EP1979598B1 - Dispositif pour commander des soupapes d'injection de carburant inductives - Google Patents

Dispositif pour commander des soupapes d'injection de carburant inductives Download PDF

Info

Publication number
EP1979598B1
EP1979598B1 EP07704077A EP07704077A EP1979598B1 EP 1979598 B1 EP1979598 B1 EP 1979598B1 EP 07704077 A EP07704077 A EP 07704077A EP 07704077 A EP07704077 A EP 07704077A EP 1979598 B1 EP1979598 B1 EP 1979598B1
Authority
EP
European Patent Office
Prior art keywords
coil
terminal
opening
negative current
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07704077A
Other languages
German (de)
English (en)
Other versions
EP1979598A1 (fr
Inventor
Stephan Bolz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200610025360 external-priority patent/DE102006025360B3/de
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP1979598A1 publication Critical patent/EP1979598A1/fr
Application granted granted Critical
Publication of EP1979598B1 publication Critical patent/EP1979598B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2072Bridge circuits, i.e. the load being placed in the diagonal of a bridge to be controlled in both directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2075Type of transistors or particular use thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2079Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements the circuit having several coils acting on the same anchor

Definitions

  • the invention relates to a device for switching inductive fuel injection valves according to claim 1 or 6.
  • fuel is injected at periodic intervals even in the exhaust stroke to achieve about the regeneration of a particulate filter in the exhaust system by burning the soot particles.
  • a typical example of this is large-volume, slow-running diesel truck engines, such as 9-liter 6-cylinder engines with maximum operating speeds of about 1800 rpm.
  • the requirements for the smallest injection quantities are also reduced because of the large displacement.
  • the number of injection pulses per injection process is lower because, for example, a pre-injection to reduce the diesel-typical "nailing" can be omitted because of the already quite high running noise of the truck engine.
  • solenoid injectors are in principle suitable for such applications, but require some further development.
  • the closing delay must be reduced.
  • the main obstacle in closing such a standard solenoid valve are the eddy currents in the magnetic material of the valve, which slowly decay after switching off the actuating current and prevent rapid closing of the valve. This behavior defines the minimum valve opening time and thus increases the smallest possible fuel injection quantity.
  • FIG. 1 a known, basic circuit arrangement for operating a coil of a fuel injection valve with PWM (pulse width modulation) operation is shown.
  • the one terminal of the coil L1 is connected by means of a first switching transistor T1 to the positive pole V + of a supply voltage source V and the other terminal by means of a second switching transistor T2 to reference potential GND.
  • the source terminal of the first switching transistor T1 is connected to one terminal of the coil L1, its drain terminal to the positive terminal V +.
  • the source terminal of the second switching transistor T2 is connected to reference potential GND and its drain terminal to the other terminal of the coil L1.
  • a freewheeling diode D1 of the reference potential GND is arranged to conduct current to one terminal of the coil L1 and a Rekuperationsdiode D2 from the other terminal the coil L1 current-conducting to the positive pole V + of the supply voltage source arranged.
  • switching transistor T1 Upon reaching a predetermined upper current setpoint at which the valve opens, switching transistor T1 is switched off by means of the PWM unit PWM and the coil current now flows through the coil L1 via the freewheeling diode D1 and switching transistor T2, wherein it slowly drops. If the current now reaches a lower predetermined desired value, switching transistor T1 is again turned on, whereupon the coil current increases again.
  • both switching transistors T1 and T2 are simultaneously switched nonconducting (with a standard valve with closing spring), whereupon the coil L1 is connected to the supply voltage source via the freewheeling diode D1 and the recuperation diode D2 V discharges and the valve closes.
  • FIG. 2 As described above, in the upper track, the voltage waveform and, in the lower track, the current waveform in the opening coil L1 during the opening period of a standard fuel injection valve.
  • FIG. 3 shows the principle of a bistable fuel injector.
  • the valve needle 1 is mounted displaceably in a housing 4 and shown in the "OPEN" position. It lies on the left iron yoke 2.
  • the left iron yoke 2 encloses the opening coil AB (rectangles A and B with bevel). By a previous actuation current in the opening coil AB, the left iron yoke was magnetized, so that now, when the current subsides, it holds the valve needle 1 in the "OPEN" position.
  • the term "fuel” may also be a "hydraulic medium", wherein instead of a fuel circuit, a hydraulic circuit may be provided, by means of which a fuel injection valve is controlled with hydraulic pressure boosting.
  • an actuating current is now passed through the closing coil C-D, so that the valve needle 1 moves to the right iron yoke 3.
  • the valve needle 1 is held in the "CLOSED" position by the magnetization of the right-hand iron return key 3.
  • outlets b and c are connected to the return lines r, which are designed as a ring line, which reduce the fuel pressure between the outlets b, c and the valve nozzles, not shown, whereby the valve is closed.
  • a bistable valve has two coils, namely an opening and a closing coil
  • the circuit arrangement is after FIG. 1 twice per valve: once to operate the opening coil AB (L1 in FIG. 1 ) and once to operate the closing coil CD.
  • Such methods are for example also off DE 199 21 938 A1 .
  • valve switching times are known to be reduced when in a bistable valve, the magnetic holding forces are eliminated when activating a coil by deliberately clearing the remanence of the other coil, and in a standard valve (with closing spring) - induced by the decaying eddy currents - magnetic holding forces Disabling the coil can be eliminated.
  • FIG. 4 shows a circuit arrangement according to the invention for the PWM operation of a coil, for example, the opening coil L1 of an inductive fuel injection valve.
  • the circuit part (T1, T2, D1, D2) used to control the valve operating current is included in the description FIG. 1 already executed.
  • the one terminal of the coil L1 for example, the opening coil of the valve by means of the first switching transistor T1 to the positive terminal V + of the supply voltage source V and the other terminal connected by means of the second switching transistor T2 to reference potential GND.
  • the source terminal of the first switching transistor T1 is connected to one terminal of the coil L1 - its drain terminal to the positive terminal V +.
  • the source terminal of the second switching transistor T2 is connected to reference potential GND, its drain terminal to the other terminal of the coil L1.
  • the freewheeling diode D1 is arranged to conduct current from the reference potential GND to one terminal of the coil L1 and the recuperation diode D2 is arranged to conduct current from the other terminal of the coil L1 to the positive pole V + of the supply voltage source.
  • the circuit is extended by five transistors T3 to T7, five resistors R1 to R5, a capacitor C1 and a diode D3, as well as the inclusion of the on-board vehicle voltage source Vbat.
  • the third transistor T3 is connected in parallel with the freewheeling diode D1: its source terminal is connected to reference potential GND, its drain terminal to the connection point of freewheeling diode D1 and the one terminal of the coil L1. It serves to connect in the current-conducting state connected to the first switching transistor T1 terminal of the coil L1 with reference potential GND.
  • This current mirror T4-T6 is connected via a first resistor R1 to the positive pole V + of the supply voltage V.
  • the source terminal of the fourth transistor T4 is connected to the other terminal of the coil L1, while the source terminal of the sixth transistor T6 is connected via the series circuit of the seventh transistor T7 and the fifth resistor R5 to reference potential GND.
  • the gate terminals of the third transistor T3 and the seventh transistor T7 are connected to each other and to the output of a control device, which in FIG. 6 7 and 7, respectively, for generating a negative current control negative current control NSC.
  • a capacitor C1 is connected, which is charged by the on-board voltage source Vbat via a protective diode D3 and the current mirror T4-T6 is energized, which is controlled by the seventh transistor T7 connected as a current source.
  • this transistor T3 and also the seventh transistor T7 is non-conducting, so that at the output of the current mirror, through the source terminal of the fourth transistor T4 is formed, too no electricity flows.
  • the circuit is inactive, through the coil L1 no current flows in the negative direction (in the direction from transistor T4 to transistor T3).
  • the third transistor T3 is turned on and connects one terminal of the coil L1 to reference potential GND. At the same time begins to flow through the seventh transistor T7, a current whose magnitude by the value of the fifth resistor R5 and the base voltage (+ 5V) of the seventh transistor T7 minus its base-emitter voltage (5V-0.7V ⁇ 4.3V) is determined.
  • the fifth transistor T5 forms, together with the fourth transistor T4, a complementary Darlington transistor. Accordingly, the main portion of the current I R2 flowing through the second resistor R2 will flow through the fourth transistor T4.
  • capacitor C1 is charged by means of the first resistor R1 to the potential of the supply voltage V + (for example + 48V).
  • V + for example + 48V.
  • R1 is selected to be so high that its current flow is substantially lower than the negative current flowing through the second resistor R2 and the fourth transistor T4. However, the value of R1 must be small enough to allow the capacitor C1 to be charged to the potential V + during the pauses between two consecutive negative current pulses.
  • FIG. 5a shows the voltage and current waveform at the current mirror T4-T6, wherein the upper trace shows the voltage U C1 at the capacitor C1.
  • the voltage U C1 drops until it is clamped at approx. 11.3V.
  • the voltage U C1 rises again to V +.
  • the lower trace shows the negative current pulse I L1 .
  • the setpoint of 2A is already reached after 38 ⁇ s.
  • the duration of the negative current pulse should be set to the amount of time that the current in the other coil requires to reach its operating value.
  • the control signal NSC can be obtained in a simple manner. It is sufficient a flip-flop, which can be set at the beginning of the valve activation and in turn can be reset at the first reaching the operating current.
  • FIG. 6 shows a circuit of such a control device in a bistable valve for the negative current through the one coil, for example, the opening coil L1, by the closing signal of the other coil, for example, the closing coil.
  • This circuit consists only of a flip-flop IC1A. With the rising edge of, for example, the closing signal ES for the closing coil, not shown, the flip-flop IC1A (terminal CLK) is set so that its output Q, at which the signal NSC appears, assumes high level.
  • the output of the PWM unit PWM connected to terminal CLR-not of the flip-flop IC1A (see Figures 2 and 4 ) is getting high level at this time. If the current through the closing coil reaches its operating value, then this output switches to low level and thus also deletes the flip-flop IC1A, so that its output signal NSC at the output Q jumps back to low level. Thus, the signal NSC supplied to the base terminal of the transistors T3 and T7 of the circuit for the opening coil L1 has high level as long as the current through the closing coil requires until the first time it reaches its operating value.
  • bistable valve For a bistable valve is for generating the negative current for both the opening and the closing coil depending on a circuit after FIG. 4 and FIG. 6 required. It should be noted that the PWM unit associated with opening the valve controls the negative current pulse in the valve closing coil and the PWM unit associated with closing the valve controls the negative current pulse in the valve opening coil.
  • the time course of operating current and negative current for opening and closing a bistable valve is in FIG. 5b shown schematically.
  • the control of the negative current of the single coil L1 must be at the end of the opening signal EO, as in FIG. 7 shown, done.
  • the negative current is used to cancel the eddy currents, which continue to flow in the magnetic circuit of the standard valve after the current in the opening coil has been switched off and faded off.
  • a negative current should be passed through the opening coil L1 immediately after completion of the valve activation (falling edge of the actuation (opening) signal EO.
  • the circuit after FIG. 7 contains a timer (monoflop IC2) to determine the duration of the negative current pulse through the coil L1 which is triggered by the falling edge of the signal EO inverted by means of an inverter IC4.
  • the negative current is controlled by a signal from the drive electronics, which controls the current flow in the opposite coil.
  • the negative current is controlled by the falling edge of the actuation (opening) signal.
  • the energy required for demagnetization can also be acted upon accelerated. This is useful if the fastest possible start of the valve movement is required.
  • To the negative current is not at a predetermined, largely constant value for a certain period of time, such as FIG. 5a but set as an approximately triangular current pulse with a predetermined maximum value ( FIG. 9b ).
  • the speed of the current increase is determined by the inductance of the coil and the supply voltage V. Also, the peak value of the current is higher than in the first embodiment because the demagnetizing energy is provided in a shorter time.
  • FIG. 4 A circuit diagram for such a circuit arrangement is shown in FIG.
  • the circuit essentially corresponds to the embodiment FIG. 4 , but eliminates resistor R1, capacitor C1, diode D3 and the connection to the on-board voltage source Vbat. Also, the resistors R2 and R3 are directly connected to the positive pole V + of the supply voltage, and a resistor R7 is inserted between the source terminal of the transistor T3 and the ground terminal GND.
  • the current source T4-T6 is now designed by selecting the value ratio of the resistors R2 and R3 for a much higher constant current - for example 8A.
  • the signal Negative-Strom-Control NSC When the signal Negative-Strom-Control NSC is activated by the closing signal, it will - as with FIG. 4 described - the opening coil associated transistor T3 turned on, at the same time by means of transistor T7, the current source T4 to T6. According to the inductance of the coil L1 (opening coil) the current through them will now increase in time ( FIG. 9b , upper lane). This current is observable at the resistor R7 as the voltage negative current sense NSS. If this voltage NSS has reached a predetermined value, then the signal negative current control NSC is controlled to 0V and the current flow is terminated.
  • determined valve switching time is for example from 620 ⁇ s (without degaussing, FIG. 9a ) to 504 ⁇ s (with degaussing current, FIG. 9b ) shortened.
  • the current source T4-6 also has a protective function, since in case of a short circuit of the right terminal of the coil L1 to reference potential of the current from T6 is limited.
  • valve coils are located in the injection valve, not shown, on the engine block of the internal combustion engine outside of the electronic control unit, and a short circuit of the leads to vehicle ground is a common mistake. However, this must not lead to damage to the electronics.
  • the control unit designed for a bistable injector FIG. 11 includes a monoflop IC2, a flip-flop IC1A, a comparator Comp1 and an AND gate IC3A with three inputs.
  • the closing signal ES is connected to the trigger input Ck of the monoflop IC2, to an input of the AND gate IC3A and to the reset input CLR-not of the flip-flop IG1A.
  • the resistor R7 in FIG. 10 tapped signal NSS (negative current sense) is with the noninverting input the comparator Comp1 whose inverting input a reference voltage Vref is supplied.
  • the output of the comparator Comp1 is connected to the trigger input CLK of the flip-flop IC1A.
  • the output Q of the monoflop IC2 is connected to a second input of the AND gate whose third input is connected to the inverting Q-not output of the flip-flop IC1A.
  • the signal curves of in FIG. 11 shown control unit are off FIG. 12 refer to.
  • the closing signal ES has low levels. This level is also applied to the reset input CLR-not of the flip-flop IC1A, so that at its non-inverting output Q is applied a signal negative-current diagnosis NSD with low level. Accordingly, the inverting output Q-not of flip-flop IC1A has high level.
  • the rising edge of the control signal ES clocks the monoflop IC2 whose output Q now assumes high levels for the duration of the monoflop time.
  • the AND gate IC3A combines the signals ES, Q of IC2 and Q-not of IC1A. Since all of these signals are now high, signal NSC at the output of AND gate IC3A goes high with the rising edge of the control signal ES also high level on. The negative current starts to increase.
  • the output of the comparator Comp1 has low level. If the value of NSS exceeds that of Vref, the output of the comparator Comp1 jumps to high level and sets the downstream flip-flop IC1A. Its inverting output Q-Not jumps to low level and switches via the AND gate IC3A the signal NSC to low level, whereby the negative current in the opening coil L1 is turned off. Similarly, the signal NSD jumps to non-inverting output Q to high level.
  • the time constant of the monoflop IC2 is chosen so that the desired value of the negative current is safely achieved, but a thermal overload of the power transistor T4 of the power source is avoided in case of short circuit to reference potential.
  • the downstream flip-flop IC1A is not triggered.
  • the signal NSD at the non-inverting output Q remains at low level.
  • the output Q of the monoflop IC2 goes back to low level and blocks the AND gate IC3A, so that its output signal NSC goes to low level.
  • the control unit is after FIG. 11 added thereto that the opening signal EO before it is the monoflop IC2, the AND gate IC3A and the flip-flop IC1A is inverted by means of an inverter IC4, so that the monoflop IC2 is triggered only by the falling edge of the signal EO ,
  • the circuit arrangement according to FIG. 4 or FIG. 10 for the operation of multiple valves, ie, all (for example, four or six) fuel injectors of an internal combustion engine can be extended without having to increase the number of circuits proportionally. This is achieved by adding additional diodes D7 to D10 in series with the drain of the third transistor T3, additional diodes D4a to D6a and D4b to D6b in series with the source of the transistor T4, and / or another transistor T3b, or another current mirror T4b-T7b, R2b-R5b.
  • the main obstacle when closing are, as already stated, the eddy currents in the magnetic material of the valve, which decay slowly after switching off the actuating current and prevent rapid closing of the valve.
  • steel with a low electrical conductance is used.
  • FIG. 14 shows a schematic representation of a standard solenoid injector with coil S4 and closing spring S3.
  • the coil S4 is surrounded by the iron yoke S5.
  • the valve needle S7 and its associated armature S6 is pressed by the closing spring S3 against a valve seat, not shown, and thus blocks the valve opening, not shown.
  • the armature S6 is attracted against the force of the closing spring S3 and thus the valve is opened.
  • the iron yoke S5 still consists of material with a low electrical conductance.
  • FIG. 14 are the solid field lines 14a (left) with the valve open and the dashed lines 14b (right) shown in the closing process in the temporarily arising field reversal.
  • FIG. 15 shows in principle the formation of temporary, opposite field directions between iron yoke S5 and anchor S6.
  • the lower diagram shows the time course of the applied to the coil negative current pulse during the closing of the injector.
  • the upper diagram shows the field strengths or holding forces resulting from eddy currents.
  • the respective value of the eddy current is associated with a magnetic field strength and thus a holding force.
  • the upper curve 15a shows the course of the field strength in the armature S6, which consists of material with the highest possible electrical conductance, while the lower curve 15b represents the course of the effective field strength in the iron yoke S5 made of material with a low electrical conductance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

La présente invention concerne un procédé et un dispositif permettant une commande accélérée de soupapes d'injection de carburant inductives. Selon l'invention, les forces magnétiques de retenue provoquées par la rémanence dans le cas d'une soupape bistable (avec bobine d'ouverture et de fermeture) ou par les courants de Foucault dans le cas d'une soupape standard avec bobine d'ouverture et ressort de fermeture, sont supprimées par un courant 'négatif' qui traverse la bobine dans un sens opposé au sens de circulation du courant de fonctionnement. Pour assurer une fermeture encore plus rapide de la soupape, on utilise en supplément une extrémité en fer et un induit constitués de matériaux ayant des valeurs de conductivité électrique différentes.

Claims (11)

  1. Dispositif pour commuter des soupapes d'injection de carburant inductives,
    dans lequel, dans le cas d'une soupape d'injection de carburant bistable (avec bobine d'ouverture et bobine de fermeture), les forces de maintien magnétiques induites par rémanence, qui maintiennent l'aiguille de soupape (1) en position de fermeture, sont éliminées à des fins d'ouverture accélérée de la soupape par un courant négatif généré dans la bobine de fermeture, et lesdites forces de maintien magnétiques, qui maintiennent l'aiguille de soupape (1) en position d'ouverture, sont éliminées à des fins de fermeture accélérée de la soupape par un courant négatif généré dans la bobine d'ouverture ; et
    dans lequel, dans le cas d'une soupape d'injection de carburant standard (avec bobine d'ouverture et ressort de fermeture), les courants tourbillonnaires dans le matériau magnétique de la bobine d'ouverture (L1), qui se forment après coupure du signal de commande (EO) et qui ne disparaissent que lentement, sont éliminés par un courant négatif généré dans la bobine d'ouverture,
    dans lequel un courant traversant la bobine d'ouverture ou de fermeture dans le sens opposé à celui du courant de commande est défini comme courant négatif, avec un agencement de circuit qui présente une bobine (L1) d'une soupape d'injection de carburant commandée par un signal de commutation (autoriser ouverture (EO), autoriser fermeture (ES)) par le biais d'une unité de modulation de largeur d'impulsions (PWM),
    dont l'une des connexions est connectée au moyen d'un premier transistor de commutation (T1) au pôle positif (V+) d'une source de tension d'alimentation (V) et dont l'autre connexion est connectée au moyen d'un deuxième transistor de commutation (T2) au potentiel de référence (GND),
    dans lequel la source du premier transistor de commutation (T1) est connectée à l'une des connexions de la bobine (L1), tandis que son drain est connecté au pôle positif (V+) de la source de tension d'alimentation (V) et que sa grille est connectée à la sortie de l'unité PWM (PWM),
    dans lequel la source du deuxième transistor de commutation (T2) est connectée au potentiel de référence (GND) et son drain est connecté à l'autre connexion de la bobine (L1),
    dans lequel une diode de roue libre (D1) est agencée pour conduire le courant du potentiel de référence (GND) à une connexion de la bobine (L1) et une diode de récupération (D2) est agencée pour conduire le courant de l'autre connexion de la bobine (L1) au pôle positif (V+) de la source de tension d'alimentation (V),
    caractérisé en ce que
    il est prévu un troisième transistor (T3) commuté parallèlement à la diode de roue libre (D1), dont la source est connectée au potentiel de référence (GND) et dont le drain est connecté au point de connexion de la diode de roue libre (D1) et à l'une des connexions de la bobine (L1),
    il est prévu un miroir de courant de Darlington complémentaire (transistors T4 à T6, résistances R2 à R4) qui est connecté via une première résistance (R1) au pôle positif (V+) de la source de tension d'alimentation (V),
    dans lequel la source du quatrième transistor (T4) est connectée à l'autre connexion de la bobine (L1) et la source du sixième transistor (T6) est connectée via le circuit série d'un septième transistor (T7) et d'une cinquième résistance (R5) au potentiel de référence (GND),
    les grilles du troisième transistor (T3) et du septième transistor (T7) sont connectées l'une à l'autre et on peut leur acheminer un signal de commande Commande-Courant-Négatif (NSC),
    un condensateur (C1) est commuté en parallèle avec le circuit en série formé du sixième transistor (T6), du septième transistor (T7) et de la cinquième résistance (R5), et
    un circuit série formé d'une source de tension de bord (Vbat) connectée par ailleurs au potentiel de référence (GND) et d'une diode de protection conduisant le courant vers le condensateur (C1) est agencé en parallèle avec le condensateur (C1).
  2. Dispositif selon la revendication 1, caractérisé en ce que, dans le cas d'une soupape d'injection de carburant bistable destinée à générer le signal de commande Commande-Courant-Négatif (NSC), il est prévu un dispositif de commande qui présente un circuit bistable(IC1A) qui est initialisé par le signal d'ouverture ou de fermeture (EO, ES) des bobines d'ouverture ou de fermeture et réinitialisé par le signal de fermeture de l'unité PWM (PWM) affectée à cette bobine, dans lequel le signal Commande-Courant-Négatif (NSC), qui est acheminé à l'agencement de circuit de l'autre bobine respective, apparaît entre l'opération d'initialisation et celle de réinitialisation du circuit bistable (IC1A) à sa sortie non inverseuse (Q).
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que, pour commander une soupape d'injection de carburant bistable, tant pour la bobine d'ouverture (L1) que pour la bobine de fermeture, il est prévu respectivement un agencement de circuit selon la revendication 1 et un dispositif de commande selon la revendication 2.
  4. Dispositif selon la revendication 1, caractérisé en ce que, dans le cas d'une soupape d'injection de carburant standard, pour générer un signal de commande Commande-Courant-Négatif (NSC), il est prévu un dispositif de commande qui présente un circuit en série d'un inverseur (IC4) et d'un circuit monostable (IC2), dans lequel le signal d'ouverture ou de fermeture (EO, ES) inversé par l'inverseur (IC4) initialise le circuit monostable (IC2), à la sortie non inverseuse (Q) duquel le signal Commande-Courant-Négatif (NSC), qui est acheminé à l'agencement de circuit de l'autre bobine respective, apparaît pendant le temps de service du circuit monostable (IC2).
  5. Dispositif selon la revendication 1 ou 4, caractérisé en ce que, pour commander une soupape d'injection de carburant standard, il est prévu respectivement un agencement de circuit selon la revendication 1 et un dispositif de commande selon la revendication 4.
  6. Dispositif pour commuter des soupapes d'injection de carburant inductives,
    dans lequel, dans le cas d'une soupape d'injection de carburant bistable (avec bobine d'ouverture et bobine de fermeture), les forces de maintien magnétiques induites par rémanence, qui maintiennent l'aiguille de soupape (1) en position de fermeture, sont éliminées à des fins d'ouverture accélérée de la soupape par un courant négatif généré dans la bobine de fermeture, et lesdites forces de maintien magnétiques, qui maintiennent l'aiguille de soupape (1) en position d'ouverture, sont éliminées à des fins de fermeture accélérée de la soupape par un courant négatif généré dans la bobine d'ouverture ; et
    dans lequel, dans le cas d'une soupape d'injection de carburant standard (avec bobine d'ouverture et ressort de fermeture), les courants tourbillonnaires dans le matériau magnétique de la bobine d'ouverture (L1), qui se forment après coupure du signal de commande (EO) et qui ne disparaissent que lentement, sont éliminés par un courant négatif généré dans la bobine d'ouverture,
    dans lequel un courant traversant la bobine d'ouverture ou de fermeture dans le sens opposé à celui du courant de commande est défini comme courant négatif,
    avec un agencement de circuit qui présente une bobine (L1) d'une soupape d'injection de carburant commandée par un signal de commutation (autoriser ouverture (EO), autoriser fermeture (ES)) via une unité de modulation de largeur d'impulsions (PWM),
    dont l'une des connexions est connectée au moyen d'un premier transistor de commutation (T1) au pôle positif (V+) d'une source de tension d'alimentation (V) et dont l'autre connexion est connectée au moyen d'un deuxième transistor de commutation (T2) au potentiel de référence (GND),
    dans lequel la source du premier transistor de commutation (T1) est connectée à l'une des connexions de la bobine (L1), tandis que son drain est connecté au pôle positif (V+) de la source de tension d'alimentation (V) et sa grille est connectée à la sortie de l'unité PWM (PWM),
    dans lequel la source du deuxième transistor de commutation (T2) est connectée au potentiel de référence (GND) et son drain est connecté à l'autre connexion de la bobine (L1),
    dans lequel une diode de roue libre (D1) est agencée pour conduire le courant du potentiel de référence (GND) à une connexion de la bobine (L1) et une diode de récupération (D2) est agencée pour conduire le courant de l'autre connexion de la bobine (L1) au pôle positif (V+) de la source de tension d'alimentation (V),
    caractérisé en ce que
    il est prévu un troisième transistor (T3) commuté en parallèle avec la diode de roue libre (D1), dont la source est connectée au potentiel de référence (GND) via une septième résistance (R7) et dont le drain est connecté au point de connexion de la diode de roue libre (D1) et à l'une des connexions de la bobine (L1),
    il est prévu un miroir de courant de Darlington complémentaire (transistors T4 à T6, résistances R2 à R4),
    dans lequel la source du quatrième transistor (T4) est connectée à l'autre connexion de la bobine (L1), la source du sixième transistor (T6) est connectée via le circuit en série d'un septième transistor (T7) et d'une cinquième résistance (R5) au potentiel de référence (GND) et les drains des quatrième et sixième transistors (T4, T6) sont connectées via une résistance (R2, R3) respective au pôle positif (V+) de la source de tension d'alimentation (V),
    les grilles du troisième transistor (T3) et du septième transistor (T7) sont connectées l'une à l'autre et on peut leur acheminer le signal de commande Commande-Courant-Négatif (NSC), et
    un signal Sens-Courant-Négatif (NSS) peut être prélevé de la septième résistance (R7).
  7. Dispositif selon la revendication 6, caractérisé en ce que,
    dans le cas d'une soupape d'injection de carburant bistable, pour générer le signal de commande Commande-Courant-Négatif (NSC), il est prévu un dispositif de commande qui contient un comparateur (Comp1), à l'entrée non inverseuse duquel le signal Sens-Courant-Négatif (NSS) peut être acheminé et à l'entrée inverseuse duquel une tension de référence (Vréf) peut être acheminée,
    il est prévu un circuit bistable (IC1A), dont l'entrée d'initialisation (CLK) est connectée à la sortie du comparateur (Comp1), à la sortie non inverseuse (Q) duquel peut être prélevé un signal Diagnostic-Courant-Négatif (NSD),
    il est prévu un circuit monostable (IC2) et une porte ET avec trois entrées (IC3A), dans lequel :
    un signal de fermeture (ES) ou le signal d'ouverture (EO) peut être acheminé à une entrée de la porte ET (IC3A), à l'entrée de gâchette (Ck) du circuit monostable (IC2) et à l'entrée de réinitialisation du circuit bistable (IC1A),
    une deuxième entrée de la porte ET (IC3A) est connectée à la sortie inverseuse (non Q) du circuit bistable (IC1A), et
    une troisième entrée de la porte ET (IC3A) est connectée à la sortie (Q) du circuit monostable (IC2) et le signal Commande-Courant-Négatif (NSC) peut être prélevé à la sortie de la porte ET (IC3A).
  8. Dispositif selon la revendication 6, caractérisé en ce que,
    dans le cas d'une soupape d'injection de carburant standard, pour générer le signal de commande Commande-Courant-Négatif (NSC), il est prévu un dispositif de commande selon la revendication 12, dans lequel il est en outre prévu un inverseur (IC4) dans lequel le signal de fermeture (ES) est inversé avant qu'il ne soit acheminé à une entrée de la porte ET (IC3A), à l'entrée de gâchette (Ck) du circuit monostable (IC2) et à l'entrée de réinitialisation du circuit bistable (IC1A) .
  9. Dispositif suivant la revendication 7 ou 8, caractérisé en ce que
    - le signal Diagnostic-Courant-Négatif (NSD) de la bobine d'ouverture (L1) présente un niveau faible avant l'activation du signal d'ouverture (EO) ou
    - le signal Diagnostic-Courant-Négatif (NSD) de la bobine de fermeture présente un niveau faible avant l'activation du signal de fermeture (ES),
    lorsque le courant négatif traversant la bobine d'ouverture ou de fermeture
    - n'atteint pas sa valeur prédéfinie avant expiration du temps d'utilisation du circuit monostable, ou
    - lorsque, dans l'une des lignes vers les bobines, il survient un court-circuit après le potentiel de référence (GND) ou une interruption de ligne.
  10. Dispositif selon l'une quelconque des revendications 1 ou 4 à 8, caractérisé en ce que, dans le cas d'une soupape d'injection de carburant standard, le corps en fer (S5) de la bobine (S4) et le noyau (S6) sont formés de matériaux ayant des conductances électriques différentes.
  11. Dispositif selon la revendication 10, caractérisé en ce que le noyau (S6) est constitué d'un matériau ayant une conductance électrique la plus élevée possible et le corps en fer (S5) est constitué d'un matériau ayant une faible conductance électrique.
EP07704077A 2006-01-24 2007-01-23 Dispositif pour commander des soupapes d'injection de carburant inductives Expired - Fee Related EP1979598B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006003388 2006-01-24
DE200610025360 DE102006025360B3 (de) 2006-05-31 2006-05-31 Vorrichtung zum Schalten induktiver Kraftstoff-Einspritzventile
PCT/EP2007/050643 WO2007085591A1 (fr) 2006-01-24 2007-01-23 Dispositif pour commander des soupapes d'injection de carburant inductives

Publications (2)

Publication Number Publication Date
EP1979598A1 EP1979598A1 (fr) 2008-10-15
EP1979598B1 true EP1979598B1 (fr) 2011-03-23

Family

ID=38124038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07704077A Expired - Fee Related EP1979598B1 (fr) 2006-01-24 2007-01-23 Dispositif pour commander des soupapes d'injection de carburant inductives

Country Status (4)

Country Link
US (1) US7832378B2 (fr)
EP (1) EP1979598B1 (fr)
DE (1) DE502007006767D1 (fr)
WO (1) WO2007085591A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090114864A1 (en) * 2007-11-05 2009-05-07 Eaton Corporation Failsafe fuel doser solenoid valve using a reversible electrical coil assembly
DE102009032521B4 (de) * 2009-07-10 2016-03-31 Continental Automotive Gmbh Bestimmung des Schließzeitpunkts eines Kraftstoffeinspritzventils basierend auf einer Auswertung der Ansteuerspannung
EP2619437A1 (fr) * 2010-09-23 2013-07-31 International Engine Intellectual Property Company, LLC Procédé permettant de commander le fonctionnement d'un piston multiplicateur de pression dans un injecteur de carburant
KR101252094B1 (ko) 2011-01-11 2013-04-12 호남대학교 산학협력단 솔레노이드 구동 제어기
JP2013021454A (ja) * 2011-07-08 2013-01-31 Sony Corp 撮像装置及び固体撮像装置の保護装置
EP2568155B1 (fr) * 2011-09-09 2018-11-14 Continental Automotive GmbH Ensemble de soupape et soupape d'injection
US8723614B2 (en) * 2011-09-22 2014-05-13 Continental Automotive Systems, Inc. Trigger activated adjustable pulse width generator circuit for automotive exhaust after-treatment and injection
DE102012014800A1 (de) * 2012-07-26 2014-05-15 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schaltungsanordnung zur Erfassung einer Art eines Magnetventils
JP5761144B2 (ja) * 2012-09-13 2015-08-12 株式会社デンソー 燃料噴射制御装置
WO2015071686A1 (fr) * 2013-11-15 2015-05-21 Sentec Ltd Unité de commande pour un injecteur de carburant
US9777864B2 (en) * 2014-09-10 2017-10-03 Continental Automotive Systems, Inc. Method and device for controlling a solenoid actuator
DE102015209566B3 (de) * 2015-05-26 2016-06-16 Continental Automotive Gmbh Ansteuerung von Kraftstoffinjektoren bei Mehrfacheinspritzungen
DE102017205884B4 (de) * 2017-04-06 2024-06-06 Vitesco Technologies GmbH Verfahren zum Schalten eines Stromes in einem Elektromagneten eines schaltbaren Magnet-Ventils sowie elektronische Schaltung, Magnet-Ventil, Pumpe und Kraftfahrzeug
JP7472824B2 (ja) * 2021-02-26 2024-04-23 株式会社デンソー 燃料噴射制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2284037A1 (fr) * 1974-09-09 1976-04-02 Peugeot & Renault Procede et dispositif de commande d'un injecteur electromagnetique
JPS5749059A (en) * 1980-09-08 1982-03-20 Toshiba Corp Driving circuit of injector
DE4016816C2 (de) * 1990-05-25 1999-10-07 Bosch Gmbh Robert Elektromagnetisches Wegeventil mit einer Stelleinrichtung
DE19526681B4 (de) * 1995-07-21 2006-06-22 Fev Motorentechnik Gmbh Verfahren zur zeitgenauen Steuerung der Ankerbewegung eines elektromagnetisch betätigbaren Stellmittels
DE19921938A1 (de) * 1998-06-15 1999-12-16 Fev Motorentech Gmbh Verfahren zur Erhöhung der Abwurfgeschwindigkeit des Ankers an einer elektromagnetisch betätigbaren Stelleinrichtung
DE10018175A1 (de) 2000-04-12 2001-10-25 Bayerische Motoren Werke Ag Schaltungsanordnung zum Betrieb eines hochdynamischen elektromagnetischen Hubanker-Aktors

Also Published As

Publication number Publication date
DE502007006767D1 (de) 2011-05-05
WO2007085591A1 (fr) 2007-08-02
EP1979598A1 (fr) 2008-10-15
US20090126692A1 (en) 2009-05-21
US7832378B2 (en) 2010-11-16

Similar Documents

Publication Publication Date Title
EP1979598B1 (fr) Dispositif pour commander des soupapes d'injection de carburant inductives
DE102005044886B4 (de) Vorrichtung und Verfahren zum Erkennen eines Endes einer Bewegung eines Ventilkolbens in einem Ventil
EP2386021A1 (fr) Procédé permettant de faire fonctionner un système d'injection de carburant
DE1451956A1 (de) Brennstoffeinspritzeinrichtung fuer Brennkraftmaschinen
DE2828678A1 (de) Verfahren und einrichtung zum betrieb eines elektromagnetischen verbrauchers, insbesondere eines einspritzventils in brennkraftmaschinen
WO2011003704A1 (fr) Détermination du moment de fermeture d’une soupape d’injection de carburant en fonction d’une analyse de la tension de commande
DE2830834A1 (de) Elektronisches brennstoffeinspritzsystem
DE102005050338A1 (de) Verfahren zum Überprüfen eines Ventils
DE10304083A1 (de) Antriebssystem für ein Einspritzventil und Verfahren zur Steuerung des Antriebssystems
WO2009077254A1 (fr) Procédé pour faire fonctionner un dispositif d'injection
WO2007118750A1 (fr) Procédé pour commander au moins une électrovanne
EP2635784A1 (fr) Procédé pour faire fonctionner un organe de commutation
DE10315282B4 (de) Schaltungsanordnung und Verfahren zur Ansteuerung eines bistabilen Magnetventils
EP0246357B1 (fr) Procédé de contrôle d'un injecteur électromagnétique
EP1895675A2 (fr) Dispositif de communication et procédé de transmission de données
DE102006025360B3 (de) Vorrichtung zum Schalten induktiver Kraftstoff-Einspritzventile
DE4018320C2 (de) Ansteuerschaltung für einen elektromagnetischen Verbraucher
DE102013206674A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines Mengensteuerventils
DE19735560B4 (de) Verfahren und Vorrichtung zur Steuerung eines Verbrauchers
DE3544564A1 (de) Schaltung zum steuern und anzeigen des betriebes von treibstoffinjektoren
DE102014200184A1 (de) Verfahren und Schaltungsanordnung zur Ansteuerung von Einspritzventilen, insbesondere einer fremdgezündeten Brennkraftmaschine
EP0945610A2 (fr) Méthode et dispositif pour commuter une inductance
EP0720770A1 (fr) Procede et dispositif permettant d'exciter un consommateur electromagnetique
EP3864281B1 (fr) Injecteur
DE10140093A1 (de) Verfahren und Vorrichtung zum Ansteuern eines Magnetventils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

RBV Designated contracting states (corrected)

Designated state(s): DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 502007006767

Country of ref document: DE

Date of ref document: 20110505

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007006767

Country of ref document: DE

Effective date: 20110505

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007006767

Country of ref document: DE

Effective date: 20111227

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180131

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190124

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007006767

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007006767

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131