EP1953270B1 - Verfahren zur Leistungsverbesserung von Nickelelektroden - Google Patents

Verfahren zur Leistungsverbesserung von Nickelelektroden Download PDF

Info

Publication number
EP1953270B1
EP1953270B1 EP08000438.5A EP08000438A EP1953270B1 EP 1953270 B1 EP1953270 B1 EP 1953270B1 EP 08000438 A EP08000438 A EP 08000438A EP 1953270 B1 EP1953270 B1 EP 1953270B1
Authority
EP
European Patent Office
Prior art keywords
platinum
electrolysis
voltage
cathode
sodium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08000438.5A
Other languages
English (en)
French (fr)
Other versions
EP1953270A1 (de
Inventor
Andreas Bulan
Rainer Dr. Weber
Richard Malchow
Rolf Dr. Spatz
Hermann-Jens Dr. Womelsdorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Covestro Deutschland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Deutschland AG filed Critical Covestro Deutschland AG
Publication of EP1953270A1 publication Critical patent/EP1953270A1/de
Application granted granted Critical
Publication of EP1953270B1 publication Critical patent/EP1953270B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/567Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current

Definitions

  • the invention relates to a method for improving the performance of nickel electrodes in alkali chloride electrolysis.
  • Sodium chloride electrolytic cathodes where hydrogen is developed in alkaline solution are usually made of iron or nickel. If nickel electrodes are used, they can be made entirely of nickel, or only nickel surfaces are used in which substrates of other metals are surface-plated nickel-plated.
  • nickel electrodes can be coated with a metal from the VIII subgroup, especially the platinum metals (including Pt, Ru, Rh, Os, Ir, Pd) of the Periodic Table of the Elements or an oxide of such a metal or mixtures thereof. After a calcination process, the corresponding noble metal oxides are usually present on the surface.
  • a metal from the VIII subgroup especially the platinum metals (including Pt, Ru, Rh, Os, Ir, Pd) of the Periodic Table of the Elements or an oxide of such a metal or mixtures thereof.
  • the electrode thus prepared may, for. B. in the sodium chloride electrolysis used as a cathode for hydrogen evolution.
  • many coating variants are known, because the coating of metal oxides can be modified in many different ways, so that different compositions are formed on the surface of the nickel electrode.
  • According to the US-A-5 035 789 is z.
  • a ruthenium oxide based coating on nickel substrates is used as the cathode.
  • the object of the invention is therefore to find a simpler form of performance increase or performance restoration.
  • a soluble compound of a platinum group metal salt of sodium hydroxide is added to the catholyte during operation of the sodium chloride electrolysis.
  • a salt concentration of 200 g / l sodium chloride at 90 ° C and a current density of 2.35 kA / m 2 operated in a sodium chloride electrolysis cell with 32 wt .-% sodium hydroxide solution.
  • the cathode is electroless nickel plated for pretreatment and then nickel-plated in a nickel bath.
  • Platinum chlorate for example, was added as the active compound in the catholyte, which led to a lowering of the cell voltage by 100 mV.
  • US-A-4,105,516 During the electrolysis of alkali metal chlorides, metal compounds are added to the catholyte, which reduce the hydrogen overvoltage and thus reduce the cell voltage.
  • the cell has an anode made of titanium expanded metal coated with ruthenium and titanium oxide.
  • the cathode consists of iron in the form of expanded metal.
  • the examples show the use of cobalt or iron solution on the iron cathode.
  • the disadvantages of iron compounds in the treatment of coated nickel electrodes have already been mentioned above.
  • metal ions having a low hydrogen overvoltage may be added to catholyte of a membrane electrolytic cell of sodium chloride electrolysis to coat the cathode.
  • the addition takes place during the electrolysis.
  • platinum oxide for improving an iron or copper cathode is mentioned.
  • the sodium chloride electrolysis according to the membrane process is carried out as follows. A solution containing sodium chloride is supplied to an anode chamber with an anode, a sodium hydroxide solution is fed to a cathode chamber with a cathode. The two chambers are separated by an ion exchange membrane. Several of these anode and cathode compartments are assembled into an electrolyzer. The anode chamber leaves next to the chlorine formed a less concentrated sodium chloride-containing solution than it was supplied. The cathode chamber leaves next to hydrogen, a higher concentration of sodium hydroxide solution as this was supplied. The sodium hydroxide volume flow which is supplied to the cathode chamber depends on the current density and the cell design.
  • the cathode consists of a nickel-expanded metal, which is provided with a special coating (hereinafter called Coating) (manufacturer eg DENORA) to reduce the hydrogen overvoltage.
  • Coating a special coating
  • the cathode coatings in the sodium chloride electrolysis of platinum metals, platinum metal oxides or mixtures thereof such as a ruthenium - ruthenium oxide mixture are among the useful platinum metals.
  • the cathode coating is not long-term stable, especially not under conditions in which no electrolysis takes place or in case of interruptions of the electrolysis, which can lead to Umpolungsreaen example. Thus, a more or less severe damage of the coating over the operating time of the electrolyzer takes place.
  • impurities which, for example, from the brine into the liquor, such as iron ions, can be deposited on the cathode or especially on the active centers of the noble metal-containing coating and thereby deactivate this.
  • the cell voltage increases, which increases the energy consumption for the production of chlorine, hydrogen and caustic soda and significantly worsens the economics of the process.
  • the object of the invention is therefore to develop a special method for improving nickel electrodes which are coated with platinum metals, platinum metal oxides or mixtures thereof, for use as cathodes in the electrolysis of sodium chloride that can be used in ongoing electrolysis operation and a longer interruption of the electrode operation to restore the cathode activity avoids.
  • the invention relates to a method for improving the performance of nickel electrodes having a coating based on platinum metals, platinum metal oxides or mixtures of platinum metals and platinum metal oxides, for the sodium chloride electrolysis according to the membrane process, characterized in that in the electrolysis of sodium chloride, a water-soluble or in Alkali-soluble platinum compound, especially hexachloroplatinic acid or more preferably an alkali platinate, more preferably sodium hexachloroplatinate (Na 2 PtCl 6 ) and / or sodium hexahydroxyplatinate (Na 2 Pt (OH) 6 ) is added to the catholyte.
  • a water-soluble or in Alkali-soluble platinum compound especially hexachloroplatinic acid or more preferably an alkali platinate, more preferably sodium hexachloroplatinate (Na 2 PtCl 6 ) and / or sodium hexahydroxyplatinate (Na 2 Pt (OH) 6 ) is
  • either the sodium hexachloroplatinate can be metered in as an aqueous solution or in alkaline solution, or the hexachloroplatinic acid is metered directly into the catholyte, in particular the sodium hydroxide solution, in which case a reaction with the lye to give the chloroplatinate takes place.
  • the addition of the platinum compound takes place here in particular during electrolysis under normal electrolysis conditions at a current density of 0.1 to 10 kA / m 2 , more preferably at a current density of 0.5 to 8 kA / m 2 .
  • a further preferred embodiment of the addition of platinum is that after the addition of the platinum compound, the electrolysis voltage, in particular pulse-like in the range of 0 to 5 V is varied to deposit finely divided platinum on the cathode.
  • the voltage here describes the voltage between anode and cathode.
  • the residual ripple of the rectifier may result in an alternating voltage in said voltage range with an amplitude of 0.5 to 500 mV.
  • Modern rectifiers hardly have any residual ripple, but there is the possibility of artificially generating a residual ripple.
  • the residual ripple is, for example, between 20 and 100 Hz.
  • the amplitude is also regulated, this can be around the quiescent potential for the time of the precious metal metering with +100 or -100mV.
  • the rest potential is the voltage at which no current flows anymore. Normally, this potential is about 2.1 to 2.3 V, depending on the cell technology and membrane used. However, there is also the special possibility of performing the noble metal dosing when the cell voltage is 0 V, then the amplitude must be greater than the quiescent potential.
  • Platinum metals which may be present as metal or metal oxide in the context of the invention as electrode coating on the nickel, are in particular ruthenium, iridium, palladium, platinum, rhodium and osmium.
  • a further preferred embodiment of the novel process consists in that, in addition to the platinum compound, other further soluble compounds of subgroup 8 of the Periodic Table of the Elements, in particular compounds of palladium, iridium, rhodium, osmium or ruthenium, are additionally added. These are used in particular in the form of water-soluble salts or complex acids.
  • the addition in a first dose after detection of deactivation is such that a platinum compound in the catholyte in the feed to the cathode chamber at a cathode area of 2.71m 2 between 0.02 and 11 g Pt per cathode element, corresponding to 0.007 g / m 2 to 4 g / m 2 , at a current density of 1 to 8 kA / m 2 , takes place.
  • the surface used is the geometrically projected cathode surface, which also corresponds to the membrane surface.
  • the metering rate can be carried out in such a way that the platinum-containing solution, based on the platinum content per meter 2 of cathode area, is metered between 0.001 g Pt / (hm 2 ) and 1 g Pt / (hm 2 ).
  • the addition can be made at a current density preferably under normal operating conditions, as well as at higher or lower current density.
  • the addition can be carried out at a current density in particular of 0.1 to 10 kA / m 2 .
  • the temperature at which the dosage preferably takes place of the platinum compound is 70 to 90 ° C.
  • the dosage can also be done at a lower temperature.
  • the proportion based on the platinum of the further soluble compounds in the solution to be added from the 8th subgroup is from 1 to 50% by weight.
  • the variation of the electrolysis voltage can be effected, for example, in a preferred embodiment by superposing an AC voltage on the electrolysis voltage.
  • the frequency of the superposed AC voltage is in particular from 10 to 100 Hz, the amplitude can then be between 10 and 200 mV.
  • the preparation of the Alkaliplatinates can be carried out by reaction of hexachloroplatinic acid with alkali. This can be done separately or directly in situ if, for example, hexachloroplatinic acid is metered directly into the sodium hydroxide feed to the elements or to the electrolyzer. Particularly preferably, the hexachloroplatinic acid is metered directly into the feed to the elements.
  • a technical electrolyzer with 144 elements whose nickel cathodes were provided with a coating based on ruthenium / ruthenium oxide from Denora, was operated at an average voltage of 3.12 V. Of these 144 elements, one showed an increased voltage of more than 100 mV from the mean.
  • the following treatment cycle was started: 65.88 g of a hexachloroplatinate solution (1.19 g Pt / l) was added at 10.98 l / h during operation in the sodium hydroxide solution (conc. 31.5%) of a membrane electrolyzer at a current density of 4.18 kA / m 2 added over 6 h.
  • the mean voltage increased to 3.02 V (based on 4 kA / m 2 ), so that a further dosage of platinum took place in the form of hexachloroplatinic acid.
  • 4.12 g of the hexachloroplatinate solution (1.19 g Pt / l) were metered uniformly over the course of 2 hours, so that 4.9 g of platinum reached the surface of 144 cathodes (0.012 g Pt / m 2 ). The electrolysis was continued, the average voltage was then 3.01 V.
  • the cell voltage was 3.09 V at a current density of 4 kA / m 2 before dosing, 3.01 V after dosing, which corresponds to a voltage reduction of 80 mV.
  • a laboratory electrolysis cell was operated at a current density of 4 kA / m 2 at a cell voltage of 3.05 V using a standard cathode coating from Denora on the nickel cathode as described in Example 1. After decommissioning without application of a protective potential, damage to the cathode coating occurred. Normally, a protection potential is applied during decommissioning in order to protect the coating of the cathode from damage. After restarting, the cell voltage was 3.17 V.
  • a solution of hexachloroplatinate with a platinum content of 1250 mg / l Pt was added to the running cell in the catholyte. After dosing the solution for 2 hours with a At a dose level of 5 ml / h, the voltage dropped to 3.04 V. A total of 12.5 mg of platinum (12.5 mg / 100 cm 2 ) was added.
  • Example 2 The experiment of Example 2 was repeated, but a solution with a platinum concentration of 250 mg / l was dosed (same dosing and same flow rate). Addition hereby 2.5 mg Pt / 100 cm 2 . The voltage dropped from 3.16V to 3.07V, ie around 90mV.
  • a laboratory electrolysis cell was operated at a current density of 4 kA / m 2 of a cell voltage of 3.08 V with a standard cathode coating of Fa. Denora on nickel electrodes as in Example 1. After decommissioning without application of a protective potential, damage to the cathode coating occurred. Normally, a protection potential is applied during decommissioning in order to protect the coating of the cathode from damage. After restarting, the cell voltage was 3.21 V.
  • a solution of rhodium III chloride with a rhodium content of 125 mg / l was dosed for 4 hours at 5 ml / h. Thereafter, a further 2 hours with a solution of a concentration of 1250 mg / l and 5 ml / h were dosed, whereby a further 50 mV of voltage reduction were achieved. The voltage reduction was only 60 mV.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Verbesserung der Leistung von Nickelelektroden in der Alkalichloridelektrolyse.
  • Kathoden für die Natriumchloridelektrolyse, an denen Wasserstoff in alkalischer Lösung entwickelt wird, bestehen üblicherweise aus Eisen oder Nickel. Werden Nickelelektroden eingesetzt, so können diese vollständig aus Nickel bestehen, oder es gelangen nur Nickeloberflächen zum Einsatz, in denen Substrate aus anderen Metallen oberflächlich vernickelt werden.
  • Wie in der Offenlegungsschrift EP 298 055 A1 erwähnt, können Nickelelektroden mit einem Metall aus der VIII Nebengruppe, speziell der Platinmetalle (u.a. Pt, Ru, Rh, Os, Ir, Pd) des Periodensystems der Elemente oder einem Oxid eines solchen Metalls oder deren Mischungen beschichtet werden. Nach einem Calcinierungsprozess liegen dann auf der Oberfläche gewöhnlich die entsprechenden Edelmetalloxide vor.
  • Die so hergestellte Elektrode kann z. B. in der Natriumchloridelektrolyse als Kathode zur Wasserstoffentwicklung eingesetzt werden. Hierbei sind viele Beschichtungsvarianten bekannt, denn die Beschichtung aus Metalloxiden kann dabei in verschiedenster Weise modifiziert werden, so dass unterschiedliche Zusammensetzungen auf der Oberfläche der Nickelelektrode entstehen. Gemäß der US-A-5 035 789 wird z. B. eine auf Rutheniumoxid basierende Beschichtung auf Nickelsubstraten als Kathode eingesetzt.
  • Im Betrieb der nickelbasierenden Elektroden beobachtet man eine mit der Zeit abnehmende Güte der Elektrode, in der Form, dass die Zellspannung bei der Elektrolyse steigt, so dass gegebenenfalls eine Neubeschichtung der Elektrode erforderlich wird. Das ist technisch aufwändig, da die Elektrolyse abgeschaltet werden muss und die Elektroden aus den Elektrolysezellen ausgebaut werden müssen. Aufgabe der Erfindung ist es daher, eine einfachere Form der Leistungssteigerung bzw. der Leistungswiederherstellung zu finden.
  • Die Firma ELTECH hat unter der Internetseite www.eltechsvstems.com/contact.asp eine Technik veröffentlicht und angeboten, mit der eine Spannungserniedrigung von 200 bis 300 mV verglichen mit unbehandelten Nickel-Elektroden erzielbar ist. Dabei wird eine edelmetall-haltige Lösung ungenannter Zusammensetzung und Inhaltsstoffe in situ, d. h. im Betrieb der Elektrolyse, auf der Kathodenseite der Natriumchloridelektrolyse in Membranzellen angewandt. Die Lösung soll während des Betriebes der Zelle zugegeben werden und die Zellspannung erniedrigen.
  • Gemäß der Lehre der Patentschrift US-A-4 555 317 werden Eisenverbindungen oder feinteiliges Eisen dem Katholyten zugegeben, um die Zellspannung bei der Natriumchloridelektrolyse zu erniedrigen. Im Widerspruch hierzu steht jedoch die Veröffentlichung der Firma ELTECH, da gemäß der Information von ELTECH die Belegung der Kathoden mit Eisen sich auf die Elektrolyse störend auswirken sollen und die Zellspannung erhöhen soll.
  • Gemäß der weiter bekannt gewordenen Offenlegungsschrift EP 1 487 747 A1 erfolgt die Zugabe einer 0,1 bis 10 Gew.-%igen platinhaltigen Verbindung zur Natriumchloridelektrolyse. Hierbei wird die Lösung der platinhaltigen Verbindung in das Wasser zugegeben, das den Katholyten bildet, wobei pro Liter Wasser 0,1 bis 2 Liter der wässrigen Lösung der Platinverbindung enthaltenden Lösung zugegeben wird.
  • Gemäß der JP 1011988 A wird zur Wiederherstellung der Aktivität einer deaktivierten Kathode auf Basis einer Raney Nickel-Struktur mit geringer Wasserstoffüberspannung eine lösliche Verbindung eines Metalls der Platingruppe der Natronlauge während des Betriebes der Natriumchloridelektrolyse in den Katholyten zugesetzt. Beispielsweise wird in einer Natriumchloridelektrolysezelle mit 32 Gew.-%iger Natronlauge, einer Salzkonzentration von 200 g/l Natriumchlorid bei 90 °C und einer Stromdichte von 2,35 kA/m2 betrieben. Die Kathode wird dabei zur Vorbehandlung stromlos vernickelt und anschließend in einem Nickelbad Nickel-platiert. Als aktive Verbindung wurde im Katholyt beispielsweise Platinchlorat zudosiert, was zu einer Erniedrigung der Zellspannung um 100 mV führte.
  • Gemäß der US-A-4 105 516 werden während der Elektrolyse von Alkalimetallchloriden Metallverbindungen in den Katholyten zugegeben, die die Wasserstoffüberspannung herabsetzen und somit die Zellspannung reduzieren sollen. Die in der US-A-4 105 516 aufgeführten Beispiele beschreiben wiederum die Dosierung und Effekte, die durch Zugabe einer Eisenverbindung entstehen, die dem Katholyten einer Natriumchloriddiaphragma-Laborzelle zugegeben wird. Die Zelle hat eine Anode, die aus Titanstreckmetall besteht, die mit Ruthenium- und Titanoxid beschichtet ist. Die Kathode besteht hierbei aus Eisen in Form von Streckmetall. Die Beispiele zeigen die Verwendung von Kobalt- oder Eisenlösung an der Eisenkathode. Auf die Nachteile von Eisenverbindungen bei der Behandlung von beschichteten Nickelelektroden wurde bereits oben hingewiesen.
  • Gemäß der weiter bekannten Patentschrift US-A-4 555 317 ist bekannt, dass die Natriumchloridelektrolyse mit einer nickelbeschichteten Kupferkathode gestartet werden kann. Eine Initialdosierung unter Elektrolysebedingungen der Zelle wurde mit Hexachloroplatinsäure in drei Schritten durchgeführt. Dabei wurden im ersten Schritt 2 mg Platin pro 102 cm2, d. h. 0,02 mg/cm2, zudosiert, im zweiten Schritt ca. 0,03 mg/cm2 und im dritten Schritt ca. 0,2 mg/cm2. Die Zellspannung wurde insgesamt um ca. 157 mV erniedrigt.
  • Gemäß der US-A-4 160 704 können Metallionen, die eine geringe Wasserstoffüberspannung haben, Katholyten einer Membranelektrolysezelle der Natriumchloridelektrolyse zugegeben werden, um die Kathode zu beschichten. Die Zugabe erfolgt hierbei während der Elektrolyse. Beispielhaft ist jedoch nur die Zugabe von Platinoxid zur Verbesserung einer Eisen- oder Kupferkathode angeführt.
  • Die Natriumchloridelektrolyse nach dem Membranverfahren wird wie folgt ausgeführt. Eine Natriumchlorid-haltige Lösung wird einer Anodenkammer mit einer Anode, eine Natronlauge wird einer Kathodenkammer mit einer Kathode zugeführt. Die beiden Kammern werden durch eine Ionenaustauschermembran getrennt. Mehrere dieser Anoden- und Kathodenkammern werden zu einem Elektrolyseur zusammengefügt. Die Anodenkammer verlässt neben dem gebildeten Chlor eine geringer konzentrierte Natriumchlorid-haltige Lösung als dieser zugeführt wurde. Die Kathodenkammer verlässt neben Wasserstoff eine höher konzentrierte Natronlauge als dieser zugeführt wurde. Der Natronlauge-Volumenstrom, der der Kathodenkammer zugeführt wird, ist abhängig von der Stromdichte und dem Zelldesign. Bei einer Stromdichte von beispielsweise 4 kA/m2 und dem Zelldesign der Fa. UHDE, Version BM 3.0, beträgt der Volumenstrom an Lauge zum Kathodenraum beispielsweise zwischen 100 und 300 1/h, bei einer Konzentration der ablaufenden Natronlauge von 30 bis 33 Gew.-%. Die geometrisch projizierte Kathodenfläche beträgt 2,71m2, dies entspricht der Membranfläche. Die Kathode besteht dabei aus einem Nickel-Streckmetall, das mit einer speziellen Beschichtung (nachstehend Coating genannt) versehen ist (Hersteller z.B. DENORA), um die Wasserstoffüberspannung zu senken.
  • Üblicherweise bestehen die Kathoden-Coatings bei der Natriumchlorid-Elektrolyse aus Platinmetallen, Platinmetalloxiden oder deren Mischungen wie z.B. einer Ruthenium - Rutheniumoxid Mischung. Wie in der EP 129 374 beschrieben wird, zählen zu den nutzbaren Platinmetallen Ruthenium, Iridium, Platin, Palladium und Rhodium. Das Kathoden-Coating ist nicht langzeitstabil, besonders nicht unter Bedingungen, bei denen keine Elektrolyse stattfindet bzw. bei Unterbrechungen der Elektrolyse, bei denen es z.B. zu Umpolungsprozessen kommen kann. Somit findet eine mehr oder weniger starke Schädigung des Coatings über die Betriebszeit des Elektrolyseurs statt. Ebenfalls können Verunreinigungen, die z.B. aus der Sole in die Lauge gelangen, wie z.B. Eisen-Ionen, sich auf der Kathode oder speziell auf den aktiven Zentren des edelmetallhaltigen Coating abscheiden und hierdurch dieses deaktivieren. Die Folge ist, dass die Zellspannung steigt, wodurch der Energieverbrauch zur Herstellung von Chlor, Wasserstoff und Natronlauge erhöht und die Wirtschaftlichkeit des Verfahrens deutlich verschlechtert wird.
  • Ebenfalls können nur einzelne Elemente eine Schädigung des Kathoden-Coatings aufweisen, wobei es nicht immer wirtschaftlich ist, dafür den gesamten Elektrolyseur abzustellen und das Element mit dem beschädigten Coating zu entfernen, da dies mit erheblichen Produktionsausfällen und Kosten verbunden ist.
  • Methoden zur Verbesserung von Nickelelektroden für die Natriumchlorid-elektrolyse, die mit Elementen der Platinmetalle (VIII. Nebengruppe des Periodensystems), nachfolgend Platinmetalle, deren Oxiden oder deren Mischungen beschichtet sind, sind aus dem Stand der Technik bislang direkt nicht bekannt.
  • Aufgabe der Erfindung ist es daher, ein spezielles Verfahren zur Verbesserung von Nickelelektroden, die mit Platinmetallen, Platinmetalloxiden oder deren Mischungen beschichtet sind, für die Verwendung als Kathoden bei der Elektrolyse von Natriumchlorid zu entwickeln, dass sich im laufenden Elektrolysebetrieb einsetzen lässt und eine längere Unterbrechung des Elektrodenbetriebs zur Wiederherstellung der Kathodenaktivität vermeidet.
  • Gegenstand der Erfindung ist ein Verfahren zur Verbesserung der Leistung von Nickelelektroden, die eine Beschichtung auf Basis von Platinmetallen, Platinmetalloxiden oder Mischungen von Platinmetallen und Platinmetalloxiden aufweisen, für die Natriumchloridelektrolyse nach dem Membranverfahren, dadurch gekennzeichnet, dass bei der Elektrolyse von Natriumchlorid eine wasserlösliche oder in Alkali lösliche Platin-Verbindung, insbesondere Hexachloroplatinsäure oder insbesondere bevorzugt ein Alkaliplatinat, besonders bevorzugt Natriumhexachloroplatinat (Na2PtCl6) und/oder Natriumhexahydroxyplatinat (Na2Pt(OH)6) dem Katholyt zugegeben wird.
  • Hierbei kann insbesondere entweder das Natriumhexachloroplatinat als wässrige Lösung oder in alkalischer Lösung dosiert werden oder es wird die Hexachloroplatinsäure direkt in den Katholyt, insbesondere die Natronlauge, dosiert, wobei dann eine Reaktion mit der Lauge zum Chloroplatinat erfolgt.
  • Die Zugabe der Platin-Verbindung erfolgt hierbei insbesondere bei laufender Elektrolyse unter normalen Elektrolysebedingungen bei einer Stromdichte von 0,1 bis 10 kA/m2, besonders bevorzugt bei einer Stromdichte von 0,5 bis 8 kA/m2.
  • Eine weitere bevorzugte Ausführungsform der Platinzugabe besteht darin, dass nach der Zugabe der Platinverbindung die Elektrolysespannung, insbesondere pulsartig im Bereich von 0 bis 5 V variiert wird, um Platin feinteiliger auf der Kathode abzuscheiden. Die Spannung beschreibt hierbei die Spannung zwischen Anode und Kathode.
  • Hierzu kann es je nach verwendetem Gleichrichter zur Erzeugung der Elektrolysegleichspannung ausreichen, die Zellspannung zu erniedrigen, um die Restwelligkeit des Gleichrichters hierfür auszunutzen. Die Restwelligkeit des Gleichrichters kann in einer alternierenden Spannung im genannten Spannungsbereich mit einer Amplitude von 0,5 bis 500 mV resultieren. Moderne Gleichrichter besitzen kaum noch eine Restwelligkeit, jedoch besteht die Möglichkeit künstlich eine Restwelligkeit zu erzeugen. Die Restwelligkeit liegt beispielsweise zwischen 20 und 100 Hz.
  • Wird die Amplitude ebenfalls geregelt, so kann diese für die Zeit der Edelmetall-dosierung mit +100 bzw. -100mV um das Ruhepotenzial betragen. Das Ruhepotenzial ist die Spannung, bei der kein Strom mehr fließt. Normalerweise beträgt dieses Potenzial ca. 2,1 bis 2,3 V, je nach verwendeter Zelltechnologie und Membran. Jedoch besteht auch die besondere Möglichkeit, die Edelmetalldosierung dann durchzuführen, wenn die Zellspannung 0 V beträgt, dann muss die Amplitude größer als das Ruhepotenzial gewählt werden.
  • Höher aufmodulierte Amplituden sind ebenfalls denkbar.
  • Platinmetalle, die als Metall oder Metalloxid im Sinne der Erfindung als Elektrodencoating auf dem Nickel vorliegen können, sind insbesondere Ruthenium, Iridium, Palladium, Platin, Rhodium und Osmium.
  • Eine weitere bevorzugte Ausführungsform des neuen Verfahrens besteht darin, dass außer der Platinverbindung zusätzlich andere weitere lösliche Verbindungen der 8. Nebengruppe des Periodensystems der Elemente, insbesondere Verbindungen des Palladiums, Iridiums, Rhodiums, Osmiums oder des Rutheniums zugegeben werden. Diese finden insbesondere in Form von wasserlöslichen Salzen oder komplexen Säuren Verwendung.
  • Bevorzugt erfolgt die Zugabe bei einer erstmaligen Dosierung nach Feststellung einer Deaktivierung derart, dass eine Platinverbindung in den Katholyten in den Zulauf zur Kathodenkammer bei einer Kathodenfläche von 2,71m2 zwischen 0,02 und 11 g Pt je Kathodenelement, entsprechend 0,007 g/m2 bis 4 g/m2, bei einer Stromdichte von 1 bis 8 kA/m2, erfolgt. Als Fläche wird die geometrisch projizierte Kathodenfläche, die auch der Membranfläche entspricht, zugrundegelegt. Die Dosiergeschwindigkeit kann dabei so durchgeführt werden, dass die Platin-haltige Lösung bezogen auf den Platingehalt je m2 Kathodenfläche zwischen 0,001 g Pt / (hm2) und 1 g Pt/(hm2) dosiert wird.
  • Die Zugabe kann bei einer Stromdichte bevorzugt unter normalen Betriebsbedingungen erfolgen, als auch bei höherer oder niedrigerer Stromdichte. So kann die Zugabe bei einer Stromdichte insbesondere von 0,1 bis 10 kA/m2 erfolgen.
  • Die Temperatur, bei der die Dosierung bevorzugt der Platinverbindung erfolgt, beträgt 70 bis 90°C. Die Dosierung kann aber auch bei niedrigerer Temperatur erfolgen.
  • Wenn nach abgeschlossener Dosierung erneut ein Spannungsanstieg beobachtet wird, kann direkt durch erneute Dosierung diese wieder kompensiert werden. Bei dieser Dosierung ist eine deutlich niedrigere Edelmetall-Menge notwendig, um die Ursprungsspannung wieder herzustellen. Je nach Qualität der Sole, Lauge oder den Stillständen kann in einem Zeitraum von 1 bis 3 Wochen eine erneute, jedoch dann geringere Platin-Zugabe erforderlich sein. Hierbei kann ebenfalls die Zugabe der Platinverbindung in den Katholyten in den Zulauf zu den Kathoden erfolgen. Die benötigten Platinmengen sind nach dem Schadensumfang zu bemessen. Bei stärkerer Schädigung, entsprechend einem hohen Spannungsanstieg, muss mehr Platin dosiert werden, bei geringer Schädigung, entsprechend geringem Spannungsanstieg, entsprechend weniger. Eine Überdosierung von Platin führt jedoch zu keiner weiteren Verbesserung bzgl. Erniedrigung der Zellspannung.
  • Besonders bevorzugt beträgt der Anteil bezogen auf das Platin der weiteren löslichen Verbindungen in der zuzugebenden Lösung aus der 8. Nebengruppe von 1 bis 50 Gew.-%.
  • Die Variation der Elektrolysespannung kann beispielsweise in einer bevorzugten Ausführung durch Überlagerung einer Wechselspannung auf die Elektrolysespannung bewirkt werden. Die Frequenz der überlagerten Wechselspannung beträgt insbesondere von 10 bis 100 Hz, Die Amplitude kann dann zwischen 10 und 200 mV betragen.
  • Mit Hilfe des erfindungsgemäßen Verfahrens ist es erstmals möglich, bei beschädigten Nickelelektroden, die mit Ruthenium und/oder Rutheniumoxiden oder deren Mischungen beschichtet sind, eine Spannungserniedrigung um bis zu 200 mV zu realisieren.
  • Die Herstellung des Alkaliplatinates kann durch Umsetzung von Hexachloroplatinsäure mit Alkalilauge erfolgen. Dies kann gesondert erfolgen oder auch direkt in situ, wenn z.B. Hexachloroplatinsäure direkt in die Natronlaugezuführung zu den Elementen bzw. zum Elektrolyseur dosiert wird. Besonders bevorzugt wird die Hexachloroplatinsäure direkt in den Zulauf zu den Elementen dosiert.
  • Beispiele Beispiel 1
  • Ein technischer Elektrolyseur mit 144 Elementen, deren Nickel-Kathoden mit einem Coating basierend auf Ruthenium- / Rutheniumoxid der Fa. Denora versehen waren, wurde bei einer mittleren Spannung von 3,12 V betrieben. Von diesen 144 Elementen zeigte eines eine gegenüber dem Mittelwert um mehr als 100 mV erhöhte Spannung. Es wurde folgender Behandlungszyklus begonnen: 65,88 1 einer Hexachloroplatinat-Lösung (1,19 g Pt/l) wurde mit 10,98 l/h während des Betriebs in die Natronlauge (Konz. 31,5%) eines Membranelektrolyseurs bei einer Stromdichte von 4,18 kA/m2 über von 6 h zudosiert. Es gelangten somit 78,25 g Platin auf die Oberfläche von 144 Kathoden (Oberfläche einer Kathode: 2,71m2). Dies entspricht einer Platin-Menge von 0,21 g Pt/m2. Die Zellspannung fiel im Mittel auf 3,08 V, die Stromaufnahme stieg auf 4,57 kA/m2. Umgerechnet auf 4 kA/m2 entspricht dies einer Erniedrigung der Spannung um 80mV, demnach von 3,09 auf 3,01. Elemente mit deutlich höherer Spannung waren nicht mehr vorhanden. Am nächsten Tag wurde noch einmal mit 16,44 l der gleichen Lösung, entsprechend 0,05 gPt/m2 dosiert. Die Zellspannung verbesserte sich dadurch nicht mehr.
  • Nach 9 Tagen stieg die mittlere Spannung auf 3,02 V (bezogen auf 4 kA/m2), so dass ein weitere Dosierung von Platin in Form der Hexachloroplatinsäure erfolgte. Hierbei wurde gleichmäßig innerhalb von 2 h 4,12 l der Hexachloroplatinat-Lösung (1,19g Pt/1) dosiert, so dass 4,9 g Platin auf die Oberfläche von 144 Kathoden gelangten (0,012g Pt/m2). Die Elektrolyse wurde dabei fortgesetzt, die mittlere Spannung betrug danach 3,01 V.
  • Die Zellspannung betrug bei einer Stromdichte von 4 kA/m2 vor der Dosierung im Mittel 3,09 V, nach der Dosierung 3,01 V, dies entspricht einer Spannungserniedrigung von 80mV.
  • Beispiel 2
  • Eine Labor-Elektrolysezelle wurde bei einer Stromdichte von 4 kA/m2 bei einer Zellspannung von 3,05 V mit einem Standard Kathoden Coating der Fa. Denora auf der Nickel-Kathode wie in Beispiel 1 beschrieben, betrieben. Nach Außerbetriebnahme ohne Anlegen eines Schutzpotenzials trat eine Schädigung des Kathoden-Coatings ein. Üblicherweise wird bei der Außerbetriebnahme ein Schutzpotenzial angelegt, um das Coating der Kathode vor Beschädigungen zu schützen. Nach Wiederinbetriebnahme betrug die Zellspannung 3,17 V.
  • Eine Lösung aus Hexachloroplatinat mit einem Platingehalt von 1250 mg/l Pt wurde zur laufenden Zelle in den Katholyten dosiert. Nach einer Dosierung der Lösung über 2 Stunden mit einer Dosierungsmenge von 5 ml/ h fiel die Spannung auf 3,04 V. Zugegeben wurden insgesamt 12,5 mg Platin (12,5 mg/100cm2).
  • Beispiel 3
  • Der Versuch von Beispiel 2 wurde wiederholt, jedoch wurde eine Lösung mit einer Platinkonzentration von 250 mg/l dosiert (gleiche Dosierzeit und gleiche Förderleistung). Zusatz hierbei 2,5 mg Pt / 100 cm2. Die Spannung fiel von 3,16 V auf 3,07 V, d.h. um 90 mV.
  • Eine weitere Nachdosierung brachte keine weitere Spannungserniedrigung.
  • Beispiel 4 (Vergleich)
  • Eine Labor-Elektrolysezelle wurde bei einer Stromdichte von 4 kA/m2 einer Zellspannung von 3,08 V mit einem Standard Kathoden Coating der Fa. Denora auf Nickel-Elektroden wie unter Beispiel 1 betrieben. Nach Außerbetriebnahme ohne Anlegen eines Schutzpotenzials trat eine Schädigung des Kathoden-Coatings ein. Üblicherweise wird bei der Außerbetriebnahme ein Schutzpotenzial angelegt, um das Coating der Kathode vor Beschädigungen zu schützen. Nach Wiederinbetriebnahme betrug die Zellspannung 3,21 V.
  • Eine Lösung aus Rhodium-III-chlorid mit einem Rhodiumgehalt von 125 mg/l wurde über 4 Stunden mit 5 ml/h dosiert. Danach wurden nochmals 2 Stunden mit eine Lösung einer Konzentration von 1250 mg/l und 5 ml/h dosiert, wodurch weitere 50 mV an Spannungserniedrigung erzielt wurden. Die Spannungserniedrigung betrug lediglich 60 mV.

Claims (8)

  1. Verfahren zur Verbesserung der Leistung von Nickelelektroden, die eine Beschichtung auf Basis von Platinmetallen, Platinmetalloxiden oder Mischungen von Platinmetallen und Platinmetalloxiden aufweisen, für die Natriumchloridelektrolyse nach dem Membranverfahren, dadurch gekennzeichnet, dass bei der Elektrolyse von Natriumchlorid eine wasserlösliche oder in Alkali lösliche Platin-Verbindung, insbesondere Hexachloroplatinsäure oder ein Alkaliplatinat, besonders bevorzugt Na2PtCl6 und/oder Na2Pt(OH)6 dem Katholyt zugegeben wird, wobei der Katholyt Natronlauge umfasst..
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass nach der Zugabe des Platinats die Elektrolysespannung im Bereich von 0 bis 5 V, bevorzugt um eine Differenz von 0,5 bis 500 mV, variiert wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Elektrolysespannung pulsartig oder durch Überlagerung der Elektrolysespannung mit einer Wechselspannung im Bereich von 0 bis 5 V, bevorzugt um eine Differenz von 0,5 bis 500 mV, variiert wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Platinverbindung weitere andere wasserlösliche Verbindungen der 8. Nebengruppe des Periodensystems der Elemente, insbesondere Verbindungen der Platingruppe, insbesondere bevorzugt des Palladiums, Iridiums, Platins, Rhodiums, Osmiums oder des Rutheniums zugegeben werden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Anteil der weiteren löslichen Verbindungen der 8. Nebengruppe bezogen auf Platin der Platin-Verbindung 1 bis 50 Gew.-%. beträgt.
  6. Verfahren nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Dosiergeschwindigkeit der Platin-haltige Lösung bezogen auf den Platingehalt je m2 Kathodenfläche und Stunde 0,001 g Pt / (hm2) bis 1 g Pt/(hm2) beträgt.
  7. Verfahren nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Temperatur, bei der die Dosierung der Platinverbindung erfolgt, 70 bis 90 °C beträgt.
  8. Verfahren nach wenigstens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Zugabe der Platinverbindung bei laufender Elektrolyse und unter einer Stromdichte von 0,1 bis 10 kA/m2 erfolgt.
EP08000438.5A 2007-01-24 2008-01-11 Verfahren zur Leistungsverbesserung von Nickelelektroden Not-in-force EP1953270B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007003554A DE102007003554A1 (de) 2007-01-24 2007-01-24 Verfahren zur Leistungsverbesserung von Nickelelektroden

Publications (2)

Publication Number Publication Date
EP1953270A1 EP1953270A1 (de) 2008-08-06
EP1953270B1 true EP1953270B1 (de) 2015-12-09

Family

ID=39322798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08000438.5A Not-in-force EP1953270B1 (de) 2007-01-24 2008-01-11 Verfahren zur Leistungsverbesserung von Nickelelektroden

Country Status (11)

Country Link
US (2) US20080257749A1 (de)
EP (1) EP1953270B1 (de)
JP (2) JP5679621B2 (de)
KR (2) KR20080069913A (de)
CN (1) CN101302624B (de)
BR (1) BRPI0800044A (de)
CA (1) CA2618205A1 (de)
DE (1) DE102007003554A1 (de)
RU (1) RU2443803C2 (de)
SG (1) SG144842A1 (de)
TW (1) TWI437128B (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5349360B2 (ja) * 2009-03-11 2013-11-20 本田技研工業株式会社 水電解装置の運転停止方法
US8343389B2 (en) * 2010-12-31 2013-01-01 Fuyuan Ma Additive for nickel-zinc battery
JP6397396B2 (ja) * 2015-12-28 2018-09-26 デノラ・ペルメレック株式会社 アルカリ水電解方法
EP3497266B1 (de) 2016-08-10 2021-07-21 Covestro Intellectual Property GmbH & Co. KG Verfahren zur elektrochemischen reinigung von chlorid-haltigen prozesslösungen
FR3058165B1 (fr) * 2016-10-27 2018-12-14 Safran Aircraft Engines Procede et dispositif de regeneration de bain de platine
KR102283328B1 (ko) * 2016-11-28 2021-07-30 주식회사 엘지화학 환원 전극의 재생방법
FR3066505B1 (fr) * 2017-05-16 2021-04-09 Safran Aircraft Engines Procede et dispositif ameliores de filtration de bain de platine par electrodialyse
US10815578B2 (en) 2017-09-08 2020-10-27 Electrode Solutions, LLC Catalyzed cushion layer in a multi-layer electrode
PT3597791T (pt) * 2018-07-20 2022-01-27 Covestro Deutschland Ag Processo para melhoria do desempenho de elétrodos de níquel
CN112695339B (zh) * 2020-12-15 2022-05-27 世能氢电科技有限公司 一种析氢催化电极、其制备方法及其应用

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL288862A (de) * 1962-02-13
US3857766A (en) * 1972-08-03 1974-12-31 Permaloy Corp Process for anodizing aluminum and its alloys
US4160704A (en) 1977-04-29 1979-07-10 Olin Corporation In situ reduction of electrode overvoltage
US4105516A (en) 1977-07-11 1978-08-08 Ppg Industries, Inc. Method of electrolysis
US4292159A (en) * 1977-11-21 1981-09-29 Olin Corporation Cell having in situ reduction of electrode overvoltage
FR2538005B1 (fr) 1982-12-17 1987-06-12 Solvay Cathode pour la production electrolytique d'hydrogene et son utilisation
GB8316778D0 (en) 1983-06-21 1983-07-27 Ici Plc Cathode
IT1208128B (it) * 1984-11-07 1989-06-06 Alberto Pellegri Elettrodo per uso in celle elettrochimiche, procedimento per la sua preparazione ed uso nell'elettrolisi del cloruro disodio.
CN1012970B (zh) 1987-06-29 1991-06-26 耐用电极株式会社 用于电解的阴极及其制备方法
JPS6411988A (en) 1987-07-06 1989-01-17 Kanegafuchi Chemical Ind Method for recovering activity of deteriorated cathode having low hydrogen overvoltage
US5035789A (en) 1990-05-29 1991-07-30 The Dow Chemical Company Electrocatalytic cathodes and methods of preparation
US5227030A (en) * 1990-05-29 1993-07-13 The Dow Chemical Company Electrocatalytic cathodes and methods of preparation
IT1248564B (it) * 1991-06-27 1995-01-19 Permelec Spa Nora Processo di decomposizione elettrochimica di sali neutri senza co-produzione di alogeni o di acido e cella di elettrolisi adatta per la sua realizzazione.
JP3171646B2 (ja) * 1992-03-25 2001-05-28 日本エレクトロプレイテイング・エンジニヤース株式会社 白金合金めっき浴及びそれを用いた白金合金めっき品の製造方法
DE4232958C1 (de) * 1992-10-01 1993-09-16 Deutsche Aerospace Ag, 80804 Muenchen, De
JP3344828B2 (ja) * 1994-06-06 2002-11-18 ペルメレック電極株式会社 塩水の電解方法
US5855751A (en) * 1995-05-30 1999-01-05 Council Of Scientific And Industrial Research Cathode useful for the electrolysis of aqueous alkali metal halide solution
US5730852A (en) * 1995-09-25 1998-03-24 Davis, Joseph & Negley Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells
JP3670763B2 (ja) 1996-06-24 2005-07-13 三洋電機株式会社 不揮発性半導体メモリ
JP2003268584A (ja) * 2002-03-11 2003-09-25 Asahi Kasei Corp 陰極の製造方法
JP2003277966A (ja) * 2002-03-22 2003-10-02 Asahi Kasei Corp 低い過電圧と耐久性に優れた水素発生用陰極
KR100363011B1 (en) * 2002-03-28 2002-11-30 Hanwha Chemical Corp Electrolyte composition for electrolysis of brine and electrolysis method of brine using the same
DE10257643A1 (de) * 2002-12-10 2004-06-24 Basf Ag Verfahren zur Herstellung einer Membran-Elektrodeneinheit
EP1644314B1 (de) 2003-07-01 2011-08-10 Bayer Cropscience AG Verfahren zum herstellen von difluoracetessigs urealkylestern
JP2006183113A (ja) * 2004-12-28 2006-07-13 Kaneka Corp 食塩水電解槽の性能回復方法ならびに該方法により処理された陰極を用いた生産苛性ソーダ溶液および塩素の製造方法
JP4339337B2 (ja) * 2005-09-16 2009-10-07 株式会社カネカ 電気分解用陰極の活性化方法および電気分解方法
JP2008012599A (ja) * 2006-07-03 2008-01-24 Bc Tekku:Kk ミーリングカッタ用アーバ

Also Published As

Publication number Publication date
RU2008101765A (ru) 2009-07-27
KR20080069913A (ko) 2008-07-29
SG144842A1 (en) 2008-08-28
TW200846500A (en) 2008-12-01
JP2008179896A (ja) 2008-08-07
CN101302624B (zh) 2016-08-03
US20080257749A1 (en) 2008-10-23
CN101302624A (zh) 2008-11-12
DE102007003554A1 (de) 2008-07-31
JP2013213284A (ja) 2013-10-17
CA2618205A1 (en) 2008-07-24
US9273403B2 (en) 2016-03-01
US20120325674A1 (en) 2012-12-27
KR20150082163A (ko) 2015-07-15
JP5732111B2 (ja) 2015-06-10
JP5679621B2 (ja) 2015-03-04
TWI437128B (zh) 2014-05-11
EP1953270A1 (de) 2008-08-06
RU2443803C2 (ru) 2012-02-27
BRPI0800044A (pt) 2008-09-16

Similar Documents

Publication Publication Date Title
EP1953270B1 (de) Verfahren zur Leistungsverbesserung von Nickelelektroden
DE1814576C2 (de) Elektrode zur Verwendung in elektrolytischen Prozessen und Verfahren zu deren Herstellung
DE2331949C3 (de) Verfahren zur Herstellung einer Elektrode
DE60019256T2 (de) Kathode für die elektrolyse von wässrigen lösungen
DE2620589C3 (de) Aktivierte Kathode zur Verwendung bei der Elektrolyse wäßriger Lösungen
DE1671422A1 (de) Elektrode und UEberzug fuer dieselbe
DE2936033C2 (de)
DE2651948A1 (de) Verfahren zum elektrolysieren einer waessrigen alkalichloridloesung
DE2419021B2 (de) Elektrode
EP2732073A2 (de) Ungeteilte elektrolysezelle und deren verwendung
DE2909593C2 (de)
DE3029364A1 (de) Verfahren zur herstellung von kathoden mit niedriger wasserstoffueberspannung und ihre verwendung
DE2844558A1 (de) Elektrode fuer die verwendung in einem elektrolytischen verfahren
EP3597791B1 (de) Verfahren zur leistungsverbesserung von nickelelektroden
DE2124045C3 (de) Verfahren zur elektrolytischen Her stellung von reinem Chlor, Wasserstoff und reinen konzentrierten Alkaliphosphat lösungen und Elektrolyslerzelle zur Durch führung des Verfahrens
DE2718316A1 (de) Verfahren und vorrichtung zum elektrolysieren
DE4129308C2 (de) Verfahren zur Herstellung einer Titan(III)-Sulfatlösung sowie deren Verwendung
DE60121337T2 (de) Verfahren zur verbesserung einer elektrode
DE2233485B2 (de) Überzugselektrode
DE701803C (de) Verfahren zur Verminderung der UEberspannung bei der elektrolytischen Entwicklung von Wasserstoff in Wasserzersetzern
DE4227179C1 (de) Verfahren zur elektrolytischen gewinnung von platinmetallen aus den loesungen ihrer chloroverbindung
DE1005938B (de) Elektrolytischer Wasserzersetzer und Verfahren zur Aktivierung seiner Kathodenflaechen
DE2623739A1 (de) Elektrode fuer die elektrolyse
DE2258913C3 (de) Galvanisches Bad zur Abscheidung von Platin-Iridium-Legierungen
DE1818051C2 (de) Anode und deren Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090206

17Q First examination report despatched

Effective date: 20090310

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008013646

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25B0001460000

Ipc: C25B0015080000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C25B 1/46 20060101ALI20150729BHEP

Ipc: C25B 15/08 20060101AFI20150729BHEP

Ipc: C25B 11/04 20060101ALI20150729BHEP

INTG Intention to grant announced

Effective date: 20150813

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COVESTRO DEUTSCHLAND AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 764616

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008013646

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160310

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160409

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160411

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008013646

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20160912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160209

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 764616

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20191227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200130

Year of fee payment: 13

Ref country code: IT

Payment date: 20200114

Year of fee payment: 13

Ref country code: GB

Payment date: 20200102

Year of fee payment: 13

Ref country code: DE

Payment date: 20191231

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008013646

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210111

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210111

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131