant au comportement thermique de la résistivité (p) des moyens thermosensibles (130), et étant configurés pour convertir en température, à partir du modèle, la valeur du signal transmis .
2. Plaque de cuisson (200) selon la revendication 1, dans laquelle le champ magnétique généré par l'élément de nature inductive (221) des moyens de mesure (220) ne permet pas de chauffer un matériau ferromagnétique par induction.
3. Plaque de cuisson (200) selon l'une quelconques des revendications précédentes, caractérisée en ce que le signal transmis aux moyens de contrôle (240) est l'intensité (I) du courant traversant l'élément de nature inductive (221) desdits moyens de mesure (220) .
4. Plaque de cuisson (200) selon l'une quelconques des revendications précédentes, caractérisée en ce que l'élément de nature inductive (221) desdits moyens de mesure (220), en mode d'induction, est alimenté par une tension (U) dont la fréquence (f2) correspond à la fréquence de résonance (fr) du circuit électrique (119) , ledit circuit électrique (119) étant muni d'un condensateur .
5. Plaque de cuisson (200) selon la revendication 4, caractérisée en ce que le condensateur du circuit électrique (119) est monté en série avec l'élément de nature inductive (221) desdits moyens de mesure (220) .
6. Plaque de cuisson (200) selon l'une des revendications précédentes, caractérisée en ce que le circuit électrique (119) est configuré de sorte que le signal transmis vers les moyens, de contrôle (240) ne dépend que de la résistivité (p) des moyens thermosensibles (130) quand ces derniers sont non ferromagnétiques .
7. Plaque de cuisson (200) selon l'une des revendications précédentes, caractérisée en ce que le circuit électrique (219) est configuré de sorte que la profondeur de pénétration (δ) du champ magnétique induit par l'élément de nature inductive (221) desdits moyens de mesure (220) est inférieure à l'épaisseur (E) des moyens thermosensibles (130) des articles culinaires (100) compatibles avec la plaque de cuisson (200) .
8. Plaque de cuisson (200) selon l'une des revendications précédentes, caractérisée en ce que l'élément de nature inductive (221) desdits moyens de mesure (220), en fonctionnement, passe successivement et alternativement en mode d' induction dans lequel il est alimenté par une tension (U), et en mode d'arrêt dans lequel il n'est pas alimenté.
9. Plaque de cuisson (200) selon la revendication 8, caractérisée en ce que le système de chauffe (202) est configuré de sorte que les moyens de chauffe (210) génèrent l'énergie à l'article culinaire (100) de façon séquencée dans le temps, et coopère avec le système de mesure (203) de sorte que l'élément de nature inductive (221) desdits moyens de mesure (220) est en mode d'induction quand les moyens de chauffe (210) sont en état d'arrêt et est en mode d'arrêt quand ces derniers sont en état de chauffage.
10. Plaque de cuisson (200) selon la revendication 9, caractérisée en ce que les moyens de chauffe (210) sont de nature inductive et sont alimentés par un courant alternatif modulé en amplitude, le zéro de la modulation correspondant à l'état d'arrêt des moyens- de chauffe -(210) et le reste à l'état de chauffage.
11. Plaque de cuisson (200) selon la revendication 10, caractérisée en ce que l'onduleur générant la modulation s'arrête quand sa tension descend sous une valeur minimale.
12. Plaque selon la revendication 10 ou 11, caractérisée en ce que l'onduleur générant la modulation est arrêté régulièrement tous les N passages à zéro de la modulation pendant une demi période de la modulation.
13. Plaque de cuisson (200) selon l'une des revendications précédentes, caractérisé en ce qu'elle comprend des moyens complémentaires de mesure adaptés à mesurer la température de la surface de réception (201) de la plaque de cuisson (200) sur laquelle repose l'article culinaire (100) et reliés au système de mesure (203) de façon à étalonner ce dernier.
14. Système de cuisson (1) adapté à cuire un aliment, caractérisé en ce qu'il comprend une plaque de cuisson (200) conforme à l'une des revendications 1 à 13, et un article culinaire (100) dont le fond (101) comporte des moyens thermosensibles (130) réalisés dans des matériaux conducteurs d'électricité dont la résistivité (p) varie avec la température.
15. Système de cuisson (1) selon la revendication 14, caractérisé en ce que la plaque de cuisson (200) est conforme à la revendication 6 ou à l'une des revendications qui en dépend, les moyens thermosensibles (130) de l'article culinaire (100) étant réalisés dans des matériaux non ferromagnétiques .
16. Système de cuisson (1) selon la revendication 14 ou 15, caractérisé en ce que la plaque de cuisson (200) est conforme à la revendication-7 ou à l'une des revendications, qui en dépend, l'épaisseur (E) des moyens thermosensibles (130) de l'article culinaire (100) étant supérieure à la profondeur de pénétration (δ) du champ magnétique induit par l'élément de nature inductive (221) desdits moyens de mesure (220) de la plaque de cuisson (200) .
17. Système de cuisson (1) selon l'une des revendications 14 à 16, caractérisé en ce que la plaque de cuisson (200) est conforme à la revendication 10 ou à l'une des revendications qui en dépend, l'article culinaire (100) comprenant des 'moyens ferromagnétiques (140) agencés par rapport aux moyens thermosensibles (130) de façon à transmettre à ces derniers la chaleur qu' ils produisent sous l'effet du champ magnétique induit par les moyens de chauffe (210) de la plaque de cuisson (200) .
18. Système de cuisson (1) selon l'une des revendications 14 à 17, caractérisé en ce que la plaque de cuisson (200) comprend au moins un foyer auquel est associé un élément de nature inductive (221) desdits moyens de mesure (220), les moyens thermosensibles (130) étant agencés dans le fond (101) de l'article culinaire (100) de façon à être en vis-à-vis de cet élément de nature inductive (221) quand l'article culinaire (100) est disposé sur le foyer.
19. Système de cuisson (1) selon les revendications 17 et 18, caractérisé en ce que les moyens ferromagnétiques (140) sont agencés dans le fond (101) de l'article culinaire (100) de façon à être en vis-à-vis des moyens de chauffe (210) de nature inductive quand l'article culinaire (100) est disposé sur le foyer.
20. système de cuisson (1) selon la revendication 19, caractérisé en ce que, pour chaque foyer, un élément de nature inductive (221) desdits moyens de mesure (220) est entouré par les moyens de chauffe (210) de nature inductive .
EP07803856A 2006-07-06 2007-07-06 Plaque de cuisson permettant la détection de la température d'un article culinaire Withdrawn EP2039223A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0606175A FR2903564B1 (fr) 2006-07-06 2006-07-06 Plaque de cuisson permettant la detection de la temperature d'un article culinaire
PCT/FR2007/001158 WO2008003872A2 (fr) 2006-07-06 2007-07-06 Plaque de cuisson permettant la détection de la température d'un article culinaire

Publications (1)

Publication Number Publication Date
EP2039223A2 true EP2039223A2 (fr) 2009-03-25

Family

ID=37667362

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07803856A Withdrawn EP2039223A2 (fr) 2006-07-06 2007-07-06 Plaque de cuisson permettant la détection de la température d'un article culinaire

Country Status (6)

Country Link
US (1) US20090314769A1 (fr)
EP (1) EP2039223A2 (fr)
JP (1) JP5254966B2 (fr)
CN (1) CN101485231B (fr)
FR (1) FR2903564B1 (fr)
WO (1) WO2008003872A2 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2560525T3 (es) * 2009-03-19 2016-02-19 Panasonic Corporation Cocina de calentamiento por inducción
KR20110136226A (ko) * 2010-06-14 2011-12-21 삼성전자주식회사 유도가열조리기 및 그 제어방법
WO2013136577A1 (fr) * 2012-03-14 2013-09-19 三菱電機株式会社 Cuisinière à induction
CN103356050B (zh) * 2012-03-26 2016-03-02 昆山渝榕电子有限公司 高频电加热厨具
DE102012207847A1 (de) * 2012-05-10 2013-11-14 Behr-Hella Thermocontrol Gmbh Vorrichtung zur induktiven Erwärmung eines Heizkörpers
CN105222184A (zh) * 2014-06-17 2016-01-06 吴燕珊 一种可测温的电磁炉
DE102015216455A1 (de) * 2015-08-27 2017-03-02 E.G.O. Elektro-Gerätebau GmbH Verfahren zur Temperaturbestimmung
CN106028491A (zh) * 2016-07-22 2016-10-12 深圳市鑫汇科股份有限公司 电磁感应加热装置
CN107260008B (zh) * 2017-06-28 2023-10-03 广东顺德西简工业设计有限公司 一种咖啡手冲壶的恒温加热装置及其恒温控制方法
FR3073701B1 (fr) * 2017-11-13 2019-10-11 Seb S.A. Dispositif de limitation ou de regulation en temperature pour un ustensile de cuisine
IT201900010230A1 (it) * 2019-06-27 2020-12-27 Latini Elio E C Sas Dispositivo di protezione e sicurezza di un sistema di cottura e/o riscaldamento ad induzione
WO2021228116A1 (fr) * 2020-05-12 2021-11-18 佛山市顺德区美的电热电器制造有限公司 Circuit de chauffage et appareil de cuisson
CN115129097B (zh) * 2021-03-26 2024-06-04 浙江苏泊尔家电制造有限公司 一种防止烹饪器具测温异常的控制方法和烹饪器具

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777094A (en) * 1971-09-09 1973-12-04 Environment One Corp Thermally insulated cookware for dynamic induction field heating and cooking apparatus
US3786219A (en) * 1971-12-27 1974-01-15 Gen Electric Solid state induction cooking systems for ranges and surface cooking units
US3742179A (en) * 1971-12-29 1973-06-26 Gen Electric Induction cooking appliance including wireless transmission of temperature data
US3742178A (en) * 1971-12-29 1973-06-26 Gen Electric Induction cooking appliance including cooking vessel having means for wireless transmission of temperature data
US3781506A (en) * 1972-07-28 1973-12-25 Gen Electric Non-contacting temperature measurement of inductively heated utensil and other objects
NO152483C (no) * 1982-12-14 1985-10-09 Ardal Og Sunndal Verk Kokekar av rustfritt staal for alle typer oppvarmingskilder
JPH0326095U (fr) * 1989-07-25 1991-03-18
DK65593D0 (da) * 1993-06-04 1993-06-04 Voss Fabrik Atlas Husholdnings Apparat til styring af opvarmning af foedevarer
DE4412944A1 (de) * 1994-04-15 1995-10-19 Vesta Ag & Co Ohg Topfförmiges Gar- und/oder Kochgerät
JPH0982467A (ja) * 1995-09-14 1997-03-28 Toshiba Corp 電磁調理器
FR2773974B1 (fr) * 1998-01-23 2000-03-31 Seb Sa Ustensile de cuisson comportant une sonde de temperature integree dans le fond de cet ustensile
FR2789872B1 (fr) * 1999-02-19 2001-05-18 Seb Sa Dispositif de securite pour appareil electrique de cuisson a cuve amovible
US6534753B1 (en) * 2000-06-15 2003-03-18 Wilmington Research And Development Corporation Backup power supply charged by induction driven power supply for circuits accompanying portable heated container
DE10035745B4 (de) * 2000-07-22 2004-02-05 E.G.O. Elektrogerätebau GmbH Temperaturerfassungseinrichtung für einen elektrischen Strahlungsheizkörper
IT1319079B1 (it) * 2000-11-02 2003-09-23 Inoxia S R L Recipiente di cottura di acciaio inossidabile con fondo capsularecomposto riscaldabile per induzione magnetica
KR100427602B1 (ko) * 2002-02-26 2004-04-28 김명석 다중바닥을 구비한 주방용기와 그 제조방법
US6894255B2 (en) * 2002-03-22 2005-05-17 Matsushita Electric Industrial Co., Ltd. Induction heating apparatus
JP4617676B2 (ja) * 2004-01-27 2011-01-26 パナソニック株式会社 誘導加熱調理器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008003872A3 *

Also Published As

Publication number Publication date
WO2008003872A2 (fr) 2008-01-10
WO2008003872A3 (fr) 2008-02-21
JP5254966B2 (ja) 2013-08-07
FR2903564A1 (fr) 2008-01-11
JP2009543274A (ja) 2009-12-03
CN101485231A (zh) 2009-07-15
FR2903564B1 (fr) 2011-07-01
CN101485231B (zh) 2011-12-28
US20090314769A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
EP2039223A2 (fr) Plaque de cuisson permettant la détection de la température d'un article culinaire
EP2037783B1 (fr) Article culinaire permettant la détection de sa température par une plaque de cuisson
EP0412875B1 (fr) Dispositif de mesure de température pour appareil de cuisson à induction et appareil comportant un tel dispositif
FR2629974A1 (fr) Dispositif de regulation de la puissance de chauffage de l'element chauffant d'une plaque chauffante de rechaud ou de cuisiniere
CA2862688A1 (fr) Procede de cuisson d'aliments et appareil mettant en oeuvre ce procede
EP1137324A1 (fr) Dispositif de chauffage par induction de récipient culinaire
JP5340479B2 (ja) 誘導加熱調理器
FR2766048A1 (fr) Systeme d'echauffement
FR2948253A1 (fr) Dispositif de chauffe par induction
EP3020313B1 (fr) Récipient de cuisson muni d'un dispositif magnétique de mesure de la température
EP3711455B1 (fr) Dispositif de limitation ou de régulation en temperature pour un ustensile de cuisine
EP2874524B1 (fr) Article, ensemble et systeme culinaire a detection de composes volatils, et un procede de realisation de l'article culinaire
FR2763201A1 (fr) Dispositif de cuisson avec chauffage par induction et chauffage par resistance ainsi que le procede de fabrication de celui-ci
EP0929991B1 (fr) Foyer de cuisson a detection de la presence d'un recipient
WO1990011038A1 (fr) Appareil de cuisson autonome d'aliments
EP1017256B1 (fr) Table de cuisson avec capteur de température
WO2022034270A1 (fr) Ustensile de cuisine pour plaque de cuisson a induction avec modulation du flux magnetique
FR3067239B1 (fr) Dispositif de chauffage d'un recipient de cuisson
JP2009176553A (ja) 誘導加熱調理器
CN206371840U (zh) 烹饪器具
FR2899784A1 (fr) Appareil a griller ou rotir, a chauffage par induction
FR2965330A1 (fr) Capteur pour inducteur ameliore
FR2932640A1 (fr) Ensemble securise pour dispositif de chauffage par induction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090108

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090724

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150203