EP1837600B1 - Verfahren zur Überwachung bzw. Steuerung oder Regelung eines geschlossenen Elektrowärmegerätes - Google Patents

Verfahren zur Überwachung bzw. Steuerung oder Regelung eines geschlossenen Elektrowärmegerätes Download PDF

Info

Publication number
EP1837600B1
EP1837600B1 EP07005760A EP07005760A EP1837600B1 EP 1837600 B1 EP1837600 B1 EP 1837600B1 EP 07005760 A EP07005760 A EP 07005760A EP 07005760 A EP07005760 A EP 07005760A EP 1837600 B1 EP1837600 B1 EP 1837600B1
Authority
EP
European Patent Office
Prior art keywords
temperature
heater
heating
heating chamber
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07005760A
Other languages
English (en)
French (fr)
Other versions
EP1837600A3 (de
EP1837600A2 (de
Inventor
Konrad SCHÖNEMANN
Wolfgang Thimm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Geratebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGO Elektro Geratebau GmbH filed Critical EGO Elektro Geratebau GmbH
Priority to SI200730113T priority Critical patent/SI1837600T1/sl
Publication of EP1837600A2 publication Critical patent/EP1837600A2/de
Publication of EP1837600A3 publication Critical patent/EP1837600A3/de
Application granted granted Critical
Publication of EP1837600B1 publication Critical patent/EP1837600B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • F24C7/082Arrangement or mounting of control or safety devices on ranges, e.g. control panels, illumination

Definitions

  • the invention relates to a method for monitoring or control or regulation of a closed electric heating appliance with a closed boiler room, in particular an oven, steamer or dryer.
  • the invention has for its object to further develop an aforementioned method so that thus a said electric heater can be operated advantageously and overall advantageous way can be created to operate with so-called gas sensors, an electric heater.
  • the electric heating device has a heater and a temperature detection in the heating chamber and a control device including means for detecting the time and the heating power of the heater.
  • the electric heater or its heating are advantageously operated clocking.
  • the time course of at least one signal of the temperature detection and the time course of the heating power are detected in the control device, from which the state in the boiler room or components of gases contained therein are determined.
  • the information obtained in this way is used to monitor sensors present in the oven or to control or regulate the operation of the electric heating appliance.
  • this allows the constituents of the atmosphere in the boiler room or the gases contained therein to be recognized in terms of their type and concentration.
  • This in turn can be closed on the one hand on the type of baked goods or the like and on the condition thereof, as for example in the DE 103 40 146 A1 is described.
  • a moisture measurement is possible, which can be dispensed with great advantage on special gas sensors or humidity sensors.
  • the temperature detection can advantageously have a temperature sensor, wherein the temperature detection detects the reaction of the temperature sensor to a temperature jump in the boiler room. From this reaction or the corresponding information, the thermal conductivity and / or the atmospheric humidity of the atmosphere in the boiler room can be determined via the temperature sensor signals. This can be done particularly advantageously on the basis of the transit time or amplitude of the sensor signals, since these allow a conclusion to the desired information.
  • the invention can also achieve that existing functional units, for example in an oven, can be used and no further needed.
  • a heater is inevitably and provided by default in an oven, means for temperature detection, such as temperature sensors, also.
  • temperature sensors are partially thermo-mechanically formed with expansion box and capillary tube connection to a temperature sensing device.
  • electrical temperature sensors are already being used, which can be evaluated electronically by means of a corresponding controller.
  • the aforementioned temperature jumps are generated by a cyclic operation of the heater.
  • this can be done by a regular continuous operation in continuous operation, as it corresponds, for example, the normal operation of the electric heater.
  • the advantage of this is that in one of the normal modes of operation of the electric heater nothing has to be changed in the process, so that both the operation can go undisturbed and the cost of deviating control methods can be saved.
  • a temperature jump for the temperature detection and determination of the atmosphere in the boiler room can be specifically initiated by a heater deviating from the otherwise currently prevailing operating conditions. This therefore means an opening of the aforementioned normal intended operation of the electrical appliance.
  • the advantage here is that then always the same temperature jump can be performed. In particular, it is always the same insofar as it deviates from a prevailing basic temperature by a certain percentage. Alternatively, it can always deviate by a certain absolute temperature difference. This in turn simplifies the evaluation of the obtained Sensor signals, although for a small disturbance or change in the operation of the electric heater is necessary.
  • the temperature jump is a jump up, so with increasing temperature.
  • a temperature jump down is possible only by switching off the heater and subsequent cooling of the boiler room, which is slow due to the usual good thermal insulation.
  • the cooling or cooling rate is detected at the temperature sensor.
  • the temperature sensor it is possible to effect a faster cooling than usual or to detect both increase in temperature during the temperature jump and cooling or falling of the temperature under certain circumstances. Since the temperature jump is introduced from the top of the heater and can be detected in the atmosphere in the boiler room depending on the distance to the heater, but not necessarily leads to a uniform increase in the total temperature in the boiler room, the subsequent cooling is also stronger than from the normal state the temperature conditions out.
  • a temperature jump can be generated for a relatively manageable duration, for example a few minutes or even less than a minute.
  • a subsequent cooling with a cooling rate A can last longer, in particular a few minutes, until the "normal" temperature value is reached again after a temperature rise.
  • the specification of the time interval can be based on the one hand on the practical conditions for the times of the oven control on the other hand also on the sensor arrangement with regard to the necessary accuracies. In any case, the time intervals are to be chosen in dependence on the other arrangements in such a way as to ensure that the disturbances in the system are smaller than the effects which are actually due to the different state of the gases.
  • a plurality of temperature sensors are provided for a temperature detection. They may advantageously have a different distance from the heater in order to detect not only the pure temporal behavior of the temperature but also a local course of the temperature. For example, two to five temperature sensors may be provided, of course, it should be noted that both the cost of the evaluation of the respective sensor signals increases with the number and the additional design effort for the plurality of temperature sensors. This should actually be kept in check.
  • sensors or temperature sensors which can temporarily perform other functions. This could e.g. Functions as a lamp or to control a door lock be.
  • the thermal conductivity of the atmosphere can be detected in the boiler room. This can also be on the Composition of the atmosphere from different gases are closed by their specific values for their thermal conductivity. These values are stored in the control device and can be retrieved.
  • a further embodiment of the invention can be concluded from the running time of a sensor signal of the temperature detection on properties of the atmosphere or the gases in the boiler room. These properties are thermal conductivity, thermal conductivity and / or density of a carrier medium or the atmosphere. Also for this purpose, a comparison can be made with corresponding values stored in the control device.
  • the temperature jumps can not only be provided outside the normal operation of the electric heater, but also be generated by an additional heater.
  • This additional heating can not be provided for the considered normal operation of the electric heater or not for the currently selected mode of operation.
  • a grill mounted above in the boiler room can be operated for a short time to produce the temperature jump. This is standard installed in the oven, for the operation with circulating air, however, not provided.
  • a radiant heater may be provided, either with temperatures in the range operated by incandescent heating conductors, for example 800 ° C to 1100 ° C.
  • Such a radiant heater may have, for example, exposed heating conductors and is in the DE 42 29 375 A1 described.
  • a particularly interesting variant can be achieved in that the electrical resistance of the radiant heater, if this is currently not in operation, has a large temperature dependence and thus the radiant heater or a heating element or heating resistor thereof can be used quasi even as a temperature sensor. More specifically, these are NTC or PTC effect heaters or combinations of both. Which type of heating element is more favorable for the temperature detection depends in particular on the arrangement between the temperature sensor and the heating element, which generates the temperature jump. For relatively low temperatures offers the NTC effect, for relatively high temperatures in turn the PTC effect advantages in the evaluation.
  • NTC-effect heating conductors may be doped semiconducting ceramics, preferably of doped and sintered silicon carbide (SiC), or lamps containing heating conductors, for example based on carbon (carbon fiber or carbon nanotubes).
  • Heating conductor with PTC effect for example, be designed as a so-called halogen lamps, in which case the embodiment may correspond to a lamp, with a heating conductor preferably made of tungsten or molybdenum or alloys thereof.
  • a tubular heater can be provided in the boiler room, in which a heating conductor is arranged in a jacket.
  • a hot air supply can be used as a heater.
  • a heater of this hot air supply is usually located outside the boiler room and has a fan or the like. to bring the hot air into the boiler room. If the electric heater is an oven, so can one Combination of the above-described types of heaters can be provided.
  • a radiant heater or a tubular heater is provided together with a hot air supply, wherein radiant heater or tubular heater can be used, for example, for a grill function.
  • tubular heaters it is also possible to design a tubular heater so that it can temporarily perform sensor functions.
  • tubular heaters are known in the art. However, it should be explicitly pointed out that the operation of tubular heaters with PTC effect must comply with various flicker standards.
  • a known to those skilled in the field of radiant heater variant, which is under the name HaloLight on the market and the EP 176027 A1 It can be seen in a series circuit of halogen heating elements as PTC heating elements and heating elements with "normal" horrsSdraht (for example FeCrAl, NiCr 8020 or FeNiCr3020, ).
  • gas or humidity sensors can be saved in the electric heater.
  • the method can then serve to control or regulation of the electric heater.
  • these gas or humidity sensors can be monitored, in particular malfunctions or the like .
  • an unforeseen or critical condition can be detected in the boiler room, for example, a burning of therein objects or food or food or the emergence of other gases in the this mode of operation should not arise.
  • Fig. 1 shows in a lateral schematic section of a baking oven 11 with a housing 12.
  • a door 13 allows access to the muffle or the heating chamber 15 of the oven 11.
  • In the boiler room 15 can be cooked 17, for example, a casserole or other food, in an oven can be prepared stand.
  • a heater 19 This is designed as a tubular heater, as it is basically known. It can be laid at least at the top of the boiler room 15 meandering or as a single loop.
  • a temperature detection 21 projects into the heating chamber 15. It can be designed as a type of temperature sensor and, just like the heater 19, can be connected to a control 23. While the controller 23 can both control the heater 19 and, under certain circumstances, only monitor its operation, the temperature detector 21 is actuated and also evaluated by the controller 23, in particular explicitly as a temperature profile with specific values for the temperature. For this purpose, temperature sensors such as, for example, resistance sensors or PT1000 sensors are suitable. An operating element 25 is connected to the controller 23, for example as a rotary knob for setting a heating power for the heater 19th
  • Fig. 2 is in extension of the oven 11 off Fig. 1 an oven 111 is shown, which in addition to the heater 119 also has a second heater 120 in the boiler room 115. Furthermore, in addition to the temperature sensor 121 is similar to Fig. 1 a dashed line another position for a temperature sensor 121 'shown. The position of this dashed temperature sensor 121 'is clearly further away from the upper heater 119 and a little closer to the lower heater 120th It will be discussed in more detail later. On the one hand, this greater distance means a considerably lower value for the recorded temperatures during the temperature detection. On the other hand, there is a somewhat delayed temperature detection, since the heat from the heaters must first spread to the respective position of the temperature sensor.
  • FIG. 3 to 6 The function of a baking oven 11 or 111 and the course of the method according to the invention will be described with reference to FIG Fig. 3 to 6 for such ovens 11 and 111 explained.
  • the diagrams in the Fig. 3 to 6 contain information on temperatures in ° C as well as the relative humidity defined for them. In total, three temperatures were recorded, namely 30 ° C, 60 ° C and 90 ° C and two humidities, namely 20% and 90%. Based on these initial conditions, temperature jumps were generated by the heaters 19 or 119.
  • the heater 120 for the bottom heat according to Fig. 2 was ignored, and her operation would not fundamentally change anything. Furthermore, the distance of the temperature sensor 21 and 121 was varied by the heater.
  • Fig. 3 It can be seen how, starting from the initial temperature of 90 ° C, a temperature jump is produced by operation of the heater. Thereafter, the temperature at the temperature sensor rises relatively steeply for about the first 25 seconds, and then rises slightly further into a slower rise. The increase is somewhat slower for the two larger distances of 5 cm and 10 cm and, of course, reaches much lower values. After about 60 seconds, the heating is switched off again and the temperature drops accordingly.
  • the cooling rates and the cooling behavior are better evaluated, is in Fig. 6 for the initial temperature value 60 ° C only the cooling is shown.
  • the cooling rate can be determined at a fixed time interval based on the temperature difference.
  • the temperature at high humidity drops more slowly than at low air humidity.
  • an evaluation of the measured data can take place.
  • the mean and standard deviation of the relative differences between the two air humidities can be calculated.
  • the mean value is smaller than the standard deviation, these are accidental measurement inaccuracies. These in turn can not be used to determine the thermal conductivity and thus not to measure the humidity. If, on the other hand, the mean value is greater than the standard deviations, this is an effect that can be used to determine the air humidity.
  • a good embodiment can be achieved by an optimized arrangement of temperature sensors and heating elements, in particular also with regard to inertia, as well as a suitable sensor resolution, preferably of 1/100 K.
  • a suitable sensor resolution preferably of 1/100 K.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Stoves And Ranges (AREA)
  • Control Of Resistance Heating (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Electric Ovens (AREA)
  • Drying Of Solid Materials (AREA)

Description

    Anwendungsgebiet und Stand der Technik
  • Die Erfindung betrifft ein Verfahren zur Überwachung bzw. Steuerung oder Regelung eines geschlossenen Elektrowärmegerätes mit geschlossenem Heizraum, insbesondere ein Backofen, Dampfgarer oder Wäschetrockner.
  • Aus der DE 101 43 841 A1 ist es bekannt, die Unterschiede in der Schallgeschwindigkeit zwischen trockener und feuchter Luft auszuwerten zur Bestimmung der Dichte. Dabei wird die Laufzeit eines Schallimpulses gemessen und ausgewertet.
  • Aus der DE 101 03 658 A1 ist ein Verfahren zur Bestimmung der Wärmeleitfähigkeit von Gasen bekannt, wobei die Reaktion eines Sensors auf einen Temperatursprung ausgewertet wird. Hier ist auch erläutert, inwiefern Unterschiede in der Wärmeleitfähigkeit von Gasen grundsätzlich zu deren Charakterisierung verwendet werden können.
  • Aus der EP 615 400 B1 ist es bekannt, dass unterschiedliche Gassensoren in einem Backofen ausgewertet werden können bei der Zubereitung von Speisen.
  • Ein weiteres Verfahren zur Überwachung, Steuerung oder Regelung offenbart die EP-A-0 567 813 .
  • Aufgabe und Lösung
  • Der Erfindung liegt die Aufgabe zugrunde, ein eingangs genanntes Verfahren derart weiterzuentwickeln, dass damit ein genanntes Elektrowärmegerät vorteilhaft betrieben werden kann und insgesamt eine vorteilhafte Möglichkeit geschaffen werden kann, mit sogenannten Gassensoren ein Elektrowärmegerät zu betreiben.
  • Gelöst wird diese Aufgabe durch ein Verfahren mit dem Merkmal des Anspruchs 1. Vorteilhafte sowie bevorzugte Ausgestaltungen der Erfindung sind Gegenstand der weiteren Ansprüche und werden im Folgenden näher erläutert. Der Wortlaut der Ansprüche wird durch ausdrückliche Bezugnahme zum Inhalt der Beschreibung gemacht.
  • Erfindungsgemäß ist vorgesehen, dass das Elektrowärmegerät eine Heizung und eine Temperaturerfassung in dem Heizraum aufweist sowie eine Steuereinrichtung samt Mitteln zur Erfassung der Zeit sowie der Heizleistung der Heizung. Das Elektrowärmegerät bzw. seine Heizung werden dabei vorteilhaft taktend betrieben. Der zeitliche Verlauf mindestens eines Signals der Temperaturerfassung sowie der zeitliche Verlauf der Heizleistung werden erfasst in der Steuereinrichtung, wobei daraus der Zustand im Heizraum bzw. Bestandteile von darin enthaltenen Gasen bestimmt werden. Die so erhaltenen Informationen werden zur Überwachung von im Backofen vorhandenen Sensoren oder zur Steuerung bzw. Regelung des Betriebs des Elektrowärmegerätes verwendet.
  • Insbesondere können dadurch die Bestandteile der Atmosphäre im Heizraum bzw. darin enthaltene Gase nach Art und Konzentration erkannt werden. Daraus wiederum kann zum einen auf die Art von enthaltenem Backgut oder dergleichen geschlossen werden sowie auf dessen Zustand, wie dies beispielsweise in der DE 103 40 146 A1 beschrieben ist. Insbesondere ist mit der Erfindung auch eine Feuchtemessung möglich, wobei mit großem Vorteil auf spezielle Gassensoren oder Feuchtesensoren verzichtet werden kann.
  • Die Temperaturerfassung kann vorteilhaft einen Temperatursensor aufweisen, wobei in der Temperaturerfassung die Reaktion des Temperatursensors auf einen Temperatursprung im Heizraum erfasst wird. Aus dieser Reaktion bzw. den entsprechenden Informationen können die Wärmeleitfähigkeit und/oder die Luftfeuchtigkeit der Atmosphäre im Heizraum über die Temperatursensorsignale bestimmt werden. Besonders vorteilhaft kann dies anhand der Laufzeit bzw. Amplitude der Sensorsignale erfolgen, da diese einen Rückschluss auf die gewünschten Informationen erlauben.
  • Mit Vorteil kann die Erfindung auch erreichen, dass vorhandene Funktionseinheiten, beispielsweise in einem Backofen, genutzt werden können und keine weiteren gebraucht werden. Eine Heizung ist zwangsläufig und standardmäßig in einem Backofen vorgesehen, Mittel zur Temperaturerfassung, beispielsweise Temperatursensoren, ebenfalls. Zwar sind diese teilweise thermomechanisch ausgebildet mit Ausdehnungsdose und Kapillarrohr-Verbindung zur einer Temperaturerfassungsvorrichtung. Teilweise werden jedoch bereits elektrische Temperatursensoren verwendet, die elektronisch durch eine entsprechende Steuerung ausgewertet werden können.
  • Anhand der gewonnenen Sensorsignale kann vorteilhaft bestimmt werden, welche Gase sich in der Atmosphäre des Heizraums befinden, wobei hierfür ein Vergleich der Werte für Laufzeit und/oder Amplitude der Sensorsignale mit in der Steuereinrichtung abgespeicherten Werten für die Sensorsignale stattfindet. Wenn die Signalverläufe ausreichend ähnlich sind, ist auch die Bestimmung der entsprechenden Gase oder ihrer Anteile für den Fachmann in bekannter Art und Weise möglich. Auch hierzu wird auf die vorgenannte DE 103 40 146 A1 verwiesen.
  • Es ist weiterhin gemäß einer ersten Möglichkeit denkbar, dass die vorgenannten Temperatursprünge durch einen taktenden Betrieb der Heizung erzeugt werden. Insbesondere kann dies durch einen im Dauerbetrieb regelmäßigen taktenden Betrieb erfolgen, wie er beispielsweise der als normal vorgesehenen Betriebsweise des Elektrowärmegerätes entspricht. Dies bedeutet also beispielsweise bei einem üblichen Backofen, dass dort ebenfalls die Heizung taktend betrieben wird, und zwar eingeschaltet mit Volllast oder ausgeschaltet. Der Vorteil hierbei liegt darin, dass bei einer der normalen Betriebsweisen des Elektrowärmegerätes nichts am Ablauf geändert werden muss, so dass sowohl der Betrieb ungestört verlaufen kann als auch der Aufwand für abweichende Steuerverfahren eingespart werden kann.
  • Gemäß einer zweiten Möglichkeit kann ein Temperatursprung für die Temperaturerfassung und Bestimmung der Atmosphäre im Heizraum abweichend von den ansonsten gerade herrschenden Betriebsbedingungen durch eine Heizung gezielt initiiert werden. Dies bedeutet also eine Durchbrechung der vorgenannten normal vorgesehenen Betriebsweise des Elektrogerätes. Der Vorteil hierbei liegt darin, dass dann ein stets gleicher Temperatursprung durchgeführt werden kann. Er ist insbesondere insofern stets gleich, als dass er von einer herrschenden Grund-Temperatur einen bestimmten prozentualen Anteil abweicht. Alternativ kann er stets um eine bestimmte absolute Temperaturdifferenz abweichen. Dies wiederum vereinfacht die Auswertung der gewonnenen Sensorsignale, wenngleich dafür eine geringe Störung oder Änderung der Betriebsweise des Elektrowärmegerätes nötig ist.
  • Bei bevorzugter Ausgestaltung der Erfindung ist der Temperatursprung ein Sprung nach oben, also mit ansteigender Temperatur. Vorteilhaft werden ausschließlich Temperatursprünge nach oben erzeugt. Dies weist den Vorteil auf, dass im Gegensatz zu Temperatursprüngen nach unten eine größere Steigung erzielt werden kann, da der Temperatursprung nach oben gezielt durch die Heizung beeinflusst werden kann. Ein Temperatursprung nach unten ist nur durch Abschalten der Heizung sowie daran anschließendes Abkühlen des Heizraums möglich, wobei dies aufgrund dessen üblicher guter thermischer Dämmung langsam erfolgt.
  • In weiterer besonders bevorzugter Ausgestaltung ist es auch möglich, dass nach dem Temperatursprung nach oben und dessen Beendigung die Abkühlung bzw. Abkühlrate an dem Temperatursensor erfasst wird. Somit ist es möglich, eine schnellere Abkühlung als sonst zu bewirken bzw. unter Umständen sowohl Anstieg der Temperatur während des Temperatursprungs als auch Abkühlung bzw. Abfallen der Temperatur zu erfassen. Da der Temperatursprung nach oben von der Heizung eingeleitet wird und in der Atmosphäre im Heizraum abhängig vom Abstand zu der Heizung erfasst werden kann, nicht jedoch unbedingt zu einem gleichmäßigen Anstieg der Gesamttemperatur im Heizraum führt, ist die anschließende Abkühlung auch stärker als aus dem normalen Zustand der Temperaturverhältnisse heraus.
  • Ein Temperatursprung kann für eine relativ überschaubare Dauer erzeugt werden, beispielsweise wenige Minuten oder sogar weniger als eine Minute. Eine daran anschließende Abkühlung mit einer Abkühlrate A kann, bis der "normale" Temperaturwert nach einem Temperaturanstieg wieder erreicht ist, länger dauern, insbesondere einige Minuten.
  • Die Abkühlrate A ist im einfachsten Fall einfach durch den Quotienten A=(T1-T2)/(t1-t2) definiert, wobei T1 und T2 die Temperaturen am Sensor zu den Zeiten t1 und t2 sind. Für ein vorgegebenes Zeitintervall t1-t2 sind daher einfach die beiden Temperaturen T1 und T2 zu bestimmen, um die Abkühlrate A zu bilden. Die Vorgabe des Zeitintervalls kann sich einerseits an den praktischen Gegebenheiten für die Zeiten der Backofensteuerung andererseits auch an der Sensoranordnung hinsichtlich der nötigen Genauigkeiten orientieren. Auf jeden Fall sind die Zeitintervalle in Abhängigkeiten der übrigen Anordnungen so zu wählen, dass sichergestellt wird, dass die Störungen im System kleiner sind als die Effekte, die tatsächlich auf den Unterschiedlichen Zustand der Gase zurückzuführen sind.
  • In weiterer Ausgestaltung der Erfindung sind mehrere Temperatursensoren vorhanden für eine Temperaturerfassung. Sie können vorteilhaft einen unterschiedlichen Abstand zu der Heizung aufweisen, um neben dem reinen zeitlichen Verhalten der Temperatur auch einen örtlichen Verlauf der Temperatur zu erfassen. Beispielsweise können zwei bis fünf Temperatursensoren vorgesehen sein, wobei natürlich zu beachten ist, dass sowohl der Aufwand für die Auswertung der jeweiligen Sensorsignale mit der Anzahl ansteigt als auch der zusätzliche konstruktive Aufwand für die mehreren Temperatursensoren. Dieser sollte eigentlich in Grenzen gehalten werden.
  • Besonders interessant ist die Verwendung von Sensoren bzw. Temperatursensoren, die zeitweilig auch andere Funktionen wahrnehmen können. Dies könnten z.B. Funktionen als Lampe oder zur Kontrolle einer Türverriegelung sein.
  • Bei einer Auswertung der Sensorsignale kann die Wärmeleitfähigkeit der Atmosphäre in dem Heizraum erfasst werden. Daraus kann auch auf die Zusammensetzung der Atmosphäre aus verschiedenen Gasen geschlossen werden anhand deren spezifischer Werte für ihre Wärmeleitfähigkeit. Diese Werte sind in der Steuereinrichtung abgespeichert und können abgerufen werden.
  • Gemäß einer weiteren Ausbildung der Erfindung kann aus der Laufzeit eines Sensorsignals der Temperaturerfassung auf Eigenschaften der Atmosphäre bzw. der Gase im Heizraum geschlossen werden. Diese Eigenschaften sind Wärmeleitfähigkeit, Wärmeleitkapazität und/oder Dichte eines Trägermediums bzw. der Atmosphäre. Auch hierzu kann ein Vergleich mit in der Steuereinrichtung abgespeicherten entsprechenden Werten erfolgen.
  • Gemäß einer wiederum weiteren Ausbildung der Erfindung kann aus der Amplitude eines Sensorsignals der Temperaturerfassung auf Eigenschaften in der Atmosphäre im Heizraum geschlossen werden, insbesondere die vorgenannten Eigenschaften. Auch hier ist wiederum ein Vergleich mit in der Steuereinrichtung abgespeicherten Werte möglich.
  • Die Temperatursprünge können nicht nur außerhalb der normalen Betriebsweise des Elektrowärmegeräts vorgesehen werden, sondern auch durch eine zusätzliche Heizung erzeugt werden. Diese zusätzliche Heizung kann nicht für die als normal angesehene Betriebsweise des Elektrowärmegerätes bzw. nicht für die gerade gewählte Betriebsweise vorgesehen sein. So kann beispielsweise bei einem Backofen mit Umluftbetrieb ein oben im Heizraum angebrachter Grill kurzzeitig betrieben werden zur Erzeugung des Temperatursprungs. Dieser ist zwar standardmäßig in den Backofen eingebaut, für die Betriebsweise mit Umluft jedoch nicht vorgesehen.
  • Als Heizung in dem Heizraum kann einerseits eine Strahlungsheizeinrichtung vorgesehen sein, die entweder mit Temperaturen im Bereich von glühenden Heizleitern betrieben wird, beispielsweise 800°C bis 1100°C. Eine solche Strahlungsheizeinrichtung kann beispielsweise offenliegende Heizleiter aufweisen und ist in der DE 42 29 375 A1 beschrieben.
  • Eine besonders interessante Variante kann dadurch erreicht werden, dass der elektrische Widerstand der Strahlungsheizung, falls diese gerade nicht in Betrieb ist, eine große Temperaturabhängigkeit aufweist und somit die Strahlungsheizung bzw. ein Heizelement oder Heizwiderstand davon quasi selbst als Temperatursensor benutzt werden kann. Genauer gesagt sind dies Heizelemente mit NTC oder PTC-Effekt oder Kombinationen aus beiden. Welche Art von Heizelement günstiger für die Temperaturerfassung ist, hängt insbesondere auch von der Anordnung zwischen Temperatursensor und Heizelement ab, das den Temperatursprung erzeugt. Für relativ niedrige Temperaturen bietet der NTC-Effekt, für relativ hohe Temperaturen wiederum der PTC-Effekt Vorteile bei der Auswertung. Heizleiter mit NTC-Effekt können dotierte halbleitende Keramiken sein, vorzugsweise aus dotiertem und gesintertem Siliciumcarbid (SiC), oder Lampen, welche Heizleiter, beispielsweise auf Basis von Kohlenstoff (Kohlefaser oder Carbon nanotubes) beinhalten. Heizleiter mit PTC-Effekt können beispielsweise als sogenannte Halogenstrahler ausgeführt sein, wobei hier die Ausführungsform einer Lampe entsprechen kann, mit einem Heizleiter vorzugsweise aus Wolfram oder Molybdän bzw. Legierungen daraus.
  • Alternativ zu einer Strahlungsheizeinrichtung kann ein Rohrheizkörper in dem Heizraum vorgesehen sein, bei dem ein Heizleiter in einer Ummantelung angeordnet ist. Als weitere Alternative kann eine Heißluftzuführung als Heizung verwendet werden. Eine Heizeinrichtung dieser Heißluftzuführung ist üblicherweise außerhalb des Heizraums angeordnet und weist ein Gebläse odgl. auf, um die Heißluft in den Heizraum zu bringen. Ist das Elektrowärmegerät ein Backofen, so kann auch eine Kombination von vorbeschriebenen Arten von Heizungen vorgesehen sein. Vorteilhaft ist eine Strahlungsheizeinrichtung oder ein Rohrheizkörper samt einer Heißluftzuführung vorgesehen, wobei Strahlungsheizeinrichtung oder Rohrheizkörper beispielsweise auch für eine Grillfunktion verwendet werden können.
  • Genau wie vorbeschrieben bei Strahlungsheizkörper ist es auch möglich, einen Rohrheizkörper so auszuführen, dass er zeitweise Sensorfunktionen ausüben kann. Entsprechende Ausführungsformen für Rohrheizkörper sind dem Fachmann bekannt. Es ist allerdings explizit darauf hinzuweisen, dass beim Betrieb von Rohrheizkörpern mit PTC-Effekt diverse Flickernormen einzuhalten sind. Eine dem Fachmann auf dem Gebiet der Strahlungsheizkörper bekannte Variante, die unter dem Namen HaloLight auf dem Markt ist und der EP 176027 A1 zu entnehmen ist, besteht in einer Reihenschaltung von Halogen-Heizelementen als PTC-Heizelemente und Heizelementen mit "normalem" Widerstandsheizdraht (beispielsweise FeCrAl, NiCr 8020 oder FeNiCr3020,...).
  • Mit den gewonnenen Informationen über die Atmosphäre im Heizraum bzw. ihrer Zusammensetzung können beispielsweise Gas- oder Feuchtesensoren in dem Elektrowärmegerät eingespart werden. So kann das Verfahren dann zur Steuerung oder Regelung des Elektrowärmegerätes dienen. Alternativ können diese Gas- oder Feuchtesensoren überwacht werden, insbesondere auf Fehlfunktionen odgl.. Des weiteren kann ein unvorhergesehener oder kritischer Zustand in dem Heizraum erkannt werden, beispielsweise ein Anbrennen von darin befindlichen Gegenständen bzw. Nahrungsmitteln oder Speisen oder ein Entstehen sonstiger Gase, die bei dieser Betriebsweise nicht entstehen sollten.
  • Diese und weitere Merkmale gehen außer aus den Ansprüchen auch aus der Beschreibung und den Zeichnungen hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombinationen bei einer Ausführungsform der Erfindung und auf anderen Gebieten verwirklicht sein und vorteilhafte sowie für sich schutzfähige Ausführungen darstellen können, für die hier Schutz beansprucht wird. Die Unterteilung der Anmeldung in einzelne Abschnitte sowie Zwischen-Überschriften beschränken die unter diesen gemachten Aussagen nicht in ihrer Allgemeingültigkeit.
  • Kurzbeschreibung der Zeichnungen
  • Ausführungsbeispiele der Erfindung sind in den Zeichnungen schematisch dargestellt und werden im Folgenden näher erläutert. In den Zeichnungen zeigt:
  • Fig. 1
    eine schematische Innenansicht eines Backofens gemäß einer ersten Ausführungsform der Erfindung mit einer Heizung und Temperatursensor,
    Fig. 2
    eine Innenansicht eines Backofens gemäß einer zweiten Ausführungsform der Erfindung mit zwei Heizungen und einer Alternativposition für den Temperatursensor und
    Fig. 3 bis 6
    verschiedene Kurven des Verlaufs der Temperatur über der Zeit bei unterschiedlichen Luftfeuchtigkeiten in Abhängigkeit von unterschiedlichen Temperaturen.
    Detaillierte Beschreibung der Ausführungsbeispiele
  • Fig. 1 zeigt in einem seitlichen schematisch Schnitt einen Backofen 11 mit einem Gehäuse 12. Eine Tür 13 ermöglicht den Zugang zu der Muffel bzw. dem Heizraum 15 des Backofens 11. In dem Heizraum 15 kann Gargut 17, beispielsweise ein Auflauf oder ein sonstiges Nahrungsmittel, das in einem Backofen zubereitet werden kann, stehen.
  • In dem Backofen 11 befindet sich eine Heizung 19. Diese ist hier als Rohrheizkörper ausgebildet, wie er grundsätzlich bekannt ist. Er kann zumindest an der Oberseite des Heizraums 15 mäanderartig oder als einzelne Schleife verlegt sein.
  • Des weiteren ragt eine Temperaturerfassung 21 in den Heizraum 15. Sie kann als eine Art Temperatursensor ausgebildet sein und, ebenso wie die Heizung 19, mit einer Steuerung 23 verbunden sein. Während die Steuerung 23 die Heizung 19 sowohl ansteuern kann als auch unter Umständen auch nur ihren Betrieb überwachen kann, wird die Temperaturerfassung 21 von der Steuerung 23 angesteuert und auch ausgewertet, insbesondere explizit als Temperaturverlauf mit konkreten Werten für die Temperatur. Geeignet sind hierzu Temperatursensoren wie beispielsweise Widerstandssensoren bzw. PT1000-Sensoren. Ein Bedienelement 25 ist mit der Steuerung 23 verbunden, beispielsweise als Drehknebel zum Einstellen einer Heizleistung für die Heizung 19.
  • In Fig. 2 ist in Erweiterung des Backofens 11 aus Fig. 1 ein Backofen 111 dargestellt, der neben der Heizung 119 auch noch eine zweite Heizung 120 in dem Heizraum 115 aufweist. Des weiteren ist neben dem Temperatursensor 121 ähnlich der Fig. 1 noch gestrichelt eine andere Position für einen Temperatursensor 121' dargestellt. Die Position dieses gestrichelt dargestellten Temperatursensors 121' ist deutlich weiter entfernt von der oberen Heizung 119 und dafür ein Stück näher an der unteren Heizung 120. Darauf wird später noch genauer eingegangen. Diese größere Entfernung bedeutet bei der Temperaturerfassung zum Einen einen erheblich niedrigeren Wert für die erfassten Temperaturen. Zum Anderen erfolgt eine etwas verzögerte Temperaturerfassung, da sich die Wärme von den Heizungen aus erst einmal hin zu der jeweiligen Position des Temperatursensors ausbreiten muß.
  • Funktion
  • Die Funktion eines Backofens 11 bzw. 111 sowie der Ablauf des erfindungsgemäßen Verfahrens wird anhand der Fig. 3 bis 6 für derartige Backöfen 11 bzw. 111 erläutert. Die Diagramme in den Fig. 3 bis 6 enthalten jeweils Angaben zu Temperaturen in °C sowie den dafür definierten relativen Luftfeuchten. Erfasst wurden insgesamt jeweils drei Temperaturen, nämlich 30°C, 60°C und 90°C sowie zwei Luftfeuchten, nämlich 20% und 90%. Ausgehend von diesen Anfangsbedingungen wurden Temperatursprünge erzeugt durch die Heizungen 19 oder 119. Die Heizung 120 für die Unterhitze gemäß Fig. 2 wurde hierbei außer Acht gelassen, wobei ihr Betrieb nichts grundlegend ändern würde. Des weiteren wurde der Abstand des Temperatursensors 21 bzw. 121 von der Heizung variiert. Die verschiedenen Werte sind ein Abstand von 1 cm, 5 cm und 10 cm, wobei die jeweiligen Temperaturverläufe durchgezogen, gestrichelt oder punktiert dargestellt sind. Der besseren Vergleichbarkeit halber sind in Fig. 6 für beide Werte der relativen Luftfeuchte sämtliche Verläufe mit unterschiedlichem Abstand in ein Diagramm eingezeichnet, dazu später mehr.
  • In Fig. 3 ist zu sehen, wie ausgehend von der Anfangstemperatur 90°C ein Temperatursprung erzeugt wird durch Betrieb der Heizung. Daraufhin steigt die Temperatur an dem Temperatursensor relativ steil an für etwa die ersten 25 Sekunden, um dann in einen langsameren Anstieg noch etwas weiter zu steigen. Der Anstieg ist für die beiden größeren Abstände von 5 cm und 10 cm etwas langsamer und erreicht natürlich weitaus geringere Werte. Nach etwa 60 Sekunden wird die Heizung wieder abgeschaltet und die Temperatur fällt entsprechend ab.
  • Aus Fig. 3 ist zu erkennen, dass die Temperaturverläufe eine bestimmte charakteristische Form haben, die natürlich nicht überrascht. Die Kurve ist jedoch erkennbar grundsätzlich geeignet für eine charakteristische Unterscheidung zu anderen Kurven.
  • Aus dem Vergleich der Diagramme in Fig. 4 und Fig. 5, die beide bei Ausgangstemperatur 30°C und nur bei unterschiedlichen relativen Luftfeuchten starten, kann eine gewisse Unterscheidbarkeit vorgenommen werden. Zugegebenermaßen ist der Unterschied im Kurvenverlauf nicht besonders groß. Betrachtet man dagegen anhand der Messwerte vor allem die Abkühlraten, also ab etwa 60 Sekunden nach dem Ausschalten der Heizung, so werden Unterschiede deutlicher. Die Temperaturwerte bei der höheren Luftfeuchte sinken langsamer, das bedeutet, dass der Temperaturabfall geringer ist bzw. eben langsamer.
  • Da, wie gesagt, die Abkühlraten bzw. das Abkühlverhalten besser auswertbar sind, ist in Fig. 6 für den Ausgangs-Temperaturwert 60°C nur die Abkühlung dargestellt. Die Abkühlrate kann bei einem festen Zeitintervall anhand der Temperaturdifferenz bestimmt werden. Hier ist vor allem für den Verlauf des Messwerts bei einem Abstand von einem Zentimeter zu erkennen, dass vor allem für Zeiten ab knapp 50 Sekunden die Temperatur bei hoher Luftfeuchte langsamer sinkt als bei geringer Luftfeuchte. Zumindest in diesem Bereich kann eine Auswertung der Messdaten erfolgen. Um rechnerisch in der Steuerung 23 zu unterscheiden, ob es sich bei den Unterschieden um einen wirklichen Messeffekt handelt aufgrund der tatsächlichen physikalischen Wärmeleitfähigkeit im Heizraum 15 oder lediglich um Messungenauigkeiten, können Mittelwert und Standardabweichung der relativen Unterschiede der beiden Luftfeuchten berechnet werden. Ist der Mittelwert dabei kleiner als die Standardabweichung, so handelt es sich um zufällige Messungenauigkeiten. Diese wiederum können nicht zur Bestimmung der Wärmeleitfähigkeit und damit nicht zur Messung der Luftfeuchte benutzt werden. Ist dagegen der Mittelwert größer als die Standardabweichungen, so handelt es sich um einen Effekt, der zur Bestimmung der Luftfeuchte genutzt werden kann.
  • Auch wenn die Fig. 6 auf den ersten Blick etwas anderes vermuten lässt, so sind bei den Entfernungen 1 cm und 5 cm des Temperatursensors 21 von der Heizung 19 die Unterschiede zwischen den Messungen kleiner als die Standardabweichungen. Somit ist hier der experimentelle Fehler zu groß um die Wärmeleitfähigkeit eindeutig zu bestimmen. Bei 10 cm Abstand wiederum ist der mittlere Unterschied zwischen den Luftfeuchten signifikant größer als die Standardabweichung, so dass hier aus der gemessenen Temperatur auf die Wärmeleitfähigkeit und damit auf die Luftfeuchte geschlossen werden kann.
  • Grundsätzlich lässt sich durch eine optimierte Anordnung von Temperatursensoren und Heizelementen, insbesondere auch hinsichtlich der Trägheit, sowie einer geeigneten Sensorauflösung, vorzugsweise von 1/100 K, eine gute Ausführungsform erreichen. Es zeigt sich aber auch, dass eine solche Anordnung nicht selbstverständlich ist, wodurch gerade der erfinderische Aspekt unterstrichen wird.

Claims (17)

  1. Verfahren zur Überwachung bzw. Steuerung oder Regelung eines geschlossenen Elektrowärmegerätes (11, 111) mit einem geschlossenen Heizraum (15, 115), insbesondere eines Backofens (11, 111), Dampfgarers oder Wäschetrockners, und mit einer Heizung (19, 119, 120) und Temperaturerfassung (21, 121, 121') in dem Heizraum und mit einer Steuereinrichtung (23, 123) samt Mitteln zur Zeiterfassung sowie zur Erfassung der Heizleistung der Heizung, wobei das Elektrowärmegerät bzw. die Heizung taktend betrieben werden, dadurch gekennzeichnet, dass der zeitliche Verlauf mindestens eines Signals der Temperaturerfassung und der zeitliche Verlauf der Heizleistung erfasst werden in der Steuereinrichtung (23, 123) und daraus der Zustand im Heizraum (15, 115) bzw. Bestandteile von darin enthaltenen Gasen bestimmt wird, wobei die so erhaltenen Informationen zur Überwachung von im Elektrowärmegerät vorhandenen Sensoren oder zur Steuerung bzw. Regelung des Betriebs des Elektrowärmegerätes verwendet werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperaturerfassung einen Temperatursensor (21, 121, 121') aufweist und in der Temperaturerfassung die Reaktion des Temperatursensors auf einen Temperatursprung im Heizraum (15, 115) erfasst wird und eine Bestimmung der Wärmeleitfähigkeit oder der Luftfeuchte der Atmosphäre im Heizraum anhand der Sensorsignale des Temperatursensors (21, 121, 121') erfolgt, insbesondere anhand Laufzeit und/oder Amplitude der Sensorsignale.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass anschließend die Gase in dieser Atmosphäre anhand der Sensorsignale bestimmt werden durch Vergleich der Werte für Laufzeit und/oder Amplitude im Vergleich mit in der Steuerung (23, 123) abgespeicherten Werten dafür.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Temperatursprünge durch einen taktenden Betrieb der Heizung (19, 119, 120) erzeugt werden, insbesondere einen taktenden Betrieb entsprechend der als normal vorgesehenen Betriebsweise des Elektrowärmegerätes (11, 111).
  5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Temperatursprung für die Temperaturerfassung und Bestimmung der Atmosphäre im Heizraum (15, 115) abweichend von den ansonsten gerade herrschenden Betriebsbedingungen durch die Heizung (19, 119, 120) initiiert wird, insbesondere ein stets gleicher Temperatursprung.
  6. Verfahren nach Anspruch 2 oder 5 und 2, dadurch gekennzeichnet, dass die Temperatursprünge durch einen taktenden Betrieb einer zusätzlichen Heizung (19, 119, 120) erzeugt werden, die nicht für die als normal angesehene Betriebsweise des Elektrowärmegerätes (11, 111) vorgesehen ist.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Temperatursprung mit ansteigender Temperatur initiiert wird, vorzugsweise nur Temperatursprünge mit ansteigender Temperatur, wobei insbesondere dabei auch die Abkühlrate am Temperatursensor (21, 121, 121') erfasst wird während der Zeit nach dem Temperatursprung.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Temperatursprung für eine Dauer von weniger als einer Minute erzeugt wird, insbesondere als ein Temperaturanstieg.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Temperatursensoren (21, 121, 121') vorhanden sind, insbesondere mit unterschiedlichem Abstand zu der Heizung (19, 119, 120) für den Temperatursprung, vorzugsweise zwei bis fünf Temperatursensoren.
  10. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Wärmeleitfähigkeit der Atmosphäre im Heizraum (15, 115) erfasst wird und daraus auf die Zusammensetzung der Atmosphäre aus verschiedenen Gasen geschlossen wird anhand deren spezifischer Werte für die Wärmeleitfähigkeit, wobei diese Werte in der Steuereinrichtung (23, 123) abgespeichert sind.
  11. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass aus der Laufzeit eines Sensorsignals der Temperaturerfassung auf Eigenschaften der Atmosphäre im Heizraum (15, 115) geschlossen wird, insbesondere der Wärmeleitfähigkeit, Wärmeleitkapazität und/oder Dichte des Trägermediums.
  12. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass aus der Amplitude eines Sensorsignals der Temperaturerfassung auf Eigenschaften der Atmosphäre im Heizraum (15, 115) geschlossen wird, insbesondere der Wärmeleitfähigkeit, Wärmekapazität und/oder Dichte des Trägermediums.
  13. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Strahlungsheizeinrichtung in dem Heizraum (15, 115) als Heizung.
  14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Heizung (19, 119, 120) bzw. ein Heizelement NTC-Eigenschaften aufweist, wobei sie insbesondere aus gesintertem SiC besteht oder eine Kohlefaserlampe ist.
  15. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Heizung (19, 119, 120) bzw. ein Heizelement PTC-Eigenschaften aufweist, wobei sie insbesondere eine Halogenlampe aufweist.
  16. Verfahren nach vorhergehendem Anspruch dadurch gekennzeichnet, dass für den Betrieb der Heizung ein Heizelement mit PTC-Eigenschaften in Reihe mit einem Heizelement aus anderem Heizleitermaterial geschaltet wird.
  17. Verfahren nach einem der Ansprüche 1 bis 12, gekennzeichnet durch eine Heißluftzuführung als Heizung, wobei eine Heizeinrichtung dafür außerhalb des Heizraums (15, 115) angeordnet ist und die Heißluft in den Heizraum gebracht wird.
EP07005760A 2006-03-24 2007-03-21 Verfahren zur Überwachung bzw. Steuerung oder Regelung eines geschlossenen Elektrowärmegerätes Active EP1837600B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200730113T SI1837600T1 (sl) 2006-03-24 2007-03-21 Postopek nadziranja oz. krmiljenja ali reguliranja zaprte električne grelne naprave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006014515A DE102006014515A1 (de) 2006-03-24 2006-03-24 Verfahren zur Überwachung bzw. Steuerung oder Regelung eines geschlossenen Elektrowärmegerätes

Publications (3)

Publication Number Publication Date
EP1837600A2 EP1837600A2 (de) 2007-09-26
EP1837600A3 EP1837600A3 (de) 2009-01-28
EP1837600B1 true EP1837600B1 (de) 2009-09-09

Family

ID=38438475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07005760A Active EP1837600B1 (de) 2006-03-24 2007-03-21 Verfahren zur Überwachung bzw. Steuerung oder Regelung eines geschlossenen Elektrowärmegerätes

Country Status (5)

Country Link
EP (1) EP1837600B1 (de)
AT (1) ATE442554T1 (de)
DE (2) DE102006014515A1 (de)
ES (1) ES2332946T3 (de)
SI (1) SI1837600T1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019202389A1 (de) * 2019-02-21 2020-08-27 BSH Hausgeräte GmbH Gargerät mit Dampfbehandlungsfunktion

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009004622U1 (de) 2009-04-03 2009-07-09 Lammering, Udo Steuervorrichtung für eine Klimatisierungseinheit
EP2886024B1 (de) * 2013-12-18 2019-02-20 ELECTROLUX PROFESSIONAL S.p.A. Verbesserte Detektionsanordnung für elektrische Geräte
DE102016119420A1 (de) * 2016-10-12 2018-04-12 Miele & Cie. Kg Automatisches Verfahren zum Garen von Gargut mittels eines Gargerätes
CN112938937B (zh) * 2021-03-25 2022-05-31 安徽晟捷新能源科技股份有限公司 一种基于碳纳米管生产的气体加热流量控制设备
DE102021207441B3 (de) 2021-07-13 2022-06-02 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Betrieb einer Waschmaschine und Waschmaschine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD237550A1 (de) * 1985-05-21 1986-07-16 Univ Dresden Tech Verfahren und vorrichtung zur feuchtebestimmung
GB2207514A (en) * 1987-06-12 1989-02-01 Flour Milling & Baking Res Apparatus for measuring atmospheric humidity in ovens
FR2679657B1 (fr) * 1991-07-26 1997-06-20 Cogia Procede et dispositif de detection de vapeur d'eau dans un volume d'air et generateur de vapeur et four de cuisson a la vapeur utilisant ceux-ci.
US5689060A (en) * 1992-03-06 1997-11-18 Matsushita Electric Industrial Co., Ltd. Humidity measuring device and a heat cooker employing the device
IT1258073B (it) * 1992-04-29 1996-02-20 Zanussi Elettromecc Dispositivo di misura dell'umidita' per forni, in particolare forni dicottura di alimenti
DE10143841B4 (de) * 2001-09-06 2008-04-17 Maschinenfabrik Kurt Neubauer Gmbh & Co Gargerät mit Feuchtemesseinrichtung
EP1300079B1 (de) * 2001-10-06 2007-06-27 MKN Maschinenfabrik Kurt Neubauer GmbH & Co. Gargerät mit Feuchtemesseinrichtung und Verfahren zur Feuchtemessung in einem Gargerät
FR2849167B1 (fr) * 2002-12-23 2005-10-21 Premark Feg Llc Four pour la cuisson d'aliments
DE10323653B3 (de) * 2003-05-26 2005-03-24 Rational Ag Garprozessfühler zur Bestimmung zumindest der Temperaturleitzahl und/oder der spezifischen Wärmeleitfähigkeit zur Gargutarterkennung und Verfahren hierfür
DE10335295B4 (de) * 2003-07-28 2008-02-21 Igv Institut Für Getreideverarbeitung Gmbh Verfahren und Vorrichtung zur Steuerung von Backparametern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019202389A1 (de) * 2019-02-21 2020-08-27 BSH Hausgeräte GmbH Gargerät mit Dampfbehandlungsfunktion

Also Published As

Publication number Publication date
EP1837600A3 (de) 2009-01-28
ES2332946T3 (es) 2010-02-15
ATE442554T1 (de) 2009-09-15
SI1837600T1 (sl) 2010-01-29
DE102006014515A1 (de) 2007-09-27
EP1837600A2 (de) 2007-09-26
DE502007001466D1 (de) 2009-10-22

Similar Documents

Publication Publication Date Title
EP1831608B1 (de) Gargerät mit mindestens einem gassensorarray, probenahmesystem für solch ein gerät, verfahren zum garen mit solch einem gargerät und verfahren zum reinigen solch eines gargeräts
EP1837600B1 (de) Verfahren zur Überwachung bzw. Steuerung oder Regelung eines geschlossenen Elektrowärmegerätes
DE2644883C3 (de) Feuchtigkeitsempfindliche Widerstandsvorrichtung
DE60121548T2 (de) Gasherd
EP1712844B1 (de) Verfahren zur temperatursteuerung und temperatursteuereinheit eines garofens
EP1936279B1 (de) Verfahren und Vorrichtung zur Bestimmung des zeitlichen Verlaufs der während eines Garvorgangs in einem Garraum von einem Gargut abgegebenen Dampfmenge
DE69723622T2 (de) Infrarote Temperaturerfassung für Trommeltrocknersteuerung
DE69201100T2 (de) Heizeinrichtung und Verfahren zur Leistungssteuerung.
DE2706367B2 (de) Vorrichtung zur Regelung der Aufheizung für einen Ofen, insbesondere einen Mikrowellenofen
EP1989922B1 (de) Verfahren und vorrichtung zur erkennung eines an eine steuerung angeschlossenen temperatursensors
EP2469173A2 (de) Verfahren zum Steuern eines Garverfahrens in einem Gargerät sowie Gargerät
DE4345472C2 (de) Verfahren zum Zubereiten von Speisen in einem wenigstens teilweise mit Wasser gefüllten Kochgeschirr auf einem Kochfeld aus Keramik, insbesondere Glaskeramik
EP2664905A2 (de) Temperaturmesseinrichtung, elektrisches Gerät mit einer solchen Temperaturmesseinrichtung und Verfahren zur Temperaturmessung
EP2095684B1 (de) Verfahren zum erzeugen, verarbeiten und auswerten eines mit der temperatur korrelierten signals und entsprechende vorrichtung
DE102012200304A1 (de) Gargerät mit Sensor für Garraum
EP2154435A2 (de) Gargerät und Verfahren zum Überwachen eines Garprozesses
DE10307247A1 (de) Einrichtung zum Absaugen von Abluft eines Elektrowärmegeräts und Verfahren zum Betrieb derselben
DE10306940A1 (de) Verfahren zum Steuern eines Backprozesses
DE4109565C2 (de) Kocheinrichtung mit einem verschließbaren Garraum und Kochverfahren
EP2183943A1 (de) Heizeinrichtung, verfahren zum betrieb einer heizeinrichtung und elektrowärmegerät einer solchen heizeinrichtung
DE69108069T2 (de) Verfahren und Gerät zum Bestimmen des Gewichts von Lebensmitteln in einem Mikrowellenofen und zur Steuerung ihrer Behandlung.
DE102014103480B4 (de) Gargerät und Verfahren zum Betreiben eines Gargerätes
DE102005042698B4 (de) Verfahren und Vorrichtung zur Feuchtemessung bei der Zubereitung eines Garguts in einem Gargerät
WO1987004815A1 (en) Process for controlling the heating power of a cooker heating body and device for controlling the power to at least one such body
DE102007039990A1 (de) Verfahren zur Feuchtemessung und zugehörige Einrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090128

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007001466

Country of ref document: DE

Date of ref document: 20091022

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2332946

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100111

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

26N No opposition filed

Effective date: 20100610

BERE Be: lapsed

Owner name: E.G.O. ELEKTRO-GERATEBAU G.M.B.H.

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100321

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 442554

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140319

Year of fee payment: 8

Ref country code: IT

Payment date: 20140325

Year of fee payment: 8

Ref country code: ES

Payment date: 20140324

Year of fee payment: 8

Ref country code: SI

Payment date: 20140313

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150321

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20151113

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150322

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190325

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240311

Year of fee payment: 18