EP1892457B1 - Verfahren und Vorrichtung zur Speicherung von Brenngas, insbesondere von Erdgas - Google Patents

Verfahren und Vorrichtung zur Speicherung von Brenngas, insbesondere von Erdgas Download PDF

Info

Publication number
EP1892457B1
EP1892457B1 EP07114847A EP07114847A EP1892457B1 EP 1892457 B1 EP1892457 B1 EP 1892457B1 EP 07114847 A EP07114847 A EP 07114847A EP 07114847 A EP07114847 A EP 07114847A EP 1892457 B1 EP1892457 B1 EP 1892457B1
Authority
EP
European Patent Office
Prior art keywords
gas stream
partial gas
partial
compressed
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07114847A
Other languages
English (en)
French (fr)
Other versions
EP1892457A1 (de
Inventor
Eberhard Otten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1892457A1 publication Critical patent/EP1892457A1/de
Application granted granted Critical
Publication of EP1892457B1 publication Critical patent/EP1892457B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0232Coupling of the liquefaction unit to other units or processes, so-called integrated processes integration within a pressure letdown station of a high pressure pipeline system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • F17C2227/0164Compressors with specified compressor type, e.g. piston or impulsive type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0185Arrangement comprising several pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0348Water cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0358Heat exchange with the fluid by cooling by expansion
    • F17C2227/036"Joule-Thompson" effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/60Natural gas or synthetic natural gas [SNG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/68Separating water or hydrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops

Definitions

  • the invention relates to a method and apparatus for storing fuel gas, in particular methane (natural gas), as well as, for example, from the WO 03/07991 are known.
  • the natural gas demand of private and industrial consumers is characterized by seasonal and daily fluctuations.
  • Natural gas storage facilities are operated to compensate for the fluctuations in consumption.
  • To cover the peak consumption in particular to cover the high natural gas demand for heating purposes at low winter temperatures correspondingly high capacities are provided in gas transmission networks municipal gas supplier.
  • large underground natural gas storage facilities for buffering consumption peaks such as tube storage and ball container are known.
  • the capacities of the latter gas storage are limited to several hours Eintechnisch- or Aus Grandezeit and therefore suitable only to compensate for daily consumption fluctuations.
  • the specific investment costs of such gas storage are high.
  • the supply of natural gas is therefore burdened with a relatively high transport or performance price.
  • conventional gas storage relatively large volumes and thus a lot of space.
  • the present invention has for its object to provide a method and an apparatus that allow a more cost-effective gas supply, especially natural gas supply.
  • the invention has for its object to provide a method and an apparatus that allow space-saving gas storage.
  • the invention proposes a method for storing fuel gas, in particular natural gas (methane), in which compressed fuel gas supplied by means of a supply line, in particular natural gas, is divided by means of a dividing device into a first partial gas stream and at least one second partial gas stream, in which the first partial gas stream is expanded by means of at least one working machine, in particular an expansion turbine, wherein the first partial gas stream is previously heated by means of at least one heat exchanger so that this partial gas stream after relaxation in the at least one working machine a temperature still above 5 ° C, preferably greater than or equal to 8 ° C, in which the second partial gas stream is compressed by means of at least one compressor driven by the at least one working machine, heat dissipated in the second partial gas stream by its compression being removed and being used to heat the first Gas partial flow is used in the at least one heat exchanger, in which the compressed, cooled by heat removal second partial gas stream is so far relaxed that at least 10%, preferably more than 50% of the second partial gas stream incurred in the liquid state, and in which
  • the first partial gas stream is preferably introduced into a municipal supply network.
  • the device according to the invention accordingly comprises a dividing device for dividing compressed, supplied by a supply line fuel gas, in particular natural gas, in a first partial gas flow and at least one second partial gas flow, at least one working machine, in particular an expansion turbine, for relaxing the first partial gas flow, at least one compressor for compressing the second partial gas flow, wherein the compressor is driven by the at least one working machine, at least one heat exchanger, which transfers heat, which arises in the second partial gas flow by the compression thereof, to the first gas partial flow before its expansion in the at least one working machine, at least one expansion device for relaxation and at least partial liquefaction of the compressed, cooled by heat removal second partial gas flow, and at least one heat-insulated container for storing fuel gas liquefied by means of the expansion device.
  • a dividing device for dividing compressed, supplied by a supply line fuel gas, in particular natural gas, in a first partial gas flow and at least one second partial gas flow
  • at least one working machine in particular an expansion turbine
  • the compressor for compressing the second partial gas
  • heat exchanger can also be used in the present context, the term "heat exchanger”.
  • An essential feature of the invention is the use of one or more heat exchangers to use the heat generated in the one partial gas flow during the compression, for the heating of the other, relaxing gas partial flow, and the drive of the at least one compressor by the at least one Working machine, by means of which said partial gas stream is expanded.
  • part of the pressure energy of the compressed fuel gas supplied via the supply line (high-pressure line) is used for the further compression and liquefaction of a partial gas stream.
  • the coupling according to the invention of the at least one compressor with the at least one working machine (for example expansion turbine) which relaxes the other partial gas stream does not require any additional drive energy, which is economically advantageous.
  • Another economic advantage of the invention is that it does not require any additional heat energy, which is usually required to heat (heat) natural gas as it is being expanded from a high pressure supply line to medium or low pressure for further distribution to prevent possible icing of the expansion plants due to the Joule-Thompson effect.
  • liquefying the fuel gas can be a space-saving gas storage achieve.
  • natural gas compressed to 20 bar occupies about 5% of the volume of natural gas
  • liquefied natural gas (methane) cooled to -162 ° C requires only about 0.17% of the volume of the standard gas.
  • fuel gas methane
  • other methods for which the use of a particularly low temperature level is advantageous include, for example, the decomposition of air, the production of crystalline CO 2 , as well as the direct use of liquid methane, for example, for power generation by direct injection in diesel combined heat and power plants or the pre-cooling sucked in gas turbines air.
  • the high temperature gradient between liquefied fuel gas (methane) and the usual ambient temperature (outside temperature) can be used to vaporize gas quantities and gain further energy.
  • An advantageous embodiment of the method according to the invention provides that the partial gas flow from which liquefied gas is to be produced is compressed in several stages and cooled between the compression stages becomes. In this way, the efficiency of the compression process can be improved.
  • the compressed and cooled partial gas flow is partially relaxed before its leading to liquefaction relaxation in another working machine, in particular another expansion turbine.
  • the power generated in this further work machine is preferably used to drive the compressor, a generator and / or another machine.
  • At least part of the compressed, cooled and relaxed for the purpose of liquefaction partial gas flow is used for cooling of even at a higher pressure level gas of the same partial gas flow.
  • the part of the partial gas stream used for cooling is then fed to the expanded, first partial gas stream, i. the non-liquefied gas partial stream added.
  • heat which is generated in the further compressed partial gas flow through its compression, is used by means of at least one heat exchanger to the relaxed by means of the working machine partial gas flow (ie the non-liquefied partial gas stream) after its relaxation to warm up.
  • the apparatus described comprises a dividing device 1 for dividing a gas flow supplied by means of a supply line (high-pressure line) into a first partial gas stream A and at least one second partial gas stream B.
  • the gas available in the high-pressure line usually has a pressure in the range from 30 to 100 bar, for example about 50 bar.
  • the dividing device 1 consists for example of a pipe branch provided with a control valve.
  • the inventive device further comprises a working machine 2 for relaxing the first partial gas flow A and a compressor 3 for compressing the second partial gas flow B, wherein the compressor 3 is driven by the working machine 2.
  • the working machine 2 preferably consists of an expansion turbine, while the compressor. 3 is preferably designed as a compression turbine.
  • the working machine 2 and the compressor 3 are arranged on a common shaft 4.
  • the control valve of the dividing device 1 is set as a function of the prevailing in the high-pressure line (gas pipeline) gas pressure.
  • the gas stream is preferably divided so that 50 to 70%, in particular about 60% of the gas is supplied to the compressor 3.
  • the quantitative ratio of the first partial gas flow A to the second partial gas flow B is, for example, about 40% to 60%.
  • the partial gas flow A is heated before the almost isentropic relaxation in the expansion turbine 2 by means of a heat exchanger 5 so far that it has a temperature even above 8 ° C after the almost isentropic relaxation.
  • the released during the relaxation work (rotational energy) is transmitted via the shaft 4 to the compression turbine 3.
  • a part of the work thus released can be used to drive a generator 7, wherein missing drive power can optionally be generated by a motor 6.
  • the second partial gas stream B is compressed in the compression turbine 3 to about 100 bar, whereby the gas heats up very strongly.
  • the temperature of the compressed partial gas stream B can be up to 1000 ° C.
  • Heat energy generated by the compression of the second partial gas stream B is discharged via a heat exchanger 8 and the heat exchanger 5 is supplied to the low pressure side via a water circuit 9.
  • a multi-stage compression with respective intermediate cooling is provided.
  • the compressor 3 has two compression stages 3.1, 3.2, wherein between the compression stages 3.1, 3.2 of the connected to the heat exchanger 5 via the water circuit 9 heat exchanger 8 is arranged.
  • a further heat exchanger 10 is provided, with which the compressed gas is cooled.
  • the heat exchanger 10 is connected via a water circuit 11 with a heat exchanger 12, which is arranged behind the expansion turbine 2 and the heating of the first partial gas flow A is used after its relaxation.
  • the compressed and cooled second partial gas stream B is fed to an expansion device 13 and expanded there to a low pressure, wherein the greater part of the gas (methane) is liquefied.
  • the liquefied gas B f is stored in one or more thermally insulated containers 14.
  • the storage volume of these containers is for example 600 to 800 m 3 . Such a storage volume is sufficient to cover the gas demand for a severe winter day or the peak demand of several days in a gas central plant of medium size.
  • the expansion device 13 is formed in the illustrated embodiment of at least one expansion valve. A part of the second partial gas stream B is still in the gaseous state after the flow through the expansion device 13 and is used for further cooling of even at a higher pressure level gas of the second partial gas stream B.
  • the expansion device 13 is provided with a cooling device (heat exchanger device) 15 in which non-liquefied gas of the expanded second partial gas stream B is passed in countercurrent to the gas which is still at a higher pressure level. Subsequently, this part of the expanded second partial gas stream B used for cooling is preferably added to the expanded first partial gas stream A.
  • the cooling device 15 is connected to a pipeline 16, which conducts the relaxed first partial gas flow A, so that non-liquefied gas of the expanded second partial gas stream B is fed to the expanded first partial gas stream A.
  • the expansion valve 13 is preferably preceded by an expansion turbine 17 in order to extract additional enthalpy from the compressed second gas flow B.
  • the further expansion turbine 17 can - as shown - either be arranged on the same shaft 4 in order to integrate their energy in the overall energy balance of the device according to the invention, or it can drive a generator via another shaft.
  • the device according to the invention can be arbitrarily extended in terms of their storage capacity.
  • Fig. 2 is shown a further embodiment of the device according to the invention.
  • the apparatus sketched in turn comprises a dividing device 1 for dividing a gas stream fed by means of a supply line (high-pressure line) into a first partial gas stream A and at least one second partial gas stream B.
  • the dividing device 1 comprises a fork (pipeline branch), wherein the high-pressure lines 21, 22 branching off there respectively a valve 1.1, 1.2 is integrated.
  • the valves 1.1 and 1.2 is assigned a common actuator 1.3.
  • the device has a plurality of turbine compressors 23, which are also referred to as a turbo compressor set.
  • Each turbine compressor (turbo compressor set) 23 comprises a compressor 3.1, 3.2, 3.3 or 3.4 and a turbine (expansion turbine) 2.1, 2.2, 2.3 and 2.4, which are mechanically coupled to each other.
  • a turbine compressor (expansion turbine) 2.1, 2.2, 2.3 and 2.4 which are mechanically coupled to each other.
  • Fig. 2 For example, four turbine compressors 23 are connected in series.
  • the partial gas flow A is gradually reduced in the turbines 2.1, 2.2, 2.3, 2.4 of the turbo compressor sets 23. Before the partial gas flow A flows into the turbine of the respective turbo-compressor set, it is first heated by means of an upstream heat exchanger 5.1, 5.2, 5.3 and 5.4 respectively.
  • the construction volume of the turbines 2.1, 2.2, 2.3, 2.4 increases in the flow direction of the gas to be expanded. The gas to be expanded thus flows through the turbines from that of a relatively compact turbine 2.1 to a relatively large-volume turbine 2.4.
  • the partial gas flow B in stages in the compressors 3.1, 3.2, 3.3, 3.4 of the turbo compressor sets 23 compacted.
  • the construction volume of the compressors 3.1, 3.2, 3.3, 3.4 decreases in the flow direction of the gas to be compressed.
  • the gas to be compressed thus flows through the compressors from a relatively large-volume compressor 3.1 to a relatively compact compressor 3.4.
  • the temperature or heat energy of the partial gas stream B increases due to the compression.
  • a portion of the heat that arises in the partial gas stream B by the compression is dissipated by means of heat exchangers 8.1, 8.2, 8.3, 8.4 and used to heat the partial gas stream A in the heat exchangers 5.1, 5.2, 5.3, 5.4.
  • each of the compressors 3.1, 3.2, 3.3, 3.4, a heat exchanger 8.1, 8.2, 8.3 and 8.4 downstream the heat is delivered to one of the heat exchanger 5.1, 5.2, 5.3, 5.4, which one of the turbines 2.1, 2.2, 2.3 or 2.4 is upstream and the heating of the partial gas stream A to be expanded is used.
  • the heat exchangers 5.1, 5.2, 5.3, 5.4 and 8.1, 8.2, 8.3, 8.4 form several cycles in groups.
  • four of the eight heat exchangers are each connected to two circuits.
  • the last compressor 3.4 in the series of compressors downstream heat exchanger 8.4 is connected to the heat exchanger 5.2, which is upstream of the second turbine 2.2 in the series of turbines.
  • the downstream of the penultimate compressor 3.3 in the series of compressors heat exchanger 8.3 is connected to the heat exchanger 5.1, which is connected upstream of the first turbine 2.1.
  • the compressed, cooled by heat removal gas partial flow B is relaxed by means of an expansion turbine 17 to a pressure which is in a range greater than 20 bar.
  • the temperature of the so relaxed gas partial stream B is in the range of about 5 to 8 ° C.
  • the expansion turbine 17 is a throttle 19 and a liquid separator 20 downstream for driving through the dew point.
  • the liquid separator 20 is followed by a heat exchanger 15 ', with which the gas partial stream B withdrew further heat.
  • the temperature of the partial gas stream B is after the heat exchanger 15 'just before the dew point of methane.
  • the compressed, cooled by heat removal partial gas flow B is relaxed so far that at least 10 to 30%, preferably more than 50% of the second partial gas stream B incurred in the liquid state.
  • the liquefaction takes place in several stages, for example in two stages.
  • a first expansion device 13 ' comprising a heat exchanger tube, a pressure vessel (boiler) 14' and at least one throttle 13.1
  • the expanded gas is present at a pressure in the range of 10 - 30 bar.
  • the gas is then expanded by the first expansion device 13 'into a second expansion device 13 ", which also comprises a heat exchanger tube, a boiler (container) 14 "and at least one throttle 13.2 In the boiler 14", the expanded gas has a pressure of about 1 bar.
  • the amounts of gas not liquefied during expansion are brought by means of at least one throttle 18 to a common pressure level and fed to the heat exchanger 15 ', where they extract the gas partial stream B - as mentioned above - further heat.
  • the non-liquefied gas quantities are compressed, so that they have the pressure level of a downstream distribution network, in which also the relaxed partial gas flow A is fed.
  • the liquefied fuel gas B f is finally discharged from the boiler (container) 14 ''.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Speicherung von Brenngas, insbesondere Methan (Erdgas), sowie sie beispielsweise aus der WO 03/07991 bekannt sind.
  • Der Erdgasbedarf privater und industrieller Verbraucher ist durch saisonale und tageszeitliche Schwankungen geprägt. Zum Ausgleich der Verbrauchsschwankungen werden Erdgasspeicher betrieben. Zur Abdeckung des Spitzenverbrauchs, insbesondere zur Abdeckung des hohen Erdgasbedarfs für Heizzwecke bei tiefen Wintertemperaturen werden in Gastransportnetzen kommunaler Gasversorger entsprechend hohe Kapazitäten bereitgestellt. Neben großen unterirdischen Erdgasspeichern sind Einrichtungen zum Abpuffern von Verbrauchsspitzen wie Röhrenspeicher und Druckkugelbehälter bekannt. Die Kapazitäten der zuletzt genannten Gasspeicher sind allerdings auf mehrere Stunden Einspeicher- bzw. Ausspeicherzeit begrenzt und deshalb nur zum Ausgleich von tageszeitlichen Verbrauchsschwankungen geeignet. Zudem sind die spezifischen Investitionskosten solcher Gasspeicher hoch. Die Belieferung mit Erdgas ist deshalb mit einem relativ hohen Transport- bzw. Leistungspreis belastet. Ferner haben herkömmliche Gasspeicher relative große Bauvolumina und somit einen hohen Platzbedarf.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren sowie eine Vorrichtung anzugeben, die eine kostengünstigere Gasversorgung, insbesondere Erdgasversorgung ermöglichen. Insbesondere liegt der Erfindung die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung anzugeben, die eine platzsparende Gasspeicherung ermöglichen.
  • Erfindungsgemäß wird diese Aufgabe durch ein Verfahren mit den in Anspruch 1 angegebenen Merkmalen bzw. durch eine Vorrichtung mit den in Anspruch 10 angegebenen Merkmalen gelöst.
  • Die Erfindung schlägt ein Verfahren zur Speicherung von Brenngas, insbesondere Erdgas (Methan) vor,
    bei dem verdichtetes, mittels einer Versorgungsleitung zugeführtes Brenngas, insbesondere Erdgas, mittels einer Teilungsvorrichtung in einen ersten Gasteilstrom und mindestens einen zweiten Gasteilstrom geteilt wird,
    bei dem der erste Gasteilstrom mittels mindestens einer Arbeitsmaschine, insbesondere einer Entspannungsturbine, entspannt wird, wobei der erste Gasteilstrom zuvor mittels mindestens eines Wärmetauschers soweit erwärmt wird, dass dieser Gasteilstrom nach der Entspannung in der mindestens einen Arbeitsmaschine eine Temperatur noch oberhalb von 5°C, vorzugsweise größer/gleich 8°C aufweist,
    bei dem der zweite Gasteilstrom mittels mindestens eines durch die mindestens eine Arbeitsmaschine angetriebenen Verdichters verdichtet wird, wobei Wärme, die im zweiten Gasteilstrom durch dessen Verdichtung entsteht, abgeführt und zur Erwärmung des ersten Gasteilstromes in dem mindestens einen Wärmetauscher genutzt wird,
    bei dem der verdichtete, durch Wärmeabfuhr gekühlte zweite Gasteilstrom soweit entspannt wird, dass mindestens 10 %, vorzugsweise mehr als 50 % des zweiten Gasteilstromes in flüssigem Zustand anfallen, und
    bei dem das so verflüssigte Brenngas in mindestens einem wärmeisolierten Behälter gespeichert wird.
  • Nach der Entspannung in der mindestens einen Arbeitsmaschine wird der erste Gasteilstrom vorzugsweise in ein kommunales Versorgungsnetz eingeleitet.
  • Die erfindungsgemäße Vorrichtung umfasst dementsprechend
    eine Teilungsvorrichtung zur Teilung von verdichtetem, mittels einer Versorgungsleitung zugeführten Brenngas, insbesondere Erdgas, in einen ersten Gasteilstrom und mindestens einen zweiten Gasteilstrom,
    mindestens eine Arbeitsmaschine, insbesondere eine Entspannungsturbine, zur Entspannung des ersten Gasteilstromes,
    mindestens einen Verdichter zur Verdichtung des zweiten Gasteilstromes, wobei der Verdichter durch die mindestens eine Arbeitsmaschine angetrieben wird,
    mindestens einen Wärmetauscher, der Wärme, die im zweiten Gasteilstrom durch dessen Verdichtung entsteht, auf den ersten Gasteilstrom vor dessen Entspannung in der mindestens einen Arbeitsmaschine überträgt,
    mindestens eine Entspannungsvorrichtung zur Entspannung und zumindest teilweisen Verflüssigung des verdichteten, durch Wärmeabfuhr gekühlten zweiten Gasteilstromes, und
    mindestens einen wärmeisolierten Behälter zur Speicherung von mittels der Entspannungsvorrichtung verflüssigtem Brenngas.
  • Anstelle des Begriffes "Wärmetauscher" kann im vorliegenden Kontext auch der Begriff "Wärmeübertrager" verwendet werden.
  • Ein wesentliches Kennzeichen der Erfindung ist die Verwendung eines oder mehrerer Wärmetauscher, um die Wärme, die in dem einen Gasteilstrom bei dessen Verdichtung entsteht, für die Erwärmung des anderen, zu entspannenden Gasteilstromes zu nutzen, und der Antrieb des mindestens einen Verdichters durch die mindestens eine Arbeitsmaschine, mittels welcher besagter Gasteilstrom entspannt wird.
  • Bei dem erfindungsgemäßen Verfahren wird ein Teil der Druckenergie des verdichteten, über die Versorgungsleitung (Hochdruckleitung) zugeführten Brenngases für die weitere Verdichtung und Verflüssigung eines Gasteilstromes genutzt. Durch die erfindungsgemäße Kopplung des mindestens einen Verdichters mit der mindestens einen den anderen Gasteilstrom entspannenden Arbeitsmaschine (z.B. Entspannungsturbine) muss keine zusätzliche Antriebsenergie zugeführt werden, was wirtschaftlich von Vorteil ist.
  • Ein weiterer wirtschaftlicher Vorteil der Erfindung besteht darin, dass sie keine zusätzliche Wärmeenergie erfordert, welche üblicherweise zur Erwärmung (Beheizung) von Erdgas bei dessen Entspannung aus einer Hochdruckversorgungsleitung auf Mittel- oder Niederdruck zum Zwecke der weiteren Verteilung erforderlich ist, um eine mögliche Vereisung der Entspannungsanlagen aufgrund des Joule-Thompson Effektes zu verhindern.
  • Durch die Verflüssigung des Brenngases (Erdgases) lässt sich eine platzsparende Gasspeicherung erzielen. Während zum Beispiel auf 20 bar verdichtetes Erdgas ca. 5 % des Volumens von Erdgas im Normzustand einnimmt, beansprucht verflüssigtes Erdgas (Methan), das auf -162 °C gekühlt ist, nur ca. 0,17 % des Volumens des Normgases.
  • Zur Weiterverwendung wird das bei Durchführung des erfindungsgemäßen Verfahrens verflüssigte Brenngas (Methan) erwärmt. Auch lassen sich mit der Erwärmung des Brenngases weitere Verfahren verbinden, für die die Ausnutzung eines besonders niedrigen Temperaturniveaus vorteilhaft ist; hierzu gehören beispielsweise die Zerlegung von Luft, die Herstellung von kristallinem CO2, sowie die direkte Anwendung von flüssigem Methan, beispielsweise zur Stromerzeugung durch Direkteinspritzung in Diesel-Blockheizkraftwerken oder die Vorkühlung der in Gasturbinen angesaugten Luft.
  • Ferner kann mittels eines Sterlingmotors das hohe Temperaturgefälle zwischen verflüssigtem Brenngas (Methan) und üblicher Umgebungstemperatur (Außentemperatur) genutzt werden, um Gasmengen zu verdampfen und weitere Energie zu gewinnen.
  • Eine vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass der Gasteilstrom, aus dem Flüssiggas erzeugt werden soll, in mehreren Stufen verdichtet und zwischen den Verdichtungsstufen gekühlt wird. Auf diese Weise lässt sich der Wirkungsgrad des Verdichtungsprozesses verbessern.
  • In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass der verdichtete und gekühlte Gasteilstrom vor seiner zur Verflüssigung führenden Entspannung in einer weiteren Arbeitsmaschine, insbesondere einer weiteren Entspannungsturbine teilentspannt wird. Die in dieser weiteren Arbeitsmaschine (Entspannungsturbine) erzeugte Leistung wird dabei vorzugsweise zum Antrieb des Verdichters, eines Generators und/oder einer weiteren Maschine genutzt.
  • In einer anderen bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass zumindest ein Teil des verdichteten, gekühlten und zum Zwecke der Verflüssigung entspannten Gasteilstromes zur Kühlung von noch auf höherem Druckniveau befindlichen Gas desselben Gasteilstromes genutzt wird. Vorzugsweise wird dabei der zur Kühlung genutzte Teil des Gasteilstromes anschließend dem entspannten, ersten Gasteilstrom, d.h. dem nicht zu verflüssigenden Gasteilstrom zugegeben.
  • In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass Wärme, die in dem weiter verdichteten Gasteilstrom durch dessen Verdichtung entsteht, mittels mindestens eines Wärmetauschers genutzt wird, um den mittels der Arbeitsmaschine entspannten Gasteilstrom (also den nicht zu verflüssigenden Gasteilstrom) nach dessen Entspannung zu erwärmen.
  • Weitere bevorzugte und vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sowie der erfindungsgemäßen Vorrichtung sind in den Unteransprüchen angegeben.
  • Nachfolgend wird die Erfindung anhand einer mehrere Ausführungsbeispiele darstellenden Zeichnung näher erläutert. Es zeigen in schematischer Darstellung:
  • Fig. 1
    ein erstes Ausführungsbeispiel der erfindungsgemäßen Vorrichtung (Anlage) zur Speicherung von Brenngas, vorzugsweise Methan (Erdgas), und
    Fig. 2
    ein zweites Ausführungsbeispiel der erfindungsgemäßen Vorrichtung (Anlage) zur Speicherung von Brenngas, vorzugsweise Methan (Erdgas).
  • Die in Fig. 1 skizzierte Vorrichtung umfasst eine Teilungsvorrichtung 1 zur Teilung eines mittels einer Versorgungsleitung (Hochdruckleitung) zugeführten Gasstromes in einen ersten Gasteilstrom A und mindestens einen zweiten Gasteilstrom B. Das in der Hochdruckleitung zur Verfügung stehende Gas weist üblicherweise einen Druck im Bereich von 30 bis 100 bar, beispielsweise ca. 50 bar auf. Die Teilungsvorrichtung 1 besteht beispielsweise aus einem mit einem Stellventil versehenen Rohrleitungsabzweig.
  • Die erfindungsgemäße Vorrichtung umfasst ferner eine Arbeitsmaschine 2 zur Entspannung des ersten Gasteilstromes A und einen Verdichter 3 zur Verdichtung des zweiten Gasteilstromes B, wobei der Verdichter 3 durch die Arbeitsmaschine 2 angetrieben wird. Die Arbeitsmaschine 2 besteht vorzugsweise aus einer Entspannungsturbine, während der Verdichter 3 vorzugsweise als Verdichtungsturbine ausgeführt ist. Die Arbeitsmaschine 2 und der Verdichter 3 sind auf einer gemeinsamen Welle 4 angeordnet.
  • Genauso ist jedoch der Einsatz von Kolbenmotoren und Kolbenverdichtern möglich, insbesondere bei der Verwendung der Vorrichtung für geringere Gasströme.
  • Das Stellventil der Teilungsvorrichtung 1 wird in Abhängigkeit des in der Hochdruckleitung (Ferngasleitung) herrschenden Gasdruckes eingestellt. Der Gasstrom wird vorzugsweise so geteilt wird, dass 50 bis 70 %, insbesondere ca. 60 % des Gases dem Verdichter 3 zugeführt werden. Das Mengenverhältnis von erstem Gasteilstrom A zu zweitem Gasteilstrom B beträgt beispielsweise ca. 40 % zu 60%.
  • Der Gasteilstrom A wird vor der nahezu isentropen Entspannung in der Entspannungsturbine 2 mittels eines Wärmetauschers 5 soweit erwärmt, dass er nach der nahezu isentropen Entspannung eine Temperatur noch oberhalb von 8°C aufweist. Die bei der Entspannung freigesetzte Arbeit (Drehenergie) wird über die Welle 4 auf die Verdichtungsturbine 3 übertragen. Zudem kann ein Teil der so freigesetzten Arbeit zum Antrieb eines Generators 7 genutzt werden, wobei fehlende Antriebsleistung gegebenenfalls durch einen Motor 6 erzeugt werden kann.
  • Der zweite Gasteilstrom B wird in der Verdichtungsturbine 3 auf ca. 100 bar komprimiert, wobei sich das Gas sehr stark erwärmt. Die Temperatur des verdichteten Gasteilstromes B kann bis zu 1000°C betragen. Wärmeenergie, die durch die Verdichtung des zweiten Gasteilstromes B entsteht, wird über einen Wärmetauscher 8 abgeführt und dem Wärmetauscher 5 auf der Niederdruckseite über einen Wasserkreislauf 9 zugeführt. Zur Verbesserung des Wirkungsgrades des Verdichtungsprozesses ist eine mehrstufige Verdichtung mit jeweiliger Zwischenkühlung vorgesehen. In dem dargestellten Ausführungsbeispiel weist der Verdichter 3 zwei Verdichtungsstufen 3.1, 3.2 auf, wobei zwischen den Verdichtungsstufen 3.1, 3.2 der mit dem Wärmetauscher 5 über den Wasserkreislauf 9 verbundene Wärmetauscher 8 angeordnet ist.
  • Am Ende des Verdichters 3 ist ein weiterer Wärmetauscher 10 vorgesehen, mit dem das verdichtete Gas gekühlt wird. Der Wärmetauscher 10 ist über einen Wasserkreislauf 11 mit einem Wärmetauscher 12 verbunden, der hinter der Entspannungsturbine 2 angeordnet ist und der Erwärmung des ersten Gasteilstromes A nach dessen Entspannung dient.
  • Der verdichtete und gekühlte zweite Gasteilstrom B wird einer Entspannungsvorrichtung 13 zugeführt und dort auf einen niedrigen Druck entspannt, wobei der größte Teil des Gases (Methans) verflüssigt wird. Das verflüssigte Gas Bf wird in einem oder mehreren wärmeisolierten Behältern 14 gespeichert. Das Speichervolumen dieser Behälter beträgt beispielsweise 600 bis 800 m3. Ein solches Speichervolumen reicht aus, um in einem Gasstadtwerk mittlerer Größe den Gasbedarf für einen strengen Wintertag bzw. den Spitzenbedarf mehrerer Tage abdecken zu können.
  • Die Entspannungsvorrichtung 13 ist in dem dargestellten Ausführungsbeispiel aus mindestens einem Entspannungsventil gebildet. Ein Teil des zweiten Gasteilstromes B liegt nach der Durchströmung der Entspannungsvorrichtung 13 noch in gasförmigem Zustand vor und wird zur weiteren Abkühlung von noch auf höherem Druckniveau befindlichen Gas des zweiten Gasteilstromes B genutzt. Hierzu ist die Entspannungsvorrichtung 13 mit einer Kühlvorrichtung (Wärmetauschereinrichtung) 15 versehen, in der nicht verflüssigtes Gas des entspannten zweiten Gasteilstromes B im Gegenstrom zu dem noch auf höherem Druckniveau befindlichen Gas geführt wird. Anschließend wird dieser zur Kühlung genutzte Teil des entspannten zweiten Gasteilstromes B vorzugsweise dem entspannten ersten Gasteilstrom A zugegeben. Hierzu ist die Kühlvorrichtung 15 an einer Rohrleitung 16 angeschlossen, welche den entspannten ersten Gasteilstrom A leitet, so dass nicht verflüssigtes Gas des entspannten zweiten Gasteilstromes B dem entspannten ersten Gasteilstrom A zugeführt wird.
  • Dem Entspannungsventil 13 ist vorzugsweise eine Entspannungsturbine 17 vorgeschaltet, um dem verdichteten zweiten Gasstrom B weitere Enthalpie zu entziehen. Die weitere Entspannungsturbine 17 kann - wie dargestellt - entweder auf der gleichen Welle 4 angeordnet sein, um ihre Energie in der Gesamtenergiebilanz der erfindungsgemäßen Vorrichtung zu integrieren, oder sie kann über eine andere Welle einen Generator antreiben.
  • Durch eine Trennung der Anlagenteile zur Herstellung von verflüssigtem Gas (Erdgas) einerseits und zur drucklosen Speicherung des verflüssigten Gases in einem wärmeisolierten Behälter 14 andererseits kann die erfindungsgemäße Vorrichtung (Anlage) hinsichtlich ihrer Bevorratungskapazität beliebig erweitert werden.
  • In Fig. 2 ist ein weiteres Ausführungsbeispiel der erfindungsgemäßen Vorrichtung dargestellt. Die in Fig. 2 skizzierte Vorrichtung umfasst wiederum eine Teilungsvorrichtung 1 zur Teilung eines mittels einer Versorgungsleitung (Hochdruckleitung) zugeführten Gasstromes in einen ersten Gasteilstrom A und mindestens einen zweiten Gasteilstrom B. Die Teilungsvorrichtung 1 umfasst eine Gabelung (Rohrleitungsabzweig), wobei in den dort abzweigenden Hochdruckleitungen 21, 22 jeweils ein Ventil 1.1, 1.2 integriert ist. Den Ventilen 1.1 und 1.2 ist eine gemeinsame Stelleinrichtung 1.3 zugeordnet.
  • Die Vorrichtung weist mehrere Turbinenkompressoren 23 auf, die auch als Turbo-Kompressorsatz bezeichnet werden. Jeder Turbinenkompressor (Turbo-Kompressorsatz) 23 umfasst einen Kompressor 3.1, 3.2, 3.3 bzw. 3.4 und eine Turbine (Entspannungsturbine) 2.1, 2.2, 2.3 bzw. 2.4, die miteinander mechanisch gekoppelt sind. In Fig. 2 sind beispielhaft vier Turbinenkompressoren 23 hintereinandergeschaltet.
  • Der Gasteilstrom A wird in den Turbinen 2.1, 2.2, 2.3, 2.4 der Turbo-Kompressorsätze 23 stufenweise entspannt. Bevor der Gasteilstrom A in die Turbine des jeweiligen Turbo-Kompressorsatzes strömt, wird er zunächst mittels eines vorgeschalteten Wärmetauschers 5.1, 5.2, 5.3 bzw. 5.4 erwärmt. Das Bauvolumen der Turbinen 2.1, 2.2, 2.3, 2.4 nimmt dabei in Strömungsrichtung des zu entspannenden Gases zu. Das zu entspannende Gas durchströmt die Turbinen also von der einer relativ kompakten Turbine 2.1 zu einer relativ großvolumigen Turbine 2.4.
  • Der Gasteilstrom B wird dagegen in den Kompressoren 3.1, 3.2, 3.3, 3.4 der Turbo-Kompressorsätze 23 stufenweise verdichtet. Das Bauvolumen der Kompressoren 3.1, 3.2, 3.3, 3.4 nimmt in Strömungsrichtung des zu verdichtenden Gases ab. Das zu verdichtende Gas durchströmt die Kompressoren also von einem relativ großvolumigen Kompressor 3.1 zu einem relativ kompakten Kompressor 3.4.
  • Die Temperatur bzw. Wärmeenergie des Gasteilstroms B nimmt aufgrund der Verdichtung zu. Ein Teil der Wärme, die im Gasteilstrom B durch dessen Verdichtung entsteht, wird mittels Wärmetauschern 8.1, 8.2, 8.3, 8.4 abgeführt und zur Erwärmung des Gasteilstromes A in den Wärmetauschern 5.1, 5.2, 5.3, 5.4 genutzt. Hierzu ist jedem der Kompressoren 3.1, 3.2, 3.3, 3.4 ein Wärmetauscher 8.1, 8.2, 8.3 bzw. 8.4 nachgeschaltet, dessen Wärme an einen der Wärmetauscher 5.1, 5.2, 5.3, 5.4 abgegeben wird, welcher einer der Turbinen 2.1, 2.2, 2.3 bzw. 2.4 vorgeschaltet ist und der Erwärmung des zu entspannenden Gasteilstroms A dient.
  • Es ist zu erkennen, dass die Wärmetauscher 5.1, 5.2, 5.3, 5.4 und 8.1, 8.2, 8.3, 8.4 gruppenweise mehrere Kreisläufe bilden. In dem gezeigten Beispiel sind je vier der acht Wärmetauscher zu zwei Kreisläufen verbunden. Der dem letzten Kompressor 3.4 in der Reihe der Kompressoren nachgeschaltete Wärmetauscher 8.4 ist dabei mit dem Wärmetauscher 5.2 verbunden, welcher der zweiten Turbine 2.2 in der Reihe der Turbinen vorgeschaltet ist. Dementsprechend ist der dem vorletzten Kompressor 3.3 in der Reihe der Kompressoren nachgeschaltete Wärmetauscher 8.3 mit dem Wärmetauscher 5.1 verbunden, welcher der ersten Turbine 2.1 vorgeschaltet ist.
  • Den den Kompressoren nachgeschalteten Wärmetauschern 8.1, 8.2, 8.3, 8.4 ist je eine Drossel (Drosselventil) 19.1, 19.2, 19.3 bzw. 19.4 nachgeschaltet. Mittels der jeweiligen Drossel 19.1, 19.2, 19.3 bzw. 19.4 wird dem verdichteten Gasteilstrom B bei Bedarf Enthalpie entzogen, was zu einer Erhöhung der Temperatur des verdichteten Gasteilstroms B und somit zu höheren Temperaturen in den den Turbinen 2.1, 2.2, 2.3, 2.4 vorgeschalteten Wärmetauschern 5.1, 5.2, 5.3, 5.4 führt.
  • Der verdichtete, durch Wärmeabfuhr gekühlte Gasteilstrom B wird mittels einer Entspannungsturbine 17 auf einen Druck entspannt, der in einem Bereich größer 20 bar liegt. Die Temperatur des so entspannten Gasteilstroms B liegt im Bereich von ca. 5 bis 8°C. Der Entspannungsturbine 17 ist eine Drossel 19 und ein Flüssigkeitsabscheider 20 zum Durchfahren des Wassertaupunktes nachgeschaltet. Auf den Flüssigkeitsabscheider 20 folgt ein Wärmetauscher 15', mit dem dem Gasteilstrom B weitere Wärme entzogen. Die Temperatur des Gasteilstroms B liegt nach dem Wärmetauscher 15' kurz vor dem Taupunkt von Methan.
  • Der verdichtete, durch Wärmeabfuhr gekühlte Gasteilstrom B wird soweit entspannt, dass mindestens 10 bis 30 %, vorzugsweise mehr als 50 % des zweiten Gasteilstromes B in flüssigem Zustand anfallen. Die Verflüssigung erfolgt mehrstufig, beispielsweise zweistufig. In einer ersten Entspannungsvorrichtung 13', umfassend ein Wärmetauscherrohr, einen Druckbehälter (Kessel) 14' und mindestens eine Drossel 13.1, liegt das entspannte Gas mit einem Druck im Bereich von 10 - 30 bar vor. Das Gas wird dann von der ersten Entspannungsvorrichtung 13' in eine zweite Entspannungsvorrichtung 13" entspannt, die ebenfalls ein Wärmetauscherrohr, einen Kessel (Behälter) 14" und mindestens eine Drossel 13.2 umfasst. In dem Kessel 14" hat das entspannte Gas einen Druck von ca. 1 bar.
  • Die beim Entspannen nicht verflüssigten Gasmengen werden mittels mindestens einer Drossel 18 auf ein gemeinsames Druckniveau gebracht und dem Wärmetauscher 15' zugeführt, wo sie dem Gasteilstrom B - wie oben erwähnt - weitere Wärme entziehen. In einer dem Wärmetauscher 15' nachgeschalteten Verdichtungsturbine 3.5, welche mit der Entspannungsturbine 17 mechanisch gekoppelt ist, werden die nicht verflüssigten Gasmengen verdichtet, so dass sie das Druckniveau eines nachgeschalteten Verteilungsnetzes aufweisen, in welches auch der entspannte Gasteilstrom A eingespeist wird. Das verflüssigte Brenngas Bf wird schließlich aus dem Kessel (Behälter) 14'' abgeleitet.
  • Die Ausführung der Erfindung ist nicht auf die vorstehend beschriebenen Beispiele beschränkt. Vielmehr sind eine Vielzahl von Varianten möglich, die auch bei abweichender Gestaltung von der in den beiliegenden Ansprüchen angegebenen Erfindung Gebrauch machen.

Claims (23)

  1. Verfahren zur Speicherung von Brenngas, insbesondere Erdgas,
    bei dem verdichtetes, mittels einer Versorgungsleitung zugeführtes Brenngas, insbesondere Erdgas, mittels einer Teilungsvorrichtung in einen ersten Gasteilstrom (A) und mindestens einen zweiten Gasteilstrom (B) geteilt wird,
    bei dem der erste Gasteilstrom (A) mittels mindestens einer Arbeitsmaschine (2), insbesondere einer Entspannungsturbine, entspannt wird, wobei der erste Gasteilstrom (A) zuvor mittels mindestens eines Wärmetauschers (5) soweit erwärmt wird, dass dieser Gasteilstrom (A) nach der Entspannung in der mindestens einen Arbeitsmaschine (2) eine Temperatur noch oberhalb von 5°C, vorzugsweise größer/gleich 8°C aufweist,
    bei dem der zweite Gasteilstrom (B) mittels mindestens eines durch die mindestens eine Arbeitsmaschine (2) angetriebenen Verdichters (3) verdichtet wird, wobei Wärme, die im zweiten Gasteilstrom (B) durch dessen Verdichtung entsteht, abgeführt und zur Erwärmung des ersten Gasteilstromes (A) in dem mindestens einen Wärmetauscher (5) genutzt wird, bei dem der verdichtete, durch Wärmeabfuhr gekühlte zweite Gasteilstrom (B) soweit entspannt wird, dass mindestens 10 %, vorzugsweise mehr als 50 % des zweiten Gasteilstromes (B) in flüssigem Zustand anfallen, und
    bei dem das so verflüssigte Brenngas (Bf) in mindestens einem wärmeisolierten Behälter (14) gespeichert wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass der verdichtete, durch Wärmeabfuhr gekühlte zweite Gasteilstrom (B) mittels eines oder mehrerer Entspannungsturbinen und/oder Entspannungsventile entspannt wird, so dass mindestens 10 %, vorzugsweise mehr als 50 % des zweiten Gasteilstromes (B) in flüssigem Zustand anfallen.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass der zweite Gasteilstrom (B) in mehreren Stufen verdichtet und zwischen den Verdichtungsstufen (3.1, 3.2) gekühlt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass
    der verdichtete, durch Wärmeabfuhr gekühlte zweite Gasteilstrom (B) vor der Entspannung, bei der mindestens 10 %, vorzugsweise mehr als 50 % des zweiten Gasteilstromes in flüssigem Zustand anfallen, in einer weiteren Arbeitsmaschine (17), insbesondere einer weiteren Entspannungsturbine teilentspannt wird.
  5. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet, dass die durch die Teilentspannung des verdichteten, durch Wärmeabfuhr gekühlten zweiten Gasteilstromes (B) erzeugte Leistung der weiteren Arbeitsmaschine (17) zum Antrieb des Verdichters (3), eines Generators (7) und/oder einer Maschine genutzt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass
    zumindest ein Teil des verdichteten, durch Wärmeabfuhr gekühlten und dann entspannten zweiten Gasteilstromes (B) zur Kühlung von noch auf höherem Druckniveau befindlichen Gas des zweiten Gasteilstromes (B) genutzt wird.
  7. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet, dass
    der zur Kühlung von noch auf höherem Druckniveau befindlichen Gas des zweiten Gasteilstromes (B) genutzte Teil des entspannten zweiten Gasteilstromes (B) dem entspannten ersten Gasteilstrom (A) zugegeben wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass
    Wärme, die im zweiten Gasteilstrom (B) durch dessen Verdichtung entsteht, mittels mindestens eines Wärmetauschers (10, 12) genutzt wird, um den mittels der Arbeitsmaschine (2) entspannten ersten Gasteilstrom (A) zu erwärmen.
  9. Verfahren nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, dass das verdichtete Brenngas mittels der Teilungsvorrichtung (1) so geteilt wird, dass 50 % bis 70 % des Brenngases als zweiter Gasteilstrom (B) dem Verdichter (3) zugeführt werden.
  10. Vorrichtung zur Speicherung von Brenngas, insbesondere Erdgas, umfassend
    eine Teilungsvorrichtung (1) zur Teilung von verdichtetem, mittels einer Versorgungsleitung zugeführten Brenngas, insbesondere Erdgas, in einen ersten Gasteilstrom (A) und mindestens einen zweiten Gasteilstrom (B),
    mindestens eine Arbeitsmaschine (2), insbesondere eine Entspannungsturbine, zur Entspannung des ersten Gasteilstromes (A),
    mindestens einen Verdichter (3) zur Verdichtung des zweiten Gasteilstromes (B), wobei der Verdichter (3) durch die mindestens eine Arbeitsmaschine (2) angetrieben wird,
    mindestens einen Wärmetauscher (5), der Wärme, die im zweiten Gasteilstrom (B) durch dessen Verdichtung entsteht, auf den ersten Gasteilstrom (A) vor dessen Entspannung in der mindestens einen Arbeitsmaschine (2) überträgt,
    mindestens eine Entspannungsvorrichtung (13) zur Entspannung und zumindest teilweisen Verflüssigung des verdichteten, durch Wärmeabfuhr gekühlten zweiten Gasteilstromes (B), und
    mindestens einen wärmeisolierten Behälter (14) zur Speicherung von mittels der Entspannungsvorrichtung verflüssigtem Brenngas (Bf).
  11. Vorrichtung nach Anspruch 10,
    dadurch gekennzeichnet, dass
    die mindestens eine Entspannungsvorrichtung (13) aus einem oder mehreren Entspannungsventilen gebildet ist.
  12. Vorrichtung nach Anspruch 10 oder 11,
    dadurch gekennzeichnet, dass
    der Verdichter (3) mindestens zwei Verdichtungsstufen (3.1, 3.2) aufweist, wobei zwischen den Verdichtungsstufen (3.1, 3.2) mindestens ein der Kühlung des zweiten Gasteilstromes (B) dienender Wärmetauscher (8) angeordnet ist.
  13. Vorrichtung nach einem der Ansprüche 10 bis 12,
    dadurch gekennzeichnet, dass
    die Arbeitsmaschine (2) zur Entspannung des ersten Gasteilstromes (A) und der Verdichter (3) miteinander mechanisch gekoppelt sind.
  14. Vorrichtung nach einem der Ansprüche 10 bis 13,
    dadurch gekennzeichnet, dass
    die Arbeitsmaschine (2) zur Entspannung des ersten Gasteilstromes (A) und der Verdichter (3) durch eine gemeinsame Welle (4) miteinander mechanisch gekoppelt sind.
  15. Vorrichtung nach einem der Ansprüche 10 bis 14,
    dadurch gekennzeichnet, dass
    dem Verdichter (3) eine weitere Arbeitsmaschine (17), insbesondere eine weitere Entspannungsturbine, zur Teilentspannung des verdichteten, durch Wärmeabfuhr gekühlten zweiten Gasteilstromes (B) nachgeordnet ist.
  16. Vorrichtung nach Anspruch 15,
    dadurch gekennzeichnet, dass
    die weitere Arbeitsmaschine (17) den Verdichter (3), einen Generator (7) und/oder eine Maschine antreibt.
  17. Vorrichtung nach Anspruch 15 oder 16,
    dadurch gekennzeichnet, dass
    die weitere Arbeitsmaschine (17), der Verdichter (3), der Generator (7) und/oder die Maschine miteinander mechanisch gekoppelt sind.
  18. Vorrichtung nach Anspruch 15 oder 16,
    dadurch gekennzeichnet, dass
    die weitere Arbeitsmaschine (17), der Verdichter (3), der Generator (7) und/oder die Maschine durch eine gemeinsame Welle (4) miteinander mechanisch gekoppelt sind.
  19. Vorrichtung nach einem der Ansprüche 15 bis 18,
    dadurch gekennzeichnet, dass
    zwischen dem Verdichter (3) und der weiteren Arbeitsmaschine (17) mindestens ein der Kühlung des zweiten Gasteilstromes (B) und/oder der Erwärmung des ersten Gasteilstromes (A) dienender Wärmetauscher (10) angeordnet ist.
  20. Vorrichtung nach einem der Ansprüche 10 bis 19,
    dadurch gekennzeichnet, dass
    mindestens ein weiterer Wärmetauscher (12) vorhanden ist, der Wärme, die durch die Verdichtung des zweiten Gasteilstromes (B) entsteht, auf den ersten Gasteilstrom (A) nach dessen Entspannung in der Arbeitsmaschine (2) überträgt.
  21. Vorrichtung nach einem der Ansprüche 10 bis 20,
    dadurch gekennzeichnet, dass
    die Entspannungsvorrichtung (13), mittels welcher der verdichtete, durch Wärmeabfuhr gekühlte zweite Gasteilstrom (B) teilweise verflüssigt wird, mit einer Kühlvorrichtung (15) versehen ist, in der nicht verflüssigtes Gas des entspannten zweiten Gasteilstromes (B) zur Kühlung von noch auf höherem Druckniveau befindlichen Gas des zweiten Gasteilstromes (B) genutzt wird.
  22. Vorrichtung nach Anspruch 21,
    dadurch gekennzeichnet, dass
    die Kühlvorrichtung (15) so ausgebildet ist, dass nicht verflüssigtes Gas des entspannten zweiten Gasteilstromes (B) im Gegenstrom zu noch auf höherem Druckniveau befindlichen Gas des zweiten Gasteilstromes (B) geführt wird.
  23. Vorrichtung nach Anspruch 21 oder 22,
    dadurch gekennzeichnet, dass
    die Kühlvorrichtung (15) mit einer Rohrleitung (16), welche den entspannten ersten Gasteilstrom (A) leitet, verbunden ist, so dass nicht verflüssigtes Gas des entspannten zweiten Gasteilstromes (B) dem entspannten ersten Gasteilstrom (A) zugeführt wird.
EP07114847A 2006-08-24 2007-08-23 Verfahren und Vorrichtung zur Speicherung von Brenngas, insbesondere von Erdgas Active EP1892457B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006039616A DE102006039616B3 (de) 2006-08-24 2006-08-24 Verfahren und Vorrichtung zur Speicherung von Brenngas, insbesondere Erdgas

Publications (2)

Publication Number Publication Date
EP1892457A1 EP1892457A1 (de) 2008-02-27
EP1892457B1 true EP1892457B1 (de) 2009-01-14

Family

ID=38616385

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07114847A Active EP1892457B1 (de) 2006-08-24 2007-08-23 Verfahren und Vorrichtung zur Speicherung von Brenngas, insbesondere von Erdgas

Country Status (3)

Country Link
EP (1) EP1892457B1 (de)
AT (1) ATE421068T1 (de)
DE (2) DE102006039616B3 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2746641T3 (pl) * 2012-12-20 2015-12-31 Linde Ag Sprężanie i chłodzenie gazu
CN103775239B (zh) * 2013-01-17 2017-01-04 摩尔动力(北京)技术股份有限公司 近恒温压冷源热机
FR3002311B1 (fr) * 2013-02-20 2016-08-26 Cryostar Sas Dispositif de liquefaction de gaz, notamment de gaz naturel
RU2707349C1 (ru) * 2019-01-18 2019-11-26 Общество с ограниченной ответственностью "АПА-КАНДТ СИБИРЬ" (ООО "АПА-КАНДТ СИБИРЬ") Рекуперативный способ наполнения метаном баллонов высокого давления и устройство для его осуществления
WO2022187781A1 (en) * 2021-03-04 2022-09-09 Exxonmobil Upstream Research Company Systems and methods for liquefaction of natural gas
CN113606499B (zh) * 2021-08-13 2023-05-05 上海氢枫能源技术有限公司 一种适用于加氢站的冷水机组及其使用方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503220A (en) * 1967-07-27 1970-03-31 Chicago Bridge & Iron Co Expander cycle for natural gas liquefication with split feed stream
US3735600A (en) * 1970-05-11 1973-05-29 Gulf Research Development Co Apparatus and process for liquefaction of natural gases
FR2165729B1 (de) * 1971-12-27 1976-02-13 Technigaz Fr
GB1538477A (en) * 1975-05-28 1979-01-17 Gutehoffnungshuette Sterkrade Evaporation of liquified natural gas
US5611218A (en) * 1995-12-18 1997-03-18 The Boc Group, Inc. Nitrogen generation method and apparatus
FR2774158B1 (fr) * 1998-01-23 2000-03-17 Air Liquide Installation combinee d'un four et d'un appareil de distillation d'air et procede de mise en oeuvre
US6006545A (en) * 1998-08-14 1999-12-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Liquefier process
US6220053B1 (en) * 2000-01-10 2001-04-24 Praxair Technology, Inc. Cryogenic industrial gas liquefaction system
US6581409B2 (en) * 2001-05-04 2003-06-24 Bechtel Bwxt Idaho, Llc Apparatus for the liquefaction of natural gas and methods related to same
US6672104B2 (en) * 2002-03-28 2004-01-06 Exxonmobil Upstream Research Company Reliquefaction of boil-off from liquefied natural gas
NO323496B1 (no) * 2004-01-23 2007-05-29 Hamwrothy Kse Gas System As Fremgangsmate for rekondensering av avkoksgass

Also Published As

Publication number Publication date
DE502007000381D1 (de) 2009-03-05
DE102006039616B3 (de) 2008-04-03
EP1892457A1 (de) 2008-02-27
ATE421068T1 (de) 2009-01-15

Similar Documents

Publication Publication Date Title
EP3362739B1 (de) Erzeugung von prozessdampf mittels hochtemperaturwärmepumpe
EP1892457B1 (de) Verfahren und Vorrichtung zur Speicherung von Brenngas, insbesondere von Erdgas
DE102015109898A1 (de) Dampfkraftwerk und Verfahren zu dessen Betrieb
EP1562013A1 (de) Verfahren zum Rückverflüssigen eines Gases
WO2014000882A2 (de) Verfahren und vorrichtung zur erzeugung elektrischer energie
EP0874188B2 (de) Verfahren zum Aufbereiten von tiefgekühltem Flüssiggas
WO2014019698A2 (de) Verfahren und vorrichtung zur erzeugung elektrischer energie
DE69819366T2 (de) Verfahren und vorrichtung zur verflüssigung
WO2010108464A2 (de) Verfahren und einrichtung zum betrieb einer antriebsmaschine für ein schiff zum transport von flüssiggas
WO2006136269A1 (de) Verfahren zum verflüssigen eines kohlenwasserstoff-reichen stromes
EP2825737A1 (de) Anlage zur speicherung und abgabe von thermischer energie mit einem wärmespeicher und einem kältespeicher und verfahren zu deren betrieb
DE102006046246A1 (de) Verfahren und Anlage zum Verdampfen von verflüssigtem Erdgas und Entspannen von Erdgas
DE102007006370A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
EP1913319A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
DE102015002164A1 (de) Verfahren zum Verflüssigen von Erdgas
WO2018029371A1 (de) Wärmeübertrager zur verwendung in einem warmteil eines flüssigluftenergiespeicherkraftwerks, warmteil und verfahren zum betrieb eines solchen wärmeübertragers in einem solchen warmteil
EP2902604A1 (de) Verfahren und Einrichtung zum Speichern von Energie
EP3948122A1 (de) Verfahren und anlage zum verflüssigen eines gases
EP3293475A1 (de) Verfahren und methode zur speicherung und rückgewinnung von energie
DE602004001004T2 (de) Verfahren zur Stickstoffverflüssigung durch Ausnutzung der Verdampfungskälte von flüssigem Methan
EP3795885A1 (de) Gasentspannungsanlage mit lng-erzeugungsanlage
DE102016009254A1 (de) Verfahren zur Speicherung und Rückgewinnung von Energie
DE102022205134B3 (de) Druckaufbausystem und Druckaufbauverfahren zum Entnehmen eines Druckgases aus einer Speichervorrichtung zur Aufbewahrung eines Flüssiggases
WO2005111522A1 (de) Verfahren und vorrichtung zum verflüssigen eines kohlenwasserstoff-reichen stromes
DE102010055448A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007000381

Country of ref document: DE

Date of ref document: 20090305

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090425

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090615

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090414

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090925

Year of fee payment: 3

26N No opposition filed

Effective date: 20091015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20110817

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110817

Year of fee payment: 5

Ref country code: FR

Payment date: 20110826

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110819

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110902

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

BERE Be: lapsed

Owner name: OTTEN, EBERHARD

Effective date: 20120831

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 421068

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120823