EP2020569B1 - Scheinwerfersystem mit gesteuerter und/oder geregelter Beschlagverminderungsvorrichtung - Google Patents

Scheinwerfersystem mit gesteuerter und/oder geregelter Beschlagverminderungsvorrichtung Download PDF

Info

Publication number
EP2020569B1
EP2020569B1 EP08013734A EP08013734A EP2020569B1 EP 2020569 B1 EP2020569 B1 EP 2020569B1 EP 08013734 A EP08013734 A EP 08013734A EP 08013734 A EP08013734 A EP 08013734A EP 2020569 B1 EP2020569 B1 EP 2020569B1
Authority
EP
European Patent Office
Prior art keywords
headlight
sensor system
headlamp
conveying device
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP08013734A
Other languages
English (en)
French (fr)
Other versions
EP2020569A2 (de
EP2020569A3 (de
Inventor
Frank Barthel
Frank Tebbe
Andreas Leitretter
Robert Apfelbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Odelo GmbH
Original Assignee
Odelo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Odelo GmbH filed Critical Odelo GmbH
Publication of EP2020569A2 publication Critical patent/EP2020569A2/de
Publication of EP2020569A3 publication Critical patent/EP2020569A3/de
Application granted granted Critical
Publication of EP2020569B1 publication Critical patent/EP2020569B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/90Heating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/30Ventilation or drainage of lighting devices
    • F21S45/33Ventilation or drainage of lighting devices specially adapted for headlamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/42Forced cooling
    • F21S45/43Forced cooling using gas
    • F21S45/435Forced cooling using gas circulating the gas within a closed system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/60Heating of lighting devices, e.g. for demisting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • F21V29/67Cooling arrangements characterised by the use of a forced flow of gas, e.g. air characterised by the arrangement of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V31/00Gas-tight or water-tight arrangements
    • F21V31/03Gas-tight or water-tight arrangements with provision for venting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a headlamp system having at least one headlamp whose interior is delimited at least in regions by means of at least one lens against the environment, with at least one light emitting diode as a light source and at least one arranged within the headlight conveyor.
  • the FR 2 701 756 A1 discloses a motor vehicle headlight with a light source unspecified.
  • a fan is used to forcibly ventilate the interior of the headlamp by sucking in outside air and conveying it through the headlamp.
  • the fan is switched on and off depending on a proximity sensor arranged near the lens.
  • the present invention is therefore based on the problem to develop a headlamp with light-emitting diodes as light sources, in which a deterioration in luminosity can be eliminated by condensate quickly and with low energy consumption.
  • the headlamp system includes a sensor system.
  • the output signal of the sensor system is dependent on a characteristic value of the relative humidity in the interior of the headlight.
  • the sensor system controls and / or regulates the conveying device by means of the output signal.
  • the FIG. 1 shows a longitudinal section of a headlight (.10), for example, is part of a headlight system of a motor vehicle.
  • the headlamp (10) comprises a headlamp housing (20) which in the light emission direction (5) by means of a, the vehicle contour delimiting lens (30) - in the embodiment, the lens (30) the headlamp lens (30) - is closed.
  • the headlight housing (20) is for example made of plastic, made of a composite material, etc. and formed, for example pot-shaped.
  • headlight housing (20) has a mounting flange (21) on which the headlight glass (30), this consists eg of glass, plastic, etc., is attached.
  • an insert plate (23) In the bottom (22) of the headlight housing (20) sits in this embodiment, an insert plate (23). This may include a condensate with a drain port not shown here.
  • compensation openings (11) may be provided for air exchange, the total cross-section, for example, smaller than 100 square millimeters. The headlight (10) is thus at least largely closed.
  • the single headlight (10) may comprise a plurality of headlight housings (20). Also, the headlight housing (20) may be divided into several sections. The headlight housing (20) may e.g. Having arranged on its outer side cooling elements for delivering the heat generated in the headlight (10) in the environment (1).
  • the headlamp (10) In the interior (15) of the headlamp (10) are e.g. three light emitting diodes (40), e.g. Light-emitting diodes as light sources (40) arranged one above the other in each case in a module (90).
  • the modules (90) serve for the mutual positioning of the light sources (40) and of e.g. one of the respective light source (40) optically downstream lens (43).
  • a lens system can also be arranged here.
  • the light-emitting chip (41) which is heated during operation of the light-emitting diode (40) is at least thermally conductively connected to a heat sink (50).
  • the light-emitting chip (41) sits, for example, on a circuit board (42) to which it is electrically and thermally conductive, for example by means of a thermal paste, connected.
  • At the light emitting diodes (40) facing away from the board (42) of the heat sink (50) is arranged. This includes, for example, parallel to each other vertically arranged Cooling channels (51) with eg square or rectangular cross section. It is produced, for example, as a cast component or as an extruded profile.
  • a guide channel (12) is connected on the underside of the heat sink (50). This is e.g. bounded on three sides by means of a U-shaped profile (13) resting on the bottom (22). The bottom (22) bounds the underside of the guide channel (12).
  • the U-shaped profile (13) may be made of metal, plastic, a composite material, etc ..
  • a conveying device (70) e.g. an axial fan (71) is arranged. The latter can be attached to the heat sink (50) or to the headlight housing (20).
  • a sensor system (80) is arranged in the region of the interior space (15) adjoining the headlight glass (30).
  • This sits, for example, in the lower area of the headlamp (10) outside the light exit area of the headlamp (10). It comprises at least one transmitter (81) and one receiver (82), cf. FIG. 2 .
  • the emitter (81) is, for example, a light-emitting diode (81) which, for example, encloses an angle of, for example, 45 degrees with a normal to the inside (32) of the headlight cristall (30).
  • the receiver (82), eg a photodetector (82), is mirror-symmetrical to the transmitter (81). arranged, wherein the axis of symmetry is said normal.
  • the angle subtended by the transmitter (81) and the receiver (82) with the normal may be greater than said angle.
  • the area of the headlight glass (30) in which the normal impinges be mirrored.
  • the transmitter (81) and the receiver (82) are arranged below a shading cap (83).
  • This has an opening adjacent to the headlight glass (84).
  • the dimming cap (83) By means of this dimming cap (83), the direct light entry from the light sources (40) to the receiver (82) can be reduced.
  • the lower portion of the headlight glass (30) may be e.g. be darkly tinted.
  • the sensor system (80) may comprise a condensation sensor attached, for example, to the inside (32) of the headlight glass (30), e.g. outputs a signal from an adjustable value of the relative humidity at the headlight glass.
  • the signal output by the sensor system (80) may also be proportional to the relative humidity.
  • the interior (15) of the headlamp (10) is e.g. heated to an operating temperature.
  • the air in the interior (15) whose absolute humidity is e.g. initially lower than the absolute saturation air humidity at the operating temperature and the air pressure in the interior, absorbs moisture.
  • the air pressure in the interior (15) corresponds for example to the air pressure of the environment (1).
  • the relative humidity of the air in the interior (15) increases during cooling. If, during cooling, the relative humidity exceeds the absolute saturation air humidity as a function of the actual temperature - the relative humidity is then 100% - moisture condenses from the air first to the coldest section of the interior (15) of the headlamp (10), eg on the inside (32 ) of the headlight glass (30). The condensate, for example, penetrates through the opening (84) into the reflection region of the sensor system (80).
  • the light-emitting diodes (40) first heat up.
  • the heat generated by the light-emitting diodes (40) is conducted to the heat sinks (50) and emitted from the heat sinks (50) to the air in the interior (15) of the headlamp (10).
  • the heat sinks (50) act as heat sources (50).
  • the air temperature in the region of the heat sink (50) increases. With increasing temperature and, for example, constant air pressure, the ability of the air to absorb moisture increases.
  • the fan (70) circulates the air in the interior (15) in the representation of FIG. 1 in the air conveying direction (75) counterclockwise to.
  • the air flows through the heat sink (50), for example through the cooling channels (51) - the air is heated and passed above the modules (90) through the air duct (14) through the headlight glass (30).
  • the air absorbs heat through this forced convection.
  • the heated air can carry moisture from the environment, which enters eg through pressure equalization openings of the headlight (10) in this.
  • the conveyor (70) thus promotes heat energy from the heat source (50) to the headlamp lens (30). By mixing the air inside the headlight (10) passes the
  • Condensation of the moisture on the headlight glass (30) can also take place when the vehicle enters a cool parking garage, a tunnel, etc.
  • the sensor system (80) When the ignition or the headlight (10) is switched on, the sensor system (80) is also switched on.
  • the light-emitting diode (81) emits light (85) in the direction of the headlight glass (30). This light (85) is reflected both on the condensed water drops (86) and on the headlight glass (30).
  • the receiver (82) receives a diffused, e.g. faint signal.
  • the sensor system (80) thus communicates with the inside (32) of the dummy lens glass (30).
  • the receiver (82) is connected to the control of the fan (70). If, for example, the light signal received by the receiver (82) falls below an adjustable lower threshold value of the level, for example, the output signal of the sensor system (80) causes the fan (70) to be switched on or to increase its speed.
  • the volume flow conveyed by means of the fan (70) is amplified.
  • the conveyed air flows - for example, with heat absorption on the heat sink (50) - on the headlight glass (30).
  • the air flow strikes at least approximately in the entire width of the headlamp (10) on the headlight glass (30) in the upper region.
  • the condensed on the headlight glass (30) moisture is displaced and / or carried by the air flow. For example, the higher the volume flow and / or the pressure and / or the temperature of the conveyed air, the higher is the deaeration.
  • the control of the fan (70) may include a timer. If, for example, after a e.g. 15 seconds, the signal level received by the receiver (82) is still below the lower threshold, the controller may set the speed of the fan (70) e.g. to increase one more level. A dew on the inside (32) of the headlight glass (30) can thus be removed quickly.
  • the upper threshold may be equal to the lower threshold.
  • the output signal of the sensor system (80) causes the speed of the fan (70) to be maintained or lowered. If the speed is maintained, this is, for example, the speed required for further operation, which now depends on the maximum permissible operating temperature of the light-emitting diodes (40). This minimum cooling power is required so that the continuous operating temperature of the LEDs (40), for example, does not exceed 85 degrees Celsius. If the speed of the fan (70) is lowered, the amount of energy absorbed per unit time is also reduced.
  • the conveying device (70) can be controlled by means of the sensor system (80) and regulated by means of the maximum permissible continuous operating temperature or vice versa. Also, a control and / or control by both parameters is conceivable.
  • the insert plate (23) is designed as a condensation plate
  • the air flows in the guide channel (12) along this condensation plate.
  • the edge region of the air flow is cooled.
  • the relative humidity - at least in the edge area of the air flow - exceeds the saturation limit, which depends on the temperature and the pressure.
  • Moisture condenses on the condensation plate from the air flow.
  • the condensation takes place for example as a film condensation.
  • the absolute and the relative humidity of the headlight (10) promoted air is thereby reduced.
  • the condensation can also take place as dropwise condensation.
  • the resulting condensate is then passed, for example through a drain opening into the environment (1).
  • a separate heat source can be arranged in the headlight (10).
  • the fan (70) can heat the circulated air.
  • a centrifugal fan can be used.
  • a reversal of the conveying direction (75) is conceivable.
  • the fan (70) can be above or be arranged below the heat sink (50). It is also conceivable to arrange a separate fan (70) only for removing the condensate.
  • the heat dissipation of the light sources (40) can then take place, for example, by means of a further conveying device, which can be arranged inside or outside the spotlight housing (20). Also, a with the light sources (40) thermally connected heat sink outside the headlight housing (20) may be arranged.
  • the heat generated by the light sources (40) can also be obtained by means of water cooling, e.g. be derived by means of a heat exchanger.
  • a headlamp (10) constructed in this way then has, for example, a separate ventilator (70) which is actuated by means of a sensor system (80) as a function of the condensate infiltration of the headlight glass (30).
  • a separate ventilator (70) which is actuated by means of a sensor system (80) as a function of the condensate infiltration of the headlight glass (30).
  • an additional heat source in this headlight (10) by means of the sensor system (80) can be controlled.
  • a headlight (10) with an axial fan (71) is shown, for example, is inclined at 45 degrees.
  • the diameter of the axial fan (71) is for example 40% larger than the diameter of the in FIG. 1 illustrated fan (10).
  • With the same outer dimensions of the headlamp (10) can be used as a conveyor device (70), which - compared to the embodiment of Figure 1 - promotes a higher volume flow at the same speed.
  • the functions of the sensor system (80) and the conveyor (70) correspond to the functions of these devices, as described in connection with the embodiment of Figure 1.
  • FIG. 5 shows a headlight (10) with eg six modules (90) and two heat sinks (50, 52). Three modules each (90) are arranged on one of the two, for example, at right angles to each other arranged heat sink (50, 52). Between the two heat sinks (50, 52) is arranged as a conveying device (70), a centrifugal fan (72). The air delivered by the centrifugal fan (72) can therefore already be preheated by means of the first heat source (50).
  • the second heat sink (52) is e.g. constructed in two parts from a lower (53) and an upper heat sink part (54). These two heat sink parts (53, 54) surround, for example, eight air ducts (56). In an arrangement of the second heat sink (52) on the roof (24) of the headlight housing (20) may optionally be dispensed with the upper heat sink portion (54).
  • All modules (90) can also be mounted on a common, e.g. curved board (42) can be arranged.
  • the heat sinks (50, 52) can be interconnected e.g. be connected by means of a bypass, which bypasses the fan (70).
  • the lower heat sink portion (53) of the second heat sink (52) is shown.
  • the cross section of the individual air ducts (56) widens continuously from the inlet side (57) to the outlet side (58).
  • the side surfaces of the individual ribs (59) are, for example, parabolic surface sections.
  • the FIG. 7 shows a headlamp (1), which is similar to that in the FIG. 1 illustrated headlights.
  • the insert plate (23) designed here as a heat sink (60) is a condensation plate (61) with an electric cooling element (65), eg a Peltier element.
  • an electric cooling element (65) eg a Peltier element.
  • the inner surface (62) of the condensation plate (61) for example, by a temperature difference of 10 K cooler set as the temperature of the interior (15).
  • the minimum temperature of the heat sink (60) is the temperature of the triple point of water at which all three phase states coexist. At temperatures below the triple point no condensation occurs. If the ambient temperature (1) is below this specific temperature, the risk of condensation on the headlight glass (30) does not increase - even if the outside temperatures continue to fall.
  • the condensation takes place, as described in connection with the exemplary embodiment of FIG.
  • the absolute amount of moisture of the air conveyed in the headlamp can be reduced, whereby also the relative humidity in the atmosphere of the interior (15) is reduced.
  • a labyrinth 64
  • a gas-permeable membrane etc.
  • the Peltier element (65) can be switched off electrically as soon as the relative humidity in the interior (15) is below a threshold value. When approaching this threshold or when exceeding this threshold, the Peltier element (65) can be turned on again to reduce the amount of moisture in the headlight (10).
  • the sensor system (80) and the conveyor (70) function as described in connection with FIG FIG. 1 described.
  • a commercially available moisture sensor can also be used.
  • the randomlyvorrichcung (70) can suck in air from the environment (1) of the headlamp (10).
  • the intake is connected to the engine pre-heating of the motor vehicle.
  • filtered air enters the interior (15) of the headlamp (10).
  • the air can be discharged into the environment (1) again after flowing along the lens (30).
  • the headlamp system may include a sensor system disposed outside the headlamp (10).
  • This sensor system can be arranged, for example, on the bumper of the motor vehicle.
  • a characteristic value is determined, for example, from the temperature, the atmospheric pressure, the absolute or relative atmospheric humidity in the environment (1) and optionally a correction factor.
  • the correction factor - it may be nonlinear or linear to change the measured parameters - takes into account e.g. a difference of the humidity of the interior (15) to the humidity of the environment (1).
  • the output signal of the sensor system is then e.g. depending on the thus determined characteristic value of the relative humidity in the interior of the headlamp (10).
  • the sensor system controls and / or regulates the conveying device.
  • Such a headlamp system may comprise a plurality of headlights (10) whose conveying devices are controlled and / or regulated by means of a common sensor system.
  • shielding plates can additionally be arranged against the heat radiation of the motor. These shielding plates may also be parts of the body and / or a front module.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Description

  • Die Erfindung betrifft ein Scheinwerfersystem mit mindestens einem Scheinwerfer, dessen Innenraum zumindest bereichsweise mittels mindestens einer Lichtscheibe gegen die Umgebung abgegrenzt ist, mit mindestens einer Lumineszenzdiode als Lichtquelle und mit mindestens einer innerhalb des Scheinwerfers angeordneten Fördervorrichtung.
  • Aus der DE 10 2005 019 651 A1 ist ein derartiger Scheinwerfer bekannt. Sollte das Trocknungsmittel gesättigt sein, kann die Lichtscheibe beschlagen und somit die Ausleuchtung des Scheinwerfers beeinträchtigen. Es dauert dann lange, bis der Scheinwerfer wieder die volle Leuchtstärke erreicht.
  • Die FR 2 701 756 A1 offenbart einen Kraftfahrzeugscheinwerfer mit einer nicht näher bezeichneten Lichtquelle. Ein Ventilator dient zur Zwangslüftung des Inneren des Scheinwerfers, indem dieser Außenluft ansaugt und durch den Scheinwerfer fördert. Der Ventilator wird abhängig von einem nahe der Streuscheibe angeordneten reuchtesensor ein geschaltet und ausgeschaltet.
  • Der vorliegenden Erfindung liegt daher die Problemstellung zugrunde, einen Scheinwerfer mit Leuchtdioden als Lichtquellen zu entwickeln, bei dem eine Beeinträchtigung der Leuchtstärke durch Kondensat schnell und mit geringem Energieeinsatz beseitigt werden kann.
  • Diese Problemstellung wird mit den Merkmalen des Hauptanspruches gelöst. Dazu umfasst das Scheinwerfersystem ein Sensorsystem. Das Ausgabesignal des Sensorsystems ist abhängig von einem Kennwert der relativen Luftfeuchtigkeit im Innenraum des Scheinwerfers. Außerdem steuert und/oder regelt das Sensorsystem mittels des Ausgabesignals die Fördervorrichtung.
  • Weitere Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung schematisch dargestellter Ausführungsformen.
  • Figur 1:
    Scheinwerfer mit Luftkühlung und Axialventilator;
    Figur 2:
    Sensorsystem bei betauter Lichtscheibe;
    Figur 3:
    Sensorsystem bei unbetauter Lichtscheibe;
    Figur 4:
    Scheinwerfer mit schräg angeordnetem Axialventilator;
    Figur 5:
    Scheinwerfer mit zwei Kühlkörpern;
    Figur 6:
    Kühlkörper;
    Figur 7:
    Scheinwerfer mit Peltierelement.
  • Die Figur 1 zeigt einen Längsschnitt eines Scheinwerfers (.10), der z.B. Teil eines Scheinwerfersystems eines Kraftfahrzeugs ist. Der Scheinwerfer (10) umfasst ein Scheinwerfergehäuse (20), das in der Lichtabstrahlrichtung (5) mittels einer, die Fahrzeugkontur begrenzenden Lichtscheibe (30) - im Ausführungsbeispiel ist die Lichtscheibe (30) das Scheinwerferglas (30) - verschlossen ist.
  • Das Scheinwerfergehäuse (20) ist beispielsweise aus Kunststoff, aus einem Verbundwerkstoff, etc. hergestellt und z.B. topfartig ausgebildet. An seiner offenen Vorderseite hat das in der Figur 1 dargestellte Scheinwerfergehäuse (20) einen Befestigungsflansch (21), an dem das Scheinwerferglas (30), dieses besteht z.B. aus Glas, Kunststoff, etc., befestigt ist. Im Boden (22) des Scheinwerfergehäuses (20) sitzt in diesem Ausführungsbeispiel eine Einsatzplatte (23). Diese kann einen Kondensatabscheider mit einer hier nicht dargestellten Abflussöffnung umfassen. Gegebenenfalls können im Scheinwerfer (10) Ausgleichsöffnungen (11) zum Luftaustausch vorgesehen sein, deren Gesamtquerschnitt z.B. kleiner ist als 100 Quadratmillimeter. Der Scheinwerfer (10) ist somit zumindest weitgehend geschlossen.
  • Der einzelne Scheinwerfer (10) kann mehrere Scheinwerfergehäuse (20) umfassen. Auch kann das Scheinwerfergehäuse (20) in mehrere Abschnitte unterteilt sein. Das Scheinwerfergehäuse (20) kann z.B. an seiner Außenseite angeordnete Kühlelemente zur Abgabe der im Scheinwerfer (10) erzeugten Wärme in die Umgebung (1) aufweisen.
  • Im Innenraum (15) des Scheinwerfers (10) sind z.B. drei Lumineszenzdioden (40), z.B. Leuchtdioden als Lichtquellen (40) übereinanderliegend jeweils in einem Modul (90) angeordnet. Die Module (90) dienen der gegenseitigen Positionierung der Lichtquellen (40) und von z.B. einer der jeweiligen Lichtquelle (40) optisch nachgeschalteten Linse (43). Statt einer einzelnen Linse (43) kann hier auch ein Linsensystem angeordnet sein.
  • Die beim Betrieb der Leuchtdiode (40) erwärmte lichtemittierende Chip (41) ist zumindest thermisch leitend mit einem Kühlkörper (50) verbunden. Der lichtemittierende Chip (41) sitzt beispielsweise auf einer Platine (42), mit der er elektrisch und thermisch leitend, z.B. mittels einer Wärmeleitpaste, verbunden ist. An der den Leuchtdioden (40) abgewandte Seite der Platine (42) ist der Kühlkörper (50) angeordnet. Dieser umfasst beispielsweise parallel zueinander vertikal angeordnete Kühlkanäle (51) mit z.B. quadratischem oder rechteckigem Querschnitt. Er ist z.B. als Gussbauteil oder als Strangpreprofil hergestellt.
  • An der Unterseite des Kühlkörpers (50) ist ein Führungskanal (12) angeschlossen. Dieser wird z.B. dreiseitig mittels eines am Boden (22) anliegenden u-förmigen Profils (13) begrenzt. Der Boden (22) begrenzt die Unterseite des Führungskanals (12). Das u-förmige Profil (13) kann aus Metall, Kunststoff, einem Verbundwerkstoff etc, gefertigt sein. Im Führungskanal (12) ist in diesem Ausführungsbeispiel zwischen dem Boden (22) und dem Kühlkörper (50) eine Fördervorrichtung (70), z.B. ein Axialventilator (71) angeordnet. Letzterer kann am Kühlkörper (50) oder am Scheinwerfergehäuse (20) befestigt sein.
  • An der Oberseite des Kühlkörpers (50) ist ein sich in Richtung des Scheinwerferglases (30) aufweitender Luftkanal (14) angeschlossen. An dem in der Darstellung der Figur 1 oberen Ende des Scheinwerferglases (30) entspricht die Breite des Luftkanals (14) zumindest annähernd der Breite des.Scheinwerferglases (30). Dieser Luftkanal (14) kann an seinem scheinwerferglasseitigem Ende Austrittsdüsen aufweiten.
  • In dem an das Scheinwerferglas (30) angrenzenden Bereich des Innenraums (15) ist ein Sensorsystem (80) angeordnet. Dieses sitzt z.B. im unteren Bereich des Scheinwerfers (10) außerhalb des Lichtaustrittsbereichs des Scheinwerfers (10). Es umfasst mindestens einen Sender (81) und einen Empfänger (82), vgl. Figur 2. Der Sender (81) ist beispielsweise eine Lumineszenzdiode (81), die z.B. mit einer Normalen auf die Innenseite (32) des Scheinwerfcrglases (30) einen Winkel von beispielsweise 45 Grad einschließt. Der Empfänger (82), z.B. ein Photodetektor (82), ist spiegelsymmetrisch zum Sender (81) angeordnet, wobei die Symmetrieachse die genannte Normale ist. Der Winkel, den der Sender (81) und der Empfänger (82) mit der Normalen einschließen, kann größer als der genannte Winkel sein. Gegebenenfalls kann der Bereich des Scheinwerferglases (30), in dem die Normale auftrifft, verspiegelt sein.
  • Im Ausführungsbeispiel sind der Sender (81) und der Empfänger (82) unterhalb einer Abdunkelungskappe (83) angeordnet. Diese hat eine an das Scheinwerferglas angrenzende Öffnung (84). Mittels dieser Abdunkelungskappe (83) kann der direkte Lichteintritt von den Lichtquellen (40) an den Empfänger (82) vermindert werden. Um beispielsweise auch das Eintreten von Licht aus der Umgebung (1) zu behindern, kann zusätzlich der untere Abschnitt des Scheinwerferglases (30) z.B. dunkel getönt sein. Gegebenenfalls kann auf die Abdunkelungskappe (83) verzichtet werden.
  • Das Sensorsystem (80) kann einen beispielsweise an der Innenseite (32) des Scheinwerferglases (30) befestigten Betauungssensor umfassen, der z.B. ab einem einstellbaren Wert der relativen Luftfeuchtigkeit am Scheinwerferglas ein Signal ausgibt. Das vom Sensorsystem (80) ausgegebene Signal kann auch proportional zur relativen Luftfeuchtigkeit sein.
  • Wird ein Fahrzeug z.B. für eine längere Zeitdauer mit eingeschalteten Scheinwerfern (10) betrieben, wird der Innenraum (15) des Scheinwerfers (10) z.B. auf eine Betriebstemperatur erwärmt. Die Luft im Innenraum (15), deren absolute Feuchte z.B. zunächst geringer ist als die absolute Sättigungsluftfeuchte bei der Betriebstemperatur und dem Luftdruck im Innenraum, nimmt Feuchtigkeit auf.
  • Nach dem Abstellen des Fahrzeuges und dem Abschalten der Scheinwerfer (10) kühlt die Luft im Innenraum (15) auf die Temperatur der Umgebung (1) ab. Der Luftdruck im Innenraum (15) entspricht beispielsweise dem Luftdruck der Umgebung (1). Die relative Luftfeuchtigkeit der Luft im Innenraum (15) nimmt beim Abkühlen zu. Übersteigt beim Abkühlen die relative Luftfeuchtigkeit die absolute Sättigungsluftfeuchtigkeit in Abhängigkeit der Ist-Temperatur - die relative Luftfeuchtigkeit beträgt dann 100 % - kondensiert Feuchtigkeit aus der Luft zunächst am kältesten Abschnitt des Innenraums (15) des Scheinwerfers (10), z.B. an der Innenseite (32) des Scheinwerferglases (30). Das Kondensat dringt beispielsweise durch die Öffnung (84) in den Reflexionsbereich des Sensorsystems (80).
  • Werden die Scheinwerfer (10) wieder eingeschaltet, erwärmen sich zunächst die Leuchtdioden (40). Die von den Leuchtdioden (40) erzeugte Wärme wird an die Kühlkörper (50) geleitet und von den Kühlkörpern (50) an die Luft im Innenraum (15) des Scheinwerfers (10) abgegeben. Die Kühlkörper (50) wirken hierbei als Wärmequellen (50). Die Lufttemperatur im Bereich der Kühlkörper (50) nimmt zu. Mit zunehmender Temperatur und beispielsweise konstantem Luftdruck steigt die Fähigkeit der Luft, Feuchtigkeit aufzunehmen. Der Ventilator (70) wälzt die Luft im Innenraum (15) in der Darstellung der Figur 1 in der Luftförderrichtung (75) entgegen dem Uhrzeigersinn um. An der Wärmequelle (50) - die Luft durchströmt die Kühlkörper (50) beispielsweise durch die Kühlkanäle (51) - wird die Luft erhitzt und oberhalb der Module (90) durch den Luftkanal (14) hindurch zum Scheinwerferglas (30) geleitet. Die Luft nimmt durch diese Zwangskonvektion Wärme auf. Die erwärmte Luft kann Feuchtigkeit aus der Umgebung mitführen, die z.B. durch Druckausgleichsöffnungen des Scheinwerfers (10) in diesen eintritt. Die Fördervorrichtung (70) fördert somit Wärmeenergie von der Wärmequelle (50) zum Scheinwerferglas (30). Durch die Vermischung der Luft im Innern des Scheinwerfers (10) gelangt die
  • aufgenommene Feuchtigkeit an das noch kalte Scheinwerferglas (30) und kann dort kondensieren. Die durch den Fahrtwind (3) verursachte Luftströmung (4) entlang der Außenseite (31) des Scheinwerferglases, die entgegen der Luftförderrichtung (75) gerichtet ist, kann den Kondensatanfall verstärken.
  • Eine Kondensation der Feuchtigkeit am Scheinwerferglas (30) kann auch erfolgen, wenn das Fahrzeug in eine kühle Parkgarage, einen Tunnel, etc. einfährt.
  • Mit dem Einschalten der Zündung oder des Scheinwerfers (10) wird auch das Sensorsystem (80) eingeschaltet. Die Leuchtdiode (81) emittiert Licht (85) in Richtung des Scheinwerferglases (30). Dieses Licht (85) wird sowohl an den kondensierten Wassertropfen (86) als auch am Scheinwerferglas (30) reflektiert. Der Empfänger (82) empfängt ein diffuses, z.B. lichtschwaches Signal. Das Sensorsystem (80) kommuniziert somit mit der Innenseite (32) des Scheinwexferglases (30).
  • Der Empfänger (82) ist mit der Ansteuerung des Ventilators (70) verbunden. Unterschreitet beispielsweise das vom Empfänger (82) empfangene Lichtsignal einen z.B. einstellbaren unteren Schwellenwert der Pegelstärke, veranlasst das Ausgabesignal des Sensorsystems (80) ein Einschalten des Ventilators (70) oder eine Erhöhung seiner Drehzahl. Der mittels des Ventilators (70) geförderte Volumenstrom wird verstärkt. Die geförderte Luft strömt - z.B. unter Wärmeaufnahme am Kühlkörper (50) - auf das Scheinwerferglas (30). Der Luftstrom trifft zumindest annähernd in der gesamten Breite des Scheinwerfers (10) auf das Scheinwerferglas (30) im oberen Bereich auf. Am Scheinwerferglas (30) entlang wird der Luftstrom nach unten in Richtung des Bodens (22) geführt. Hierbei wird die auf dem Scheinwerferglas (30) kondensierte Feuchtigkeit verdrängt und/oder vom Luftstrom mitgenommen. Die Enttauung ist beispielsweise umso höher, je höher der Volumenstrom und/oder der Druck und/oder die Temperatur der geförderten Luft ist.
  • Die Steuerung des Ventilators (70) kann ein Zeitglied aufweisen. Ist beispielsweise nach einer z.B. einstellbaren Zeitdauer von 15 Sekunden der vom Empfänger (82) empfangene Signalpegel immer noch unterhalb des unteren Schwellenwerts, kann die Steuerung die Drehzahl des Ventilators (70) z.B. um eine weitere Stufe erhöhen. Eine Taubildung auf der Innenseite (32) des Scheinwerferglases (30) kann somit schnell entfernt werden.
  • Sobald der Signalpegel am Empfänger (82) nach dem ersten Ein- oder Höherschalten des Ventilators (70) einen oberen Schwellenwert übersteigt, ist das Scheinwerferglas (30) frei von Kondensat, vgl. Figur 3. Der obere Schwellenwert kann hierbei gleich dem unteren Schwellenwert sein. Das Ausgabesignal des Sensorsystems (80) bewirkt ein Beibehalten oder ein Absenken der Drehzahl des Ventilators (70). Wird die Drehzahl beibehalten, ist dies beispielsweise die für den weiteren Betrieb erforderliche Drehzahl, die sich nun nach der maximal zulässigen Betriebstemperatur der Leuchtdioden (40) richtet. Diese Mindestkühlleistung ist erforderlich, damit die Dauerbetriebstemperatur der Leuchtdioden (40) z.B. 85 Grad Celsius nicht übersteigt. Wird die Drehzahl des Ventilators (70) abgesenkt, wird auch die pro Zeiteinheit aufgenommene Energiemenge reduziert. So kann beispielsweise die Fördervorrichtung (70) mittels des Sensorsystems (80) gesteuert werden und mittels der maximal zulässigen Dauerbetriebstemperatur geregelt werden oder umgekehrt. Auch eine Regelung und/oder Steuerung durch beide Parameter ist denkbar.
  • Es ist auch denkbar, mittels des Sensorsystems (80) den vom Empfänger (82) empfangenen Signalpegel zu messen. Die Drehzahlregelung des Ventilators (70) kann dann z.B. stufenlos erfolgen. Auch kann bei einer sich abzeichnenden Gefahr der Kondensation der Volumenstrom der Fördervorrichtung (70) erhöht werden.
  • Ist die Einsatzplatte (23) als Kondensationsplatte ausgebildet, strömt die Luft im Führungskanal (12) entlang dieser Kondensationsplatte. Hierbei wird der Randbereich des Luftstroms abgekühlt. Die relative Luftfeuchtigkeit - zumindest im Randbereich des Luftstroms - übersteigt die Sättigungsgrenze, die von der Temperatur und dem Druck abhängig ist. Aus dem Luftstrom kondensiert Feuchtigkeit an der Kondensationsplatte. Die Kondensation erfolgt beispielsweise als Filmkondensation. Der absolute und der relative Feuchtigkeitsgehalt der im Scheinwerfer (10) geförderten Luft wird dabei verringert. Bei einem hohen Kondensatanfall kann die Kondensation auch als Tropfenkondensation erfolgen. Das anfallende Kondensat wird dann beispielsweise durch eine Abflussöffnung hindurch in die Umgebung (1) geführt.
  • Gegebenenfalls kann im Scheinwerfer (10) eine separate wärmequelle angeordnet sein. Beispielsweise kann auch der Ventilator (70) die umgewälzte Luft aufheizen.
  • Als Ventilator (70) kann statt des im Zusammenhang mit der Figur 1 beschriebenen Axialventilators (71) ein Radialventilator eingesetzt werden. Auch ist eine Umkehrung der Förderrichtung (75) denkbar. Hierbei wird die Luft entlang der Innenseite (32) des Scheinwerferglases (30) in der gleichen Richtung wie die an der Außenseite (31) des Scheinwerferglases (30) entlangströmende, durch den Fahrtwind (3) erzeugte Luftströmung (4) gefördert. Der Ventilator (70) kann oberhalb oder unterhalb des Kühlkörpers (50) angeordnet sein. Es ist auch denkbar, einen separaten Ventilator (70) nur zum Entfernen des Kondensats anzuordnen. Die Wärmeabfuhr der Lichtquellen (40) kann dann z.B. mittels einer weiteren Fördervorrichtung erfolgen, die in- oder außerhalb des Scheinwerfergehäuses (20) angeordnet sein kann. Auch kann ein mit den Lichtquellen (40) thermisch verbundener Kühlkörper außerhalb des Scheinwerfergehäuses (20) angeordnet sein.
  • Die von den Lichtquellen (40) erzeugte Wärme kann auch mittels einer Wasserkühlung z.B. mittels eines Wärmetauschers, abgeleitet werden. Ein derart aufgebauter Scheinwerfer (10) hat dann beispielsweise einen separaten Ventilator (70), der mittels eines Sensorsystems (80) in Abhängigkeit des Kondensatsbefalls des Scheinwerferglases (30) angesteuert wird. Gegebenenfalls kann auch eine zusätzliche Wärmequelle in diesem Scheinwerfer (10) mittels des Sensorsystems (80) angesteuert werden.
  • In der Figur 4 ist ein Scheinwerfer (10) mit einem Axialventilator (71) dargestellt, der z.B. um 45 Grad geneigt angeordnet ist. Der Durchmesser des Axialventilators (71) ist z.B. um 40 % größer als der Durchmesser des in der Figur 1 dargestellten Ventilators (10). Bei gleichen äußeren Abmessungen des Scheinwerfers (10) kann so eine Fördervorrichtung (70) eingesetzt werden, die - im Vergleich zur Ausführungsform nach Figur 1 - bei gleicher Drehzahl einen höheren Volumenstrom fördert. Die Funktionen des Sensorsystems (80) und der Fördervorrichtung (70) entsprechen den Funktionen dieser Vorrichtungen, wie sie im Zusammenhang mit dem Ausführungsbeispiel der Figur 1 beschrieben sind.
  • Die Figur 5 zeigt einen Scheinwerfer (10) mit z.B. sechs Modulen (90) und zwei Kühlkörpern (50, 52). Jeweils drei Module (90) sind an einem der beiden z.B. rechtwinklig zueinander angeordneten Kühlkörper (50, 52) angeordnet. Zwischen den beiden Kühlkörpern (50, 52) ist als Fördervorrichtung (70) ein Radialventilator (72) angeordnet. Die vom Radialventilator (72) geförderte Luft kann also mittels der ersten Wärmequelle (50) bereits vorgewärmt sein.
  • In diesem Ausführungsbeispiel ist der zweite Kühlkörper (52) z.B. zweiteilig aus einem unteren (53) und einem oberen Kühlkörperteil (54) aufgebaut. Diese beiden Kühlkörperteile (53, 54) umschließen beispielsweise acht Luftführkanäle (56). Bei einer Anordnung des zweiten Kühlkörpers (52) am Dach (24) des Scheinwerfergehäuses (20) kann gegebenenfalls auf das obere Kühlkörperteil (54) verzichtet werden.
  • Alle Module (90) können auch auf einer gemeinsamen, z.B. gebogenen Platine (42) angeordnet sein. Die Kühlkörper (50, 52) können miteinander z.B. mittels eines Bypasses, der den Ventilator (70) umgeht, verbunden sein.
  • In der Figur 6 ist z.B. das untere Kühlkörperteil (53) des zweiten Kühlkörpers (52) dargestellt. Der Querschnitt der einzelnen Luftführkanäle (56) weitet sich von der Eintrittsseite (57) zur Austrittsseite (58) hin stetig auf. Die Seitenflächen der einzelnen Rippen (59) sind z.B. Parabelflächenabschnitte.
  • Die Figur 7 zeigt einen Scheinwerfer (1), der ähnlich aufgebaut ist wie der in der Figur 1 dargestellte Scheinwerfer. Die hier als Wärmesenke (60) ausgeführte Einsatzplatte (23) ist eine Kondensationsplatte (61) mit einem elektrischen Kühlerement (65), z.B. einem Peltierelement. Beim Betrieb dieses elektrischen Kühlelements (65) wird beispielsweise die Innenfläche (62) der Kondensationsplatte (61) z.B. um eine Temperaturdifferenz von 10 K kühler eingestellt als die Temperatur des Innenraums (15). Die minimale Temperatur der Wärmesenke (60) ist die Temperatur des Tripelpunkt von Wasser, bei dem alle drei Phasenzustände koexistieren. Bei Temperaturen unterhalb des Tripelpunktes erfolgt keine Kondensation. Liegt die Temperatur der Umgebung (1) unterhalb dieser spezifischen Temperatur, steigt - selbst bei weiter sinkenden Außentemperaturen - die Gefahr der Kondensation am Scheinwerferglas (30) nicht weiter an.
  • Beim Betrieb der Fördervorrichtung (70) erfolgt die Kondensation, wie im Zusammenhang mit dem Ausführungsbeispiel der Figur 1 beschrieben. Hiermit kann die absolute Feuchtigkeitsmenge der im Scheinwerfer geförderten Luft vermindert werden, wodurch auch die relative Luftfeuchtigkeit in der Atmosphäre des Innenraums (15) vermindert wird.
  • Das Kondensat, das beispielsweise auf der Innenfläche (62) abgeschieden wird, fließt in den Kondensatablauf (63). Dieser ist beispielsweise über ein Labyrinth (64), eine gasdurchlässige Membran, etc. mit der Umgebung verbunden, so dass das Kondensat aus dem Scheinwerfer (10) gelangt.
  • Das Peltierelement (65) kann elektrisch abgeschaltet werden, sobald die relative Luftfeuchtigkeit im Innenraum (15) unterhalb eines Schwellenwertes liegt. Bei Annäherung an diesen Schwellenwertes oder beim Überschreiten dieses Schwellenwertes kann das Peltierelement (65) wieder eingeschaltet werden, um die Feuchtigkeitsmenge im Scheinwerfer (10) zu reduzieren.
  • Das Sensorsystem (80) und die Fördervorrichtung (70) funktionieren, wie im Zusammenhang mit der Figur 1 beschrieben.
  • Zum Messen der Luftfeuchtigkeit kann auch ein handelsüblicher Feuchtigkeitssensor verwendet werden.
  • Die Fördervorrichcung (70) kann Luft aus der Umgebung (1) des Scheinwerfers (10) ansaugen. Beispielsweise ist die Ansaugung mit der Motorvorwärmung des Kraftfahrzeugs verbunden. Somit gelangt gefilterte Luft in den Innenraum (15) des Scheinwerfers (10). Gegebenenfalls kann die Luft nach dem Entlangströmen an der Lichtscheibe (30) wieder in die Umgebung (1) abgegeben werden.
  • Das Scheinwerfersystem kann ein außerhalb des Scheinwerfers (10) angeordnetes Sensorsystem umfassen. Dieses Sensorsystem kann beispielsweise an der Stossstange des Kraftfahrzeugs angeordnet sein. Mittels dieses Sensorsystems wird beispielsweise aus der Temperatur, dem Luftdruck, der absolute oder relative Luftfeuchtigkeit in der Umgebung (1) und gegebenenfalls einem Korrekturfaktor ein Kennwert ermittelt. Der Korrekturfaktor - er kann nichtlinear oder linear zur Änderung der gemessenen Parameter sein - berücksichtigt z.B. eine Differenz der Luftfeuchtigkeit des Innenraums (15) zur Luftfeuchtigkeit der Umgebung (1). Das Ausgabesignal des Sensorsystem ist dann z.B. abhängig von dem so ermittelten Kennwert der relativen Luftfeuchtigkeit im Innenraum des Scheinwerfers (10). In Abhängigkeit dieses Kennwerts steuert und/oder regelt das Sensorsystem die Fördervorrichtung. Ein derartiges Scheinwerfersystem kann mehrere Scheinwerfer (10) umfassen, deren Fördervorrichtungen mittels eines gemeinsamen Sensorsystems gesteuert und/oder geregelt werden.
  • Zumindest an den dem Motor zugewandten Außenseite des einzelnen Scheinwerfers (10) können zusätzlich Abschirmbleche gegen die wärmestrahlung des Motors angeordnet sein. Diese Abschirmbleche können auch Teile der Karosserie und/oder eines Frontmoduls sein.
  • Die Ausführungsformen der einzelnen Ausführungsbeispiele können auch miteinander kombiniert werden
  • Bezugszeichenliste:
  • 1
    Umgebung
    3
    Fahrtwind
    4
    Luftströmung entlang (31)
    5
    Lichtabstrahlrichtung
    10
    Scheinwerfer
    11
    Ausgleichsöffnungen
    12
    Führungskanal
    13
    u-förmiges Profil
    14
    Luftkanal
    15
    Innenraum
    20
    Scheinwerfergehäuse
    21
    Befestigungsflansch
    22
    Boden
    23
    Einsatzplatte
    24
    Dach
    30
    Scheinwerferglas, Lichtscheibe
    31
    Außenseite
    32
    Innenseite
    40
    Lichtquelle, Lumineszenzdiode, Leuchtdiode
    41
    Lichtemittierender Chip
    42
    Platinen
    43
    Linsen
    50
    Wärmequelle, Kühlkörper
    51
    Kühlkanäle
    52
    Kühlkörper
    53
    unterer Kühlkörperteil
    54
    oberer Kühlkörperteil
    56
    Luftführlzanäie
    57
    Eintrittsseite
    58
    Austrittsseite
    59
    Rippen
    60
    Wärmesenke
    61
    Kondensationsplatte
    62
    Innenfläche
    63
    Kondensatablauf, Kondensatabführung
    64
    Labyrinth
    65
    elektrisches Kühlelement, Peltierelement
    70
    Fördervorrichtung, Ventilator
    71
    Axialventilator
    72
    Radialventilator
    75
    Luftförderrichtung
    80
    Sensorsystem
    81
    Sender, Leuchtdiode, Lumineszenzdiode
    82
    Empfänger, Photodetektor, optischer Empfänger
    83
    Abdunkelungskappe
    84
    Öffnung
    85
    Licht
    86
    Wassertropfen
    90
    Module

Claims (7)

  1. Scheinwerfersystem mit mindestens einem Scheinwerfer (10), dessen Innenraum (15) zumindest bereichsweise mittels mindestens einer Lichtscheibe (30) gegen die Umgebung (1) abgegrenzt ist, mit mindestens einer Lumineszenzdiode (40) als Lichtquelle (40) und mit mindestens einer innerhalb des Scheinwerfers (10) angeordneten Fördervorrichtung (70), wobei
    - das Scheinwerfersystem ein Sensorsystem (80) mit einem Betauungssensor umfasst,
    - das Ausgabesignal des Sensorsystems (80) abhängig ist von einem Kennwert der relativen Luftfeuchtigkeit im Innenraum (15) des Scheinwerfers (10):
    - das Sensorsystem (80) die Fördervorrichtung (70) mittels des Ausgabesignals steuert und/oder regelt;
    - das Sensorsystem (80) mit der Innenseite (32) der Lichtscheibe (30) kommuniziert und im Scheinwerfer (10) angeordnet ist und das Ausgabesignal des Sensorsystems (80) abhängig ist von der relativen Feuchtigkeit der Innenseite (32) der Lichtscheibe (30) dadurch gekennzeichnet dass das Sensorsystem (80) eine Leuchtdiode (81) und einen optischen Empfänger (82) umfasst.
  2. Scheinwerfersystem nach Anspruch 1, dadurch gekennzeichnet, dass die Wirkungslinien der Leuchtdiode (81) und des optischen Empfängers (82) einen Winkel einschließen, dessen Scheitel an der Innenseite (32) der Lichtscheibe (30) liegt.
  3. Scheinwerfersystem nach Anspruch 1, dadurch gekennzeichnet, dass im Innenraum (15) eine Wärmequelle (50) angeordnet ist, die mit der Lichtquelle (40) zumindest thermisch leitend verbunden ist.
  4. Scheinwerfersystem nach Anspruch 3, dadurch gekennzeichnet, dass die Fördervorrichtung (70) Wärmeenergie von der Wärmequelle (50) zur Lichtscheibe (30) fördert.
  5. Scheinwerfersystem nach Anspruch 1, dadurch gekennzeichnet, dass bei einer relativen Feuchtigkeit der Innenseite (32) der Lichtscheibe (30), die größer ist als ein einstellbarer Schwellenwert, das Ausgabesignal des Sensorsystems (80) die Fördervorrichtung (70) derart steuert, dass der Volumenstrom der Fördervorrichtung (70) erhöht wird.
  6. Scheinwerfersystem nach Anspruch 1, dadurch gekennzeichnet, dass die Fördervorrichtung (70) ein Ventilator (70) ist.
  7. Scheinwerfersystem nach Anspruch 1, dadurch gekennzeichnet, dass die Fördervorrichtung (70) Luft aus der Umgebung (1) des Scheinwerfers (10) ansaugt.
EP08013734A 2007-08-01 2008-07-31 Scheinwerfersystem mit gesteuerter und/oder geregelter Beschlagverminderungsvorrichtung Expired - Fee Related EP2020569B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007036486A DE102007036486A1 (de) 2007-08-01 2007-08-01 Scheinwerfersystem mit gesteuerter und/oder geregelter Fördervorrichtung

Publications (3)

Publication Number Publication Date
EP2020569A2 EP2020569A2 (de) 2009-02-04
EP2020569A3 EP2020569A3 (de) 2010-03-10
EP2020569B1 true EP2020569B1 (de) 2011-10-19

Family

ID=39797436

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08013734A Expired - Fee Related EP2020569B1 (de) 2007-08-01 2008-07-31 Scheinwerfersystem mit gesteuerter und/oder geregelter Beschlagverminderungsvorrichtung

Country Status (3)

Country Link
EP (1) EP2020569B1 (de)
DE (1) DE102007036486A1 (de)
SI (1) SI2020569T1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233590B2 (ja) * 2008-10-28 2013-07-10 東芝ライテック株式会社 車両用前照灯
DE102009006093B4 (de) * 2009-01-26 2018-06-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fahrzeugscheinwerfer
DE102009011350A1 (de) * 2009-03-05 2010-09-09 Osram Gesellschaft mit beschränkter Haftung Beleuchtungsvorrichtung mit mindestens einem Kühlkörper
FR2950674B1 (fr) * 2009-09-30 2012-08-31 Valeo Vision Dispositif d'eclairage et/ou de signalisation pour vehicule automobile
DE102009055681A1 (de) * 2009-11-25 2011-05-26 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeugleuchte
EP2375136A1 (de) * 2010-04-09 2011-10-12 Odelo GmbH Kraftfahrzeugleuchte
CN102009640B (zh) * 2010-11-25 2012-05-23 奇瑞汽车股份有限公司 一种汽车大灯除雾装置及方法
DE102011004746B4 (de) 2011-02-25 2023-09-28 Osram Gmbh Halbleiter-Leuchtmodul und Fahrzeugleuchte
DE102012008089A1 (de) * 2012-04-21 2013-10-24 Volkswagen Aktiengesellschaft Beleuchtungsvorrichtung für ein Kraftfahrzeug
DE102013001287A1 (de) * 2013-01-25 2014-07-31 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Kraftfahrzeugscheinwerfer
US8967842B2 (en) 2013-06-26 2015-03-03 Toyota Motor Engineering & Manufacturing North America, Inc. Lamp condensation reduction system
KR20170016596A (ko) * 2015-08-04 2017-02-14 엘지이노텍 주식회사 차량용 램프
US9982857B2 (en) 2015-10-20 2018-05-29 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle lights including moisture management apparatuses
FR3043171A1 (fr) * 2015-11-04 2017-05-05 Peugeot Citroen Automobiles Sa Dispositif d’eclairage a diode pour vehicule automobile
FR3051889B1 (fr) * 2016-05-31 2020-03-06 Valeo Vision Dispositif d'eclairage et/ou de signalisation pour vehicule automobile equipe d'un module lumineux refroidi au moyen d'un generateur d'un flux d'air
US10337690B2 (en) 2016-11-22 2019-07-02 Osram Sylvania Inc. Automotive LED module with heat sink and fan
DE102016122874A1 (de) * 2016-11-28 2018-05-30 Automotive Lighting Reutlingen Gmbh Scheinwerfer und Verfahren zum Betreiben des Scheinwerfers
US10960808B2 (en) * 2016-12-16 2021-03-30 Foshan Ichikoh Valeo Auto Lighting Systems Co., Ltd. Regulating assembly for light source, and lighting and/or signaling device, adjusting device, lighting device and motor vehicle, bezel device, gas guiding device, and lighting and/or signaling device containing the same
DE102017117555A1 (de) * 2017-08-02 2019-02-07 Automotive Lighting Reutlingen Gmbh Scheinwerfer für ein Kraftfahrzeug
CN108397742A (zh) * 2018-04-13 2018-08-14 华域视觉科技(上海)有限公司 防起雾车灯及汽车
CN111795353B (zh) * 2020-07-22 2022-03-25 上汽大众汽车有限公司 一种自动除雾的汽车智能前大灯
WO2022063416A1 (en) 2020-09-28 2022-03-31 HELLA GmbH & Co. KGaA Cover lens for a vehicle lighting device
CN114688498A (zh) * 2022-03-29 2022-07-01 东风汽车集团股份有限公司 一种车灯除雾装置
DE102022001240A1 (de) * 2022-04-12 2023-10-12 Mercedes-Benz Group AG Temperierungsmodul und Scheinwerfer
DE102022122285A1 (de) 2022-09-02 2024-03-07 HELLA GmbH & Co. KGaA Kunststoffabschlussscheibe für eine Beleuchtungseinrichtung eines Kraftfahrzeugs und Verfahren zur Herstellung einer Kunststoffabschlussscheibe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2701756B1 (fr) * 1993-02-17 1995-05-19 Peugeot Bloc optique ventilé notamment pour véhicule automobile.
DE102004025624A1 (de) * 2004-05-25 2005-12-15 Hella Kgaa Hueck & Co. Scheinwerfer mit Wärmetauscher zur Kühlung von Leuchtmitteln
DE102005019651B4 (de) 2005-04-26 2011-04-28 Odelo Gmbh Scheinwerfer mit Trocknungsmittel
DE102005027087A1 (de) * 2005-06-11 2006-12-14 Leopold Kostal Gmbh & Co. Kg Beschlagsensor für ein Kraftfahrzeug
DE102005060736B4 (de) * 2005-12-16 2008-11-20 Odelo Gmbh Scheinwerfer mit Kondensatabscheider
US8410402B2 (en) * 2006-08-28 2013-04-02 Dialight Corporation Method and apparatus for using light emitting diodes for removing moisture

Also Published As

Publication number Publication date
EP2020569A2 (de) 2009-02-04
EP2020569A3 (de) 2010-03-10
SI2020569T1 (sl) 2012-03-30
DE102007036486A1 (de) 2009-02-05

Similar Documents

Publication Publication Date Title
EP2020569B1 (de) Scheinwerfersystem mit gesteuerter und/oder geregelter Beschlagverminderungsvorrichtung
DE102005060736B4 (de) Scheinwerfer mit Kondensatabscheider
DE102005019651B4 (de) Scheinwerfer mit Trocknungsmittel
DE102011084114B4 (de) Kraftfahrzeugscheinwerfer
DE102006006099A1 (de) Trocknungseinrichtung für lichttechnische oder elektronische Geräte
DE102009028525B4 (de) System und Verfahren zur Wärmeableitung von einer Fahrzeugbeleuchtungsanordnung mit einem Flüssigkeitskühlkreislauf
DE102008013604B4 (de) Kühlvorrichtung für ein Steuergerät einer Beleuchtungseinrichtung eines Kraftfahrzeugs
EP0859188A2 (de) Scheinwerferbetauungsschutz
DE102006057570A1 (de) Scheinwerferbaugruppe mit Kühlkanal
DE102007028301A1 (de) Fahrzeugscheinwerfer mit Halbleiterlichtquelle
DE102007057056A1 (de) Scheinwerfer für ein Kraftfahrzeug mit Mitteln zum Wärmeaustausch zwischen dem Innenraum und der Außenseite des Scheinwerfers
DE112013006307T5 (de) Entfeuchtungseinrichtung
DE10213680A1 (de) Scheinwerfer für Fahrzeuge
DE102017204641A1 (de) Vorrichtung zur Messung von Umgebungsbedingungen unter gezielter Ausnutzung des Kamineffekts zur Belüftung der Vorrichtung
AT500634A1 (de) Fahrzeugscheinwerfer mit heizung
DE19733000A1 (de) Scheinwerferbetauungsschutz
DE10255443B4 (de) Fahrzeugscheinwerfer
EP2149748B1 (de) Scheinwerfer für Fahrzeuge
DE102009048662B4 (de) Gekühltes Beleuchtungssystem mit oberflächenmontierter Lichtquelle
EP4022216B1 (de) Verbund aus einem kraftfahrzeugscheinwerfer und einem kühlmittelkreislauf eines kraftfahrzeugs
DE102016224099A1 (de) Beleuchtungsvorrichtung für ein Kraftfahrzeug
DE202014100455U1 (de) Kühlvorrichtung für optische Inspektionseinheit
DE10340073A1 (de) Fahrzeugleuchte
DE102012219162A1 (de) Kraftfahrzeugscheinwerfer mit Lichtquelle und einer Kühleinrichtung für die Lichtquelle
DE102012217047A1 (de) Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100909

AKX Designation fees paid

Designated state(s): DE FR IT SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F21Y 101/02 20060101ALN20110405BHEP

Ipc: F21W 101/10 20060101ALN20110405BHEP

Ipc: F21S 8/10 20060101ALI20110405BHEP

Ipc: F21V 31/03 20060101AFI20110405BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SI

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008005217

Country of ref document: DE

Effective date: 20111215

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008005217

Country of ref document: DE

Effective date: 20120720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20130620

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008005217

Country of ref document: DE

Representative=s name: KAUFMANN, URSULA, DIPL.-PHYS. DR.RER.NAT., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008005217

Country of ref document: DE

Representative=s name: RPK PATENTANWAELTE REINHARDT, POHLMANN UND KAU, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008005217

Country of ref document: DE

Representative=s name: RPK PATENTANWAELTE REINHARDT, POHLMANN UND KAU, DE

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190730

Year of fee payment: 12

Ref country code: FR

Payment date: 20190719

Year of fee payment: 12

Ref country code: DE

Payment date: 20190719

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008005217

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731