EP1853846A1 - Installation de regazeification de gaz naturel liquefie - Google Patents

Installation de regazeification de gaz naturel liquefie

Info

Publication number
EP1853846A1
EP1853846A1 EP06709300A EP06709300A EP1853846A1 EP 1853846 A1 EP1853846 A1 EP 1853846A1 EP 06709300 A EP06709300 A EP 06709300A EP 06709300 A EP06709300 A EP 06709300A EP 1853846 A1 EP1853846 A1 EP 1853846A1
Authority
EP
European Patent Office
Prior art keywords
regasification
heat transfer
plant according
methanol
regasification plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06709300A
Other languages
German (de)
English (en)
Other versions
EP1853846B1 (fr
Inventor
Alexandre Rojey
Ari Minkkinen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1853846A1 publication Critical patent/EP1853846A1/fr
Application granted granted Critical
Publication of EP1853846B1 publication Critical patent/EP1853846B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0323Heat exchange with the fluid by heating using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0327Heat exchange with the fluid by heating with recovery of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification

Definitions

  • the present invention relates to a regasification plant for liquefied natural gas and a method used in such an installation.
  • the gas is transported in liquefied form by land vehicles or boats (usually LNG tankers) between the site production and the operating site.
  • land vehicles or boats usually LNG tankers
  • the natural gas is liquefied near the production site during compression and cooling operations to a temperature of -160 ° C.
  • the liquefied natural gas (LNG) is then stored in appropriate tanks and then transferred under liquid form in tanks for its land or sea transport to the site of exploitation.
  • this liquefied gas is discharged into LNG storage tanks from which this gas can be regasified on demand and used, either directly on the operating site or transported in gaseous form via pipelines. to other places of exploitation.
  • the liquefied gas is stored and transported to the vicinity of the coastal terminal in isothermal tanks of the LNG carrier.
  • This liquefied gas is either regasified from the tanks of the LNG carrier and then transported in gaseous form via pipelines to the operating sites, or sent in liquid form to tanks of the coastal terminal for storage and regasification on demand.
  • the gas in liquid form is pumped from the tank or tank and then passes through a set of heat exchangers that act as a vaporizer or vaporizer. regasification.
  • this set of heat exchangers is traversed by sea water, possibly heated, so that the calories present in this water are transmitted to the gas. Thanks to the transmission of these calories, the gas is warmed along its path in the heat exchanger assembly and gradually changes state to emerge from this set of exchangers in gaseous form.
  • seawater that has passed through the heat exchangers is discharged into the sea with a very low temperature, resulting in a degradation of the flora and fauna underwater.
  • seawater is a corrosive agent for all the metal parts of the exchangers and therefore leads to greater maintenance of these exchangers.
  • LNG circulates in the exchangers with a very low temperature
  • the seawater must travel these exchangers with a high flow rate so as to avoid forming crystals, which requires pumping installations of large size with a high cost.
  • the present invention proposes to overcome the disadvantages mentioned above through a regasification installation that uses a heat-transfer agent that is environmentally friendly and that can be used far from any coastal terminal.
  • the present invention relates to a regasification plant for liquefied natural gas comprising a gas storage tank in liquefied form and a regasification device for LNG covered by a heat transfer medium and natural gas, characterized in that the installation comprises a loop circuit in which circulates the heat transfer medium in the form of a low viscosity organic fluid and a low crystallization temperature point and in that the regasification device comprises at least two exchangers.
  • the installation may include a reheat unit . the heat transfer agent.
  • the reheating unit can be traveled . by air.
  • the heat transfer agent may have a crystallization temperature of between -90 ° C. and -150 ° C.
  • the heat transfer agent may be an alcohol such as methanol, ethanol or propanol.
  • One of the exchangers can be co-current between the LNG and the heat transfer agent and the other exchangers can be against the current.
  • the countercurrent exchanger may be in two parts between which is interposed a phase separator.
  • At least the countercurrent exchanger may be of the type with brazed plates and fins.
  • the circulation circuit of the heat transfer agent may comprise an additional heating drainer.
  • the installation may comprise means for liquefying a hydrocarbon by heat exchange with the heat transfer medium.
  • the hydrocarbon can be in gaseous form after its application to driving a turbine.
  • the hydrocarbon may be propane.
  • the installation may also include means for trapping CO 2 by the heat transfer medium.
  • the heat transfer agent may be used as a CO 2 solvent.
  • FIG. 1 is a schematic view of the LNG regasification plant according to the invention.
  • FIG. 2 is a partial sectional view of the heater used in the installation according to the invention
  • FIG. 3 is a diagrammatic sectional view of the regasifier used in this installation
  • FIG. 4 is a first variant of the regasification installation according to the invention.
  • FIG. 5 is another variant of the regasification plant according to the invention.
  • FIG. 6 shows an example of a particular use of the installation according to the invention.
  • FIG. 7 shows another example of a use of the installation according to the invention.
  • FIG. 1 schematically shows a regasification plant for a liquefied natural gas (LNG) which comprises an LNG storage tank 10 at atmospheric pressure and at a temperature in the region of -160 ° C., a regasification device with a unit of heat exchanger, or regasifier 12, traversed by a heat transfer agent and by the LNG from the tank, and a heating unit 14 of the heat transfer medium.
  • the heat transfer agent is an organic fluid whose crystallization point is close to that of LNG and has a sufficiently low viscosity so that it can be easily circulated in pipes even at very low temperatures. In addition, this agent remains in the liquid state under conditions of use at atmospheric pressure and at room temperature.
  • this heat transfer agent may be an alcohol or a hydrocarbon or a compound thereof.
  • the organic fluid considered by way of example is methanol whose crystallization point is around -98 ° C but it can also be used other alcohols such as ethanol (point of crystallization: - 114 ° C) or propanol (crystallization point: -126 ° C).
  • This installation comprises a circulation loop 16 of the heat transfer medium which, in the example shown, is a closed loop with a hot part and a cold part.
  • This loop comprises a circulation pump 18, a circulation line 20 of this agent between the pump and the regasifier 12, a circulation line 22 between the regasifier and the reheating unit 14, a return line 24 between this unit of reheating and the circulation pump, a tank 26 of coolant being interposed on this return line.
  • the installation also comprises an LNG suction pump 28 generally immersed in the tank 10, a circulation pipe 30 of the LNG between this pump and a circulation pump 32, a pipe 34 bringing the LNG of this circulation pump to the regasifier.
  • the heating unit is also traversed by a heating fluid 38 which is, in the example shown, outside air at room temperature and comprises a discharge 40 of the condensates from this air.
  • this reheating air can also come from any devices present at the place of operation, such as fumes discharged by a gas turbine.
  • the LNG is pumped from the tank 10 by the pumps 28 and 32, circulates in the lines 30 and 34 to be sent into the regasifier 12. This gas circulates in the regasifier which is also traversed by the methanol as heat transfer agent.
  • the methanol present in the tank 26 is pumped by the pump 18 and is sent via line 20 into the regasifier 12.
  • the calories present in the methanol are transmitted to the LNG and heat it so that that the liquid phase of the LNG is changed into a gas phase by vaporization and then, if necessary, superheated to reach a temperature close to that of the ambient temperature.
  • the methanol temperature at the regasifier 12 inlet is about
  • the natural gas is at a temperature of about 5 ° C. while the methanol reaches a temperature of about 70 ° C at the exit of this regasifier in line 22.
  • the methanol is cooled to a temperature above its crystallization point, in this case -70 ° C. for the example under consideration.
  • the cold methanol is sent via the pipe 22 to the reheating unit 14 so that the air circulating in this unit, and whose temperature is higher than that of the cold methanol, exchanges its calories with this methanol to obtain methanol heated in line 24 and consequently in reservoir 26.
  • the temperature of the methanol at the inlet of the heating unit is of the order of -70 ° C. whereas the air is introduced into this heater at a temperature in the region of 30 ° C. After heat exchange in this unit, the methanol is discharged at the outlet of the unit at a temperature of 0 0 C while the air leaves at a temperature of 5 0 C.
  • the hot part of the loop 16 is formed by the pipe 24, the reservoir 26, the pump 18 and the pipe 20, while the cold part of this loop comprises the pipe 22.
  • the heating unit 14 comprises a heat exchanger comprising a vertical calender 42 with an air inlet 44 and an outlet of air 46 disposed at each end of this calender. Inside this shell is housed a set of vertical tubes 48 connected at one of their ends by an intake manifold 50 with an inlet 52 for cold methanol from the regasifier and at the other their ends by an exhaust manifold 54 with an outlet 56 connected to the pipe 24 leading to the methanol tank 26.
  • the methanol arrives through the inlet 52, enters the intake manifold 50, circulates in all vertical tubes 48, to open into the exhaust manifold 54 and be discharged through the outlet 56.
  • air either at room temperature, or heated by any known means, is introduced into the calender 42 through the inlet 44, then scans all the tubes as well as the collectors. During this sweep, the calories contained in this air are transmitted to methanol so as to heat it up and obtain a hot methanol at the outlet 56.
  • the water droplets contained in the air are condensed and then fall by gravity to the bottom of the calender 42 to be then discharged in the form of condensates through the pipe 40.
  • the tubes 48 may be coated with a film of hydrophobic material ("water shedding film") of polymethylsiloxane type to facilitate the separation of water droplets .
  • the regasifier comprises a vertical envelope 58 containing at least two exchangers in which gas and methanol circulate, an upper exchanger 60 placed in the upper part of the envelope and a lower exchanger 62 placed in lower part of this envelope.
  • these exchangers are in the form of heat exchangers. plates and fin brazed, preferably aluminum.
  • the upper exchanger is said to be against the flow because natural gas and methanol circulate in opposite directions while the lower exchanger is said to co-current, fluids flowing in the same direction.
  • the lower exchanger comprises, on one of its sides and in the lower part of this exchanger, an inlet 64 of the methanol connected to the pipe 20 and an outlet 66 on one side of the exchanger.
  • This lower heat exchanger also comprises an inlet 68, connected to the LNG pipe 34, which is located at the bottom and on the side opposite to that of the methanol inlet, and an outlet 70 placed in the upper part of the exchanger.
  • the flows of methanol and LNG flow in the same direction, that is to say from the bottom to the top of this exchanger. Thanks to this, the skin temperature inside this exchanger remains above -100 0 C and the exchange surfaces can be minimized.
  • the outlet 66 of methanol is connected via a line 72 to an inlet 74 of the upper exchanger which is located at the top and on one side of this exchanger.
  • the outlet 70 of natural gas is connected by a pipe 76 to a gas inlet 78 located on the lower part of this exchanger.
  • the vapor form gas is discharged through an outlet 80 which is located on the upper part of this exchanger while the outlet 82 of the methanol is located in the lower part of this exchanger to be connected to the pipe 22 leading to the reheating unit .
  • This exchanger is therefore called a countercurrent heat exchanger because the flow of gas and methanol flow in opposite directions, for the gas from the bottom to the top of the exchanger and for methanol from the top to the bottom of this exchanger .
  • the regasifier 12 is separated into two distinct parts.
  • the co-current exchanger 62 is in the form of a tube and shell exchanger and comprises the inlets 64, 68 and the outlets 66, 70 of methanol and LNG.
  • the outputs 66 and 70 are connected by the. conduits 72, 76 to the countercurrent exchanger 60 which is a brazed plate and fin exchanger, advantageously aluminum, and which has the inputs 74, 78 and outputs 82, and 80 of methanol and natural gas.
  • the tube and shell heat exchanger comprises a mechanical expansion joint 83 which absorbs all the dimensional variations of this exchanger during the passage of LNG and methanol.
  • FIG. 5 shows a variant of the regasification installation illustrated in Figure 4 and which, for this, has the same references for the common parts.
  • This variant is distinguished by the fact that regasification is carried out in several stages.
  • the countercurrent exchanger 60 is in two parts 6OA, 6OB and a phase separator 84 is provided between these two exchanger parts.
  • the natural gas leaving the co-current heat exchanger 62 with tubes and calender at the outlet 70 is preheated to its boiling point corresponding to the pressure in the separator 84.
  • This heated natural gas passes through the lower part 6OA. countercurrent exchanger 60 for performing a vapor phase transformation.
  • This converted natural gas is sent via line 86 into the separator 84 where separation of the natural gas in gaseous form in the upper part 88 of this separator takes place with a composition, a molecular weight and a lower heating value and in liquid form in part. bass 90 of this separator.
  • the natural gas in vapor form present in the separator is then directed, via a line 92, from this separator to the inlet of the part 6OB of the exchanger 60 where it undergoes, by exchange with the methanol circulating therein, an elevation
  • the liquid phase which has a molecular weight and a heating value greater than that of the steam, is extracted by a pump 94 connected to this separator by a pipe 96.
  • the liquid phase leaving the pump 94 is directed by a pipe 98 to all storage means to be subsequently treated.
  • the composition and the power heat of natural gas in gaseous form in line 92 before it enters the exchanger 60 by injecting a predetermined quantity of liquid from the separator through a line 98A originating after the pump 94 on line 98 and ending on Ia
  • the temperature at the outlet of the natural gas regasifier is of the order of 0 ° C. and that of the methanol is approximately -70 ° C.
  • the methanol at the exit of the regasifier is at a low temperature of the order of -70 ° C. and must be reheated in order to be able to ensure the transformation into gas phase of the LNG in the regasifier.
  • the central 102 is supplied with air by a channel 104 and natural gas via a channel 106, this channel may be a bypass of the conduit 36 described above.
  • the combustion of the air-natural gas mixture within the turbine generates, after recovery of the generated calories (abbreviated as HRSG), at the exit 108 of the fumes with temperatures of the order of 130 ° C.
  • these fumes are introduced through an inlet 110 in a heat exchanger assembly 112, separated into at least three portions 112A, 112B, 112C, to emerge through an evacuation 114 and then be directed by a conduit 116 to any suitable means, such as a chimney .
  • the heat exchanger assembly is also traversed by a phase-change fluid, such as propane, circulating in a closed loop 118.
  • This loop comprises a liquid propane tank 120, a circulation pump 122 connected to the tank via a pipe 124 and a propane phase separator 126 connected to the pump via a line 128E which brings the liquid propane into the portion 112A of the assembly.
  • a 128S pipe which directs the propane, preheated to its boiling point, in this separator.
  • a pipe 130 called liquid pipe
  • a pipe 132 called gas line
  • a line 134 brings propane gas in pressurized form to an expansion turbine 136 rotatably connected to all energy producing means, such as an alternator 138.
  • the propane gas is supplied by a pipe 140 to a heat exchanger 142, said condenser, for cooling this propane gas and thus change phase to obtain a liquid phase before it returns through a pipe 144 to the tank 120.
  • the condenser 142 is traversed by the methanol flowing in the pipe 22, as described above, and at the outlet of this condenser, the methanol is at a temperature higher than that of its introduction because it has captured the calories contained in propane gas phase.
  • propane in liquid form is pumped from the tank
  • the preheated propane in liquid form is sent into the separator 126.
  • the liquid phase extracted from this separator passes through the portion 112B of the assembly 112 to return in form substantially gaseous in the separator to effect the separation between the liquid phase and the gas phase of the propane.
  • the gaseous phase contained in this separator is also extracted to cross the portion 112C of the exchanger assembly 112 to be completely converted into the gas phase and superheated if necessary.
  • the propane in gaseous form passes through the turbine 136 which it drives in rotation, which turbine rotates the alternator 138.
  • the gas-form propane passes through the condenser 142 where it changes phase and goes into liquid phase through the exchange of its calories with cold methanol that also circulates in this condenser.
  • the liquid propane is stored in the tank 120.
  • the treatment group as schematically illustrated in FIG. 7 shows a potential use of the LNG regasification facility with a methanol loop for capturing and liquefying the CO 2 contained in discharges, such as the fumes from the turbine fumes. gas.
  • an LNG regasification unit 146 there is provided an LNG regasification unit 146, a CO 2 capture / separation unit 148, a methanol heating unit 149 and a CO 2 liquefying unit 150.
  • the regasification unit 146 comprises a regasifier 12 traversed by hot methanol circulating in a loop 152 and by LNG from the line 34.
  • the unit for capturing / separating the CO 2 148 includes an absorption column 154 containing transfer elements 156 with a methanol inlet 158 from the regasifier, an entry of a gaseous fluid 160 containing CO 2 , an evacuation 162 of gaseous fluid freed from CO 2 and an exit 164 of a mixture of methanol and CO 2 .
  • This CO 2 capture / separation unit also comprises a flash drum 166 with an inlet of the mixture of methanol and CO 2 , an outlet 168 of CO 2 in gaseous form and a 170 output of methanol removed from a very large portion of CO 2 .
  • the heating unit 149 comprises elements identical to those already described in relation with FIGS. 1 and 2, that is to say a heater traversed by methanol originating, in the example illustrated in FIG. outlet 170 of the balloon 166, by a heating fluid 38 which may be outside air at room temperature.
  • This exchanger also comprises an evacuation 40 of the condensates coming from this outside air.
  • This unit finally comprises a heat exchanger 174 for heating the methanol after passing through the heater through an outlet 172 and a flash tank 175 for separating methanol in liquid form, which is then directed by a line 176 to the methanol loop, and CO 2 in gaseous form which joins via a line 178, a line 180 also connecting the CO 2 line 168 of the flash tank 166.
  • the liquefaction unit 150 comprises a condenser 181 which has the particularity of using an intermediate fluid, such as ethane, to participate in the liquefaction of CO 2 and the heating of the natural gas in vapor form.
  • an intermediate fluid such as ethane
  • This condenser comprises an enclosure 182 which contains at least two parts of condensers 184 and 186, each against the current and preferably in the form of brazed aluminum plates and fins, in which the CO 2 in vapor form circulates and the ethane for one and LNG and ethane for the other.
  • the lower condenser 184 is placed in the lower part of the enclosure and comprises, on one of its sides and in the upper part of this condenser, an inlet 188 of the CO 2 connected to the pipe 180 and a liquid CO 2 outlet 190 on the lower part of the condenser.
  • the upper condenser 186 comprises an LNG inlet 192, connected to the LNG line 34, which is located in the lower part of this condenser and an outlet 194 placed in the upper part of the exchanger.
  • a closed loop of ethane 196 allows the ethane to circulate between the two exchangers.
  • the ethane vapor is introduced into the upper ethane condenser 186 via an inlet 198 situated on the upper part of the condenser, passes through this condenser to produce a liquid ethane outlet 200 located at the bottom of this condenser, is fed via a pipe 202 to a liquid ethane inlet 204 located in the lower part of the lower CO 2 condenser, passes through the lower condenser to reach an outlet 206 located in the upper part of this condenser and then leads to the inlet 198 by a conduct 208.
  • the LNG follows substantially the same regime as that described with reference to FIG. 1 with the only difference that a bypass of the LNG pipe 34 leads to the inlet 192 of the CO 2 liquefaction unit 150 to cross the upper condenser 186 and exit through the outlet 194 to join the conduit 36.
  • the methanol is sent via the inlet 158 to the column 156 which also receives a fluid containing a significant part of CO 2 , of the order of 12%, through the inlet 160.
  • the CO 2 is captured by methanol and a mixture of methanol and dissolved CO 2 is discharged through the outlet 164.
  • the CO 2 free fluid is discharged through the outlet 162 to any suitable means.
  • the mixture of CO 2 and methanol is separated in the expansion flask 166 from which the CO 2 vapor phase is discharged through the outlet 168 to the pipe 180 and from which the methanol in the liquid phase from the outlet 170 is heated in the heating unit by successive crossing of the heater and the exchanger 174.
  • the residual CO 2 contained in the methanol is separated once more from this methanol in the expansion tank 175.
  • the CO 2 is discharged through the outlet 178 to join the pipe 180 connected to the outlet 168 and the CO 2- freed methanol joined, through the outlet 176, the pump 18 of the methanol loop.
  • the CO 2 in the vapor phase is liquefied in the lower condenser 184 in which it exchanges its calories with the ethane which circulates in a loop between the two condensers. After this exchange, the CO 2 is in liquid form at the outlet 190 and can be sent to a storage tank where it can be removed for possible sequestration in underground tanks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Installation de regazéification de gaz naturel liquéfié
La présente invention se rapporte à une installation de regazéification de gaz naturel liquéfié et à un procédé utilisé dans une telle installation.
Généralement, lorsque le gaz naturel doit être transporté entre un site de production et un site d'exploitation qui sont proches l'un de l'autre, ce transport s'effectue grâce à des pipelines terrestres ou submergés. Dans ce cas, le gaz naturel est transporté sous sa forme gazeuse et est utilisable en tant que tel sur son lieu de destination.
Cependant lorsque les deux sites sont trop éloignés l'un de l'autre ou que la configuration du terrain n'autorise pas la pose de pipelines, le gaz est transporté sous forme liquéfiée par véhicules terrestres ou bateaux (généralement des méthaniers) entre le site de production et le site d'exploitation. Pour cela le gaz naturel est liquéfié à proximité du site de production lors d'opérations de compression et de refroidissement jusqu'à une température de -1600C. Le gaz naturel liquéfié (GNL) est ensuite stocké dans des citernes appropriées puis transvasé sous forme liquide dans des cuves pour son transport terrestre ou maritime vers le site d'exploitation. Une fois arrivé sur ce site, ce gaz liquéfié est déchargé dans des réservoirs de stockage de GNL à partir desquels ce gaz peut être regazéifié à Ia demande et utilisé, soit directement sur le site d'exploitation, soit transporté sous forme gazeuse par des pipelines vers d'autres lieux d'exploitation.
Habituellement, dans le cas de transport maritime de GNL, le gaz liquéfié est conservé puis transporté jusqu'au voisinage du terminal côtier dans des cuves isothermes du méthanier. Ce gaz liquéfié est soit regazéifié à partir des cuves du méthanier puis transporté sous forme gazeuse par des pipelines vers les lieux d'exploitation, soit envoyé sous forme liquide dans des réservoirs du terminal côtier pour y être stocké et être regazéifié à la demande. Actuellement, pour réaliser l'opération de regazéification, le gaz sous forme liquide est pompé à partir de la cuve ou du réservoir puis traverse un ensemble d'échangeurs de chaleur faisant office de vaporisateur ou de regazéificateur. De façon à assurer un échange de chaleur, cet ensemble d'échangeurs de chaleur est traversé par de l'eau de mer, éventuellement réchauffée, de manière à ce que les calories présentes dans cette eau soient transmises au gaz. Grâce à la transmission de ces calories, le gaz est réchauffé tout au long de son cheminement dans l'ensemble d'échangeurs et change progressivement d'état pour ressortir de cet ensemble d'échangeurs sous forme gazeuse.
De telles dispositions présentent des inconvénients non négligeables tant au niveau de la préservation de la nature que de l'intégrité des échangeurs.
En effet, l'eau de mer qui a traversé les échangeurs de chaleur est rejetée dans la mer en ayant une température très basse, ce qui entraîne une dégradation de la flore et de la faune sous-marine. Par ailleurs, l'eau de mer est un agent corrosif pour toutes les parties métalliques des échangeurs et entraîne donc une maintenance plus importante de ces échangeurs. De plus, compte tenu du fait que Ie GNL circule dans les échangeurs avec une température très basse, l'eau de mer doit parcourir ces échangeurs avec un grand débit de manière à éviter de former des cristaux, ce qui nécessite des installations de pompage de grande taille avec un coût élevé.
La présente invention se propose de remédier aux inconvénients mentionnés ci-dessus grâce à une installation de regazéification qui utilise un agent caloporteur permettant de respecter l'environnement et qui peut être utilisée loin de tous terminaux côtiers.
Ainsi, la présente invention concerne une installation de regazéification de gaz naturel liquéfié comprenant un réservoir de stockage de gaz sous forme liquéfié et un dispositif de regazéification du GNL parcouru par un agent caloporteur et le gaz naturel, caractérisée en ce que l'installation comprend un circuit en boucle dans lequel circule l'agent caloporteur sous forme d'un fluide organique à faible viscosité et à bas point de température de cristallisation et en ce que le dispositif de regazéification comprend au moins deux échangeurs. L'installation peut comprendre une unité de réchauffage de .l'agent caloporteur.
De manière avantageuse, l'unité de réchauffage peut être parcourue . par de l'air.
L'agent caloporteur peut posséder une température de cristallisation comprise entre -90° C et -150° C.
De manière préférentielle, l'agent caloporteur peut être un alcool comme du méthanol, de l'éthanol ou du propanol.
L'un des échangeurs peut être à co-courant entre le GNL et l'agent caloporteur et l'autre des échangeurs peut être à contre courant.
L'échangeur à contre-courant peut être en deux parties entre lesquelles est intercalé un séparateur de phase.
Au moins l'échangeur à contre courant peut être du type à plaques et ailettes brasées.
Le circuit de circulation de l'agent caloporteur peut comprendre un échàngeur de chauffage additionnel.
L'installation peut comprendre des moyens de liquéfaction d'un hydrocarbure par échange calorifique avec l'agent caloporteur.
L'hydrocarbure peut être sous forme gazeuse après son application à l'entraînement d'une turbine.
Avantageusement, l'hydrocarbure peut être du propane. L'installation peut également comprendre des moyens de piégeage de CO2 par l'agent caloporteur.
Préférentiellement, l'agent caloporteur peut être utilisé en tant que solvant du CO2.
Les autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui va suivre, donnée uniquement à titre illustratif et nullement limitatif, en se référant aux dessins annexés sur lesquels :
- la figure 1 est une vue schématique de l'installation de regazéification du GNL selon l'invention ;
- la figure 2 est une vue en coupe partielle du réchauffeur utilisé dans l'installation selon l'invention ; - la figure 3 est une vue en coupe schématique du regazéificateur utilisé dans cette installation ;
- la figure 4 est une première variante de l'installation de regazéification selon l'invention ;
- Ia figure 5 est une autre variante de l'installation de regazéification selon l'invention ;
- la figure 6 montre un exemple sur une utilisation particulière de l'installation selon l'invention et
- la figure 7 montre un autre exemple d'une utilisation de l'installation selon l'invention.
La figure 1 montre schématiquement une installation de regazéification d'un gaz naturel liquéfié (GNL) qui comprend un réservoir de stockage 10 du GNL à pression atmosphérique et à une température voisine de -1600C, un dispositif de regazéification avec une unité d'échangeurs de chaleur, ou regazéificateur 12, parcourue par un agent caloporteur ainsi que par le GNL provenant du réservoir, et une unité de réchauffage 14 de l'agent caloporteur. L'agent caloporteur est un fluide organique dont Ie point de cristallisation se rapproche de celui du GNL et a une viscosité suffisamment faible pour pouvoir être amené à circuler facilement dans des conduites même à des températures très basses. De plus, cet agent reste à l'état liquide en condition d'utilisation à la pression atmosphérique et à la température ambiante. Préférentiellement, cet agent caloporteur peut être un alcool ou un hydrocarbure ou un de leurs composés. Dans la suite de la description, le fluide organique considéré à titre d'exemple est du méthanol dont le point de cristallisation est situé aux environs de -98° C mais il peut aussi être utilisé d'autres alcools comme l'éthanol (point de cristallisation : - 114°C) ou du propanol (point de cristallisation : - 126°C).
Cette installation comprend une boucle de circulation 16 de l'agent caloporteur qui, dans l'exemple montré, est une boucle fermée avec une partie chaude et une partie froide. Cette boucle comprend une pompe de circulation 18, une conduite de circulation 20 de cet agent entre la pompe et le regazéificateur 12, une conduite de circulation 22 entre le regazéificateur et l'unité de réchauffage 14, une conduite de retour 24 entre cette unité de réchauffage et la pompe de circulation, un réservoir 26 d'agent caloporteur étant intercalé sur cette conduite de retour. L'installation comporte également une pompe d'aspiration 28 du GNL généralement immergée dans le réservoir 10, une conduite de circulation 30 du GNL entre cette pompe et une pompe de circulation 32, une conduite 34 amenant le GNL de cette pompe de circulation au regazéificateur 12, et une conduite de sortie 36 destinée à convoyer le gaz sous forme gazeuse sortant du regazéificateur vers tous moyens appropriés. L'unité de réchauffage est également parcourue par un fluide de réchauffage 38 qui est, dans l'exemple illustré, de l'air extérieur à température ambiante et comporte une évacuation 40 des condensats provenant de cet air. Bien entendu, cet air de réchauffage peut aussi provenir de tous appareils présents sur le lieu d'exploitation, comme les fumées rejetées par une turbine à gaz. Pour réaliser la regazéification, le GNL est pompé du réservoir 10 par les pompes 28 et 32, circule dans les conduites 30 et 34 pour être envoyé dans le regazéificateur 12. Ce gaz circule dans le regazéificateur qui est également parcouru par le méthanol en tant qu'agent caloporteur. Pour ce faire, Ie méthanol présent dans le réservoir 26 est pompé par la pompe 18 et est envoyé par la conduite 20 dans le regazéificateur 12. Dans ce regazéificateur, les calories présentes dans le méthanol sont transmises au GNL et le réchauffent de manière à ce que la phase liquide du GNL soit changée en une phase gazeuse par vaporisation puis, si nécessaire, surchauffée pour atteindre une température voisine de celle de la température ambiante.
La température du méthanol à l'entrée du regazéificateur 12 est d'environ
20 0C et d'environ -160 °C pour Ie GNL circulant dans Ia conduite 34. A la sortie de ce regazéificateur, le gaz naturel est à une température voisine de 5 °C alors que le méthanol atteint une température d'environ -70 °C à la sortie de ce regazéificateur dans la conduite 22.
Durant l'échange dans le regazéificateur, le méthanol est refroidi à une température supérieure à son point de cristallisation, en l'occurrence -70 0C pour l'exemple considéré. Le méthanol froid est envoyé par la conduite 22 à l'unité de réchauffage 14 de façon à ce que l'air qui circule dans cette unité, et dont la température est supérieure à celle du méthanol froid, échange ses calories avec ce méthanol pour obtenir un méthanol réchauffé dans Ia conduite 24 et conséquemment dans le réservoir 26.
La température du méthanol à l'entrée de l'unité de réchauffage est de l'ordre de -70 0C alors que l'air est introduit dans ce réchauffeur à une température voisine de 30 0C. Après échange calorifique dans cette unité, le méthanol est évacué à la sortie de l'unité à une température voisine de 0 0C alors que l'air en sort à une température voisine de 5 0C. Ainsi, la partie chaude de Ia boucle 16 est formée par Ia conduite 24, le réservoir 26, Ia pompe 18 et la conduite 20, alors que Ia partie froide de cette boucle comprend la conduite 22.
Pour réaliser le réchauffage du méthanol à la sortie du regazéificateur, et comme cela est illustré sur la figure 2, l'unité de chauffage 14 comprend un échangeur de chaleur comprenant une calandre verticale 42 avec une entrée d'air 44 et une sortie d'air 46 disposées à chaque extrémité de cette calandre. A l'intérieur de cette calandre est logé un ensemble de tubes verticaux 48 reliés à l'une de leurs extrémités par un collecteur d'admission 50 avec une entrée 52 pour le méthanol froid provenant du regazéificateur et à l'autre de leurs extrémités par un collecteur d'évacuation 54 avec une sortie 56 raccordée à la conduite 24 menant au réservoir de méthanol 26. Dans cet échangeur de chaleur, le méthanol arrive par l'entrée 52, pénètre dans le collecteur d'admission 50, circule dans tous les tubes verticaux 48, pour déboucher dans le collecteur d'évacuation 54 et être évacué par Ia sortie 56. Simultanément, de l'air, soit à température ambiante, soit chauffé par tous moyens connus, est introduit dans la calandre 42 par l'entrée 44, puis balaye tous les tubes ainsi que les collecteurs. Durant ce balayage, les calories contenues dans cet air sont transmises au méthanol de façon à le réchauffer et obtenir un méthanol chaud à la sortie 56. Durant cet échange, les gouttelettes d'eau contenues dans l'air sont condensées puis tombent par gravité au fond de la calandre 42 pour être ensuite évacuées sous forme de condensats par la conduite 40. Les tubes 48 peuvent être revêtus d'un film de matériau hydrophobe ("water shedding film") de type polyméthylsiloxane pour faciliter la séparation des gouttelettes d'eau.
En se rapportant maintenant à la figure 3, le regazéificateur comprend une enveloppe verticale 58 qui contient au moins deux échangeurs dans lesquels circulent le gaz et le méthanol, un échangeur supérieur 60 placé en partie haute de l'enveloppe et un échangeur inférieur 62 placé en partie basse de cette enveloppe. Préférentiellement, ces échangeurs sont sous forme d'échangeurs à plaques et à ailettes brasées, avantageusement en aluminium. L'échangeur supérieur est dit à contre-courant car le gaz naturel et Ie méthanol circulent dans des sens opposés alors que l'échangeur inférieur est dit à co-courant, les fluides circulant dans le même sens. Ainsi pour l'échangeur inférieur, celui-ci comprend, sur l'un de ses côtés et dans la partie basse de cet échangeur, une entrée 64 du méthanol raccordée à la conduite 20 et une sortie 66 sur un côté de l'échangeur. Cet échangeur inférieur comprend également une entrée 68, connectée à la conduite 34 de GNL, qui est située en partie basse et sur le côté opposé à celui de l'entrée du méthanol, et une sortie 70 placée en partie haute de l'échangeur. Ainsi, dans l'échangeur inférieur 62, les flux de méthanol et de GNL circulent dans le même sens, c'est-à-dire du bas vers le haut de cet échangeur. Grâce à cela, la température de peau à l'intérieur de cet échangeur reste au-dessus de -100 0C et les surfaces d'échanges peuvent être minimisées. La sortie 66 de méthanol est connectée par une conduite 72 à une entrée 74 de l'échangeur supérieur qui est localisée en partie haute et sur un des côtés de cet échangeur. De même, la sortie 70 de gaz naturel est reliée par une conduite 76 à une entrée de gaz 78 située sur la partie basse de cet échangeur. Le gaz sous forme vapeur est évacué par une sortie 80 qui est située sur la partie haute de cet échangeur alors que la sortie 82 du méthanol est située en partie basse de cet échangeur pour être reliée à la conduite 22 menant à l'unité de réchauffage. Cet échangeur est donc qualifié d'échangeur à contre-courant car les flux de gaz et de méthanol circulent dans des sens contraires, pour le gaz du bas vers le haut de l'échangeur et pour le méthanol du haut vers le bas de cet échangeur.
Dans la variante représentée à titre d'exemple sur la figure 4, le regazéificateur 12 est séparé en deux parties distinctes. Ainsi, l'échangeur à co- courant 62 est sous Ia forme d'un échangeur à tubes et calandre et comprend les entrées 64, 68 ainsi que les sorties 66, 70 de méthanol et de GNL. Les sorties 66 et 70 sont reliées par les . conduites 72, 76 à l'échangeur à contre courant 60 qui est un échangeur à plaques et ailettes brasées, avantageusement en aluminium, et qui comporte les entrées 74, 78 et les sorties 82, et 80 de méthanol et de gaz naturel.
Préférentiellement, l'échangeur à tubes et calandre comprend un joint mécanique d'expansion 83 qui absorbe toutes les variations dimensionnelles de cet échangeur lors du passage du GNL et du méthanol.
Dans cette variante, le fonctionnement de l'installation est identique à celui décrit en relation avec les figures 1 à 3.
On se reporte maintenant à la figure 5 qui montre une variante de l'installation de regazéification illustrée à la figure 4 et qui, pour cela, comporte les mêmes références pour les parties communes.
Cette variante se distingue par le fait que la regazéification se réalise en plusieurs étapes. De plus, l'échangeur à contre-courant 60 est en deux parties 6OA, 6OB et qu'il est prévu un séparateur de phases 84 placé entre ces deux parties d'échangeur.
Le gaz naturel sortant de l'échangeur à co-courant 62 à tubes et calandre par la sortie 70 est préchauffé à son point d'ébullition correspondant à la pression dans le séparateur 84. Ce gaz naturel liquide chauffé traverse la partie basse 6OA de l'échangeur à contre courant 60 pour réaliser une transformation de phase par vaporisation. Ce gaz naturel transformé est envoyé par une conduite 86 dans le séparateur 84 où a lieu la séparation du gaz naturel sous forme gazeuse en partie haute 88 de ce séparateur avec une composition, un poids moléculaire et un pouvoir calorifique inférieur et sous forme liquide en partie basse 90 de ce séparateur. Le gaz naturel sous forme vapeur présent dans le séparateur est ensuite dirigé, par une conduite 92, de ce séparateur vers l'entrée de la partie 6OB de l'échangeur 60 où il subit, par échange avec Ie méthanol qui y circule, une élévation de température jusqu'à la sortie 80. La phase liquide, qui a un poids moléculaire et un pouvoir calorifique supérieurs à celui de la vapeur, est extraite par une pompe 94 reliée à ce séparateur par une conduite 96. La phase liquide sortant de la pompe 94 est dirigée par une conduite 98 vers tous moyens de stockage pour y être ensuite traitée. Avantageusement, il est possible de contrôler Ia composition et le pouvoir calorifique du gaz naturel sous forme gazeuse dans la conduite 92 avant qu'il pénètre dans l'échangeur 60 en y injectant une quantité prédéterminée de liquide provenant du séparateur par une conduite 98A prenant naissance après la pompe 94 sur la conduite 98 et aboutissant sur Ia conduite 92. Dans cette configuration, la température à la sortie du regazéificateur du gaz naturel est de l'ordre de 0 0C et celle du méthanol est d'environ de -70 0C.
Additionnellement, il est envisageable de chauffer le méthanol à la sortie de la pompe 18 en plaçant sur Ia conduite 20 un échangeur de chaleur 100 entre Ie méthanol et un fluide chaud qui est habituellement utilisé sur ou à proximité de cette installation de regazéification, comme de l'eau chaude provenant de tours à ruissellement.
Comme précédemment décrit, le méthanol à Ia sortie du regazéificateur est à basse température de l'ordre de -70 0C et doit être réchauffé pour pouvoir assurer la transformation en phase gazeuse du GNL dans le regazéificateur. Pour cela, il peut être tiré profit de la présence sur le site d'une centrale électrique avec une turbine à gaz à cycle combiné comme cela est illustré sur la figure 6. Dans ce cas, la centrale 102 est alimentée en air par une voie 104 et en gaz naturel par une voie 106, cette voie pouvant être une dérivation de Ia conduite 36 décrite précédemment. La combustion du mélange air-gaz naturel au sein de la turbine génère, après récupération des calories générées (en abrégé HRSG), en sortie 108 des fumées avec des températures de l'ordre de 130 0C. Comme montré sur la figure 6, ces fumées sont introduites par une admission 110 dans un ensemble échangeur de chaleur 112, séparée en au moins trois parties 112A, 112B, 112C, pour ressortir par une évacuation 114 et être ensuite dirigées par un conduit 116 vers tous moyens appropriés, comme une cheminée. L'ensemble échangeur de chaleur est également parcouru par un fluide à changement de phase, comme du propane, circulant dans une boucle fermée 118. Cette boucle comprend un réservoir de propane liquide 120, une pompe de circulation 122 connectée au réservoir par une conduite 124 et un séparateur de phase 126 de propane relié à la pompe par une conduite 128E qui amène le propane liquide dans Ia partie 112A de l'ensemble échangeur de chaleur et une conduite 128S qui dirige le propane, préchauffé à son point d'ébullition, dans ce séparateur. A partir de ce séparateur, partent deux conduites, une conduite 130, dite conduite liquide, dans lequel Ie liquide contenu dans le séparateur est amené à la partie 112B de l'ensemble échangeur de chaleur pour le traverser et retourner sous forme gazeuse dans le séparateur 126, et une conduite 132, dite conduite gaz, qui amène la phase gazeuse du propane contenue dans Ie séparateur jusqu'à la partie 112C de l'ensemble échangeur de chaleur de façon à surchauffer ce gaz de propane. Une conduite 134 amène le propane sous forme gazeuse pressurisée à une turbine d'expansion 136 liée en rotation à tous moyens producteurs d'énergie, comme un alternateur 138. A Ia sortie de la turbine d'expansion, le gaz de propane est amené par une conduite 140 à un échangeur de chaleur 142, dit condenseur, pour refroidir ce gaz de propane et ainsi le faire changer de phase pour obtenir une phase liquide avant qu'il ne retourne par une conduite 144 au réservoir 120. Pour refroidir Ie propane, le condenseur 142 est parcouru par le méthanol qui circule dans Ia conduite 22, telle que décrite précédemment, et, à la sortie de ce condenseur, Ie méthanol est à une température supérieure à celle de son introduction du fait qu'il a capté les calories contenues dans le propane en phase gazeuse. En fonctionnement, le propane sous forme liquide est pompé du réservoir
120 pour traverser la partie 112A de l'ensemble échangeur 112. Après cette traversée, le propane préchauffé sous forme liquide est envoyé dans le séparateur 126. La phase liquide extraite de ce séparateur traverse la partie 112B de l'ensemble 112 pour retourner sous forme quasi gazeuse dans le séparateur pour réaliser la séparation entre la phase liquide et Ia phase gazeuse du propane. La phase gazeuse contenue dans ce séparateur est également extraite pour traverser la partie 112C de l'ensemble échangeur 112 pour y être totalement transformée en phase gazeuse et surchauffée si nécessaire. Le propane sous forme gazeuse traverse la turbine 136 qu'il entraîne en rotation, laquelle turbine entraîne en rotation l'alternateur 138. A la sortie de la turbine, le propane sous forme gazeuse traverse le condenseur 142 où il change de phase et passe en phase liquide grâce à l'échange de ses calories avec le méthanol froid qui circule également dans ce condenseur. A la sortie de ce condenseur, le propane liquide est stocké dans le réservoir 120.
Le groupe de traitement tel que schématiquement illustré sur la figure 7 montre une utilisation potentielle de l'installation de regazéification du GNL avec une boucle de méthanol pour capter et liquéfier Ie CO2 contenu dans des rejets, comme les fumées provenant des fumées de turbines à gaz.
Dans cette configuration, il est prévu une unité de regazéification 146 de GNL, une unité de capation/séparation du CO2 148, une unité de réchauffage 149 du méthanol et une unité 150 de liquéfaction du CO2.
L'unité de regazéification 146, comme déjà décrite en relation avec les figures précédentes, comprend un regazéificateur 12 parcouru par du méthanol chaud circulant dans une boucle 152 et par du GNL provenant de Ia conduite 34. L'unité de captation/séparation du CO2 148 comprend une colonne à absorption 154 contenant des éléments de transfert 156 avec une entrée 158 de méthanol issu du regazéificateur, une entrée d'un fluide gazeux 160 contenant du CO2, une évacuation 162 de fluide gazeux débarrassé du CO2 et une sortie 164 d'un mélange de méthanol et de CO2. Cette unité de captation/séparation du CO2 comprend également un ballon de détente 166 avec une arrivée du mélange de méthanol et de CO2, une sortie 168 de CO2 sous forme gazeuse et une sortie 170 de méthanol débarrassé d'une très grande partie de CO2.
L'unité de réchauffage 149 comprend des éléments identiques à ceux déjà décrit en relation avec les figures 1 et 2, c'est-à-dire un réchauffeur parcouru par le méthanol provenant, dans l'exemple illustré de la figure 7, de Ia sortie 170 du ballon 166, par un fluide de réchauffage 38 qui peut être de l'air extérieur à température ambiante. Cet échangeur comporte également une évacuation 40 des condensats provenant de cet air extérieur. Cette unité comprend enfin un échangeur de chaleur 174 permettant de chauffer Ie méthanol après sa traversée dans le réchauffeur par une sortie 172 et un ballon de détente 175 permettant de séparer le méthanol sous forme liquide, qui est ensuite dirigé par une conduite 176 vers la boucle de méthanol, et le CO2 sous forme gazeuse qui rejoint par une conduite 178, une conduite 180 reliant également la conduite 168 de CO2 du ballon de détente 166.
L'unité de liquéfaction 150 comprend un condenseur 181 qui a la particularité d'utiliser un fluide intermédiaire, comme de l'éthane, pour participer à la liquéfaction du CO2 et au chauffage du gaz naturel sous forme vapeur.
Ce condenseur comprend une enceinte 182 qui contient au moins deux parties de condenseurs 184 et 186, chacun à contre-courant et préférentiellement sous forme de plaques et ailettes brasées en aluminium, dans lesquels circulent le CO2 sous forme vapeur et l'éthane pour l'une et le GNL et l'éthane pour l'autre. Le condenseur inférieur 184 est placé en partie basse de l'enceinte et comprend, sur l'un de ses côtés et dans la partie haute de ce condenseur, une entrée 188 du CO2 connectée à la conduite 180 et une sortie de CO2 liquide 190 sur la partie basse du condenseur. Le condenseur supérieur 186 comprend une entrée 192 de GNL, connectée à Ia conduite 34 de GNL, qui est située en partie basse de ce condenseur et une sortie 194 placée en partie haute de l'échangeur. Une boucle fermée d'éthane 196 permet à l'éthane de circuler entre les deux échangeurs. Plus précisément, l'éthane vapeur est introduit dans le condenseur d'éthane supérieur 186 par une entrée 198 située sur Ia partie haute du condenseur, traverse ce condenseur pour aboutir à une sortie d'éthane liquide 200 située en partie basse de ce condenseur, est amené par une conduite 202 à une entrée d'éthane liquide 204 localisée en partie basse du condenseur de CO2 inférieur, traverse le condenseur inférieur pour aboutir à une sortie 206 située en partie haute de ce condenseur puis aboutit à l'entrée 198 par une conduite 208.
Lors du fonctionnement du groupe de traitement décrit ci-dessus, Ie GNL suit sensiblement le même régime que celui décrit en relation avec la figure 1 avec la seule différence qu'une dérivation de la conduite 34 de GNL aboutit à l'entrée 192 de l'unité de liquéfaction du CO2 150 pour traverser Ie condenseur supérieur 186 et ressortir par la sortie 194 pour rejoindre le conduite 36. En sortie du regazéificateur, le méthanol est envoyé par l'entrée 158 dans la colonne 156 qui reçoit également un fluide contenant une partie non négligeable de CO2, de l'ordre de 12%, par l'entrée 160. Après traitement dans cette colonne, Ie CO2 est capté par le méthanol et un mélange de méthanol et de CO2 dissout est évacué par la sortie 164. Le fluide débarrassé du CO2 est évacué par la sortie 162 vers tous moyens appropriés. Le mélange de CO2 et de méthanol subit une séparation dans le ballon de détente 166 d'où le CO2 en phase vapeur est évacué par la sortie 168 vers la conduite 180 et d'où Ie méthanol en phase liquide issu de la sortie 170 est chauffé dans l'unité de réchauffage par traversée successive du réchauffeur et de l'échangeur 174. A la sortie de l'échangeur 174, le CO2 résiduel contenu dans le méthanol est séparé encore une fois de ce méthanol dans le ballon de détente 175. Lors de cette séparation, le CO2 est évacué par la sortie 178 pour rejoindre Ia conduite 180 connectée à la sortie 168 et le méthanol débarrassé du CO2 rejoint, par la sortie 176, la pompe 18 de la boucle de méthanol. Le CO2 en phase vapeur est liquéfiée dans le condenseur inférieur 184 dans lequel il échange ses calories avec l'éthane qui circule en boucle entre les deux condenseurs. Après cet échange, le CO2 est sous forme liquide à la sortie 190 et il est peut être envoyé vers un réservoir de stockage d'où il pourra être retiré pour être éventuellement séquestré dans des réservoirs souterrains.
La présente invention n'est pas limitée aux exemples de réalisation décrits mais englobe toutes variantes et tous équivalents.

Claims

REVENDICATIONS
1) Installation de regazéification de gaz naturel liquéfié (GNL) comprenant un réservoir (10) de stockage de gaz sous forme liquéfié et un dispositif de regazéification (12) du GNL parcouru par un agent caloporteur et le gaz naturel, caractérisée en ce que l'installation comprend un circuit (16) en boucle dans lequel circule l'agent caloporteur sous forme d'un fluide organique à faible viscosité et à bas point de température de cristallisation et en ce que le dispositif de regazéification (12) comprend au moins deux échangeurs (60, 62).
2) Installation de regazéification selon la revendication 1 , caractérisée en ce qu'elle comprend une unité de réchauffage (14) de l'agent caloporteur.
3) Installation de regazéification selon la revendication 2, caractérisée en ce que l'unité de réchauffage (14) est parcourue par de l'air.
4) Installation de regazéification selon l'une des revendications précédentes, caractérisée en ce que l'agent caloporteur possède une température de cristallisation comprise entre -90° C et -150° C.
5) Installation de regazéification selon l'une des revendications précédentes, caractérisée en ce que l'agent caloporteur est un alcool comme du méthanol, de l'éthanol ou du propanol.
6) Installation de regazéification selon la revendication 1 , caractérisée en ce que l'un (62) des échangeurs est à co-courant entre le GNL et l'agent caloporteur et en ce que l'autre (60) des échangeurs est à contre courant.
7) Installation de regazéification selon Ia revendication 6, caractérisée en ce que l'échangeur (60) à contre-courant est en deux parties (6OA, 60B) entre lesquelles est intercalé un séparateur de phase (84). 8) Installation de regazéification selon la revendication 6 ou 7, caractérisée en ce que au moins l'échangeur à contre courant (60) est du type à plaques et ailettes brasées.
9) Installation de regazéification selon l'une des revendications précédentes, caractérisée en ce que Ie circuit (16) de circulation de l'agent caloporteur comprend un échangeur de chauffage additionnel (100).
10) Installation de regazéification selon l'une des revendications précédentes, caractérisé en ce qu'elle comprend des moyens de liquéfaction d'un hydrocarbure par échange calorifique avec l'agent caloporteur.
11 ) Installation de regazéification selon la revendication 10, caractérisé en ce que l'hydrocarbure est sous forme gazeuse après son application à l'entraînement d'une turbine (136).
12) Installation de regazéification Ia revendication 10 ou 11 , caractérisé en ce que l'hydrocarbure est du propane.
13) Installation de regazéification selon l'une des revendications 1 à 9, caractérisé en ce qu'elle comprend des moyens de piégeage du CO2 par l'agent caloporteur.
14) Installation de regazéification selon la revendication 13, caractérisé en ce que l'agent caloporteur est utilisé en tant que solvant du CO2.
EP06709300A 2005-02-17 2006-02-13 Installation de regazeification de gaz naturel liquefie Not-in-force EP1853846B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0501646A FR2882129A1 (fr) 2005-02-17 2005-02-17 Installation de regazeification de gaz naturel liquefie
PCT/FR2006/000318 WO2006087452A1 (fr) 2005-02-17 2006-02-13 Installation de regazeification de gaz naturel liquefie

Publications (2)

Publication Number Publication Date
EP1853846A1 true EP1853846A1 (fr) 2007-11-14
EP1853846B1 EP1853846B1 (fr) 2012-04-11

Family

ID=35004364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06709300A Not-in-force EP1853846B1 (fr) 2005-02-17 2006-02-13 Installation de regazeification de gaz naturel liquefie

Country Status (9)

Country Link
US (1) US20080302103A1 (fr)
EP (1) EP1853846B1 (fr)
JP (1) JP2008530472A (fr)
KR (1) KR20070114167A (fr)
AT (1) ATE553330T1 (fr)
ES (1) ES2385575T3 (fr)
FR (1) FR2882129A1 (fr)
PT (1) PT1853846E (fr)
WO (1) WO2006087452A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560321A (zh) * 2017-09-15 2018-01-09 长江大学 Bog回收与氮气液化***及工艺方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677338B2 (ja) * 2005-12-15 2011-04-27 石油コンビナート高度統合運営技術研究組合 冷熱供給方法
CN101512214A (zh) 2006-09-11 2009-08-19 埃克森美孚上游研究公司 运输和管理液化天然气
US20080120983A1 (en) * 2006-11-04 2008-05-29 Dirk Eyermann System and process for reheating seawater as used with lng vaporization
US20080178611A1 (en) * 2007-01-30 2008-07-31 Foster Wheeler Usa Corporation Ecological Liquefied Natural Gas (LNG) Vaporizer System
FR2929369A1 (fr) * 2008-03-27 2009-10-02 Air Liquide Procede de vaporisation d'un liquide cryogenique par echange de chaleur avec un fluide calorigene
FR2931222B1 (fr) * 2008-05-16 2014-02-21 Batignolles Tech Therm Systeme et procede de vaporisation d'un fluide cryogenique, notamment du gaz naturel liquefie, a base de co2
FR2952161B1 (fr) * 2009-11-03 2012-01-13 Gea Batignolles Technologies Thermiques Systeme de vaporisation d'un fluide cryogenique avec des echangeurs centralises
NO331474B1 (no) * 2009-11-13 2012-01-09 Hamworthy Gas Systems As Installasjon for gjengassing av LNG
US8707730B2 (en) * 2009-12-07 2014-04-29 Alkane, Llc Conditioning an ethane-rich stream for storage and transportation
DE102010056581B4 (de) * 2010-12-30 2013-04-04 Gea Batignolles Technologies Thermiques Anordnung zur Verdampfung von flüssigem Erdgas
US9903232B2 (en) * 2011-12-22 2018-02-27 Ormat Technologies Inc. Power and regasification system for LNG
EP2708794A1 (fr) * 2012-09-13 2014-03-19 Air Liquide Deutschland GmbH Procédé et dispositif de conditionnement destinés à la préparation discontinue de dioxyde de carbone liquide
NO20151639A1 (en) * 2015-12-01 2017-06-02 Waertsilae Gas Solutions Norway As A plant and method for regasification of LNG
CN111188996B (zh) * 2020-02-12 2024-03-19 中海石油气电集团有限责任公司 一种lng接收站浸没燃烧式气化器的低温余热回收装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3410339A (en) * 1964-05-18 1968-11-12 Cornell Res Foundation Inc Direct contact heat transfer apparatus having evaporator and condensing means
US3364685A (en) * 1965-03-31 1968-01-23 Cie Francaise D Etudes Et De C Method and apparatus for the cooling and low temperature liquefaction of gaseous mixtures
FR1551859A (fr) * 1967-01-23 1969-01-03
US3479832A (en) * 1967-11-17 1969-11-25 Exxon Research Engineering Co Process for vaporizing liquefied natural gas
FR2187702B1 (fr) * 1972-06-13 1976-11-12 Nuovo Pignone Spa
NO158058C (no) * 1978-07-17 1988-07-06 Dut Pty Ltd Fremgangsmaate for fremstilling av gassformede og kondenserte avvannede hydrokarbonprodukter ved metanoltilsetning, avkjoeling og separering.
US4331129A (en) * 1979-07-05 1982-05-25 Columbia Gas System Service Corporation Solar energy for LNG vaporization
US4372124A (en) * 1981-03-06 1983-02-08 Air Products And Chemicals, Inc. Recovery of power from the vaporization of natural gas
US4437312A (en) * 1981-03-06 1984-03-20 Air Products And Chemicals, Inc. Recovery of power from vaporization of liquefied natural gas
JP3372277B2 (ja) * 1992-11-11 2003-01-27 三菱重工業株式会社 Lng冷熱による液化二酸化炭素の製造方法
US5417074A (en) * 1993-07-26 1995-05-23 Air Products And Chemicals, Inc. Liquid nitrogen immersion/impingement freezing method and apparatus
US5681360A (en) * 1995-01-11 1997-10-28 Acrion Technologies, Inc. Landfill gas recovery
TW432192B (en) * 1998-03-27 2001-05-01 Exxon Production Research Co Producing power from pressurized liquefied natural gas
US6367258B1 (en) * 1999-07-22 2002-04-09 Bechtel Corporation Method and apparatus for vaporizing liquid natural gas in a combined cycle power plant
US6813893B2 (en) * 2001-12-19 2004-11-09 Conversion Gas Imports, L.L.C. Flexible natural gas storage facility
US7293600B2 (en) * 2002-02-27 2007-11-13 Excelerate Energy Limited Parnership Apparatus for the regasification of LNG onboard a carrier
JP3628309B2 (ja) * 2002-05-21 2005-03-09 川崎重工業株式会社 Lng冷熱利用による炭酸ガスの液化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006087452A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560321A (zh) * 2017-09-15 2018-01-09 长江大学 Bog回收与氮气液化***及工艺方法

Also Published As

Publication number Publication date
EP1853846B1 (fr) 2012-04-11
ATE553330T1 (de) 2012-04-15
JP2008530472A (ja) 2008-08-07
FR2882129A1 (fr) 2006-08-18
KR20070114167A (ko) 2007-11-29
ES2385575T3 (es) 2012-07-26
WO2006087452A1 (fr) 2006-08-24
US20080302103A1 (en) 2008-12-11
PT1853846E (pt) 2012-07-12

Similar Documents

Publication Publication Date Title
EP1853846B1 (fr) Installation de regazeification de gaz naturel liquefie
EP3433530B1 (fr) Installation d'alimentation en gaz combustible d'un organe consommateur de gaz et de liquefaction dudit gaz combustible
EP2875294A2 (fr) Procédé de liquéfaction de gaz naturel avec changement de phase
EP2959242B1 (fr) Station d'abaissement de pression d'un gaz et de liquéfaction du gaz
EP2360355B1 (fr) Dispositif de contrôle d'un fluide de travail à bas point de congélation circulant dans un circuit fermé fonctionnant selon un cycle de Rankine et procédé utilisant un tel dispositif
EP3743651A1 (fr) Procede et systeme de traitement de gaz d'une installation de stockage de gaz pour un navire de transport de gaz
FR2575812A1 (fr) Procede de production de froid et/ou de chaleur mettant en oeuvre un melange non-azeotropique de fluides dans un cycle a ejecteur
WO2010040940A1 (fr) Procede de regazeification du gaz naturel liquefie avec de l'air ambiant prealablement deshumidifie
EP2288841B1 (fr) Système et procédé de vaporisation d'un fluide cryogénique, notamment du gaz naturel liquéfié, à base de co2
FR2952161A1 (fr) Systeme de vaporisation d'un fluide cryogenique avec des echangeurs centralises
WO2005105669A1 (fr) Procédé de liquéfaction du dioxyde de 5 carbone solide
BE875118A (fr) Procede et appareil en vue de vaporiser du gaz naturel liquefie
EP4281718A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
FR3121504A1 (fr) Procédé de refroidissement d’un échangeur thermique d’un système d’alimentation en gaz d’un appareil consommateur de gaz d’un navire
EP0110763A1 (fr) Perfectionnements à une installation de chauffage équipée d'une pompe à chaleur à absorption
FR2869404A1 (fr) Procede de liquefaction du dioxyde de carbone gazeux.
FR2858830A1 (fr) Procede pour augmenter la capacite et l'efficacite d'installations gazieres du type comprenant une turbine a gaz
CA3214186A1 (fr) Dispositif de liquefaction de dihydrogene gazeux pour ouvrage flottant ou terrestre
WO2022122982A1 (fr) Procédés de mise sous gaz et d'essais gaz dans une installation de stockage de gaz liquéfié
FR3122706A1 (fr) Système d’alimentation d’un consommateur configuré pour être alimenté en un carburant préparé à partir d’un gaz issu de l’évaporation d’un liquide cryogénique comprenant au moins du méthane
WO2022069833A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
FR2982118A1 (fr) Procede de cogeneration d'energie electrique et d'energie thermique
EP2354701A2 (fr) Dispositif et procédé améliorés de récupération de chaleur dans un gaz contenant de la vapeur d'eau
WO2012089978A1 (fr) Dispositif de vaporisation de gaz naturel liquéfié
FR3016195A1 (fr) Dispositif de centrale produisant de l'electricite a auto-regenerescence et ecologique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080411

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 553330

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006028745

Country of ref document: DE

Effective date: 20120606

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20120706

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2385575

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120726

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 553330

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120411

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006028745

Country of ref document: DE

Effective date: 20130114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 20130228

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130901

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20131113

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006028745

Country of ref document: DE

Effective date: 20130903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130903

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131113

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130213

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130213

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060213

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130213