EP1816451B1 - Procédé et appareil de diagnostic d'anomalies pour son ou vibration - Google Patents

Procédé et appareil de diagnostic d'anomalies pour son ou vibration Download PDF

Info

Publication number
EP1816451B1
EP1816451B1 EP07290125.9A EP07290125A EP1816451B1 EP 1816451 B1 EP1816451 B1 EP 1816451B1 EP 07290125 A EP07290125 A EP 07290125A EP 1816451 B1 EP1816451 B1 EP 1816451B1
Authority
EP
European Patent Office
Prior art keywords
vibration
sound
abnormality
sources
mother wavelet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07290125.9A
Other languages
German (de)
English (en)
Other versions
EP1816451A2 (fr
EP1816451A3 (fr
Inventor
Hideaki c/o JTEKT Corporation Ishii
Zhong Zhang
Hiroshi c/o JTEKT Corporation Uemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHANG, ZHONG
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Publication of EP1816451A2 publication Critical patent/EP1816451A2/fr
Publication of EP1816451A3 publication Critical patent/EP1816451A3/fr
Application granted granted Critical
Publication of EP1816451B1 publication Critical patent/EP1816451B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/10Amplitude; Power
    • G01H3/12Amplitude; Power by electric means
    • G01H3/125Amplitude; Power by electric means for representing acoustic field distribution

Definitions

  • the present invention relates to abnormality diagnosing method and apparatus for sound or vibration that allow the presence or absence of abnormality in a plurality of sound sources or vibration sources to be diagnosed on the basis of an analysis result of sound or vibration at a single evaluation point.
  • a widely adopted analysis method is a method based on the FFT (Fast Fourier Transform).
  • FFT Fast Fourier Transform
  • a detection result of sound or vibration acquired as a waveform signal is processed by Fourier transformation, so that spectral intensity is obtained for each frequency component.
  • Each of a detection signal of sound or vibration at an evaluation point set up in a target space and detection signals of sound or vibration at a plurality of candidate points expected to be a sound source or vibration source is processed by Fourier transformation. Then, the spectrum distribution at each candidate point is compared with the spectrum distribution at the evaluation point, so that a sound source or vibration source is identified.
  • an analysis method is based on the wavelet analysis.
  • An abnormality diagnosing apparatus employing this method is proposed in the prior art (see, for example, Japanese Patent Publication No. 3561151 ).
  • This abnormality diagnosing apparatus detects a waveform signal generated in a target object, then performs wavelet transformation, and thereby performs abnormality diagnosis of the target object on the basis of the result of the transformation. More specifically, this abnormality diagnosing apparatus is provided with analysis function determining means that automatically derives a mother wavelet appropriate for the abnormality diagnosis of the target object on the basis of the input waveform signal.
  • the abnormality diagnosing apparatus performs wavelet transformation on the waveform signal detected by a sensor, and then performs abnormality diagnosis of the target object on the basis of the transformation result.
  • the analysis function determining means performs Fourier transformation on a plurality of waveform signals detected by the sensor, then performs inverse Fourier transformation on the average Fourier data obtained by averaging the Fourier transformation results, and thereby derives a mother wavelet.
  • An analysis method employing FFT is applicable for finding abnormality in a sound source or vibration source. For example, data of noise acquired at the time of various kinds of abnormality may be prepared in advance. Then, Fourier transformation may be performed respectively on this data and a detection result of noise acquired in real time. According to this, abnormality in each section can be determined using the detection result of the noise acquired at a particular evaluation point.
  • this analysis method is an analysis method not employing time information.
  • the noise signals generated at the time of abnormality in a plurality of sound sources or vibration sources are in the same or near frequency range, it is difficult to identify correctly the abnormality occurrence part.
  • a countermeasure is taken at any one of the candidate points, a possibility arises that the countermeasure may be inappropriate.
  • countermeasures are taken at all the candidate points, excessive and intrinsically unnecessary check and countermeasures are required at a plurality of the candidate points. This causes a problem.
  • the abnormality diagnosing apparatus described in Japanese Patent Publication No. 3561151 adopts wavelet analysis employing time information. Nevertheless, the mother wavelet derived by the analysis function determining means is shifted to a high frequency side or a low frequency side by the characteristic frequency in the scale. Thus, the wavelet coefficient calculated in the wavelet transformation using the enlarged or contracted mother wavelet hardly represents appropriate correspondence to abnormality in the target object. This causes a problem of poor precision in the abnormality diagnosis.
  • An object of the present invention is to provide abnormality diagnosing method and apparatus in which an analysis method employing time information is adopted so that generation of abnormality in a plurality of sound sources or vibration sources can be diagnosed correctly on the basis of an analysis result of sound or vibration at a particular evaluation point.
  • the abnormality diagnosing method for sound or vibration is an abnormality diagnosing method for sound or vibration for analyzing sound or vibration that appears at an evaluation point set up in a target space containing a plurality of sound sources or vibration sources, and thereby diagnosing the presence or absence of abnormality occurring in the sound source or vibration source, characterized by comprising: a preliminary step of extracting abnormal waveform signals individually from a detection result of sound or vibration acquired in advance at the evaluation point at the time of occurrence of abnormality in each of the plurality of sound sources or vibration sources; a first step of extracting an evaluation waveform signal serving as an analysis target from a detection result of sound or vibration at the evaluation point; a second step of performing Hanning window processing, Fourier transformation, normalization processing, and Hilbert transformation on the evaluation waveform signal extracted at the first step, and thereby deriving a real signal mother wavelet of complex type; and a third step of performing wavelet transformation on each of the abnormal waveform signals extracted at the preliminary step by using the real signal mother wavelet derived at the second step
  • the abnormality diagnosing apparatus for sound or vibration is an abnormality diagnosing apparatus for sound or vibration for analyzing sound or vibration that appears at an evaluation point set up in a target space containing a plurality of sound sources or vibration sources, and thereby diagnosing the presence or absence of abnormality occurring in the sound source or vibration source, characterized by comprising: detecting means for sound or vibration arranged at the evaluation point ; storage means for storing abnormal waveform signals individually extracted from a detection result of the detecting means at the time of occurrence of abnormality in each of the plurality of sound sources or vibration sources; extracting means for extracting an evaluation waveform signal serving as an analysis target from the detection result of the detecting means; deriving means for performing Hanning window processing, Fourier transformation, normalization processing, and Hilbert transformation on the evaluation waveform signal extracted by the extracting means, and thereby deriving a real signal mother wavelet of complex type; correlation calculating means for performing wavelet transformation on each of the abnormal waveform signals stored in the storage means by using the real signal mother wavelet derived by
  • abnormal waveform signals waveform signals to be evaluated
  • a real signal mother wavelet of complex type is derived using an evaluation waveform signal (sample waveform signal) extracted from a detection result of sound or vibration acquired at the evaluation point in real time. Then, using this real signal mother wavelet, wavelet transformation is performed on the abnormal waveform signals, so that a correlation value containing time information is calculated between each abnormal waveform signal and the evaluation waveform signal.
  • abnormality diagnosis for a plurality of sound sources or vibration sources can be implemented with precision on the basis of the detection result of sound or vibration at the evaluation point.
  • an appropriate countermeasure can be performed without excess or deficiency. This avoids transition to a serious abnormality and occurrence of an accident caused by this serious abnormality.
  • FIG. 1 is an explanatory view showing a state of implementation of an abnormality diagnosing method for sound or vibration according to the present invention.
  • a state of implementation of an abnormality diagnosing method is illustrated, where a vibration source that causes abnormal noise generated inside a car cabin of an automobile is identified among the vibration sources located in individual sections of an electric power steering device provided in the automobile.
  • the electric power steering device has a steering mechanism of rack and pinion type provided with a rack shaft 1 supported in a movable manner in the axial length direction in the inside of a rack housing 10 that extends in the right and left directions of a car body and with a pinion shaft 2 supported in a rotatable manner in the inside of a pinion housing 20 that intersects with the middle of the rack housing 10.
  • the two ends of the rack shaft 1 that protrude outward from both sides of the rack housing 10 are linked through tie rods 11 and 11 respectively to right and left front wheels 12 and 12 serving as steerable wheel.
  • the upper end of the pinion shaft 2 that protrudes to the outside of the pinion housing 20 is linked through a steering shaft 3 to a steering wheel 30 serving as a steering member.
  • a pinion (not shown) is formed in the lower part of the pinion shaft 2 that extends inside the pinion housing 20. In a part intersecting with the rack housing 10, the pinion engages with the rack teeth formed over an appropriate length on the external surface of the rack shaft 1.
  • the steering shaft 3 is supported in a rotatable manner inside a column housing 31 having a cylinder shape, and then attached inside the car cabin via the column housing 31 in an inclined arrangement with the front side down.
  • the steering wheel 30 is fixed to a protruding end of the steering shaft 3 toward the upper part of the column housing 31.
  • a pinion shaft 2 is linked to a lower protruding end.
  • a torque sensor 4 is provided for detecting a steering torque applied to the steering shaft 3 by the rotatory operation of the steering wheel 30. Further, a steering assistance motor 5 is attached at a position lower than the torque sensor 4.
  • the torque sensor 4 has a publicly known configuration in which the steering shaft 3 serving as the target for detection is divided into two up and down shafts while these two shafts are linked together on the same axis with a torsion bar having known torsion characteristics, and in which relative angular displacement generated by the operation of a steering torque between the two shafts that associates with a torsion in the torsion bar is detected by appropriate means. Further, the steering assistance motor 5 is attached outside the column housing 31 in a manner that its shaft axes intersect with each other approximately at rectangles.
  • a worm fixed to the output end that extends inside the column housing 31 engages with the worm wheel fit and fixed to the outside of the steering shaft 3, so that the rotation of the motor 5 is transmitted to the steering shaft 3 with predetermined speed reduction via a transmission mechanism provided with a worm and a worm wheel.
  • the steering assistance motor 5 attached in this manner is driven in accordance with the direction and the magnitude of the steering torque detected by the torque sensor 4. At that time, the rotating force generated by the motor 5 is applied to the pinion shaft 2 linked to the lower end of the steering shaft 3, so that the rotating force assists the steering performed as described above.
  • vibration occurs in the periphery of a part in which relative displacement is generated between the members, like in the periphery of the transmission mechanism that transmits the rotation of the steering assistance motor 5 to the steering shaft 3 with speed reduction, the periphery of the engagement part between the pinion shaft 2 and the rack shaft 1, and the periphery of the support part for supporting the rack shaft 1 in a slidable manner at one side-end part of the rack housing 10.
  • This vibration propagates and is then heard in the car cabin.
  • the abnormality diagnosing method for sound or vibration addresses the sound generated in the car cabin as described above, and aims at diagnosing the presence or absence of abnormality in each of the above-mentioned vibration sources serving as a generation source of this sound.
  • an evaluation point is defined at an appropriate position inside the car cabin, for example, in the periphery of the driver who operates the steering wheel 30.
  • a detector such as a microphone 6 for sound detection is arranged at this evaluation point.
  • a sound detection signal of this microphone 6 is provided to the abnormality diagnosing apparatus 7.
  • the abnormality diagnosing apparatus 7 performs the following operation.
  • a vibration sensor may be used in place of the microphone 6.
  • FIG. 2 is a block diagram showing an internal configuration of the abnormality diagnosing apparatus 7.
  • the abnormality diagnosing apparatus 7 includes a low pass filter 70, a mother wavelet deriving section 71, a wavelet transformation section 72, a correlation calculation section 73, and an abnormality determining section 74.
  • the abnormality diagnosing apparatus 7 further includes an abnormal waveform storage section 75 and a mother wavelet storage section 76. Furthermore, the abnormality diagnosing apparatus 7 is provided with a display section 8 for displaying the progress of diagnosis and the diagnosis result, as shown in FIG. 1 .
  • a sound detection signal at the evaluation point acquired by the microphone 6 is filtered by the low pass filter 70, so that a waveform signal is extracted.
  • This extracted signal (referred to as an evaluation waveform signal S in the following description) serves as a sample where high frequency noise is removed.
  • the mother wavelet deriving section 71 derives a mother wavelet from the evaluation waveform signal S, and then provides the mother wavelet to the wavelet transformation section 72.
  • the abnormal waveform storage section 75 stores an abnormal waveform signal, that is, an evaluated waveform signal. This signal is extracted by filtering a sound detection signal acquired at the evaluation point (where the microphone 6 is arranged) when abnormality arises in each of the vibration sources described above and thereby removing high frequency noise.
  • the following description is given under the assumption that the abnormal waveform storage section 75 stores three kinds of abnormal waveform signals V 1 , V 2 , and V 3 extracted individually from a sound detection signal under a condition that each of the three vibration sources in the electric power steering device shown in FIG. 1 is in an abnormal state.
  • the three vibration sources are: the transmission mechanism from the steering assistance motor 5 to the steering shaft 3; the engagement part between the pinion shaft 2 and the rack shaft 1; and the support part of the rack shaft 1 on the one side of the rack housing 10.
  • a larger number of abnormal waveform signals are present.
  • the following procedure is performed for all of these signals.
  • FIG. 3 is a flow chart showing a procedure of implementation of an abnormality diagnosing method according to the present invention performed in the abnormality diagnosing apparatus 7.
  • the abnormality diagnosing apparatus 7 in FIG. 2 is illustrated as shown in the block diagram. However, the abnormality diagnosing apparatus 7 is actually constructed from an arithmetic processing unit composed of a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the following procedure shown as functional blocks executed in the mother wavelet deriving section 71, the wavelet transformation section 72, the correlation calculation section 73, and the abnormality determining section 74 are performed as the operation of the CPU in accordance with a program stored in the ROM.
  • a computer program recorded on an appropriate recording medium may be loaded to a general purpose computer, so that the abnormality diagnosing apparatus 7 may be implemented.
  • the abnormality diagnosing apparatus 7 monitors a noise detection signal at the evaluation point acquired by the microphone 6. Then, when a detection signal serving as the target for detection is generated, the abnormality diagnosing apparatus 7 acquires the detection signal (Step 1). Then, the abnormality diagnosing apparatus 7 filters the detection signal, and thereby extracts an evaluation waveform signal S (Step 2).
  • FIGS. 4A-4D are diagrams showing examples of the evaluation waveform signal and the abnormal waveform signals.
  • the horizontal axis indicates the time, while the vertical axis indicates the amplitude.
  • the evaluation waveform signal S shown in FIG. 4A and the three abnormal waveform signals V 1 , V 2 , and V 3 shown in FIGS. 4B, 4C, and 4D have the same time axis.
  • the abnormality diagnosing apparatus 7 derives a real signal mother wavelet, more specifically, a real signal mother wavelet of complex type, from the evaluation waveform signal S extracted as described above (Step 3).
  • the derivation of the real signal mother wavelet is performed using a waveform that is within a range satisfying a predetermined magnitude condition among the evaluation waveform signal S.
  • the evaluation waveform signal S may be displayed on the display section 8 in a manner shown in FIG. 4A , and then the selection may be performed by an operator who recognizes visually this display.
  • a predetermined magnitude condition may be stored in the RAM of the abnormality diagnosing apparatus 7 in advance, and then a use range satisfying this magnitude condition may be selected automatically.
  • a real signal mother wavelet ⁇ (t) is a function given by the following Eq. (1).
  • Quantity a in this Eq. (1) is a scale parameter corresponding to the inverse of the frequency, while b is a time parameter.
  • the mother wavelet ⁇ (t) need satisfy an admissible condition given by Eq. (2) in order that reconstruction of the signal should be possible.
  • FIG. 5 is a flow chart showing the procedure of derivation of the mother wavelet ⁇ (t).
  • the evaluation waveform signal S is provided, and then the use range is selected as described above.
  • Hanning window processing is performed on the waveform signal within the selected range in order that the condition of Eq. (2) should be satisfied (Step 11).
  • Fourier transformation is performed (Step 12).
  • the mother wavelet ⁇ (t) derived in this manner has a start point and an end point at zeros. Further, its average over the domain is zero, while the function is bounded.
  • the complex type mother wavelet ⁇ (t) is given by Eq. (4).
  • the real type mother wavelet ⁇ R (t) is processed by Fourier transformation, so that the frequency spectrum ⁇ R (f) hat is obtained.
  • the abnormality diagnosing apparatus 7 On completion of the above-mentioned procedure of deriving the mother wavelet ⁇ (t), more specifically, the real function mother wavelet of complex type, the abnormality diagnosing apparatus 7 then performs wavelet transformation on the abnormal waveform signals V 1 , V 2 , and V 3 given as shown in FIGS. 4B, 4C, and 4D , by using the mother wavelet ⁇ (t) (Step 4). Then, on the basis of this transformation result, the abnormality diagnosing apparatus 7 calculates correlation values between the abnormal waveform signals V 1 , V 2 , and V 3 , and the mother wavelet ⁇ (t) (Step 5).
  • the wavelet transformation formula expressed by Eq. (5) is used, which contains the mother wavelet ⁇ (t) derived from the evaluation waveform signal S at Step 3. Then, each of the abnormal waveform signals V 1 , V 2 , and V 3 is applied to the transform function f(t) in this equation, so that the transformation is performed.
  • the wavelet transformation performed as described above is the processing of obtaining the inner product between the transform function f(t) to which each of the abnormal waveform signals V 1 , V 2 , and V 3 is applied and the mother wavelet ⁇ (t).
  • the transform function f(t) agrees with the mother wavelet ⁇ (t)
  • the inner product is unity, while when disagrees, the inner product is zero.
  • the time parameter b is changed variously, correlation between the evaluation waveform signal S and each of the abnormal waveform signals V 1 , V 2 , and V 3 becomes clear on the time axis.
  • the mother wavelet ⁇ (t) is normalized.
  • the correlation values become larger than unity in accordance with the ratio.
  • correlation can be obtained also for a frequency component of the mother wavelet ⁇ (t).
  • instantaneous correlation can be obtained that indicates the degree of correlation including the component and the magnitude with respect to the evaluation waveform signal S used in the derivation of the mother wavelet ⁇ (t).
  • the abnormal waveform signals V 1 , V 2 , and V 3 are stored in the abnormal waveform storage section 75, while the mother wavelet ⁇ (t) is stored in the mother wavelet storage section 76.
  • the calculation of the correlation values at Step 5 can be performed sequentially by using the values stored in these storage sections 75 and 76.
  • the mother wavelet ⁇ (t) used in the present invention is a real signal mother wavelet of complex type derived on the basis of the detection result of the noise acquired actually at the evaluation point.
  • the correlation value calculated at Step 5 for each of the plurality of abnormal waveform signals V 1 , V 2 , and V 3 processed by wavelet transformation at Step 4 expresses correctly the degree of correlation between the present noise at the evaluation point and the noise acquired at the time of occurrence of abnormality in each vibration source.
  • the result of the wavelet transformation contains time information, and hence the generation time can also be determined.
  • the plurality of abnormal waveform signals V 1 , V 2 , and V 3 contain the same or near frequency component, the difference becomes clear in the degree of correlation of each signal with the evaluation waveform signal S.
  • the abnormality diagnosing apparatus 7 determines the presence or absence of abnormality by using the calculated correlation values (Step 6), and then completes a series of the analysis operation.
  • Step 6 when the target noise or vibration is known in advance, or alternatively when the real signal mother wavelet has already been derived, Steps 1 and 3 may be skipped. In this case, analysis may be performed in a state that the real signal mother wavelet is stored in the memory in the CPU.
  • the abnormality determination at Step 6 is performed by comparing the result of wavelet transformation for each of the abnormal waveform signals V 1 , V 2 , and V 3 with a predetermined criterion.
  • the result of this determination may be displayed on the display section 8 in an appropriate manner.
  • FIGS. 6A-6C are diagrams showing display examples, where the correlation values calculated for the three abnormal waveform signals V 1 , V 2 , and V 3 are displayed in the form of graphs on the same time axis.
  • the correlation value of the abnormal waveform signal V 1 shown in FIG. 6A is large. Thus, it is concluded that the noise detected at the evaluation point is caused by abnormality corresponding to the abnormal waveform signal V 1 .
  • the result of determination at Step 6 can be expressed as the display shown in FIGS. 6A-6C , and thereby reported to the operator.
  • the criterion (threshold) used in the determination at Step 6 may be stored in the form of a database in the abnormality diagnosing apparatus 7. This permits more accurate determination.
  • the above-mentioned embodiment has been described for an example of analysis in which the presence or absence of abnormality in vibration sources located in individual sections of an electric power steering device is determined on the basis of a sound detection result inside a car cabin.
  • the abnormality diagnosing method and the abnormality diagnosing apparatus according to the present invention are applicable to general usage in which the presence or absence of abnormality in sound sources or vibration sources located in the periphery of a target space is determined on the basis of a detection result of sound or vibration at an appropriate evaluation point in the target space.
  • the present invention can be used widely in various fields of industry.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Claims (4)

  1. Procédé de diagnostic d'anomalies sur son ou vibration destiné à analyser un son ou vibration qui apparaît au niveau d'un point d'évaluation agencé dans un espace cible contenant une pluralité de sources sonores ou de sources de vibration, et de cette manière, à diagnostiquer la présence ou l'absence d'une anomalie se produisant sur la source sonore ou la source de vibration, caractérisé en ce qu'il comprend :
    une étape préliminaire d'extraction de signaux de forme d'onde anormaux individuellement à partir d'un résultat de détection de son ou vibration acquis au préalable au point d'évaluation, au moment de l'occurrence de l'anomalie sur chacune de la pluralité de sources sonores ou de sources de vibration ;
    une première étape (S2) d'extraction d'un signal de forme d'onde d'évaluation servant de cible d'analyse à partir d'un résultat de détection de son ou vibration au point d'évaluation ;
    une deuxième étape (S3) d'exécution d'un traitement sur fenêtre de Hann, transformation de Fourrier, traitement de normalisation, et transformation de Hilbert sur le signal de forme d'onde d'évaluation extrait à ladite première étape (S2), et, de cette manière, de déduction d'une ondelette mère de signal réel de type complexe ;
    une troisième étape (S4, S5) d'exécution d'une transformation en ondelette sur chacun des signaux de forme d'onde anormaux extraits à ladite étape préliminaire en utilisant l'ondelette mère de signal réel déduite à ladite deuxième étape (S3), et, de cette manière, de calcul d'une valeur de corrélation de chaque signal de forme d'onde anormale avec l'ondelette mère de signal réel ;
    une étape (S6) de comparaison de la valeur de corrélation calculée à ladite troisième étape (S4, S5) avec un critère prédéterminé, et, de cette manière, de détermination de la présence ou de l'absence d'anomalie sur chacune de la pluralité de sources sonores ou de sources de vibration ; et
    une étape d'affichage de l'un du résultat de calcul obtenu à ladite troisième étape (S4, S5) et du résultat de détermination obtenu à ladite étape (S6) de comparaison ou des deux.
  2. Dispositif de diagnostic d'anomalie sur son ou vibration destiné à analyser un son ou vibration qui apparaît au niveau d'un point d'évaluation agencé dans un espace cible contenant une pluralité de sources sonores ou de sources de vibration, et, de cette manière, à diagnostiquer la présence ou l'absence d'une anomalie se produisant sur la source sonore ou la source de vibration, caractérisé par le fait qu'il comprend :
    un moyen de détection (6) de son ou vibration agencé au point d'évaluation ;
    un premier moyen de mémorisation (75) destiné à mémoriser des signaux de forme d'onde anormaux extraits individuellement d'un résultat de détection dudit moyen de détection (6) au moment de l'occurrence d'une anomalie sur chacune de la pluralité de sources sonores ou de sources de vibration ;
    un moyen d'extraction (70) destiné à extraire un signal de forme d'onde d'évaluation servant de cible d'analyse à partir du résultat de détection dudit moyen de détection (6) ;
    un moyen de déduction (71) destiné à exécuter un traitement sur fenêtre de Hann, une transformation de Fourrier, un traitement de normalisation, et une transformation de Hilbert sur le signal de forme d'onde d'évaluation extrait par ledit moyen d'extraction (70), et, de cette manière, à déduire une ondelette mère de signal réel du type complexe ;
    un moyen de calcul de corrélation (72, 73) destiné à exécuter une transformation en ondelette sur chacun des signaux de forme d'onde anormaux mémorisés dans ledit premier moyen de mémorisation (75) en utilisant l'ondelette mère de signal réel déduite par ledit moyen de déduction (71), et, de cette manière, à calculer une valeur de corrélation de chaque signal de forme d'onde anormal avec l'ondelette mère de signal réel ;
    un moyen de détermination (74) destiné à comparer le résultat de calcul dudit moyen de calcul de corrélation (72, 73) à un critère prédéterminé, et, de cette manière, à déterminer la présence ou l'absence d'une anomalie sur chacune de la pluralité de sources sonores ou de sources de vibration ; et
    un moyen d'affichage (8) destiné à afficher l'un du résultat de calcul obtenu par ledit moyen de calcul de corrélation (72, 73) et du résultat de détermination obtenu par ledit moyen de détermination (74) ou les deux.
  3. Dispositif de diagnostic d'anomalie selon la revendication 2,
    caractérisé par le fait qu'il comprend, en outre :
    un second moyen de mémorisation (76) destiné à mémoriser une ondelette mère de signal réel déduite par ledit moyen de déduction (71), dans lequel ledit moyen de calcul de corrélation (72, 73) exécute une transformation en ondelette sur chacun des signaux de forme d'onde anormaux mémorisés dans ledit premier moyen de mémorisation (75) en utilisant l'ondelette mère de signal réel mémorisée dans ledit second moyen de mémorisation (76), et, de cette manière, calcule une valeur de corrélation de chaque signal de forme d'onde anormal avec l'ondelette mère de signal réel.
  4. Dispositif de diagnostic d'anomalie sur son ou vibration selon la revendication 2 ou 3, dans lequel
    ledit moyen d'affichage (8) affiche sur le même axe des temps, les valeurs de corrélation calculées par ledit moyen de calcul de corrélation (72, 73).
EP07290125.9A 2006-02-01 2007-01-31 Procédé et appareil de diagnostic d'anomalies pour son ou vibration Active EP1816451B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025154A JP5063005B2 (ja) 2006-02-01 2006-02-01 音又は振動の異常診断方法及び音又は振動の異常診断装置

Publications (3)

Publication Number Publication Date
EP1816451A2 EP1816451A2 (fr) 2007-08-08
EP1816451A3 EP1816451A3 (fr) 2012-03-14
EP1816451B1 true EP1816451B1 (fr) 2013-06-19

Family

ID=38110092

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07290125.9A Active EP1816451B1 (fr) 2006-02-01 2007-01-31 Procédé et appareil de diagnostic d'anomalies pour son ou vibration

Country Status (3)

Country Link
US (1) US7933742B2 (fr)
EP (1) EP1816451B1 (fr)
JP (1) JP5063005B2 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041526A1 (fr) * 2008-10-09 2010-04-15 国立大学法人豊橋技術科学大学 Dispositif de détection de signaux, procédé de détection de signaux et procédé de fabrication d’un dispositif de détection de signaux
TWI420089B (zh) * 2010-06-22 2013-12-21 Univ Southern Taiwan Tech 應用模態間包絡訊號之相關係數值於機械損壞診斷的方法
JP5783808B2 (ja) * 2011-06-02 2015-09-24 三菱電機株式会社 異常音診断装置
CN103048383B (zh) * 2012-11-30 2014-11-12 大连理工大学 三元叶轮粗加工过程中牛鼻铣刀破损检测***
JP5743347B2 (ja) * 2013-09-13 2015-07-01 東芝エレベータ株式会社 乗客コンベアの異常診断システム
CN103512765A (zh) * 2013-09-13 2014-01-15 中国科学院苏州生物医学工程技术研究所 一种血型离心机变学习速率小波bp神经网络故障检测方法
JP6281273B2 (ja) * 2013-12-16 2018-02-21 富士通株式会社 音響装置の検査装置及び音響装置の検査方法並びに音響装置の検査プログラム
CN103786069B (zh) * 2014-01-24 2015-05-20 华中科技大学 一种机械加工设备的颤振在线监测方法
CN104089778B (zh) * 2014-07-12 2017-03-22 东北电力大学 一种水轮机振动故障诊断方法
US9824511B2 (en) * 2015-09-11 2017-11-21 GM Global Technology Operations LLC Vehicle diagnosis based on vehicle sounds and vibrations
CN105500115A (zh) * 2016-02-24 2016-04-20 南京工程学院 一种铣削加工中刀具颤振的检测***及其检测方法
EP3447460A4 (fr) * 2016-04-21 2019-11-27 NSK Ltd. Procédé de détection de son anormal dans un système de direction, et dispositif d'évaluation de système de direction
US10732606B2 (en) * 2016-05-13 2020-08-04 Ricoh Company, Ltd. Information processing apparatus, information processing method, and information processing system
JP6639014B2 (ja) * 2016-06-10 2020-02-05 株式会社神戸製鋼所 樹脂ペレタイザ装置
WO2018005972A1 (fr) * 2016-06-30 2018-01-04 Massachusetts Institute Of Technology Application de données de capteur de mouvement à une détection de balourd des roues, à une surveillance de pression de pneu et/ou à une mesure de profondeur de bande de roulement
CN106363463B (zh) * 2016-08-15 2019-05-28 大连理工大学 基于占能比的铣削加工颤振在线监测方法
CN109269629A (zh) * 2018-08-03 2019-01-25 河海大学 基于经验小波变换的特高压并联电抗器振动信号分析方法
JP7283096B2 (ja) * 2019-02-04 2023-05-30 株式会社ジェイテクト 検査装置及び検査用学習モデル生成装置
CN114136427B (zh) * 2021-12-02 2023-05-26 哈尔滨工程大学 一种可安装于结构表面的水下法向声能流测量装置
CN114397010A (zh) * 2021-12-29 2022-04-26 南京中科声势智能科技有限公司 基于小波分解的瞬态信号声成像方法
CN115597901B (zh) * 2022-12-13 2023-05-05 江苏中云筑智慧运维研究院有限公司 一种桥梁伸缩缝损伤的监测方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3111088B2 (ja) 1991-07-16 2000-11-20 株式会社ブリヂストン 音源・振動源の寄与診断方法およびその装置
JPH07243906A (ja) 1994-03-08 1995-09-19 Bridgestone Corp 音源・振動源の寄与診断方法およびその装置
JPH0990977A (ja) 1995-09-25 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> 音響信号による異常検出方法
CN1143127C (zh) * 1996-09-13 2004-03-24 株式会社东芝 非稳定信号分析装置
JPH10176947A (ja) * 1996-10-14 1998-06-30 Mitsubishi Heavy Ind Ltd 水中音監視装置
JPH10267743A (ja) 1997-03-25 1998-10-09 Fuji Xerox Co Ltd 音質評価装置および音質評価方法
JPH1194642A (ja) 1997-09-19 1999-04-09 Bridgestone Corp 音源・振動源の寄与診断装置
FR2772125B1 (fr) * 1997-12-04 2000-08-04 Eurocopter France Procede et dispositif pour determiner l'etat d'une structure vibrante d'un aeronef a voilure tournante
JP3561151B2 (ja) * 1998-07-27 2004-09-02 株式会社東芝 異常診断装置および異常診断方法
JP2000214052A (ja) * 1999-01-28 2000-08-04 Nichiha Corp 異常音検出システム及び記録媒体
JP3730435B2 (ja) 1999-03-26 2006-01-05 株式会社東芝 波形信号解析装置
JP3920742B2 (ja) * 2002-08-28 2007-05-30 トヨタ自動車株式会社 異常音の音源探査方法及び音源探査装置
US7184930B2 (en) * 2002-08-30 2007-02-27 Nsk Ltd. Method and device for monitoring status of mechanical equipment and abnormality diagnosing device
JP2004101413A (ja) * 2002-09-11 2004-04-02 Koden Electronics Co Ltd 固体内部の振動検査装置
JP4046059B2 (ja) * 2002-11-08 2008-02-13 株式会社豊田中央研究所 路面状態推定装置
JP4016831B2 (ja) * 2002-12-26 2007-12-05 株式会社大林組 壁面剥離診断のためのウェーブレット変換方法、壁面剥離診断用装置
JP2004212331A (ja) * 2003-01-08 2004-07-29 Mitsubishi Heavy Ind Ltd 船舶の音響雑音監視システム、及びプログラム
US20060256342A1 (en) * 2003-03-28 2006-11-16 Wong Lid B Confocal microscope system for real-time simultaneous temporal measurements of metachronal wave period and ciliary beat frequency
US6901353B1 (en) * 2003-07-08 2005-05-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Computing Instantaneous Frequency by normalizing Hilbert Transform
JP4265474B2 (ja) * 2004-04-27 2009-05-20 日産自動車株式会社 異音発生源特定装置及び異音発生源特定方法
US7860663B2 (en) * 2004-09-13 2010-12-28 Nsk Ltd. Abnormality diagnosing apparatus and abnormality diagnosing method
WO2006043511A1 (fr) * 2004-10-18 2006-04-27 Nsk Ltd. Systeme de diagnostic d’anomalie pour une machinerie

Also Published As

Publication number Publication date
EP1816451A2 (fr) 2007-08-08
US7933742B2 (en) 2011-04-26
JP5063005B2 (ja) 2012-10-31
EP1816451A3 (fr) 2012-03-14
JP2007205885A (ja) 2007-08-16
US20070176759A1 (en) 2007-08-02

Similar Documents

Publication Publication Date Title
EP1816451B1 (fr) Procédé et appareil de diagnostic d&#39;anomalies pour son ou vibration
EP1816452B1 (fr) Procédé d&#39;analyse du son ou des vibrations et appareil d&#39;analyse du son ou des vibrations
Zhang et al. Time–frequency analysis for bearing fault diagnosis using multiple Q-factor Gabor wavelets
Siegel et al. Novel method for rolling element bearing health assessment—A tachometer-less synchronously averaged envelope feature extraction technique
EP0913694B1 (fr) Dispositif et procédé d&#39;analyse de vibrations de torsion dans une structure rotative
CN102589906B (zh) 用于评估车辆转向***的方法和***
US20070260656A1 (en) Method and apparatus for diagnosing a mechanism
JP6133112B2 (ja) 転がり軸受の診断装置および転がり軸受の診断方法
CN113092114B (zh) 一种轴承故障诊断方法、装置及存储介质
De Moura et al. Applications of detrended-fluctuation analysis to gearbox fault diagnosis
EP2034268A1 (fr) Dispositif d&#39;inspection de pneu
JP2012215412A (ja) 車載装置の振動解析及び振動源の特定を行う方法及び装置
EP2130693A1 (fr) Appareil et procédé pour détecter la baisse de pression d&#39;air des pneus et programme pour détecter la baisse de pression d&#39;air des pneus
JP2017194371A (ja) 回転駆動装置における診断対象部の異常診断方法と、それに用いる異常診断装置
US6199019B1 (en) Unsteady signal analyzer and medium for recording unsteady signal analyzer program
CN114689298A (zh) 采煤机行走部的故障检测方法及装置
Wang et al. Research on gearbox composite fault diagnosis based on improved local mean decomposition
US9599535B2 (en) Method and apparatus for excitation of gear rattle
JP7014080B2 (ja) 情報処理装置、情報処理方法及びプログラム
Damine et al. Enhancement of the AR-MED deconvolution process using ensemble empirical mode decomposition in bearing fault detection
JP2000046893A (ja) 異常診断装置および異常診断方法
Peeters et al. Fatigue crack detection in planetary gears: Insights from the HUMS2023 data challenge
JP7077426B2 (ja) 診断装置及びこれを備えた設備並びに診断方法
JPH01199132A (ja) 噛合伝達誤差波形の抽出方法
CN113865892B (zh) 一种电动助力转向器整车与eolt台架换向噪声相关性分析方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602007031103

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01H0001000000

Ipc: G01H0003000000

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: G01H 3/12 20060101ALI20120203BHEP

Ipc: G01H 3/00 20060101AFI20120203BHEP

17P Request for examination filed

Effective date: 20120904

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JTEKT CORPORATION

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZHANG, ZHONG

Inventor name: UEMURA, HIROSHI C/O JTEKT CORPORATION

Inventor name: ISHII, HIDEAKI C/O JTEKT CORPORATION

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JTEKT CORPORATION

Owner name: ZHANG, ZHONG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 617904

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007031103

Country of ref document: DE

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130920

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 617904

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130619

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130919

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131021

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131019

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

26N No opposition filed

Effective date: 20140320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007031103

Country of ref document: DE

Effective date: 20140320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070131

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231212

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231205

Year of fee payment: 18