EP1919638A1 - Verfahren zur dickenregelung beim warmwalzen - Google Patents

Verfahren zur dickenregelung beim warmwalzen

Info

Publication number
EP1919638A1
EP1919638A1 EP06776361A EP06776361A EP1919638A1 EP 1919638 A1 EP1919638 A1 EP 1919638A1 EP 06776361 A EP06776361 A EP 06776361A EP 06776361 A EP06776361 A EP 06776361A EP 1919638 A1 EP1919638 A1 EP 1919638A1
Authority
EP
European Patent Office
Prior art keywords
rolling
thickness
roll
position signals
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06776361A
Other languages
English (en)
French (fr)
Inventor
Olaf Norman Jepsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Demag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Demag AG filed Critical SMS Demag AG
Publication of EP1919638A1 publication Critical patent/EP1919638A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/30Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
    • B21B1/32Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work
    • B21B1/34Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/12Rolling load or rolling pressure; roll force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2271/00Mill stand parameters
    • B21B2271/02Roll gap, screw-down position, draft position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2271/00Mill stand parameters
    • B21B2271/06Mill spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • B21B31/20Adjusting or positioning rolls by moving rolls perpendicularly to roll axis
    • B21B31/32Adjusting or positioning rolls by moving rolls perpendicularly to roll axis by liquid pressure, e.g. hydromechanical adjusting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/62Roll-force control; Roll-gap control by control of a hydraulic adjusting device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/64Mill spring or roll spring compensation systems, e.g. control of prestressed mill stands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/08Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring roll-force

Definitions

  • the invention relates to a method for thickness control during rolling, in particular during hot rolling with at least one roll stand, wherein u.a. the current, middle position of the setting cylinder of the roll stand and the cumulative rolling force of the same are taken into account.
  • From DE 20 20 402 is a method for calculating the thickness G1 thin, hard workpieces after a Reduzier devisgang by a Reduzierwalzrange with opposite rolling surfaces and a measuring device for measuring the forces apart the surfaces, during the passage of the workpiece through the opposite rolling surfaces during a Reduziervorganges
  • a signal is generated, which is a measure of the thickness G5, which is determined by the intersection of a suitable roll elongation curve and a suitable workpiece deformation curve for the reduction process
  • b) a signal is generated which is a measure for a thickness G3 defined by the intersection of the measured force curve and the roll elongation curve
  • a signal indicative of a calculated stretch error is generated by plotting the signal representing the uncertainty range as a function of the reduction predicted for the reduction pass, the rolling strain predicted for the reduction, and the relative error probability in both the
  • a signal is generated which is a measure of the thickness G5 defined by the intersection of a suitable roll elongation curve and a suitable workpiece deformation curve for the reduction process
  • a signal is generated which is a measure of a thickness G3 passing through the intersection the curve for the measured force and the roller extension curve is determined
  • a signal is generated which represents a measure of an uncertainty region, which is determined by the difference between the thickness G5 and G3 signals
  • a signal is generated, which is a measure of represents a calculated extension error in that the signal representing the uncertainty region is a function of the rolling extension predicted for the reduction pass and the relative error probability in both the predetermination of the thickness decrease and the elongation is changed
  • a signal is generated which is a measure of the calculated thickness G1 by the signal representing the thickness G3 calculated strain error is added.
  • the so-called Gaugemeter help used to determine the current strip thickness for the thickness control when Wa in the roll.
  • the measured position S D s Sos the adjusting cylinder corrected by the calculated frame strain g (see also Figure 1).
  • the framework strain g is calculated by means of the measured rolling force F D s, F O s and a framework expansion curve 1 / M G.
  • the thus determined strip thickness is then compared with the thickness setpoint and compensated. For this process, apart from the measurements of position and rolling force, an exact framework model is required.
  • the invention is therefore based on the object to improve a method of the type described above such that the above-mentioned disadvantages are avoided.
  • This object is achieved according to the invention by minimizing the amount of skeleton expansion. This happens because at least one additional position measurement is carried out by determining position signals in the nearer region of the roll gap of the rolling stands. In particular, the position signals between the work rolls and / or the back-up rolls and / or the work roll chocks and / or the support roll chocks must be taken into account / determined.
  • the advantage of the method according to the invention is that the position measurement contains a smaller amount of framework expansion. So only the roll flattening and the roll bending are to be considered. Other parts, such as the elongation of the uprights and the crossheads, need not be calculated.
  • the method according to the invention leads to a more accurate determination of the strip thickness for hard grades and, especially during thin strip rolling, improves the dynamic behavior of the thickness control.
  • the signals obtained can also be used for position regulation and / or for swivel control and / or for calculating the strip thickness and thus for regulating the strip thickness.
  • Figure 2 is a flow chart for thickness control according to the invention.
  • Fig. 1 is a flow chart for the known thickness control during rolling, in particular during hot rolling, shown.
  • An example of a pair of work rolls AW and a pair of support rollers SW existing rolling stand W has an operating side OS and a drive side DS.
  • a strip B is located between the pair of work rolls AW.
  • the cylinder position of the operating side Sos and the cylinder position of the drive side S D s are determined and the current, mean cylinder position S AC T determined.
  • the total rolling force F A c ⁇ is ER- averaging the rolling force operating side Fos and the rolling force F drive side D s determined.
  • the gantry expansion g is calculated with the aid of the total rolling force F A c ⁇ and a gantry expansion curve 1 / M G.
  • the actual strip thickness h A c ⁇ is determined by measuring the current, average cylinder position S AC T and the calculated gantry strain g.
  • the actual strip thickness h A c ⁇ is compared with the strip thickness setpoint h REF and used for thickness control.
  • the thickness controller supplies the position setpoint for the cylinder position control.
  • the known thickness control according to the flowchart of Figure 2 is improved.
  • the distance between the work roll chocks on the operator side S ROS and on the drive side S S RD is, for example, measured and then the average distance of the work roll chocks S R determined.
  • the further determined value for the current, average cylinder position S A CT is compared directly with the cylinder position setpoint S REF .
  • the scaffold module M R depends according to the invention on the selected position measurement.
  • the position measurement position signals to be taken into account for the method, wherein at least one position signal is required, are provided between the work rolls AW and / or the backup rolls SW and / or the work roll chocks and / or the backup roll chocks determined.
  • the framework strain to be taken into account in the method according to the invention is to be matched in each case to the location of the position signal obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

Bei einem Verfahren zur Dickenregelung beim Walzen, insbesondere beim Warmwalzen mit mindestens einem Walzgerüst, wobei die aktuelle, mittlere Position der Anstellzylinder des Walzgerüsts und die Summenwalzkraft derselben berücksichtigt werden, wird mindestens eine zusätzliche Positionsmessung durch Ermittlung von Positionssignalen im näheren Bereich des Walzspalts der Walzgerüste durchgeführt.

Description

Verfahren zur Dickenregelung beim Warmwalzen
Die Erfindung betrifft ein Verfahren zur Dickenregelung beim Walzen, insbesondere beim Warmwalzen mit mindestens einem Walzgerüst, wobei u.a. die aktuelle, mittlere Position der Anstellzylinder des Walzgerüsts und die Sum- menwalzkraft derselben berücksichtigt werden.
Aus der DE 20 20 402 ist ein Verfahren zur Berechnung der Dicke G1 dünner, harter Werkstücke nach einem Reduzierdurchgang durch eine Reduzierwalzstrecke mit gegenüberliegenden Walzflächen und eine Messeinrichtung zur Messung der die Oberflächen auseinanderdrückenden Kräfte, die beim Durchgang des Werkstückes durch die gegenüberliegenden Walzflächen während eines Reduziervorganges erzeugt werden bekannt, bei dem: a) ein Signal erzeugt wird, das ein Maß für die Dicke G5 ist, die durch den Schnittpunkt einer geeigneten Walzendehnungskurve und einer geeigneten Werkstückverformungskurve für den Reduziervorgang festgelegt ist, b) ein Signal erzeugt wird, das ein Maß für eine Dicke G3 darstellt, die durch den Schnittpunkt der Kurve für die gemessene Kraft und die Walzendehnungskurve festgelegt ist, c) ein Signal erzeugt wird, das ein Maß für einen Unsicherheitsbereich darstellt, der durch die Differenz zwischen den Dicken G5 und G3 darstellenden Signalen bestimmt ist, d) ferner ein Signal erzeugt wird, das ein Maß für einen berechneten Streckungsfehler darstellt, indem das den Unsicherheitsbereich darstellende Signal als eine Funktion der für den Reduzierdurchgang vorausbestimmten Dickenabnahme, der für den Reduziervorgang vorausgesagten Walzendehnung und der relativen Fehlerwahrscheinlichkeit sowohl bei der Vorausbestimmung der Dickenabnahme als auch der Dehnung verändert wird, und e) ein Signal erzeugt wird, das ein Maß für die berechnete Dicke G1 ist, indem das die Dicke G3 darstellende Signal zu dem berechneten Dehnungsfehler hinzuaddiert wird.
In der DE 26 57 455 A1 ist ein Verfahren zur Kompensation der Walzenverfor- mung an regelbar vorgespannten Walzgerüsten beschrieben, bei denen die Banddicke über hydraulische Stellglieder geregelt wird, und bei dem durch hydraulische Vorspannzylinder die Anstellkraft (F3) als Summe von Walzkraft und regelbarer Vorspannkraft nach der Gleichung
F3 = (FaO + (Fr - Fr0)) * Ca/(C, + C3)
derart verändert wird, dass zum Grundsollwert (Fao) der Anstellkraft ein Zusatzvollwert addiert wird, der aus der Differenz zwischen Istwert (Fr) der Vorspannkraft und Anfangswert (Fro) der Vorspannkraft gebildet wird und mit dem Ver- hältnis (ca /(c, + ca)) der Federsteifigkeit (ca) des äußeren Gerüstteiles zur
Summe der Federsteifigkeit des inneren (c,) und äußeren Gerüstteiles (ca) bewertet wird.
Aus der DE 16 02 195 A1 ist ein Verfahren zur Berechnung der Dicke dünner harter Werkstücke bekannt.
Dass ein Signal erzeugt wird, das ein Maß für die Dicke G5 ist, die durch den Schnittpunkt einer geeigneten Walzendehnungskurve und einer geeigneten Werkstückverformungskurve für den Reduziervorgang festgelegt ist, ein Signal erzeugt wird, das ein Maß für eine Dicke G3 darstellt, die durch den Schnittpunkt der Kurve für die gemessene Kraft und die Walzendehnungskurve festgelegt ist, ein Signal erzeugt wird, das ein Maß für einen Unsicherheitsbereich darstellt, der durch die Differenz zwischen den Dicken G5 und G3 darstellenden Signale bestimmt ist, ferner ein Signal erzeugt wird, das ein Maß für einen berechneten Streckungsfehler darstellt, indem das den Unsicherheitsbereich darstellende Signal als ei- ne Funktion der für den Reduzierdurchgang vorausgesagten Walzendehnung und der relativen Fehlerwahrscheinlichkeit sowohl bei der Vorausbestimmung de Dickenabnahme als auch der Dehnung verändert wird, und ein Signal erzeugt wird, das ein Maß für die berechnete Dicke G1 ist, indem das die Dicke G3 darstellende Signal zu dem berechneten Dehnungsfehler hinzu- addiert wird.
Bisher wird für die Dickenregelung beim Wa im band walzen das sogenannte Gaugemeterprinzip zur Ermittlung der aktuellen Banddicke verwendet. Dazu wird die gemessene Position SDs. Sos der Anstellzylinder um die berechnete Gerüstdehnung g korrigiert (siehe auch Figur 1 ). Die Gerüstdehnung g wird mit Hilfe der gemessenen Walzkraft FDs, FOs und einer Gerüstdehnkurve 1/MG berechnet. Die so ermittelte Banddicke wird dann mit dem Dickensollwert verglichen und ausgeregelt. Für dieses Verfahren ist, neben den Messungen von Position und Walzkraft, ein genaues Gerüstmodell erforderlich.
Beim Walzen von harten Güten und dünnen Bändern führen kleine Ungenauig- keiten im Gerüstmodell zu relativ großen Fehlern in der Banddicke und unter Umständen zur Instabilität der Dickenregelung.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs beschriebenen Art derart zu verbessern, dass die oben aufgezeigten Nachteile vermieden werden.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass der Gerüstdeh- nungsanteil minimiert wird. Dieses geschieht dadurch, dass mindestens eine zusätzliche Positionsmessung durch Ermittlung von Positionssignalen im näheren Bereich des Walzspaltes der Walzgerüste durchgeführt wird. Hierbei sind insbesondere die Positionssignale zwischen den Arbeitswalzen und / oder den Stützwalzen und / oder den Arbeitswalzeneinbaustücken und / oder den Stütz- walzeneinbaustücken zu berücksichtigen / zu ermitteln. Der Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass die Positionsmessung einen geringeren Gerüstdehnungsanteil enthält. So sind nur die Walzenabplattung und die Walzenbiegung zu berücksichtigen. Andere Anteile, wie die Dehnung der Ständer und der Querhäupter, müssen nicht berechnet werden. Speziell bei einer Messung des Abstandes der Arbeitswalzenbaustü- cke müssen die Aufschwemmung der Morgoil - Lager, die Biegung der Stützwalzen und Stützwalzenexzentrizitäten nicht berücksichtigt werden. Wie in Figur 2 dargestellt, wird das aus dem Stand der Technik bekannte Verfahren zur Dickenregelung weiterhin vollständig eingesetzt und durch die oben beschriebenen Merkmale verbessert bzw. erweitert.
Das erfindungsgemäße Verfahren führt zu einer genaueren Ermittlung der Banddicke bei harten Güten und verbessert speziell beim Dünnbandwalzen das dynamische Verhalten der Dickenregelung.
In einer Weiterentwicklung können die erhaltenen Signale auch zur Positionsregelung und / oder zur Schwenkregelung und / oder zur Berechnung der Banddicke und damit zur Regelung der Banddicke verwendet werden.
Ein Ausführungsbeispiel der Erfindung wird anhand von schematischen Zeichnungen näher beschrieben. Es zeigen:
Figur 1 ein Ablaufdiagramm zur Dickenreglung nach dem Stand der
Technik und
Figur 2 ein Ablaufdiagramm zur Dickenregelung gemäß der Erfindung.
In Fig. 1 ist ein Ablaufdiagramm zur bekannten Dickenregelung beim Walzen, insbesondere beim Warmwalzen, dargestellt. Ein beispielsweise aus einem Arbeitswalzenpaar AW und einem Stützwalzenpaar SW bestehendes Walzgerüst W weist eine Bedienseite OS und eine Antriebsseite DS auf. Zwischen dem Arbeitswalzenpaar AW befindet sich ein Band B. Bei dem bekannten Verfahren zur Dickenregelung werden die Zylinderposition der Bedienseite Sos und die Zylinderposition der Antriebsseite SDs ermittelt und die aktuelle, mittlere Zylinderposition SACT bestimmt. Weiterhin wird die Summenwalzkraft FAcτ durch Er- mittlung der Walzkraft Bedienseite Fos und der Walzkraft Antriebsseite FDs bestimmt. Die Gerüstdehnung g wird mit Hilfe der Summenwalzkraft FAcτ und einer Gerüstdehnkurve 1/MG berechnet.
Die aktuelle Banddicke hAcτwird durch Messung der aktuellen, mittleren Zylinderposition SACT und der berechneten Gerüstdehnung g ermittelt. Die aktuelle Banddicke hAcτ wird mit dem Banddickensollwert hREF verglichen und zur Dickenregelung verwendet. Der Dickenregler liefert den Positionssollwert für die Zylinderpositionsregelung.
Gemäß der Erfindung wird die bekannte Dickenregelung gemäß dem Ablauf- diagramm nach Figur 2 verbessert. Hierzu wird beispielsweise der Abstand der Arbeitswalzeneinbaustücke auf der Bedienseite SROS und auf der Antriebsseite SRDS gemessen und dann der mittlere Abstand der Arbeitswalzeneinbaustücke SR bestimmt. Der weiterhin ermittelte Wert für die aktuelle, mittlere Zylinderposition SACT wird direkt mit dem Zylinderpositionssollwert SREF verglichen.
Die ebenfalls weiterhin ermittelten Werte der Walzkraft Bedienseite Fos und der Walzkraft Antriebsseite FDs führen zur Summenwalzkraft FAcτ- Diese werden erfindungsgemäß mit einem Gerüstmodul MR, der auf die Arbeitswalzeneinbaustücke bezogen ist, kombiniert und anschließend die Gerüstdehnung gR ermittelt.
Das Gerüstmodul MR hängt erfindungsgemäß ab von der gewählten Positionsmessung. Die für das Verfahren zu berücksichtigenden Positionssignale der Positionsmessung, wobei mindestens ein Positionssignal benötigt wird, werden zwischen den Arbeitswalzen AW und / oder den Stützwalzen SW und / oder den Arbeitswalzeneinbaustücken und / oder den Stützwalzeneinbaustücken ermittelt. Die bei dem erfindungsgemäßen Verfahren zu berücksichtigende Gerüstdehnung ist jeweils auf den Ort des erhaltenen Positionssignals abzustimmen.
Der Abstand auf der Bedienseite SROS und der Abstand auf der Antriebsseite SRDS führen zum mittleren Abstand der beispielsweise Arbeitswalzeneinbaustü- cke SR. AUS dem Abstand der Arbeitswalzeneinbaustücke SR und der Gerüstdehnung bezogen auf die Arbeitswalzeneinbaustücke gR wird die aktuelle Banddicke hAcτ ermittelt und mit dem Banddickensollwert hREF verglichen und ausgeregelt.
Bezugszeichenliste
AW Arbeitswalze
SW Stützwalze
W Walzgerüst
B Band
DS Antriebsseite OS Bedienseite
FACT Summenwalzkraft
Fos Walzkraft Bedienseite
FDS Walzkraft Antriebsseite
SACT aktuelle, mittlere Zylinderposition Sos Zylinderposition Bedienseite
SDS Zylinderposition Antriebsseite
SREF Zylinderpositionssollwert
ΓIACT aktuelle Banddicke hREF Banddickensollwert SR mittlerer Abstand der Arbeitswalzenbaustücke
SROS Abstand Bedienseite
SRDS Abstand Antriebsseite gR Gerüstdehnung bezogen auf Arbeitswalzenbaustücke
MR Gerüstmodel bezogen auf Arbeitswalzenbaustücke g Gerüstdehnung
MG Gerüstmodul

Claims

Patentansprüche
1. Verfahren zur Dickenregelung beim Walzen, insbesondere beim Warmwalzen mit mindestens einem Walzgerüst, wobei u.a. die aktuelle, mittlere Position der Anstellzylinder des Walzgerüsts und die Summenwalzkraft derselben berücksichtigt werden, dadurch gekennzeichnet, dass mindestens eine zusätzliche Positionsmessung durch Ermittlung von Positionssignalen im näheren Bereich des Walzspaltes der Walzgerüste durchgeführt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Positionssignale zwischen den Arbeitswalzen und / oder den Stützwalzen und / oder den Arbeitswalzeneinbaustücken und / oder den Stützwalzeneinbaustücken ermittelt werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Positionssignale zur Positionsregelung verwendet wer- den.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Positionssignale zur Schwenkregelung verwendet wer- den.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Positionssignale zur Berechnung der Banddicke verwendet werden.
EP06776361A 2005-08-26 2006-07-24 Verfahren zur dickenregelung beim warmwalzen Withdrawn EP1919638A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005040690 2005-08-26
DE102005042837A DE102005042837A1 (de) 2005-08-26 2005-09-09 Verfahren zur Dickenregelung beim Warmwalzen
PCT/EP2006/007249 WO2007022841A1 (de) 2005-08-26 2006-07-24 Verfahren zur dickenregelung beim warmwalzen

Publications (1)

Publication Number Publication Date
EP1919638A1 true EP1919638A1 (de) 2008-05-14

Family

ID=37198982

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06776361A Withdrawn EP1919638A1 (de) 2005-08-26 2006-07-24 Verfahren zur dickenregelung beim warmwalzen

Country Status (12)

Country Link
US (1) US20090031777A1 (de)
EP (1) EP1919638A1 (de)
JP (1) JP2009505835A (de)
KR (1) KR20080037010A (de)
AU (1) AU2006284201A1 (de)
BR (1) BRPI0615089A2 (de)
CA (1) CA2620000A1 (de)
DE (1) DE102005042837A1 (de)
MX (1) MX2008002631A (de)
RU (1) RU2008111505A (de)
TW (1) TW200709865A (de)
WO (1) WO2007022841A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706644B (zh) * 2013-12-20 2016-04-27 秦皇岛首秦金属材料有限公司 基于测厚仪测量厚度的辊缝设定值自适应控制方法
DE102021209714A1 (de) * 2020-09-22 2022-03-24 Sms Group Gmbh Vorrichtung und Verfahren zum Walzen von metallischem Band

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1145836A (en) * 1966-09-29 1969-03-19 British Iron Steel Research Improvements in or relating to the rolling of strip
US3574280A (en) * 1968-11-12 1971-04-13 Westinghouse Electric Corp Predictive gauge control method and apparatus with adaptive plasticity determination for metal rolling mills
BE826284A (fr) * 1974-03-05 1975-09-04 Appareillage de regulation automatique d'epaisseur dans un laminoir
US4126027A (en) * 1977-06-03 1978-11-21 Westinghouse Electric Corp. Method and apparatus for eccentricity correction in a rolling mill
US4126026A (en) * 1977-09-26 1978-11-21 General Electric Company Method and apparatus for providing improved automatic gage control setup in a rolling mill
US4909060A (en) * 1988-01-26 1990-03-20 United Engineering, Inc. Oil compression compensation system
US4898012A (en) * 1988-04-22 1990-02-06 United Engineering, Inc. Roll bite gauge and profile measurement system for rolling mills
JPH04100625A (ja) * 1990-08-20 1992-04-02 Sumitomo Metal Ind Ltd 自動板厚制御方法
DE59505484D1 (de) * 1994-07-08 1999-05-06 Siemens Ag Einrichtung zur Erfassung des Walzspaltes zwischen zwei Arbeitswalzen eines Walzgerüstes
CA2287842C (en) * 1998-02-27 2005-03-22 Nippon Steel Corporation Sheet rolling method and sheet rolling mill
JP2000288614A (ja) * 1999-04-09 2000-10-17 Toshiba Corp 圧延機の板厚制御装置
FR2860738B1 (fr) * 2003-10-13 2006-02-03 Vai Clecim Procede d'augmentation de la precision du controle de la trajectoire du produit dans une machine a planer a rouleaux imbriques et installation de planage permettant la mise en oeuvre du procede.
DE102004005011B4 (de) * 2004-01-30 2008-10-02 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Regelverfahren und Regler für ein Walzgerüst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007022841A1 *

Also Published As

Publication number Publication date
JP2009505835A (ja) 2009-02-12
AU2006284201A1 (en) 2007-03-01
RU2008111505A (ru) 2009-10-10
BRPI0615089A2 (pt) 2011-05-03
MX2008002631A (es) 2008-03-14
KR20080037010A (ko) 2008-04-29
CA2620000A1 (en) 2007-03-01
WO2007022841A1 (de) 2007-03-01
AU2006284201A2 (en) 2008-05-01
DE102005042837A1 (de) 2007-03-08
US20090031777A1 (en) 2009-02-05
TW200709865A (en) 2007-03-16

Similar Documents

Publication Publication Date Title
EP2548665B1 (de) Ermittlungsverfahren für relativbewegungsabhängigen Verschleiß einer Walze
CN102441576B (zh) 热轧带钢粗轧中间坯镰刀弯和楔形自动控制方法
DE112012006981B4 (de) Verfahren zur Herstellung von Bandstahl mit verschiedenen Zieldicken in der Längsrichtung mit einer kontinuierlichen Warmwalzstraße
EP2712332B1 (de) Steuerverfahren für eine warmbandstrasse
EP1485216B1 (de) Rechnergestütztes ermittlungsverfahren für sollwerte für profil- und planheitsstellglieder
DE3036997A1 (de) Verfahren zur steuerung und regelung der temperatur eines werkstueckes waehrend des walzens in einem warmbandwalzwerk
DE112013000350B9 (de) Verfahren zum Ausführen einer Vorschub-Dicken-Regelung in einem Tandemkaltwalzwerk
DE102016116076B4 (de) Anlagensteuerungsvorrichtung, Walzsteuerungsvorrichtung, Anlagensteuerungsverfahren und Anlagensteuerungsprogramm
DE112004002903B4 (de) Walzenkeilanstellungs-/Steuerverfahren zum Walzen von plattenförmigem Material
EP1675694B1 (de) Verfahren und steuervorrichtung zum betrieb einer walzstrasse für metallband
EP1711283B1 (de) Regelverfahren und regler für ein walzgerüst
DE102006024101A1 (de) Walzgerüst und Verfahren zum Walzen eines Walzbandes
EP0399296A2 (de) Automatisches Einrichten eines Universalwalzgerüstes nach dessen Umbau auf neue Profilformate
DE102008011275A1 (de) Betriebsverfahren für eine mehrgerüstige Walzstraße mit Banddickenermittlung anhand der Kontinuitätsgleichung
EP1986795B1 (de) Verfahren zur unterdrückung des einflusses von walzenexzentrizitäten
EP2662158A1 (de) Verfahren zur Bearbeitung von Walzgut und Walzwerk
EP1919638A1 (de) Verfahren zur dickenregelung beim warmwalzen
DE102009043400A1 (de) Verfahren zur modellbasierten Ermittlung von Stellglied-Sollwerten für die asymmetrischen Stellglieder der Walzgerüste einer Warmbreitbandstraße
EP2268427B1 (de) Betriebsverfahren für eine kaltwalzstrasse mit verbesserter dynamik
DE2836595A1 (de) Verfahren zur regelung der dicke eines flachen produkts waehrend des walzens und vorrichtung zur durchfuehrung des verfahrens
DE102018200166A1 (de) Steuervorrichtung, Steuerverfahren und Steuerprogramm eines Walzwerks
EP3851217A1 (de) Verbesserte adaption eines walzenmodells
EP1481742A2 (de) Steuerrechner und rechnergestütztes Ermittlungsverfahren für eine Profil- und Planheitssteuerung für eine Walzstrasse
DE2447823A1 (de) Formstahlwalzwerk zur herstellung von profilmaterial aus metall
DE212022000186U1 (de) Walzlenksteuerungssysteme für Tandemwalzwerke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080620

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081231

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMS SIEMAG AG