EP1875548A1 - BATTERIE RECHARGEABLE AU LITHIUM AYANT UN EXCES DE CATHODE A BASE DE LiFePO4 PAR RAPPORT A UNE ANODE A BASE DE Li4Ti5O12 - Google Patents

BATTERIE RECHARGEABLE AU LITHIUM AYANT UN EXCES DE CATHODE A BASE DE LiFePO4 PAR RAPPORT A UNE ANODE A BASE DE Li4Ti5O12

Info

Publication number
EP1875548A1
EP1875548A1 EP06741390A EP06741390A EP1875548A1 EP 1875548 A1 EP1875548 A1 EP 1875548A1 EP 06741390 A EP06741390 A EP 06741390A EP 06741390 A EP06741390 A EP 06741390A EP 1875548 A1 EP1875548 A1 EP 1875548A1
Authority
EP
European Patent Office
Prior art keywords
lithium rechargeable
rechargeable battery
anode
electrolyte
excess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06741390A
Other languages
German (de)
English (en)
Other versions
EP1875548A4 (fr
Inventor
Alain Vallee
Patrick Leblanc
Martin Beauparlant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bathium Canada Inc
Original Assignee
Avestor LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avestor LP filed Critical Avestor LP
Publication of EP1875548A1 publication Critical patent/EP1875548A1/fr
Publication of EP1875548A4 publication Critical patent/EP1875548A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Lithium rechargeable cell having an excess of LiFePO 4 based cathode relative to a Li 4 Ti 5 O 12 based anode
  • the present invention relates generally to Lithium rechargeable batteries and, more particularly, to Lithium rechargeable batteries optimized for large format batteries and long cycle life.
  • Lithium batteries comprising Lithium Titanium Oxide, Li 4 Ti 5 012, as anode or negative electrode material and Lithium Iron Phosphate, LiFeP ⁇ 4, as cathode (or positive electrode) material have recently emerged as a promising candidate for Electric or Hybrid vehicles as well as stationary applications and power tools.
  • This specific couple of electrode materials provides long cycle stability, environment compatibility (low toxicity) and low cost with appreciable capacity values for a broad range of discharge rates.
  • Li4Ti 5 Oi2 has a spinal-type structure where the electrochemical process involves the reversible insertion of lithium ions occurring at a stable voltage of approximately 1.55 V vs. Li -(/Li at 25 0 C.
  • LiFeP ⁇ 4 has an olivine structure where the electrochemical process involves the reversible insertion-extraction of lithium ions also occurring at a flat voltage plateau of about 3.45V vs. Li -I/Li at 25 0 C. Because the voltage difference between the anode and cathode material operate within the stability window of most electrolytes, the electrolyte is not likely to react with the anode or cathode active materials and the battery is expected to be safe and to have an inherently high cycling life.
  • One of the remaining obstacles to the longevity of this electrode combination is the potential degradation of the LiFeP ⁇ 4 cathode material under condition of over-discharge that may occur if the battery is not equipped with an electronic protection that shuts down the battery when an over-discharge condition occurs.
  • a battery which comprises a plurality of cells connected in series or parallel may have one of its cells reaching the over-discharge state prematurely which is undetected by the electronic protection device and the LiFeP ⁇ 4 cathode material of that particular cell may be permanently damaged if it reaches and exceeds its phase change voltage point under prolonged over-discharge conditions.
  • a particular cell of a battery comprising a plurality of cells connected in series falls into an over-discharge condition, that particular cell may reverse its polarity through the continued current discharge of the other cells and either oxidize or reduce the electrolyte thereby degrading it to a point where that particular cell is permanently damaged which will affect the overall longevity and performance of the battery.
  • LiFePCU cathode material and Li4Ti5 ⁇ i2 anode material designed with a safety mechanism that prevents degradation of the battery in an over-discharge state.
  • the present invention seeks to provide a safe large format lithium ion rechargeable battery based on LiFePCU cathode material and Li4TisOi2 anode material having a long cycle life.
  • the invention seeks to provide a lithium ion rechargeable battery comprising at least one electrochemical cell, each electrochemical cell comprising an anode of Li 4 Ti 5 On type, a cathode of LiFeP ⁇ 4 type and an electrolyte separating the anode from the cathode, wherein the electrochemical cell comprises an excess of LiFeP ⁇ 4 cathode material relative to the Li4TisOi2 anode material to prevent permanently damaging the electrochemical cell in an over-discharge condition.
  • Figure 1 is a diagram illustrating the discharge curves of an electrochemical cell (Bl) comprising an LiFeP ⁇ 4 based cathode (Fl) and an Li4TisOi2 based anode (Tl), the electrochemical cell having an excess of LiFeP ⁇ 4 cathode material
  • Figure 2 is a schematic view of a lithium battery comprising a plurality of electrochemical cells connected in series.
  • Figure 1 illustrates the discharge behavior of an LiFeP ⁇ 4 based cathode material combined to an Li4TisOi2 based anode material in an electrochemical cell with the theoretical voltage stability window of the electrolyte separator positioned between the LiFeP ⁇ 4 cathode and the Li4TisOi2 anode represented in doted lines.
  • the electrolyte separator may be a liquid or gelled soaked in a microporous separator.
  • the electrolyte is also present in the LiFeP ⁇ 4 cathode and the Li4TisOi2 anode.
  • the LiFeP ⁇ 4 cathode material discharge curve Fl has its plateau around 3.4 V vs Li-f/Li which is below the upper limit of the stability window of the electrolyte separator used.
  • the Li4TisOi2 anode material discharge curve Tl has its plateau around 1.5 V vs Li-+/Li which is above the lower limit of the stability window of the electrolyte separator used.
  • the electrochemical cell corresponding to and represented by the discharge curve B 1 illustrated in Figure 1 is designed with an excess LiFeP ⁇ 4 cathode material relative to the Li4TisOi2 anode such that in over-discharge conditions, it is the oxidation of the Li4TisOi2 anode that will be exhausted first thereby preventing the LiFeP ⁇ 4 cathode material from reaching the steep reduction slope R which is exothermic and further reaching the second plateau P2 of the LiFeP ⁇ 4 cathode material that marks an irreversible phase change of the LiFeP ⁇ 4 cathode material which causes permanent capacity loss of the electrochemical cell.
  • the electrochemical cell is preferably designed with a 5% excess of LiFeP ⁇ 4 cathode material relative to the Li4TisOi2 anode.
  • the electrochemical cell may be designed with a 10% excess of LiFeP ⁇ 4 cathode material relative to the Li4TisOi2 anode for added safety and even as much as 20% excess of LiFeP ⁇ 4 cathode material relative to the Li4TisOi2 anode for increased safety.
  • the discharge cut-off theoretically occurs when the potential difference of the electrochemical cell (Bl) reaches about 0 Volt vs Li-»/Li thereby maintaining the voltage at the surface of the Li4Ti5 ⁇ i2 anode and at the surface of the LiFeP ⁇ 4 cathode of the cell within the stability window of the electrolyte used.
  • electrochemical cell 12 comprises an excess of LiFeP ⁇ 4 cathode material relative to the Li 4 Ti 5 Oo anode
  • the Li4TisOi2 anode will continue to oxidize until it is exhausted and its surface will eventually reach a voltage outside the stability window of the electrolyte where the solvent in the electrolyte begins to oxidize at the surface of the Li4Ti 5 Oi2 anode whereas the LiFePCk cathode material remains stable on its initial discharge plateau Pl .
  • the solvent portion of the electrolyte will undergo oxidation at the surface of the Li4TisOi2 anode until the sum of the voltages of the series of electrochemical cells reaches the overall discharge cut-off voltage.
  • the surface area of the Li4TisOi2 anode is relatively small and the solvent contained in the electrolyte oxidizes slowly thereby generating a limited amount of heat and gas and only partially degrading the electrolyte.
  • the oxidized electrolyte having been partially degraded remains operational for further cycles, has generated limited amount of heat and gas and the LiFePCh cathode material has been spares from potential harmful reduction.
  • a simple venting system is preferably used on the casing of the battery as is well in the art which may easily manage the low pressure and temperature evolution resulting from the solvent oxidation at the surface of the Li4Ti5 ⁇ i2 anode as compared to the sophisticated venting systems used in typical Li-ion cells where pressure and temperature increase rapidly and may lead to failure.
  • FIG. 2 illustrates schematically, an example of a battery 10 comprising a plurality of series-connected electrochemical cells each having an LiFeP ⁇ 4 cathode, an Li4TisOi2 anode and a liquid or gelled electrolyte therebetween.
  • battery 10 is monitored by a simple electronic system that shuts off the battery when its voltage V falls below 1.0 Volts or exceeds 2.0 Volts.
  • a cell 12 may be defective and fall below the 1.0 Volt threshold while the voltage V of battery 10 remains above the 1.0 Volt threshold.
  • the individual voltage Bl of cell 12 will fall to 0 volt and the Li4Ti5 ⁇ i2 anode will oxidize until it is exhausted and the surface of the anode will reach a voltage 3.4 Volts.
  • the cell 12 inverses its polarity.
  • the excess of LiFePCh cathode material relative to the Li4Ti5 ⁇ i2 anode material prevents the simultaneous exhaustion of the cathode material.
  • the solvent in the electrolyte begins to oxidize at the surface of the Li4TisOi2 anode.
  • the solvent portion of the electrolyte will undergo oxidation at surface of the Li4TisOi2 anode until the sum of the voltages V of the series of electrochemical cells reaches the overall discharge cut-off voltage.
  • the LiFePCU cathode voltage will remain on its plateau Pl (fig.l) until its excess is consume thereby providing an important buffer to protect itself and the cell 12 in over-discharge against potential exothermic reduction once it reaches its steep reduction slope R (fig.l).
  • the electrolyte separator of the electrochemical cell configuration outlined above may be any kind of liquid or gelled electrolytes known to those skilled in the art that comprise an alkali metal salt and a aprotic solvent and/or a polar solvent and optionally a polymer.
  • the electrolyte may also be an ionic liquid or a liquid salt having a stability window comprised between 1.0 Volts or lower and 3.7 Volts and higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

L’invention décrit une batterie rechargeable au lithium comprenant une série de cellules électrochimiques ayant chacune une anode à base de Li4Ti5O12, une cathode à base de LiFePO4, un électrolyte et un séparateur placé entre l’anode et la cathode. Chacune desdites cellules comprend un excès de cathode à base de LiFePO4 par rapport à l’anode à base de Li4Ti5012, de manière à éviter un endommagement irréversible desdites cellules lors d’une décharge excessive.
EP06741390A 2005-04-15 2006-04-13 BATTERIE RECHARGEABLE AU LITHIUM AYANT UN EXCES DE CATHODE A BASE DE LiFePO4 PAR RAPPORT A UNE ANODE A BASE DE Li4Ti5O12 Withdrawn EP1875548A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67148605P 2005-04-15 2005-04-15
PCT/CA2006/000599 WO2006108302A1 (fr) 2005-04-15 2006-04-13 BATTERIE RECHARGEABLE AU LITHIUM AYANT UN EXCES DE CATHODE A BASE DE LiFePO4 PAR RAPPORT A UNE ANODE A BASE DE Li4Ti5O12

Publications (2)

Publication Number Publication Date
EP1875548A1 true EP1875548A1 (fr) 2008-01-09
EP1875548A4 EP1875548A4 (fr) 2008-05-28

Family

ID=37086590

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06804613A Withdrawn EP1875535A4 (fr) 2005-04-15 2006-04-13 Batterie rechargeable de type rocking-chair au lithium
EP06741390A Withdrawn EP1875548A4 (fr) 2005-04-15 2006-04-13 BATTERIE RECHARGEABLE AU LITHIUM AYANT UN EXCES DE CATHODE A BASE DE LiFePO4 PAR RAPPORT A UNE ANODE A BASE DE Li4Ti5O12

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06804613A Withdrawn EP1875535A4 (fr) 2005-04-15 2006-04-13 Batterie rechargeable de type rocking-chair au lithium

Country Status (5)

Country Link
US (2) US20060234123A1 (fr)
EP (2) EP1875535A4 (fr)
JP (3) JP2008536272A (fr)
CA (2) CA2605867A1 (fr)
WO (2) WO2006108302A1 (fr)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7641992B2 (en) 2004-10-29 2010-01-05 Medtronic, Inc. Medical device having lithium-ion battery
US9065145B2 (en) * 2004-10-29 2015-06-23 Medtronic, Inc. Lithium-ion battery
US9077022B2 (en) 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
US7642013B2 (en) 2004-10-29 2010-01-05 Medtronic, Inc. Medical device having lithium-ion battery
US7927742B2 (en) 2004-10-29 2011-04-19 Medtronic, Inc. Negative-limited lithium-ion battery
US20080044728A1 (en) * 2004-10-29 2008-02-21 Medtronic, Inc. Lithium-ion battery
US7682745B2 (en) 2004-10-29 2010-03-23 Medtronic, Inc. Medical device having lithium-ion battery
US8105714B2 (en) 2004-10-29 2012-01-31 Medtronic, Inc. Lithium-ion battery
CN101048898B (zh) 2004-10-29 2012-02-01 麦德托尼克公司 锂离子电池及医疗装置
US7662509B2 (en) 2004-10-29 2010-02-16 Medtronic, Inc. Lithium-ion battery
US7879495B2 (en) 2004-10-29 2011-02-01 Medtronic, Inc. Medical device having lithium-ion battery
US8980453B2 (en) * 2008-04-30 2015-03-17 Medtronic, Inc. Formation process for lithium-ion batteries
US7337010B2 (en) 2004-10-29 2008-02-26 Medtronic, Inc. Medical device having lithium-ion battery
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
US20080210676A1 (en) * 2006-05-01 2008-09-04 Rod Lambirth Portable welder
FR2920255B1 (fr) * 2007-08-24 2009-11-13 Commissariat Energie Atomique Generateur electrochimique au lithium fonctionnant avec un electrolyte aqueux.
JP5242315B2 (ja) * 2008-09-25 2013-07-24 株式会社東芝 非水電解質二次電池
JP5159681B2 (ja) 2009-03-25 2013-03-06 株式会社東芝 非水電解質電池
WO2010132443A1 (fr) * 2009-05-11 2010-11-18 Advanced Power Technologies, Inc. Systèmes et procédés permettant de fournir des services de réseau électrique et des stations de charge pour véhicules électriques
CN102334219B (zh) 2009-05-15 2014-07-23 株式会社东芝 非水电解质电池、用于该非水电解质电池的负极活性物质、及电池包
JP5782634B2 (ja) 2009-05-26 2015-09-24 オプトドット コーポレイション ナノ多孔性セパレータ層を利用するリチウム電池
JP5380537B2 (ja) * 2009-07-30 2014-01-08 株式会社東芝 非水電解液二次電池
US20110236736A1 (en) * 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and manufacturing method thereof
WO2012011944A2 (fr) 2010-07-19 2012-01-26 Optodot Corporation Séparateurs pour cellules électrochimiques
US9564654B2 (en) * 2010-09-14 2017-02-07 Zhuhai Zhi Li Battery Co. Ltd. Rechargeable lithium ion button cell battery
KR101384881B1 (ko) * 2010-11-02 2014-04-15 한국전자통신연구원 리튬 이차전지
KR101223623B1 (ko) * 2011-01-05 2013-01-17 삼성에스디아이 주식회사 에너지 저장 장치
US20120212941A1 (en) * 2011-02-22 2012-08-23 Jomar Reschreiter Cordless, portable, rechargeable food heating lamp
US9287580B2 (en) 2011-07-27 2016-03-15 Medtronic, Inc. Battery with auxiliary electrode
US20130149560A1 (en) 2011-12-09 2013-06-13 Medtronic, Inc. Auxiliary electrode for lithium-ion battery
KR101997261B1 (ko) * 2011-12-23 2019-07-08 현대자동차주식회사 유황 다공성 나노복합구조체와 다공성 나노도전재를 함유한 리튬 유황 이차전지용 양극
CN103579633B (zh) * 2012-08-09 2016-02-17 清华大学 正极及锂离子电池
JP6244623B2 (ja) * 2012-12-18 2017-12-13 株式会社Gsユアサ 非水電解質二次電池の製造方法及び非水電解質二次電池
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
WO2014189082A1 (fr) * 2013-05-22 2014-11-27 石原産業株式会社 Procédé de fabrication de batterie secondaire à électrolyte non aqueux
US9059481B2 (en) * 2013-08-30 2015-06-16 Nanotek Instruments, Inc. Non-flammable quasi-solid electrolyte and non-lithium alkali metal or alkali-ion secondary batteries containing same
CN106253427B (zh) * 2014-01-28 2018-05-29 广东欧珀移动通信有限公司 终端及其电池充电控制装置与方法
JP6275856B2 (ja) 2014-01-28 2018-02-07 グアンドン オッポ モバイル テレコミュニケーションズ コーポレーション,リミテッドGuangdong Oppo Mobile Telecommunications Corp., Ltd. 端末、電源アダプター及び充電異常の処理方法
US12040506B2 (en) 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
WO2016178341A1 (fr) 2015-05-01 2016-11-10 ソニー株式会社 Dispositif de traitement d'informations, système de communication, procédé de traitement d'informations, et programme
KR101780777B1 (ko) 2015-12-18 2017-09-21 울산과학기술원 리튬 이차 전지의 충방전 방법
WO2023106128A1 (fr) * 2021-12-07 2023-06-15 パナソニックIpマネジメント株式会社 Batterie
US11735944B1 (en) 2022-10-14 2023-08-22 Beta Air, Llc System and method for using unrecoverable energy in a battery cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274271B1 (en) * 1996-08-27 2001-08-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte lithium secondary battery
US20040096740A1 (en) * 2002-11-20 2004-05-20 Nissan Motor Co., Ltd. Bipolar battery
EP1482582A2 (fr) * 2003-05-01 2004-12-01 Nissan Motor Co., Ltd. Electrode à charge et décharge ultra rapide et sa batterie

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711476A (en) * 1980-06-24 1982-01-21 Yuasa Battery Co Ltd Secondary organic electrolyte battery
JPH0249364A (ja) * 1988-05-11 1990-02-19 Matsushita Electric Ind Co Ltd リチウム二次電池
US5015547A (en) * 1988-07-08 1991-05-14 Matsushita Electric Industrial Co., Ltd. Lithium secondary cell
US5278000A (en) * 1992-09-02 1994-01-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Overcharge and overdischarge protection of ambient temperature secondary lithium cells
FR2707426B1 (fr) * 1993-07-09 1995-08-18 Accumulateurs Fixes Générateur électrochimique rechargeable au lithium et son procédé de réalisation.
CA2147578C (fr) * 1995-04-21 2002-04-16 Jan Naess Reimers Oxyde de lithium et de manganise et son utilisation dans les piles rechargeables
US5552241A (en) * 1995-05-10 1996-09-03 Electrochemical Systems, Inc. Low temperature molten salt compositions containing fluoropyrazolium salts
US5721067A (en) * 1996-02-22 1998-02-24 Jacobs; James K. Rechargeable lithium battery having improved reversible capacity
JP4296580B2 (ja) * 2000-01-11 2009-07-15 株式会社ジーエス・ユアサコーポレーション 非水電解質リチウム二次電池
KR100497147B1 (ko) * 2000-02-08 2005-06-29 주식회사 엘지화학 다중 중첩 전기화학 셀 및 그의 제조방법
US6479185B1 (en) * 2000-04-04 2002-11-12 Moltech Power Systems, Inc. Extended life battery pack with active cooling
JP2002015775A (ja) * 2000-06-29 2002-01-18 Toshiba Battery Co Ltd 非水溶媒二次電池およびこれに用いる正極活物質
CN1284261C (zh) * 2000-07-06 2006-11-08 株式会社杰士汤浅 非水电解质二次电池及其制备方法
JP4524881B2 (ja) * 2000-08-14 2010-08-18 ソニー株式会社 非水電解質二次電池
CA2327370A1 (fr) * 2000-12-05 2002-06-05 Hydro-Quebec Nouvelle methode de fabrication de li4ti5o12 pur a partir du compose ternaire tix-liy-carbone: effet du carbone sur la synthese et la conductivite de l'electrode
CN1205689C (zh) * 2001-09-28 2005-06-08 任晓平 二次锂离子电池或电池组、其保护电路以及电子装置
JP4673529B2 (ja) * 2001-11-06 2011-04-20 プライムアースEvエナジー株式会社 組電池システムの制御方法及び装置
TWI263235B (en) * 2002-04-02 2006-10-01 Nippon Catalytic Chem Ind Material for electrolytic solutions and use thereof
US6805719B2 (en) * 2002-04-15 2004-10-19 Medtronic, Inc. Balanced anode electrode
KR100462784B1 (ko) * 2002-08-12 2004-12-29 삼성에스디아이 주식회사 안전성이 개선된 비수계 전해액 및 이를 채용한 리튬 전지
CA2411695A1 (fr) * 2002-11-13 2004-05-13 Hydro-Quebec Electrode recouverte d'un film obtenu a partir d'une solution aqueuse comportant un liant soluble dans l'eau, son procede de fabrication et ses utilisations
FR2848549B1 (fr) * 2002-12-16 2005-01-21 Commissariat Energie Atomique Procede de preparation de composes d'insertion d'un metal alcalin, materiaux actifs les contenant, et dispositifs comprenant ces materiaux actifs
JP4562990B2 (ja) * 2003-01-17 2010-10-13 富士ゼロックス株式会社 画像形成装置
US20040248014A1 (en) * 2003-01-30 2004-12-09 West Robert C. Electrolyte including polysiloxane with cyclic carbonate groups
JP2004265814A (ja) * 2003-03-04 2004-09-24 Ngk Spark Plug Co Ltd 積層型電池の製造方法
JP4363874B2 (ja) * 2003-03-25 2009-11-11 株式会社東芝 非水電解質電池
KR100533095B1 (ko) * 2003-04-09 2005-12-01 주식회사 엘지화학 과방전 방지제를 포함하는 양극 활물질 및 이를 이용한리튬 이차 전지
JP2004314916A (ja) * 2003-04-21 2004-11-11 Nsk Ltd 電動パワーステアリング装置
US6905131B2 (en) * 2003-08-12 2005-06-14 Shimano Inc. Bicycle suspension assembly
JP4159954B2 (ja) * 2003-09-24 2008-10-01 株式会社東芝 非水電解質電池
JP4929580B2 (ja) * 2003-10-30 2012-05-09 株式会社Gsユアサ リチウムイオン二次電池
JP3769291B2 (ja) * 2004-03-31 2006-04-19 株式会社東芝 非水電解質電池
JP2006040748A (ja) * 2004-07-28 2006-02-09 Yuasa Corp 電気化学デバイス
WO2006080110A1 (fr) * 2005-01-26 2006-08-03 Shirouma Science Co., Ltd. Matériau d’électrode positive pour pile secondaire au lithium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274271B1 (en) * 1996-08-27 2001-08-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte lithium secondary battery
US20040096740A1 (en) * 2002-11-20 2004-05-20 Nissan Motor Co., Ltd. Bipolar battery
EP1482582A2 (fr) * 2003-05-01 2004-12-01 Nissan Motor Co., Ltd. Electrode à charge et décharge ultra rapide et sa batterie

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOURBON C ET AL: "Evaluation of Li4Ti5O12 synthesis routes for power applications in association with LiCoO2, LiMn2O4 and optimized LiFePO4" MEETING ABSTRACTS, ELECTROCHEMICAL SOCIETY, no. 204th, 2003, page ABS 361, XP002477115 *
FRANGER S ET AL: "Optimized Lithium Iron Phosphate for High-Rate Electrochemical Applications" JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 151, no. 7, 17 May 2004 (2004-05-17), page A1024, XP002477116 *
See also references of WO2006108302A1 *

Also Published As

Publication number Publication date
WO2007006123A1 (fr) 2007-01-18
WO2006108302A1 (fr) 2006-10-19
JP2008536272A (ja) 2008-09-04
EP1875535A1 (fr) 2008-01-09
US20060234125A1 (en) 2006-10-19
US20060234123A1 (en) 2006-10-19
JP2008536271A (ja) 2008-09-04
EP1875535A4 (fr) 2008-07-30
CA2605874A1 (fr) 2007-01-18
JP2013101967A (ja) 2013-05-23
EP1875548A4 (fr) 2008-05-28
CA2605867A1 (fr) 2006-10-19

Similar Documents

Publication Publication Date Title
EP1875548A1 (fr) BATTERIE RECHARGEABLE AU LITHIUM AYANT UN EXCES DE CATHODE A BASE DE LiFePO4 PAR RAPPORT A UNE ANODE A BASE DE Li4Ti5O12
JP3575735B2 (ja) 非水系の再充電可能なリチウム電池
KR101073228B1 (ko) 비수성 전해질 이차 전지
US6074776A (en) Polymerizable additives for making non-aqueous rechargeable lithium batteries safe after overcharge
WO2005099025A3 (fr) Navette redox de protection contre une decharge excessive dans des batteries lithium-ion rechargeables
JP2008519399A5 (fr)
Koehler General overview of non-lithium battery systems and their safety issues
JPH10154532A (ja) 有機電解液二次電池
JP5856611B2 (ja) 特定のバイポーラ構造を有するリチウム電気化学アキュムレータ
KR920009805B1 (ko) 라튬 이차전지
Holze Self-discharge of batteries: Causes, Mechanisms and Remedies
CA2895358C (fr) Cellule electrochimique ou batterie ayant une impedance reduite et procede de production de celle-ci
US20230275279A1 (en) Remanufacturing of a battery cell
US10476103B2 (en) Electrode containing silicon and copolymer having ionic ally conductive polymer and electrically conductive polymer, and battery cell using same
JPH10294107A (ja) アルカリ蓄電池用負極活物質とこれを用いた電池
JP3163197B2 (ja) 集合電池
KR20200020279A (ko) 저장 성능이 향상된 이차전지 및 저장 성능 열화 방지방법
CN106663795B (zh) 用于原电池的复合阳极以及原电池
US20240154086A1 (en) Method And System For Silicon-Dominant Lithium-Ion Cells With Controlled Utilization of Silicon
JPH042065A (ja) 非水電解液二次電池とその製造法
JP4560877B2 (ja) リチウム二次電池
JP2022550102A (ja) ケイ素のリチウム化が制御されたケイ素系リチウムイオンセルのための方法およびシステム
CN117716550A (zh) 低电压牺牲电极
JP2022544855A (ja) 化成を介したシリコンアノードを含むセルの改善された性能のための方法及びシステム
Turner Finding the ideal storage: The lowdown on battery technology

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

A4 Supplementary search report drawn up and despatched

Effective date: 20080429

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080821

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BATHIUM CANADA INC.

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 10/36 20100101AFI20130228BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20160804