EP1481742A2 - Steuerrechner und rechnergestütztes Ermittlungsverfahren für eine Profil- und Planheitssteuerung für eine Walzstrasse - Google Patents

Steuerrechner und rechnergestütztes Ermittlungsverfahren für eine Profil- und Planheitssteuerung für eine Walzstrasse Download PDF

Info

Publication number
EP1481742A2
EP1481742A2 EP04009244A EP04009244A EP1481742A2 EP 1481742 A2 EP1481742 A2 EP 1481742A2 EP 04009244 A EP04009244 A EP 04009244A EP 04009244 A EP04009244 A EP 04009244A EP 1481742 A2 EP1481742 A2 EP 1481742A2
Authority
EP
European Patent Office
Prior art keywords
roll
strip
model
profile
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04009244A
Other languages
English (en)
French (fr)
Other versions
EP1481742A3 (de
EP1481742B1 (de
Inventor
Johannes Dr. Reinschke
Otto Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2003124679 external-priority patent/DE10324679A1/de
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1481742A2 publication Critical patent/EP1481742A2/de
Publication of EP1481742A3 publication Critical patent/EP1481742A3/de
Application granted granted Critical
Publication of EP1481742B1 publication Critical patent/EP1481742B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/02Profile, e.g. of plate, hot strip, sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/04Flatness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/12Roll temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/24Roll wear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2269/00Roll bending or shifting
    • B21B2269/02Roll bending; vertical bending of rolls
    • B21B2269/04Work roll bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/04Lateral deviation, meandering, camber of product

Definitions

  • the invention relates to a control computer for a rolling mill with at least one roll stand that has at least two Has work rolls for rolling a metal strip and with at least one control computer for determining target values connected for profile and flatness actuators of the roll stand is as well as a computer-aided investigation for Setpoints for profile and flatness actuators of a roll stand with at least work rolls for rolling metal strip, that extends in a bandwidth direction.
  • the invention is based on an investigation method for Setpoints for profile and flatness actuators of a roll stand as described in DE 102 11 623 A1.
  • a material flow model Input quantities supplied that a metal strip before and after Describe running through a roll stand.
  • the material flow model determines a rolling force curve in the strip direction online and leads him to a roll deformation model to.
  • the roll deformation model determines the resulting Roll deformations and leads them to a setpoint determiner to that based on the determined roll deformations and one the setpoint values for the profile and flatness actuators determined,
  • the profile value is called scalar Measure of the deviation of the tape thickness at the tape edges understood by the strip thickness in the middle of the strip.
  • Under “Contour course” is the strip thickness curve minus the strip thickness understood in the middle of the band.
  • the term “flatness” includes from its literal sense, initially only visible faults of the metal band. The concept of flatness is about it also as a synonym for the internal tensions prevailing in the volume used, regardless of whether these inner Tensions lead to visible warping of the metal strip or not.
  • the object of the present invention is a Rolling mill and a computer-controlled investigation to provide for setpoints for profile and flatness actuators, by means of its predetermined profile values, contour profiles and / or flatness courses of the rolled strip better than in State of the art described can be achieved and adhered to can.
  • the extremely high quality requirements with regard to the accuracy in compliance with profile, Contour and flatness requirements for the rolled strip when it runs out are taken into account from the rolling mill.
  • the problem is solved by a method of the aforementioned Kind, taking a material flow model input variables are fed to the metal strip before and after going through it of the roll stand, using the material flow model online at least one rolling force curve at least in the direction of the strip width and a roll deformation model feeds, the roll deformation model current value of the strip center position is supplied, the Roll deformation model using the rolling force curve resulting roll deformations determined, one Feeds the setpoint determiner and the setpoint determiner based on the determined roll deformations and one on the outlet side Target contour course the target values for the profile and Flatness actuators determined.
  • the task is also solved by a control computer for a rolling mill of the type mentioned, the rolling mill at least one measuring device for determining the Has central strip position of the metal strip, the control computer a device for target value determination and a module for modeling the roll deformation, the module at least one module for modeling the roll deformation for modeling the roll bend and at least one module for modeling the roll temperature and roll wear has, the module for modeling the roll deformation with the measuring device and with the device is coupled to setpoint determination.
  • the proposed one is based Calculation of target values for profile and flatness actuators also especially for models that the elastic deformation of the work rolls as well as the thermal and describe wear crowning because this Sizes during the rolling operation not with reasonable effort are measurable.
  • DE 102 11 623 A1 did not assume that the tape was centered runs to the middle of the scaffold. Rather, it takes into account that it is often so-called, especially when rolling hot strip Swarming comes, that is within a scaffold the tape center position changes significantly during the tape run Extent.
  • the center of the belt can be worn in particular predicted much more precisely on the work roll surface become. It has also been found that by considering of the band position, the calculated deflection of the Roll set and the calculated thermal and wear crowning of the work rolls much more realistic can be determined.
  • the model results are still significantly improved, though the value of the center of the strip cyclically, preferably e.g. the Roll temperature and wear model is fed. This can e.g. done every three seconds.
  • Limits for are advantageously based on the wear contours the axial displaceability of the work rolls, in particular CVC rollers, determined.
  • a fluctuation range is advantageous for the roll bending model determined for the center position of the strip to be rolled.
  • the roll bending model is advantageous for every setpoint determination at least twice for at least two different ones Values of the center position of the strip called. It will be an advantage the continuous calculation of sensitivities that are used for Profile and flatness control are used during the Belt run according to the current strip position measurement interpolated between the bending model results. there In particular, the fluctuation range determined is covered.
  • Figure 1 is a rolling mill for rolling a metal strip 1 controlled by a control computer 2.
  • the in Figure 1 Rolling mill shown has several rolling stands 3, in particular at least three roll stands 3.
  • the metal strip 1 is in the rolling mill rolled in a rolling direction x and passes through the Rolling mill with the speed v.
  • Operation of the Control computer 2 is preferably from a computer program product with which the control computer 2 programs is.
  • the rolling mill shown in Figure 1 is a finishing mill for Hot rolling formed from steel strip or heavy plate.
  • the present is not for use in a multi-stand finishing train for hot rolling of steel strip limited. Rather, the rolling mill could also be used as a cold rolling mill (Tandem mill) and / or just one roll stand (e.g. a reversing stand) and / or for rolling a non-ferrous metal (e.g. aluminum or copper) be trained.
  • the roll stands 3 have at least work rolls 4 and, as indicated in FIG. 1 for one of the roll stands 3, usually also support rollers 5. You could also have more rollers, for example axially displaceable Between rollers. The work rolls can too be axially displaceable.
  • scaffold controllers 6 setpoints for in the drawing not shown profile and flatness actuators specified.
  • the scaffold controller 6 regulate the Actuators then according to the specified setpoints.
  • the setpoints make one outlet side for each roll stand 3 Roll gap course influenced that between the work rolls 4 sets.
  • the roll gap runout side corresponds with a contour profile aus on the outlet side (in the drawing not shown) of the metal strip 1. Die Setpoints for the actuators must therefore be determined in this way be that this corresponding roll gap course results.
  • the control computer 2 is acted upon by the input variables ⁇ 0 , S 0 , ⁇ T , S T and further input variables, which are explained in more detail below.
  • the input variables supplied to the control computer 2 include, for example, pass schedule data such as an input thickness h 0 of the metal strip 1 and an overall rolling force FW for each roll stand 3 (FIG. 2, hereinafter referred to as rolling force) and a pass reduction r. As a rule, they also include a final thickness h n , a target profile value, a target final contour profile ⁇ T and a desired flatness profile S T. Usually the rolled metal strip 1 should be as flat as possible.
  • the control computer 2 thus determines the target values from input variables which are fed to it and which describe the metal strip 1 on the inlet and outlet side.
  • At least one measuring device for determining the Central strip layer 125 becomes the central strip layer of the metal strip 1 determined.
  • the measuring device 125 is in FIG 1 not shown.
  • One or more measuring devices for Determination of the tape center position 125 are preferably between arranged the roll stands 3. They transmit measured values the strip center position 122 (FIG. 3) or values for deviations the tape center position ⁇ M ( Figure 3) to the control computer Second
  • control computer 2 there are several in the control computer 2 Modules for modeling the rolling mill are provided. So points the control computer 2 is a module for modeling the work roll flattening 8, a module for modeling the roll bending 9 and a module for modeling the roller temperature and roller wear 10. The aforementioned modules 8, 9, 10 form together, possibly with inclusion further modules, a module for modeling the roll deformation 7. In the control computer 2 there are also means for determining the contour 12 and a module for modeling the belt deformation 13 implemented.
  • the determined target contour profiles ⁇ are fed to a module for modeling the strip deformation 13 in order to determine the associated target rolling force profiles F R, i in the strip width direction z (compare FIGS. 3 and 4) for the individual roll stands 3.
  • the belt deformation model 13 is street-related and is preferably divided into material flow models. The material flow models serve to model the physical behavior of the metal strip 1 in the roll gap online and are described in more detail in DE 102 11 623 A1.
  • the rolling force profile F R (z) is fed to the work roll flattening model 8.
  • parameters such as the strip width, the strip inlet thickness, the pass reduction, the rolling force FW, the work roll radius and the modulus of elasticity are also supplied to the surface of the work rolls 4.
  • the work roll flattening model 8 determines a flattening course of the work rolls 4 towards the metal strip 1 in the strip width direction z and passes the flattening course on to the setpoint value determiner 11.
  • the rolling force profile F R (z) does not necessarily have to be supplied exclusively to the work roll flattening model 8. It can also be applied to the roll deformation model in another way.
  • the rolling force profile F R (z) can alternatively or additionally be supplied to the roll bending model 9 and / or the roll temperature and wear model 10.
  • FIG. 3 shows a longitudinal section through a work roll 4 and a section through the metal strip 1, the plane of the drawing is perpendicular to the rolling direction x.
  • the strip thickness direction y and the strip width direction z which is parallel to the roller axis 120. Because it especially when rolling hot strip using a rolling mill comes to the so-called swarming of the tape 1 changes the position of the belt center 122 within the framework 3 during of the tape run considerably. So only in exceptional cases in practice the roller center 121, which is always perpendicular to Roller axis 120 lies, and the tape center layer 120 not to each other added. You can use donors to make a deviation Determine the ⁇ M of the strip center layer 122 from the roller center 121.
  • the deviation ⁇ M fluctuates during the rolling operation constantly and can be up to several centimeters. This affects in particular the wear limits of the work rolls 4 out. So the actual wear limits give way 124 ( Figure 4) due to the swarming of the tape considerably from the wear limits 123 (FIG. 4), which one would expect with a belt always running in the middle.
  • the exact tape center position 122 by a measuring device 125 is determined, to the module for modeling the roll deformation 7 passed on (see also FIG 2).
  • the current one Strip position measurement value 122 and / or from strip position measurement values a tolerance range for the tape position in the past of the strip to be rolled.
  • the roll bending model 9 is preferably at least twice for different tape layers called. The calculation of the Profile and flatness setpoints, such as for the continuous calculation of sensitivities during the Belt run, according to the current belt position measurement interpolated between the bending model results.
  • the roll temperature and wear model 10 ( Figure 5) the current strip position measurement value is supplied with each model call. This is preferably done cyclically. It is preferred assumed that the deviation of the tape center position ⁇ M between two calls of the roll temperature and wear model 10 changes only relatively slightly.
  • roller temperature and wear model 10 With the help of the roller temperature and wear model 10 become a temperature contour and a wear contour for all rolls for the respective roll stand 3 determined. That I the temperature and wear of the rollers 4, 5 in the course the time, the roller temperature and wear model must change 10 again and again, especially in regular time Intervals can be called.
  • the distance between two Calling is usually in the order of magnitude between one and ten seconds, for example at three seconds. there a suitable averaging procedure for the measured Belt center position ⁇ M used.
  • the of the roller temperature and Wear model 10 determined temperature and wear contours are fed to the roll bending model 9 according to FIG.
  • the main input parameters for the roll temperature and wear model 10 are shown as in FIG. 5, Strip data, roll data, cooling data, the rolling forces FW as well as the belt speed v. There is also information about the deviation of the strip center position ⁇ M in the roller temperature and wear model 10 a. With the help of Roller temperature and wear model 10 will in particular the thermal crown or a temperature contour is determined.
  • the roll bending model 9 in addition to the roll temperature and wear model determined temperature and wear corrections also geometric data of the rollers 4, 5, the rolling force FW, a bending force and, if necessary fed a roll shift (see Figure 6). According to the invention, information about the Deviation of the strip center position ⁇ M in the roll bending model 9 on. With the help of the roll bending model 9, a roll deformation determined, in particular the elastic roller bending contour.
  • the of the roll bending model 9 and that of the roll temperature and - Contours determined by wear model 10 are shown in FIG 2 fed to the setpoint determiner 11.
  • the setpoint determiner 11 are finally fed the strip thickness curves ⁇ .
  • the setpoint determiner 11 can thus for each roll stand 3 by forming the difference between the outlet side Contour course ⁇ on the one hand and the determined flattening and deformations of the rollers 4, 5 on the other hand determine which Rest roll contour through the profile and flatness actuators still has to be realized.
  • the outlet-side roll gap contour of the roll stands 3 can be from various actuators or actuators can be influenced.
  • the roll back bend, an axial one, is an example Roll displacement with CVC rolls and a longitudinal rotation called the work rolls 4 ("pair crossing").
  • One too locally acting roller heating or cooling is conceivable.
  • the Setpoint determiner 11 can setpoints for all these actuators determine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Numerical Control (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

Zur Bestimmung der Sollwerte für Profil- und Planheitsstellglieder eines Walzgerüsts mit mindestens zwei Arbeitswalzen werden einem Materialflussmodell (13) Eingangsgrößen (ϑ,s) zugeführt, die das Metallband vor und nach dem Durchlaufen des Walzgerüsts beschreiben. Mit Hilfe des Materialflussmodells (13) wird online ein Walzkraftverlauf ermittelt und einem Walzenverformungsmodell (7) zugeführt. Mit Hilfe weiterer Modelle (9,10) und unter Heranziehen des Walzkraftverlaufs werden sich ergebende Walzenverformungen ermittelt und einem Sollwertermittler (11) zugeführt. Es wird vorgeschlagen, die jeweils aktuelle Bandmittenlage (125) den Modellen (9,10) zuzuführen und so den, insbesondere beim Warmwalzen, erheblichen Auswirkungen des Schwärmens des Metallbandes Rechnung zu tragen. <IMAGE>

Description

Die Erfindung betrifft einen Steuerrechner für eine Walzstraße mit mindestens einem Walzgerüst, das mindestens zwei Arbeitswalzen zum Walzen eines Metallbandes aufweist und mit mindestens einem Steuerrechner zur Ermittlung von Sollwerten für Profil- und Planheitsstellglieder des Walzgerüsts verbunden ist sowie ein rechnergestütztes Ermittlungsverfahren für Sollwerte für Profil- und Planheitsstellglieder eines Walzgerüsts mit zumindest Arbeitswalzen zum Walzen von Metallband, das sich in einer Bandbreitenrichtung erstreckt.
Die Erfindung geht dabei von einem Ermittlungsverfahren für Sollwerte für Profil- und Planheitsstellglieder eines Walzgerüsts aus wie es in der DE 102 11 623 A1 beschrieben wird. Gemäß der DE 102 11 623 A1 werden einem Materialflussmodell Eingangsgrößen zugeführt, die ein Metallband vor und nach dem Durchlaufen eines Walzgerüstes beschreiben. Das Materialflussmodell ermittelt online einen Walzkraftverlauf in Bandbreitenrichtung und führt ihn einem Walzenverformungsmodell zu. Das Walzenverformungsmodell ermittelt daraus sich ergebende Walzenverformungen und führt sie einem Sollwertermittler zu, der anhand der ermittelten Walzenverformungen und eines auslaufseitigen Konturverlaufs die Sollwerte für die Profil- und Planheitsstellglieder ermittelt,
Im Rahmen der vorliegenden Beschreibung werden folgende Begriffsdefinitionen verwendet: Der "Profilwert" wird als skalares Maß für die Abweichung der Banddicke an den Bandrändern von der Banddicke in der Bandmitte verstanden. Unter "Konturverlauf" wird der Banddickenverlauf abzüglich der Banddicke in der Bandmitte verstanden. Der Begriff "Planheit" umfasst von seinem Wortsinn her zunächst nur sichtbare Verwerfungen des Metallbandes. Der Begriff der Planheit wird aber darüber hinaus als Synonym für die im Band herrschenden inneren Spannungen verwendet, und zwar unabhängig davon, ob diese inneren Spannungen zu sichtbaren Verwerfungen des Metallbandes führen oder nicht.
Die Aufgabe der vorliegenden Erfindung besteht darin, eine Walzstraße und ein rechnergesteuertes Ermittlungsverfahren für Sollwerte für Profil- und Planheitsstellglieder bereitzustellen, mittels dessen vorgegebene Profilwerte, Konturverläufe und/oder Planheitsverläufe des Walzbandes besser als im Stand der Technik beschrieben erreicht und eingehalten werden können. Insbesondere soll den äußerst hohen Güteanforderungen hinsichtlich der Genauigkeit bei der Einhaltung von Profil-, Kontur- und Planheitsanforderungen an das Walzband beim Auslaufen aus der Walzstraße Rechnung getragen werden.
Die Aufgabe wird gelöst durch ein Verfahren der eingangs genannten Art, wobei einem Materialflussmodell Eingangsgrößen zugeführt werden, die das Metallband vor und nach dem Durchlaufen des Walzgerüsts beschreiben, wobei das Materialflussmodell online zumindest einen Walzkraftverlauf zumindest in der Bandbreitenrichtung ermittelt und einem Walzenverformungsmodell zuführt, wobei dem Walzenverformungsmodell ein aktueller Wert der Bandmittenlage zugeführt wird, wobei das Walzenverformungsmodell unter Heranziehen des Walzkraftverlaufs sich ergebende Walzenverformungen ermittelt, einem Sollwertermittler zuführt und wobei der Sollwertermittler anhand der ermittelten Walzenverformungen und eines auslaufseitigen Soll-Konturverlaufs die Sollwerte für die Profil- und Planheitsstellglieder ermittelt.
Die Aufgabe wird auch gelöst durch einen Steuerrechner für eine Walzstraße der eingangs genannten Art, wobei die Walzstraße mindestens eine Messvorrichtung zur Bestimmung der Bandmittenlage des Metallbandes aufweist, wobei der Steuerrechner eine Vorrichtung zur Sollwertermittlung und ein Modul zur Modellierung der Walzenverformung aufweist, wobei das Modul zur Modellierung der Walzenverformung mindestens ein Modul zur Modellierung der Walzenbiegung und mindestens ein Modul zur Modellierung der Walzentemperatur und des Walzenverschleißes aufweist, wobei das Modul zur Modellierung der Walzenverformung mit der Messvorrichtung und mit der Vorrichtung zur Sollwertermittlung gekoppelt ist.
Wie in der DE 102 11 623 A1 beschrieben, fußt die vorgeschlagene Berechnung von Sollwerten für Profil- und Planheitsstellglieder auch insbesondere deshalb auf Modellen, die die elastische Deformation der Arbeitswalzen sowie die thermischen und Verschleißballigkeiten beschreiben, weil diese Größen während des Walzbetriebs nicht unter vertretbarem Aufwand messbar sind. Anders als bei der DE 102 11 623 A1 wird jedoch nicht davon ausgegangen, dass das Band mittig bezogen auf die Gerüstmitte läuft. Es wird vielmehr berücksichtigt, dass es insbesondere beim Walzen von Warmband oft zum so genannten Schwärmen kommt, das heißt innerhalb eines Gerüsts ändert sich die Bandmittenlage während des Bandlaufes in erheblichem Ausmaß. Durch die erfindungsgemäße Berücksichtigung der Bandmittenlage können insbesondere die Verschleißkanten an der Arbeitswalzenoberfläche deutlich genauer vorhergesagt werden. Es hat sich zudem herausgestellt, dass durch die Berücksichtigung der Bandlage die errechnete Durchbiegung des Walzensatzes und die berechneten thermischen und Verschleißballigkeiten der Arbeitswalzen wesentlich realitätsgetreuer bestimmt werden können.
Die Modellergebnisse werden noch deutlich verbessert, wenn der Wert der Bandmittenlage zyklisch, vorzugsweise z.B. dem Walzentemperatur- und -verschleißmodell, zugeführt wird. Dies kann z.B. alle drei Sekunden erfolgen.
Mit Vorteil werden anhand der Verschleißkonturen Grenzen für die axiale Verschiebbarkeit der Arbeitswalzen, insbesondere CVC-Walzen, bestimmt.
Mit Vorteil wird für das Walzenbiegemodell ein Schwankungsbereich für die Bandmittenlage des zu walzenden Bandes ermittelt.
Mit Vorteil wird das Walzenbiegemodell bei jeder Sollwertermittlung mindestens zwei mal für mindestens zwei verschiedene Werte der Bandmittenlage aufgerufen. Dabei wird mit Vorteil die fortlaufende Berechnung von Empfindlichkeiten, die zur Profil- und Planheitsregelung benutzt werden, während des Bandlaufs entsprechend dem jeweils aktuellen Bandlagenmesswert zwischen den Biegemodellergebnissen interpoliert. Dabei wird insbesondere der ermittelte Schwankungsbereich abgedeckt.
Weitere Vorteile und Ausgestaltungen der Erfindung sind der nachfolgenden Beschreibung von erfindungsgemäßen Ausführungsbeispielen und den zugehörigen Zeichnungen zu entnehmen. Es zeigen:
Figur 1
eine Walzstraße,
Figur 2
ein Blockschaltbild der Steuereinrichtung samt ihrer Module bzw. Modelle,
Figur 3
eine schematische Darstellung der Mittenlage von Walze und Metallband,
Figur 4
die Verschleißgrenzen an der Walze,
Figur 5
ein Walzentemperatur- und -verschleißmodell und
Figur 6
ein Walzenbiegemodell.
Gemäß Figur 1 wird eine Walzstraße zum Walzen eines Metallbandes 1 von einem Steuerrechner 2 gesteuert. Die in Figur 1 gezeigte Walzstraße weist mehrere Walzgerüste 3, insbesondere mindestens drei Walzgerüste 3, auf. In Figur 1 sind sieben Walzgerüste 3 dargestellt. Das Metallband 1 wird in der Walzstraße in einer Walzrichtung x gewalzt und durchläuft die Walzstraße mit der Geschwindigkeit v. Die Betriebsweise des Steuerrechners 2 wird vorzugsweise von einem Computerprogrammprodukt festgelegt, mit dem der Steuerrechner 2 programmiert ist.
Die in Figur 1 gezeigte Walzstraße ist als Fertigstraße zum Warmwalzen von Stahlband oder Grobblech ausgebildet. Die vorliegende Erfindung ist aber nicht auf die Anwendung bei einer mehrgerüstigen Fertigstraße zum Warmwalzen von Stahlband beschränkt. Vielmehr könnte die Walzstraße auch als Kaltwalzstraße (Tandemstraße) ausgebildet sein und/oder nur ein Walzgerüst (z.B. ein Reversiergerüst) aufweisen und/oder zum Walzen eines Nichteisenmetalls (z. B. Aluminium oder Kupfer) ausgebildet sein. Die Walzgerüste 3 weisen zumindest Arbeitswalzen 4 und, wie in Figur 1 für eines der Walzgerüste 3 angedeutet, in der Regel auch Stützwalzen 5 auf. Sie könnten auch noch mehr Walzen aufweisen, beispielsweise axial verschiebbare Zwischenwalzen. Auch die Arbeitswalzen können axial verschiebbar sein.
Vom Steuerrechner 2 werden Gerüstreglern 6 Sollwerte für in der Zeichnung nicht dargestellte Profil- und Planheitsstellglieder vorgegeben. Die Gerüstregler 6 regeln die Stellglieder dann entsprechend den vorgegebenen Sollwerten.
Durch die Sollwerte wird pro Walzgerüst 3 ein auslaufseitiger Walzspaltverlauf beeinflusst, der sich zwischen den Arbeitswalzen 4 einstellt. Der auslaufseitige Walzspaltverlauf korrespondiert mit einem auslaufseitigen Konturverlauf ϑ (in der Zeichnung nicht dargestellt) des Metallbandes 1. Die Sollwerte für die Stellglieder müssen daher derart ermittelt werden, dass sich dieser korrespondierende Walzspaltverlauf ergibt.
Der Steuerrechner 2 wird mit den Eingangsgrößen ϑ0, S0, ϑT, ST und weiteren Eingangsgrößen beaufschlagt, die im folgenden näher erläutert werden.
Die dem Steuerrechner 2 zugeführten Eingangsgrößen umfassen beispielsweise Stichplandaten wie eine Eingangsdicke h0 des Metallbandes 1 sowie für jedes Walzgerüst 3 eine Gesamtwalzkraft FW (Figur 2, nachfolgend kurz Walzkraft genannt) und eine Stichabnahme r. Sie umfassen in der Regel ferner eine Enddicke hn, einen Sollprofilwert, einen Sollendkonturverlauf ϑT und einen gewünschten Planheitsverlauf ST. Meist soll das gewalzte Metallband 1 so plan wie möglich sein. Der Steuerrechner 2 ermittelt die Sollwerte also aus Eingangsgrößen, die ihm zugeführt werden und die das Metallband 1 ein- und auslaufseitig beschreiben.
Mit Hilfe mindestens einer Messvorrichtung zur Bestimmung der Bandmittenlage 125 (Figur 2) wird die Bandmittenlage des Metallbandes 1 ermittelt. Die Messvorrichtung 125 ist in Figur 1 nicht dargestellt. Eine oder mehrere Messvorrichtungen zur Bestimmung der Bandmittenlage 125 werden vorzugsweise zwischen den Walzgerüsten 3 angeordnet. Sie übermitteln Messwerte der Bandmittenlage 122 (Figur 3) bzw. Werte für Abweichungen der Bandmittenlage ΔM(Figur 3) an den Steuerrechner 2.
Gemäß Figur 2 sind im Steuerrechner 2 unter anderem mehrere Module zur Modellierung der Walzstraße vorgesehen. So weist der Steuerrechner 2 ein Modul zur Modellierung der Arbeitswalzenabplattung 8, ein Modul zur Modellierung der Walzenbiegung 9 und ein Modul zur Modellierung der Walzentemperatur und des Walzenverschleißes 10 auf. Die vorgenannten Module 8, 9, 10 bilden gemeinsam, gegebenenfalls unter Einbeziehung weiterer Module, ein Modul zur Modellierung der Walzenverformung 7. Im Steuerrechner 2 sind ferner Mittel zur Konturermittlung 12 und ein Modul zur Modellierung der Bandverformung 13 implementiert.
Die ermittelten Soll-Konturverläufe ϑ werden einem Modul zur Modellierung der Bandverformung 13 zugeführt, um die zugehörigen Soll-Walzkraftverläufe FR,i in der Bandbreitenrichtung z (vergleiche Figuren 3 und 4) für die einzelnen Walzgerüste 3 zu ermitteln. Das Bandverformungsmodell 13 ist straßenbezogen und vorzugsweise in Materialflussmodelle unterteilt. Die Materialflussmodelle dienen dazu, online das physikalische Verhalten des Metallbandes 1 im Walzspalt zu modellieren und werden in der DE 102 11 623 A1 näher beschrieben.
Da die Abplattung der Arbeitswalzen 4 zum Metallband 1 entscheidend vom Walzkraftverlauf FR(z) in Bandbreitenrichtung z abhängt, wird der Walzkraftverlauf FR(z) gemäß Figur 2 dem Arbeitswalzenabplattungsmodell 8 zugeführt. Im Arbeitswalzenabplattungsmodell 8 werden ferner Parameter, wie die Bandbreite, die Bandeinlaufdicke, die Stichabnahme, die Walzkraft FW, der Arbeitswalzenradius und der Elastizitätsmodul der Oberfläche der Arbeitswalzen 4 zugeführt. Das Arbeitswalzenabplattungsmodell 8 ermittelt einen Abplattungsverlauf der Arbeitswalzen 4 zum Metallband 1 hin in der Bandbreitenrichtung z und gibt den Abplattungsverlauf an den Sollwertermittler 11 weiter. Der Walzkraftverlauf FR(z) muß nicht zwangsweise ausschließlich dem Arbeitswalzenabplattungsmodell 8 zugeführt werden. Er kann dem Walzenverformungsmodell auch in anderer Weise zugeführt werden. So kann der Walzkraftverlauf FR(z) alternativ oder zusätzlich dem Walzenbiegemodell 9 und/oder dem Walzentemperatur- und -verschleißmodell 10 zugeführt werden.
Figur 3 zeigt einen Längsschnitt durch eine Arbeitswalze 4 sowie einen Schnitt durch das Metallband 1, wobei die Zeichenebene senkrecht zur Walzrichtung x liegt. In der Zeichenebene liegen die Banddickenrichtung y und die Bandbreitenrichtung z, die parallel zur Walzenachse 120 liegt. Da es insbesondere beim Walzen von Warmband mittels einer Walzstraße zum so genannten Schwärmen des Bandes 1 kommt, ändert sich die Lage der Bandmitte 122 innerhalb der Gerüste 3 während des Bandlaufes erheblich. Nur im Ausnahmefall sind also in der Praxis die Walzenmitte 121, die stets senkrecht zur Walzenachse 120 liegt, und die Bandmittenlage 120 nicht zueinander versetzt. Man kann mit Hilfe von Gebern eine Abweichung ΔM der Bandmittenlage 122 von der Walzenmitte 121 ermitteln. Die Abweichung ΔM schwankt während des Walzbetriebs ständig und kann bis zu mehreren Zentimetern betragen. Dies wirkt sich insbesondere auf die Verschleißgrenzen der Arbeitswalzen 4 aus. So weichen die tatsächlichen Verschleißgrenzen 124 (Figur 4) aufgrund des Schwärmens des Bandes erheblich von den Verschleißgrenzen 123 (Figur 4) ab, die man bei einem stets mittig laufenden Band erwarten würde.
Statt nun davon auszugehen, dass das Band stets mittig bezogen auf die Walzenmitte 121 bzw. die Gerüstmitte verläuft, wird die genaue Bandmittenlage 122, die von einer Messvorrichtung 125 ermittelt wird, an das Modul zur Modellierung der Walzenverformung 7 weitergegeben (vergleiche auch Figur 2). So wird für das Walzenbiegemodell 9 zunächst aus dem aktuellen Bandlagenmesswert 122 und/oder aus Bandlagenmesswerten der Vergangenheit ein Toleranzbereich für die Bandlage des zu walzenden Bandes bestimmt. Das Walzenbiegemodell 9 wird vorzugsweise mindestens zwei mal für verschiedene Bandlagen aufgerufen. Vorzugsweise wird für die Berechnung der Profil- und Planheitssollwerte, wie auch beispielsweise für die fortlaufende Berechnung von Empfindlichkeiten während des Bandlaufs, entsprechend dem jeweils aktuellen Bandlagenmesswert zwischen den Biegemodellergebnissen interpoliert.
Dem Walzentemperatur- und -verschleißmodell 10 (Figur 5) wird bei jedem Modellaufruf der aktuelle Bandlagenmesswert zugeführt. Dies erfolgt vorzugsweise zyklisch. Dabei wird vorzugsweise davon ausgegangen, dass die Abweichung der Bandmittenlage ΔM sich zwischen zwei Aufrufen des Walzentemperaturund -verschleißmodells 10 nur relativ geringfügig ändert.
Bei der zyklischen Berechnung von Empfindlichkeiten während des Bandlaufs ist zu beachten, dass nicht nur Ergebnisse des Walzentemperatur- und -verschleißmodells 10 sich zeitlich ändern, sondern auch die des Biegemodells 9, wenn sich die Bandmittenlage 122 zeitlich ändert. Ein zyklisches Aufrufen des Biegemodells muss deshalb jedoch nicht zwangsläufig erfolgen.
Mit Hilfe des Walzentemperatur- und -verschleißmodells 10 werden eine Temperaturkontur und eine Verschleißkontur für alle Walzen für das jeweilige Walzgerüst 3 ermittelt. Da sich die Temperatur und der Verschleiß der Walzen 4, 5 im Laufe der Zeit ändern, muss das Walzentemperatur- und -verschleißmodell 10 immer wieder, insbesondere in regelmäßigen zeitlichen Abständen aufgerufen werden. Der Abstand zwischen zwei Aufrufen liegt üblicherweise in der Größenordnung zwischen einer und zehn Sekunden, zum Beispiel bei drei Sekunden. Dabei wird ein geeignetes Mittelungsverfahren für die gemessene Bandmittenlage ΔM verwendet. Die vom Walzentemperatur- und - verschleißmodell 10 ermittelten Temperatur- und Verschleißkonturen werden gemäß Figur 2 dem Walzenbiegemodell 9 zugeführt.
Die wesentlichen Eingangsparameter für das Walzentemperaturund -verschleißmodell 10 sind wie auch in Figur 5 dargestellt, Banddaten, Walzendaten, Kühlungsdaten, die Walzkräfte FW sowie die Bandgeschwindigkeit v. Zudem geht auch Information über die Abweichung der Bandmittenlage ΔM in das Walzentemperatur- und -verschleißmodell 10 ein. Mit Hilfe des Walzentemperatur- und -verschleißmodells 10 wird insbesondere die thermische Balligkeit bzw. eine Temperaturkontur ermittelt.
Dem Walzenbiegemodell 9 werden neben den vom Walzentemperatur- und -verschleißmodell ermittelten Temperatur- und Verschleißkorrekturen auch geometrische Daten der Walzen 4, 5, die Walzkraft FW, eine Rückbiegekraft sowie gegebenenfalls eine Walzenverschiebung zugeführt (vergleiche Figur 6). Außerdem gehen erfindungsgemäß auch Informationen über die Abweichung der Bandmittenlage ΔM in das Walzenbiegemodell 9 ein. Mit Hilfe des Walzenbiegemodells 9 wird eine Walzenverformung ermittelt, insbesondere also die elastische Walzenbiegekontur.
Die vom Walzenbiegemodell 9 und die vom Walzentemperatur- und - verschleißmodell 10 ermittelten Konturen werden gemäß Figur 2 dem Sollwertermittler 11 zugeführt. Dem Sollwertermittler 11 werden schließlich noch die Banddickenverläufe ϑ zugeführt. Der Sollwertermittler 11 kann somit für jedes Walzgerüst 3 durch Differenzbildung zwischen dem auslaufseitigen Konturverlauf ϑ einerseits und dem ermittelten Abplattungen und Verformungen der Walzen 4, 5 andererseits ermitteln, welche Restwalzenkontur durch die Profil- und Planheitsstellglieder noch realisiert werden muss.
Die auslaufseitige Walzspaltkontur der Walzgerüste 3 kann von verschiedenen Aktuatoren bzw. Stellgliedern beeinflusst werden. Beispielhaft seien die Walzenrückbiegung, eine axiale Walzenverschiebung bei CVC-Walzen und eine Längsverdrehung der Arbeitswalzen 4 genannt ("pair crossing"). Auch eine nur lokal wirkende Walzenbeheizung oder -kühlung ist denkbar. Der Sollwertermittler 11 kann Sollwerte für alle diese Stellglieder ermitteln.

Claims (8)

  1. Rechnergestütztes Ermittlungsverfahren für Sollwerte für Profil- und Planheitsstellglieder eines Walzgerüsts (3) mit zumindest Arbeitswalzen (4) zum Walzen von Metallband (1), das sich in einer Bandbreitenrichtung (z) erstreckt,
    wobei einem Materialflussmodell (18) Eingangsgrößen (ϑ, s) zugeführt werden, die das Metallband (1) vor und nach dem Durchlaufen des Walzgerüsts (3) beschreiben,
    wobei das Materialflussmodell (18) online zumindest einen Walzkraftverlauf zumindest in der Bandbreitenrichtung (z) ermittelt und einem Walzenverformungsmodell (7) zuführt,
    wobei dem Walzenverformungsmodell (7) ein aktueller Wert der Bandmittenlage (122) zugeführt wird,
    wobei das Walzenverformungsmodell (7) unter Heranziehen des Walzkraftverlaufs sich ergebende Walzenverformungen ermittelt und einem Sollwertermittler (11) zuführt und
    wobei der Sollwertermittler (11) anhand der ermittelten Walzenverformungen und eines auslaufseitigen Soll-Konturverlaufs (ϑ) die Sollwerte für die Profil- und Planheitsstellglieder ermittelt.
  2. Ermittlungsverfahren nach Patentanspruch 1,
    dadurch gekennzeichnet, dass der Wert der Bandmittenlage (22) zyklisch zugeführt wird.
  3. Ermittlungsverfahren nach einem der vorstehenden Patentansprüche, dadurch gekennzeichnet, dass anhand von Verschleißkonturen Grenzen für die axiale Verschiebbarkeit der Arbeitswalzen ermittelt werden.
  4. Ermittlungsverfahren nach einem der vorstehenden Patentansprüche, dadurch gekennzeichnet, dass für das Walzenbiegemodell (9) ein Schwankungsbereich für die Bandmittenlage (122) des zu walzenden Bandes (1) ermittelt wird.
  5. Ermittlungsverfahren nach Patentanspruch 4,
    dadurch gekennzeichnet, dass das Walzenbiegemodell (9) bei jeder Sollwertermittlung mindestens zweimal für mindestens zwei verschiedene Werte der Bandmittenlage (22) aufgerufen wird.
  6. Ermittlungsverfahren nach Patentanspruch 5,
    dadurch gekennzeichnet, dass zwischen den mindestens zwei Werten der Bandmittenlage (122) ein Interpolationsverfahren durchgeführt wird.
  7. Steuerrechner (2) zur Ermittlung von Sollwerten für Profil- und Planheitsstellglieder eines Walzgerüsts (3) einer Walzstraße insbesondere gemäß einem Verfahren nach einem der vorstehenden Patentansprüche aufweist,
    wobei das Walzgerüst mindestens zwei Arbeitswalzen (4) zum Walzen eines Metallbandes (1) aufweist,
    wobei die Walzstraße mindestens eine Messvorrichtung (125) zur Bestimmung der Bandmittenlage (122) des Metallbandes (1) aufweist,
    wobei der Steuerrechner (2) eine Vorrichtung zu Sollwertermittlung (11) und ein Modul zur Modellierung der Walzenverformung (7) aufweist,
    wobei das Modul zur Modellierung der Walzenverformung (7) mindestens ein Modul zur Modellierung der Walzenbiegung (9) und mindestens ein Modul zur Modellierung der Walzentemperatur und des Walzenverschleißes (10) aufweist,
    wobei das Modul zur Modellierung der Walzenverformung (7) mit der Messvorrichtung (125) gekoppelt ist und
    wobei das Modul zur Modellierung der Walzenverformung (7) mit der Vorrichtung zu Sollwertermittlung (11) gekoppelt ist.
  8. Walzstraße mit einem Steuerrechner (2) nach Patentanspruch 7.
EP04009244A 2003-05-30 2004-04-19 Steuerrechner und rechnergestütztes Ermittlungsverfahren für eine Profil- und Planheitssteuerung für eine Walzstrasse Expired - Fee Related EP1481742B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003124679 DE10324679A1 (de) 2002-03-15 2003-05-30 Steuerrechner und rechnergestützes Ermittlungsverfahren für eine Profil- und Planheitssteuerung für eine Walzstraße
DE10324679 2003-05-30

Publications (3)

Publication Number Publication Date
EP1481742A2 true EP1481742A2 (de) 2004-12-01
EP1481742A3 EP1481742A3 (de) 2006-04-12
EP1481742B1 EP1481742B1 (de) 2007-07-18

Family

ID=33103664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04009244A Expired - Fee Related EP1481742B1 (de) 2003-05-30 2004-04-19 Steuerrechner und rechnergestütztes Ermittlungsverfahren für eine Profil- und Planheitssteuerung für eine Walzstrasse

Country Status (3)

Country Link
EP (1) EP1481742B1 (de)
AT (1) ATE367217T1 (de)
DE (1) DE502004004331D1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7849722B2 (en) 2006-03-08 2010-12-14 Nucor Corporation Method and plant for integrated monitoring and control of strip flatness and strip profile
US8205474B2 (en) 2006-03-08 2012-06-26 Nucor Corporation Method and plant for integrated monitoring and control of strip flatness and strip profile
WO2016146621A1 (de) * 2015-03-16 2016-09-22 Sms Group Gmbh Verfahren zum herstellen von metallbändern
EP3479916A1 (de) * 2017-11-06 2019-05-08 Primetals Technologies Germany GmbH Gezielte einstellung der kontur durch entsprechende vorgaben
WO2020016387A1 (de) * 2018-07-19 2020-01-23 Sms Group Gmbh VERFAHREN ZUM ERMITTELN VON STELLGRÖßEN FÜR AKTIVE PROFIL- UND PLANHEITSSTELLGLIEDER FÜR EIN WALZGERÜST UND VON PROFIL- UND MITTENPLANHEITSWERTEN FÜR WARMGEWALZTES METALLBAND
RU2775774C1 (ru) * 2018-07-19 2022-07-08 Смс Груп Гмбх Способ определения управляющих воздействий для активных исполнительных элементов для воздействия на профиль и планшетность в прокатной клети и значений профиля и планшетности центральной области горячекатаной металлической полосы
EP4353375A1 (de) * 2022-10-11 2024-04-17 Primetals Technologies Germany GmbH Verfahren zum ermitteln von stellgrössen eines walzgerüsts, enstprechendes steuerprogramm, steueeinrichtung mit einem derartigen steuerprogra sowie walzgerüst mit einer derartigen steuereinrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19618712A1 (de) * 1996-05-09 1997-11-13 Siemens Ag Regelverfahren für ein Walzgerüst zum Walzen eines Bandes
JP2000158029A (ja) * 1998-12-01 2000-06-13 Sumitomo Metal Ind Ltd クラスタ圧延機及びこれを用いた板形状制御法
WO2003078086A1 (de) * 2002-03-15 2003-09-25 Siemens Aktiengesellschaft Rechnergestütztes ermittlungsverfahren für sollwerte für profil- und planheitsstellglieder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10211623A1 (de) * 2002-03-15 2003-10-16 Siemens Ag Rechnergestütztes Ermittlungverfahren für Sollwerte für Profil-und Planheitsstellglieder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19618712A1 (de) * 1996-05-09 1997-11-13 Siemens Ag Regelverfahren für ein Walzgerüst zum Walzen eines Bandes
JP2000158029A (ja) * 1998-12-01 2000-06-13 Sumitomo Metal Ind Ltd クラスタ圧延機及びこれを用いた板形状制御法
WO2003078086A1 (de) * 2002-03-15 2003-09-25 Siemens Aktiengesellschaft Rechnergestütztes ermittlungsverfahren für sollwerte für profil- und planheitsstellglieder

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AUZINGER D ET AL: "NEUE ENTWICKLUNGEN BEI PROZESSMODELLEN FÜR WARMBREITBANDSTRASSEN" STAHL UND EISEN, VERLAG STAHLEISEN, DÜSSELDORF, DE, Bd. 116, Nr. 7, 15. Juli 1996 (1996-07-15), Seiten 59-65,131, XP000629440 ISSN: 0340-4803 *
LEE Y H ET AL: "TWO-STAND TEMPER AND DOUBLE REDUCTION MILL AT DONGBU STEEL, ASAN BAY WORKS" CAHIERS D'INFORMATIONS TECHNIQUES DE LA REVUE DE METALLURGIE, REVUE DE METALLURGIE. PARIS, FR, Bd. 97, Nr. 11, November 2000 (2000-11), Seiten 1391-1398, XP000977945 ISSN: 0035-1563 *
PATENT ABSTRACTS OF JAPAN Bd. 2000, Nr. 09, 13. Oktober 2000 (2000-10-13) -& JP 2000 158029 A (SUMITOMO METAL IND LTD), 13. Juni 2000 (2000-06-13) *
WIKLUND O ET AL: "PROFILE AND FLATNESS CONTROL METHODS FOR ROLLING OF FLAT PRODUCTS SIMULATED WITH MEFOS'S PHYSICALLY BASED COMPUTER MODELS" MWSP CONFERENCE PROCEEDINGS, XX, XX, Bd. 29, 1992, Seiten 363-369, XP008054399 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8205474B2 (en) 2006-03-08 2012-06-26 Nucor Corporation Method and plant for integrated monitoring and control of strip flatness and strip profile
US8365562B2 (en) * 2006-03-08 2013-02-05 Nucor Corporation Method and plant for integrated monitoring and control of strip flatness and strip profile
US7849722B2 (en) 2006-03-08 2010-12-14 Nucor Corporation Method and plant for integrated monitoring and control of strip flatness and strip profile
WO2016146621A1 (de) * 2015-03-16 2016-09-22 Sms Group Gmbh Verfahren zum herstellen von metallbändern
US10625317B2 (en) 2015-03-16 2020-04-21 Sms Group Gmbh Method for producing metal strips
US11534808B2 (en) 2017-11-06 2022-12-27 Primetals Technologies Germany Gmbh Targeted adjusting of the contour using corresponding specifications
EP3479916A1 (de) * 2017-11-06 2019-05-08 Primetals Technologies Germany GmbH Gezielte einstellung der kontur durch entsprechende vorgaben
WO2019086172A1 (de) * 2017-11-06 2019-05-09 Primetals Technologies Germany Gmbh Gezielte einstellung der kontur durch entsprechende vorgaben
EP3706929B1 (de) 2017-11-06 2023-04-12 Primetals Technologies Germany GmbH Gezielte einstellung der kontur durch entsprechende vorgaben
WO2020016387A1 (de) * 2018-07-19 2020-01-23 Sms Group Gmbh VERFAHREN ZUM ERMITTELN VON STELLGRÖßEN FÜR AKTIVE PROFIL- UND PLANHEITSSTELLGLIEDER FÜR EIN WALZGERÜST UND VON PROFIL- UND MITTENPLANHEITSWERTEN FÜR WARMGEWALZTES METALLBAND
RU2775774C9 (ru) * 2018-07-19 2022-10-03 Смс Груп Гмбх Способ определения управляющих воздействий для активных исполнительных элементов для воздействия на профиль и планшетность в прокатной клети и значений профиля и планшетности центральной области горячекатаной металлической полосы
RU2775774C1 (ru) * 2018-07-19 2022-07-08 Смс Груп Гмбх Способ определения управляющих воздействий для активных исполнительных элементов для воздействия на профиль и планшетность в прокатной клети и значений профиля и планшетности центральной области горячекатаной металлической полосы
EP4353375A1 (de) * 2022-10-11 2024-04-17 Primetals Technologies Germany GmbH Verfahren zum ermitteln von stellgrössen eines walzgerüsts, enstprechendes steuerprogramm, steueeinrichtung mit einem derartigen steuerprogra sowie walzgerüst mit einer derartigen steuereinrichtung
WO2024078918A1 (de) * 2022-10-11 2024-04-18 Primetals Technologies Germany Gmbh Verfahren zum ermitteln von stellgrössen eines walzgerüsts, enstprechendes steuerprogramm, steueeinrichtung mit einem derartigen steuerprogramm sowie walzgerüst mit einer derartigen steuereinrichtung

Also Published As

Publication number Publication date
ATE367217T1 (de) 2007-08-15
EP1481742A3 (de) 2006-04-12
DE502004004331D1 (de) 2007-08-30
EP1481742B1 (de) 2007-07-18

Similar Documents

Publication Publication Date Title
EP1485216B1 (de) Rechnergestütztes ermittlungsverfahren für sollwerte für profil- und planheitsstellglieder
EP1799368B1 (de) Verfahren und vorrichtung zum kontinuierlichen herstellen eines dünnen metallbandes
EP2170535B1 (de) Verfahren zur einstellung eines zustands eines walzguts, insbesondere eines vorbands
EP0591291B1 (de) Regelung bei dem herstellen von warmband mittels eines mehrgerüstigen warmbandwalzwerks
DE112012006981B4 (de) Verfahren zur Herstellung von Bandstahl mit verschiedenen Zieldicken in der Längsrichtung mit einer kontinuierlichen Warmwalzstraße
DE69731008T2 (de) Walzverfahren für Bänder zur Reduzierung der Kantenschärfe
EP1675694B1 (de) Verfahren und steuervorrichtung zum betrieb einer walzstrasse für metallband
DE112004002903B4 (de) Walzenkeilanstellungs-/Steuerverfahren zum Walzen von plattenförmigem Material
WO2015124363A1 (de) Einfache vorsteuerung einer keilanstellung eines vorgerüsts
EP2603337A1 (de) Verfahren zum herstellen von walzgut mittels einer giesswalzverbundanlage, steuer- und/oder regeleinrichtung für eine giesswalzverbundanlage und giesswalzverbundanlage
DE10324679A1 (de) Steuerrechner und rechnergestützes Ermittlungsverfahren für eine Profil- und Planheitssteuerung für eine Walzstraße
WO2012032071A1 (de) Verfahren zum herstellen von stahlbändern durch endloswalzen oder semi-endloswalzen
DE4136013C2 (de) Verfahren und Vorrichtung zum Steuern eines Walzwerks
EP1481742B1 (de) Steuerrechner und rechnergestütztes Ermittlungsverfahren für eine Profil- und Planheitssteuerung für eine Walzstrasse
WO2011038965A1 (de) Verfahren zur modellbasierten ermittlung von stellglied-sollwerten für die asymmetrischen stellglieder der walzgerüste einer warmbreitbandstrasse
DE102004005011B4 (de) Regelverfahren und Regler für ein Walzgerüst
DE4190715C1 (de) Verfahren und Einrichtung zum Regeln eines Walzvorgangs
DE19831480C1 (de) Verfahren zum Voreinstellen von Kaltverformungsanlagen
WO2011038964A1 (de) Verfahren zur modellbasierten ermittlung von stellglied-sollwerten für die symmetrischen und asymmetrischen stellglieder der walzgerüste einer warmbreitbandstrasse
DE10159608C5 (de) Walzverfahren und Walzstraße für ein Band mit einer Schweißnaht
DE102005060046B4 (de) Walzstrasse mit mindestens zwei Bandbeeinflussungseinrichtungen und Verfahren zum Betrieb einer solchen Walzstrasse
WO2023088703A1 (de) Vorrichtung und verfahren zur herstellung eines gewalzten metallbandes
WO2010112196A1 (de) Walzanlage zum kontinuierlichen walzen von bandförmigem walzgut
DE102022212627A1 (de) Verfahren zum Herstellen eines Stahlbandes aus einem Vorprodukt, bei dem die Sollwerte über die Länge eines einzelnen Stahlbandes und / oder zeitlich in Bezug auf eine einzelne Produktionsanlage einer Walzstraße variabel vorgegeben werden
EP3943210A1 (de) Giess-walz-verbundanlage zur herstellung eines warmgewalzten fertigbands aus einer stahlschmelze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20060410

AKX Designation fees paid

Designated state(s): AT DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR IT

REF Corresponds to:

Ref document number: 502004004331

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140314

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150619

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004004331

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150428

Year of fee payment: 12

Ref country code: FR

Payment date: 20150415

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Effective date: 20151105

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 367217

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004331

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160419