EP1812718B1 - Diagnosevorrichtung für wenigstens eine pneumatische ventil-aktuator-anordnung - Google Patents

Diagnosevorrichtung für wenigstens eine pneumatische ventil-aktuator-anordnung Download PDF

Info

Publication number
EP1812718B1
EP1812718B1 EP04803190A EP04803190A EP1812718B1 EP 1812718 B1 EP1812718 B1 EP 1812718B1 EP 04803190 A EP04803190 A EP 04803190A EP 04803190 A EP04803190 A EP 04803190A EP 1812718 B1 EP1812718 B1 EP 1812718B1
Authority
EP
European Patent Office
Prior art keywords
diagnostic
pressure
diagnostic module
values
diagnostic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04803190A
Other languages
English (en)
French (fr)
Other versions
EP1812718A1 (de
Inventor
Jan Bredau
Reinhard Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festo SE and Co KG
Original Assignee
Festo SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festo SE and Co KG filed Critical Festo SE and Co KG
Publication of EP1812718A1 publication Critical patent/EP1812718A1/de
Application granted granted Critical
Publication of EP1812718B1 publication Critical patent/EP1812718B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring

Definitions

  • the invention relates to a diagnostic device for at least one pneumatic valve-actuator assembly, comprising a pressure sensor, a volumetric flow sensor, a control device for generating control signals for the valve-actuator assembly and position sensors for detecting the position of at least one movable actuator member.
  • Such diagnostic devices are for example from the DE 19628221 C2 or the DE 10052664 A1 known and serve in particular for process monitoring.
  • stored reference curves for the pressure, for example, on an actuator, and / or for the volume flow of the Pneumatikmediüms with currently measured pressure curves and flow curves are compared, with transgressions of predetermined tolerances lead to diagnostic messages.
  • the known devices are only suitable for determining the fault location, that is to say which valve or which actuator or which valve-actuator arrangement has a malfunction. However, the exact nature of the malfunction can not be determined in the known devices.
  • a diagnostic device according to the preamble of claim 1 is made US 2004/39488 A1 known.
  • An object of the present invention is to provide a diagnostic device for such valve-actuator attachments create, by which the type of error occurred can be detected and reported.
  • the advantages of the diagnostic device according to the invention are, in particular, that errors that occur can be determined precisely while avoiding complex mathematical models and with relatively low required sensor technology.
  • the generated diagnostic messages provide clear information about the type and location of the fault in the valve-actuator assembly. Through the interaction of different diagnostic modules and in particular by the order of execution of clear error statements can be made and error detection can be avoided.
  • the third diagnostic module is used to detect load and friction changes in a movable actuator member, wherein a fourth diagnostic module for detecting valve switching errors is provided, which is deactivated in an error detection by the third diagnostic module. This is to distinguish these two types of errors safely.
  • the first diagnostic module is designed for monitoring the pressure medium of the pressure sensor in a closed, pressurized chamber of the actuator while preferably detected by position sensors pause phases. These can thereby be advantageously used for diagnosis.
  • the first diagnostic module has means for determining the pressure gradient and / or the leakage volume flow and / or the Strömungsleitivess for the leakage point and comparison means for comparison with reference values, the exceeding of which generates a leakage message. From this even quantitative data can be determined. Taking into account the fact that in an internal leak (for example, defective piston seal) the leakage path is getting smaller, while it remains almost constant over an external leak over the measuring time, can also be distinguished by appropriate evaluation internal and external leakage.
  • the recognition of a throttling in the valve-actuator arrangement is advantageously carried out by the second diagnosis module, which in each case has the flow conductance during movement phases of the movable actuator member detected by the position sensors.
  • the second diagnostic module thus operates alternately to the first diagnostic module, which operates in the pause phases.
  • the second diagnostic module expediently has means for calculating the mean value of the flow conductance during the movement of the actuator member, wherein comparison means for checking this mean value are provided for deviations from at least one reference value which generate a message about an irregular throttling from a predefinable limit value deviation. Since the temperature not insignificantly influences the flow conductance, switching means are provided which deactivate the second diagnostic module when a predeterminable limit temperature or extreme temperature changes are exceeded.
  • the third diagnostic module serving to detect load and friction changes in the movable actuator member is preferably designed to monitor one of the following pressure values for deviations from predefinable standard pressure values: maximum pressure between actuation signal and corresponding start of the movement phase from one end position, mean pressure during the movement phase when filling an actuator chamber, mean pressure during the movement phase when this actuator chamber is emptied. If all these pressure values are recorded, a large number of possible errors with regard to load and friction changes can be distinguished. Only the signal of the pressure sensor and position sensors for motion detection is needed.
  • a preferred type of evaluation is performed by means for calculating the equivalent force values and for determining and evaluating difference values with respect to corresponding standard values.
  • the fourth diagnostic module used for the detection of valve switching errors only comes into operation if all other diagnostic modules do not generate diagnostic messages. Only then can safely be closed valve switch error.
  • the time of the pressure increase from a corresponding valve switching signal to a predeterminable percentage value of its pressure end value and / or the time of the pressure reduction from a corresponding valve switching signal to a predefinable reduced percentage value of its pressure end value is advantageously monitored.
  • the fourth diagnostic module has means for detecting the pressure end value in the filled actuator chamber and standstill of the actuator.
  • the fourth diagnostic module has means for time recording the pressure rise and / or pressure reduction times and for determining the difference value Standard times that generate a diagnostic message when the specified difference values are exceeded.
  • a further improvement and completion of the diagnosis can still be achieved by a permanently operating fifth diagnostic module, which is designed for monitoring the air consumption and / or the pressure level and / or positioning times and cycle times, wherein switching means for deactivating the at least one third diagnostic module in an error detection serve through the fifth diagnostic module.
  • the fifth diagnostic module expediently has comparison means for comparison with corresponding reference values, for detecting deviations from the reference values and for checking the deviations to exceed predefinable limit values, which lead to a diagnostic message.
  • valve actuator assembly consists of a schematically illustrated pneumatic cylinder 10 in which a provided with a piston rod 11 piston 12 is slidably and pneumatically driven.
  • This pneumatic cylinder 10 represents a possible embodiment of an actuator, although other types of actuators, such as different types of linear drives, actuators, rotary drives and the like, are possible.
  • valve 13 For actuating the piston 12 is a valve 13, which may be formed for example as a 5/2 or 5/3 switching valve.
  • This valve 13 is connected to a pressure supply line 14 for supplying a working pressure p.
  • the piston 12 Via lines 15, the piston 12 can be acted upon depending on the valve position on one side or the other with the pressure so that it can move controlled in the two directions of movement.
  • a switching valve can in principle also be provided a proportional valve, wherein the respective valve can also be integrated in or on the pneumatic cylinder.
  • throttle check valves 16 are connected in the usual way.
  • a volume flow sensor 17 and a pressure sensor 18 for detecting the pneumatic pressure in the piston rod side cylinder chamber 19 are still arranged.
  • the volume flow sensor 17 and the pressure sensor 18 may also be connected to the opposite cylinder chamber 20.
  • An electronic control device 21 serves to control the valve 13 and thus the movement and position of the piston 12 in the pneumatic cylinder 10.
  • This electronic control device 21 is provided with a diagnostic electronics 22, wherein the diagnostic electronics 22 integrated in the electronic control device 21 or can be äusge strict as a separate device.
  • the pressure sensor 18 and the volume flow sensor 17 and position sensors 23, 24 for detecting the end position or end positions of the piston 12 are connected to inputs of the diagnostic electronics 22.
  • the control signals of the electronic control device 21 for the valve 13 are also supplied to the diagnostic electronics 22, in the illustrated integrated form by internal supply.
  • Errors, malfunctions or defects detected by means of the diagnostic electronics 22 can be displayed and / or registered.
  • the diagnostic electronics 22 or the electronic control device 21 may have a corresponding fault memory.
  • the diagnostic electronics 22 on the output side connected to a display 25 and a printer 26 to display or print diagnostic messages can.
  • These serving as display devices for diagnostic message devices can of course be replaced by other and simpler devices, such as an LED error display, through which the various types of errors can be displayed.
  • FIG. 2 the diagnostic device is shown schematically with regard to the diagnostic procedure and the diagnostic functions. What is essential is the interaction of the individual diagnostic modules M1 to M5 or the sequence of their processing in order to make clear error statements. Essential here is the targeted evaluation of the diagnostic information from the individual diagnostic modules M1 to M5 for a pneumatic subsystem, which in the exemplary embodiment according to FIG. 1 is realized by a valve-actuator arrangement 10, 13 is.
  • the diagnostic modules M1 to M5 monitor the valve-actuator arrangement for frequently occurring qualitative and quantitative errors.
  • the diagnostic modules according to FIG. 2 are basically only activated if the operating pressure p does not deviate from a reference pressure by more than specified tolerances.
  • the diagnostic modules M1 and M2 are started to check the subsystem for leaks or restrictions in the working line. These two modules are permanently active with the above restriction because they always provide clear statements. If there are no leaks or throttling, the M3 module is activated to monitor changed loads or friction. If this module does not provide any deviations from specified reference standards, the module M4 can be activated for the detection of valve faults. If an error occurs in this chain, the following module is always deactivated. This is schematically represented by switches 27, 28. This sequence ensures that the diagnostic modules always make clear error statements.
  • the diagnostic module M5 works constantly. This module M5 monitors the cycle and travel times, the pressure and the air consumption for deviations. Irrespective of the type of fault, faults in the subsystem are detected that are noticeable in the travel times or the pressure or the volume flow. Thus, errors are also detected as faults which can not be unambiguously assigned to the faults in the diagnostic modules M1 to M4.
  • the NOR operation 29 causes the diagnosis modules M3 and M4 to be activated only if the diagnosis modules M1, M2 and M5 do not report any errors or disturbances. As already stated, the diagnostic module M4 has the additional condition that the diagnostic module M3 does not detect any errors or malfunctions.
  • the side under the pressure p1 is shut off during pause phases in which the piston 12 is in one of its two end positions. In the illustrated embodiment, this is the cylinder chamber 19, since it is connected to the pressure sensor 18.
  • the pressure gradient ⁇ p / ⁇ t is determined.
  • the pressure difference is then determined from the difference between the initial value and the final value.
  • the calculated leakage current changes over time as the pressurized cylinder chamber 19 deflates.
  • the pause phases or measuring time are detected by limit switch signals and by knowledge of the sequence of execution. If the supply pressure p drops below a predeterminable minimum value, for example 2 bar, then the formula for calculating the conductance is no longer valid and the measuring process is aborted.
  • the size of the master value reference can be adjusted individually.
  • An additional evaluation allows the distinction between an internal leakage at the piston, for example in case of leaking or defective piston seal, and an external leakage, for example, by leaking or defective piston rod seal or defective hoses or lines.
  • venting takes place in the other cylinder chamber.
  • the pressure drop is relatively large at the beginning, and with increasing pressure increase in the filling chamber, the leakage current and the C value is getting smaller, until the volume flow and C value go to zero at pressure balance. This is a clear indication of internal leakage.
  • the reference pressure p n ⁇ * ⁇ N * T * R
  • T is the reference temperature, and the operating temperature can be used for estimation.
  • the detection of an increasing or decreasing throttling is based on the use of the pressure signal p1 and the volume flow q in the relevant working line.
  • the sensor is doing according to FIG. 1 arranged on the piston rod side, that is connected to the cylinder chamber 19.
  • the diagnostic module M2 determines whether there is a restriction in the entire line starting from the valve 13 to the connection to the cylinder chamber 19.
  • causes of an increasing or decreasing throttling are, for example, an open or closed outlet throttle, a kinked hose, blockages in the hose, icing, throttling in the connecting line of the pneumatic cylinder 10, not completely opening valve.
  • a conductance C is determined as the diagnosis value from the pressure p1 and the volume flow q.
  • This C-value is a measure of the area flowed through and is compared with a reference value for fault diagnosis.
  • the extension and / or the retraction direction of the actuator can be used. Sufficient is a movement phase.
  • the equation describes the conditions for subcritical operating conditions in which pu / p1> b.
  • T N is the standard temperature and T B is the temperature in the pressure chamber, which can be approximately equated to the operating temperature. If there are no extreme temperature changes, the temperature is not taken into account for the diagnosis. If the temperature changes significantly, the diagnostic module M2 is deactivated.
  • an average value is calculated from the calculated conductance C and compared with a reference conductance. The difference between the measured value and the reference master value is compared with a maximum permissible tolerance value, the exceeding of which results in a diagnostic message indicating that the throttling is too great or too small.
  • the conductance is determined during the movement of the piston 21, for which purpose the two limit switch signals of the position sensors 23, 24 are used.
  • the diagnostic module M3 is used to detect load and friction changes on the actuator, ie on the pneumatic cylinder 10 or on the attached mechanism. As already stated, this module is activated only if it has been previously ensured that no restrictions or leaks have occurred Thus, the diagnostic modules M1 and M2 have found no errors, which also applies to the diagnostic module M5, which will be described. For this diagnosis, only the pressure sensor 18 is needed. For the calculation, the pressure build-up phase (filling of the cylinder chamber 19) and the movement phases (extension and retraction) can be used. These phases are described below.
  • phase 1 is the piston 21. This phase is defined from the switching signal on the valve 13, to the time at which the piston-12 moves from its end position.
  • Phase 2 is the travel phase in which the cylinder chamber 19 is filled.
  • Phase 3 is the travel phase in the opposite direction, ie in the direction X, in which the cylinder chamber 19 is emptied again.
  • phase 1 the occurring maximum pressure is determined. With the known piston effective area, the equivalent force F max is calculated. It is assumed that the second cylinder chamber 20 is vented at standstill of the piston or there prevails a constant pressure. From the measured pressure during the travel time in phase 2, a mean pressure is calculated, from which in turn an average equivalent force Fmed1 is calculated. The same applies to phase 3, in which an average equivalent force Fmed2 is again calculated. To calculate the mean pressure values, these are summed up and divided by the number of measured values. To obtain meaningful values, it is recommended to record the characteristic values over several cycles, the intermediate storage and subsequent generation of mean values.
  • the reference values can be entered manually or can be determined automatically. It should be noted that these reference values are recorded in the "good" condition of the cylinder (or another actuator or a system) or during retraction.
  • the diagnostic module 4 which is used to detect valve switching errors, is only activated if the other diagnostic modules do not report faults, faults or faults. If all these diagnostic modules M1 to M3 and M5 have shown no error and yet changes occur in the pressure build-up, this is due to a delayed or accelerated opening behavior of the valve 13. For detection, only the pressure sensor 18 in the respective working line is required. It is, as described in the diagnostic module 3, the pressure build-up phase used to measure the time of pressure rise. Then a diagnostic characteristic is formed, which characterizes the switching time. From the comparison of this switching time with a reference switching time can then be concluded that the correct or incorrect switching of the valve 13.
  • a measuring phase 1 begins when switching on the valve 13, ie with its switch-on signal, and ends with the movement start of the piston from its end position.
  • the pressure reduction or deaeration phase is used as measurement phase 2.
  • the measuring phase 2 begins when switching on or switching the valve 13, while the piston is in its end position.
  • the time is measured until the pressure has risen to a predetermined percentage value of its end value or maximum value.
  • the measured time values are compared with reference time values and again the formed difference values are checked for exceeding given tolerance values.
  • the end value or maximum pressure value of the filled chamber at standstill is required. This value can be measured and saved once, but can also be updated with each measurement.
  • the diagnostic module 5 works permanently. It requires the limit switch signals of the position sensors 23, 24 and the signals of the pressure sensor 18 and the volume flow sensor 17. In this module, the cycle and travel times, the pressure and the air consumption are formed and monitored for deviations. Irrespective of the type of error, this diagnostic module therefore detects faults in the monitored subsystem that are noticeable in the travel times or the positioning times or the pressure or consumption. Thus, errors can also be detected as failures that are not clearly attributable to the errors. are ordenable, which can be detected by the other modules. The respective measured values, ie positioning time, travel time, air consumption, maximum pressure value and average pressure value, are compared with corresponding reference values. From this, differential values are formed and checked for under- or exceeding of permissible tolerance values. In individual cases, this error micro detection can then be specified by the more exact error determination of the diagnostic modules M1 to M4.
  • the diagnostic modules M1 to M3 represent the most important diagnostic modules.
  • the diagnostic module M4 and / or M5 can also be dispensed with. It is included of course also possible to add additional diagnostic modules.
  • the diagnostic modules can in principle be designed as separate diagnostic circuits, but they are preferably designed as functional groups of a diagnostic program that runs either in the diagnostic electronics 22 or in the electronic control device 21 or a central control electronics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Fluid-Driven Valves (AREA)

Description

  • Die Erfindung betrifft eine Diagnosevorrichtung für wenigstens eine pneumatische Ventil-Aktuator-Anordnung, mit einem Drucksensor, einem Volumenstromsensor, einer Steuereinrichtung zur Erzeugung von Steuersignalen für die Ventil-Aktuator-Anordnung und mit Positionssensoren zur Positionserfassung wenigstens eines bewegbaren Aktuatorglieds.
  • Derartige Diagnosevorrichtungen sind beispielsweise aus der DE 19628221 C2 oder der DE 10052664 A1 bekannt und dienen insbesondere auch zur Prozessüberwachung. Bei den bekannten Einrichtungen werden gespeicherte Referenzkurven für den Druck, beispielsweise an einem Aktuator, und/oder für den Volumenstrom des Pneumatikmediüms mit aktuell gemessenen Druckverläufen und Volumenstromverläufen verglichen, wobei Überschreitungen von vorgegebenen Toleranzen zu Diagnosemeldungen führen. Die bekannten Vorrichtungen eignen sich lediglich zur Bestimmung des Fehlerorts, also welches Ventil oder welcher Aktuator oder welche Ventil-Aktuator-Anordung eine Fehlfunktion aufweist. Die genaue Art der Fehlfunktion kann jedoch bei den bekannten Vorrichtungen nicht festgestellt werden. Weiterhin ist eine Diagnosevorrichtung gemäß dem Oberbegriff des Anspruchs 1 aus US 2004/39488 A1 bekannt. Eine Aufgabe der vorliegenden Erfindung besteht darin, eine Diagnosevorrichtung für solche Ventil-Aktuator-Anördungen zu schaffen, durch die die Art des aufgetretenen Fehlers detektiert und gemeldet werden kann.
  • Diese Aufgabe wird erfindungsgemäß durch eine Diagnosevorrichtung mit den Merkmalen des Anspruchs 1 gelöst.
  • Die Vorteile der erfindungsgemäßen Diagnosevorrichtung bestehen insbesondere darin, dass auftretende Fehler exakt unter Vermeidung aufwendiger mathematischer Modelle und bei relativ geringer erforderlicher Sensorik bestimmt werden können. Die generierten Diagnosemeldungen liefern eindeutige Informationen zu Art und Ort des Fehlers in der Ventil-Aktuator-Anordung. Durch das Zusammenwirken verschiedener Diagnosemodule und insbesondere durch die Reihenfolge der Abarbeitung können eindeutige Fehleraussagen erfolgen und Fehlerkennungen vermieden werden.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Diagnosevorrichtung möglich.
  • In vorteilhafter Weise dient das dritte Diagnosemodul zur Detektion von Last- und Reibungsänderungen bei bewegbarem Aktuatorglied, wobei ein viertes Diagnosemodul zur Detektion von Ventilschaltfehlern vorgesehen ist, das bei einer Fehlererkennung durch das dritte Diagnosemodul deaktiviert ist. Dies dient zur sicheren Unterscheidung dieser beiden Fehlerarten.
  • Das erste Diagnosemodul ist zur Überwachung des Druckmittels des Drucksensors in einer abgeschlossenen, unter Druck stehenden Kammer des Aktuators während vorzugsweise durch Positionssensoren detektierten Pausenphasen ausgebildet. Diese können dadurch in vorteilhafter Weise zur Diagnose verwendet werden. Hierzu besitzt das erste Diagnosemodul Mittel zur Ermittlung des Druckgradienten und/oder des Leckagevolumenstroms und/oder des Strömungsleitwerts für die Leckagestelle sowie Vergleichsmittel zum Vergleich mit Referenzwerten, deren Überschreitung eine Leckagemeldung erzeugt. Hieraus können sogar noch quantitative Daten ermittelt werden. Unter Berücksichtigung der Tatsache, dass bei einem internen Leck (zum Beispiel defekte Kolbendichtung) der Leckageleitweg immer kleiner wird, während er bei einem externen Leck über die meßzeit nahezu konstant bleibt, kann zudem noch durch entsprechende Auswertemittel interne und externe Leckage unterschieden werden.
  • Die Erkennung einer Drosselung in der Ventil-Aktuator-Anordung erfolgt in vorteilhafter Weise durch das zweite Diagnosemodul, das jeweils den Strömungsleitwert während durch die Positionssensoren detektierten Bewegungsphasen des bewegbaren Aktuatorglieds ausgebildet ist. Das zweite Diagnosemodul arbeitet somit abwechselnd zum ersten Diagnosemodul, das in den Pausenphasen arbeitet.
  • Das zweite Diagnosemodul besitzt zweckmäßigerweise Mittel zur Berechnung des Mittelwerts des Strömungsleitwerts während der Bewegung des Aktuatorglieds, wobei Vergleichsmittel zur Überprüfung dieses Mittelwerts auf Abweichungen von wenigstens einem Referenzwert vorgesehen sind, die ab einer vorgebbaren Grenzwertabweichung eine Meldung über eine irreguläre Drosselung erzeugen. Da die Temperatur nicht unwesentlich den Strömungsleitwert beeinflusst, sind Schaltmittel vorgesehen, die das zweite Diagnosemodul bei Überschreiten einer vorgebbaren Grenztemperatur oder bei extremen Temperaturänderungen deak-tivieren.
  • Das dritte, zur Detektion von Last- und Reibungsänderungen beim bewegbaren Aktuatorglied dienende Diagnosemodul ist vorzugsweise zur Überwachung eines der folgenden Druckwerte auf Abweichungen von vorgebbaren Normdruckwerten ausgebildet: Maximaler Druck zwischen Betätigungssignal und entsprechendem Beginn der Bewegungsphase aus einer Endlage heraus, mittlerer Druck während der Bewegungsphase bei Befüllung einer Aktuatorkammer, mittlerer Druck während der Bewegungsphase bei Entleerung dieser Aktuatorkammer. Werden alle diese Druckwerte erfasst, so kann eine Vielzahl von Fehlermöglichkeiten hinsichtlich Last- und Reibungsänderungen unterschieden werden. Dabei wird lediglich das Signal des Drucksensors und Positionssensoren zur Bewegungserkennung benötigt.
  • Eine bevorzugte Art der Auswertung erfolgt durch Mittel zur Berechnung der äquivalenten Kraftwerte und zur Ermittlung und Bewertung von Differenzwerten in Bezug auf entsprechende Normwerte.
  • Das zur Detektion von Ventilschaltfehlern dienende vierte Diagnosemodul tritt nur in Tätigkeit, wenn alle anderen Diagnosemodule keine Diagnosemeldungen erzeugen. Nur dann kann nämlich sicher auf Ventilschaltfehler geschlossen werden. Hierzu wird in vorteilhafter Weise die Zeit des Druckanstiegs ab einem entsprechenden Ventilschaltsignal bis zu einem vorgebbaren Prozentwert seines Druckendwertes und/oder die Zeit des Druckabbaus ab einem entsprechenden Ventilschaltsignal bis zu einem vorgebbaren abgesunkenen Prozentwert seines Druckendwerts überwacht. Hierzu besitzt das vierte Diagnosemodul Mittel zur Erfassung des Druckendwertes bei befüllter Aktuatorkammer und Stillstand des Aktuatorglieds.
  • In einer bevorzugten Ausführung besitzt das vierte Diagnosemodul Mittel zur Zeiterfassung der Druckanstiegs- und/oder Druckabbauzeiten und zur Bestimmung des Differenzwertes zu Normzeiten, die ab einer Überschreitung vorgebbarer Differenzwerte eine Diagnosemeldung erzeugen.
  • Eine weitere Verbesserung und Vervollständigung der Diagnose kann noch durch ein permanent arbeitendes fünftes Diagnosemodul erreicht werden, das zur Überwachung des Luftverbrauchs und/oder des Druckniveaus und/oder von Positionierzeiten und Zykluszeiten ausgebildet ist, wobei Schaltmittel zur Deaktivierung des wenigstens einen dritten Diagnosemoduls bei einer Fehlererkennung durch das fünfte Diagnosemodul dienen. Hierdurch können Fehler als Störungen erfasst werden, die nicht eindeutig den Fehlern in den übrigen Modulen zuordenbar sind und unabhängig von der Fehlerart entsprechende Störungen im Luftverbrauch, im Druckniveau oder in den Positionierzeiten und Zykluszeiten detektieren.
  • Das fünfte Diagnosemodul besitzt zweckmäßigerweise Vergleichsmittel zum Vergleich mit entsprechenden Referenzwerten, zur Erfassung von Abweichungen von den Referenzwerten und zur Prüfung der Abweichungen auf Überschreitung von vorgebbaren Grenzwerten, die zu einer Diagnosemeldung führen.
  • Ein Ausführungsbeispiel ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
    • Figur 1 eine als Pneumatikzylinder und Steuerventil für diesen ausgebildete Ventil-Aktuator-Anordung, die mit einer Diagnosevorrichtung als Ausführungsbeispiel der Erfindung verbunden ist, und
    • Figur 2 eine detailliertere Darstellung und Unterteilung der Diagnosevorrichtung in Diagnosemodule.
  • Die in Figur 1 dargestellte Ventil-Aktuator-Anordung besteht aus einem schematisch dargestellten Pneumatikzylinder 10, in dem ein mit einer Kolbenstange 11 versehener Kolben 12 verschiebbar und pneumatisch antreibbar ist. Dieser Pneumatikzylinder 10 stellt eine mögliche Ausführung eines Aktuators dar, wobei auch andere Ausführungen von Aktuatoren, wie unterschiedliche Arten von Linearantrieben, Stellantrieben, Drehantrieben und dergleichen, möglich sind.
  • Zur Betätigung des Kolbens 12 dient ein Ventil 13, das beispielsweise als 5/2- oder 5/3-Schaltventil ausgebildet sein kann. Dieses Ventil 13 ist an eine Druckzuführungsleitung 14 zur Zuführung eines Arbeitsdrucks p angeschlossen. Über Leitungen 15 kann der Kolben 12 je nach Ventilstellung auf der einen oder der anderen Seite mit dem Druck beaufschlagt werden, damit er sich in den beiden Bewegungsrichtungen gesteuert bewegen kann. Anstelle eines Schaltventils kann prinzipiell auch ein Proportionalventil vorgesehen sein, wobei das jeweilige Ventil auch im oder am Pneumatikzylinder integriert sein kann.
  • In den beiden Leitungen 15 zwischen dem Ventil 13 einerseits und den beiden Endbereichen des Pneumatikzylinders 10 andererseits sind in üblicher Weise Drossel-Rückschlagventile 16 geschaltet. In der die Kolbenstangenseite des Kolbens 12 mit Druck beaufschlagenden Leitung 15 sind noch ein Volumenstromsensor 17 und ein Drucksensor 18 zur Erfassung des Pneumatikdrucks in der kolbenstangenseitigen Zylinderkammer 19 angeordnet. Prinzipiell kann der Volumenstromsensor 17 und der Drucksensor 18 auch mit der entgegengesetzten Zylinderkammer 20 verbunden sein.
  • Eine elektronische Steuereinrichtung 21 dient zur Steuerung des Ventils 13 und damit der Bewegung und Position des Kolbens 12 im Pneumatikzylinder 10. Diese elektronische Steuereinrichtung 21 ist mit einer Diagnoseelektronik 22 versehen, wobei die Diagnoseelektronik 22 in der elektronischen Steuereinrichtung 21 integriert oder als separates Gerät äusgebildet sein kann. Der Drucksensor 18 und der Volumenstromsensor 17 sowie Positionssensoren 23, 24 zur Erfassung der Endposition bzw. Endlagen des Kolbens 12 sind mit Eingängen der Diagnoseelektronik 22 verbunden. Die Steuersignale der elektronischen Steuereinrichtung 21 für das Ventil 13 sind ebenfalls der Diagnoseelektronik 22 zugeführt, in der dargestellten integrierten Form durch interne Zuführung.
  • Mittels der Diagnoseelektronik 22 im Rahmen der Diagnose erkannte Fehler, Fehlfunktionen oder Defekte können angezeigt und/oder registriert werden. Hierzu kann die Diagnoseelektronik 22 oder die elektronische Steuereinrichtung 21 einen entsprechenden Fehlerspeicher besitzen. Weiterhin ist die Diagnoseelektronik 22 ausgangsseitig mit einem Display 25 und einem Drucker 26 verbunden, um Diagnosemeldungen anzeigen bzw. ausdrucken zu können. Diese als Anzeigevorrichtungen für Diagnosemeldung dienenden Geräte können selbstverständlich auch durch andere und einfachere Geräte ersetzt werden, beispielsweise eine LED-Fehleranzeige, durch die die verschiedenen Fehlerarten zur Anzeige gelangen können.
  • In Figur 2 ist die Diagnosevorrichtung hinsichtlich des Diagnoseablaufs und der Diagnosefunktionen schematisch dargestellt. Wesentlich ist dabei das Zusammenwirken der einzelnen Diagnosemodule M1 bis M5 bzw. die Reihenfolge deren Abarbeitung, um eindeutige Fehleraussagen treffen zu können. Wesentlich ist dabei die gezielte Auswertung der Diagnöseinformationen aus den einzelnen Diagnosemodulen M1 bis M5 für ein pneumatisches Subsystem, das im Ausführungsbeispiel gemäß Figur 1 durch eine Ventil-Aktuator-Anordung 10, 13 realisiert ist. Dabei überwachen die Diagnosemodule M1 bis M5 die Ventil-Aktuator-Anordung auf häufig vorkommende qualitative und quantitative Fehler.
  • Die Diagnosemodule gemäß Figur 2 werden grundsätzlich nur aktiviert, wenn der Betriebsdruck p nicht mehr als durch vorgegebene Toleranzen von einem Referenzdruck abweicht. In einem ersten Schritt werden die Diagnosemodule M1 und M2 gestartet, um das Subsystem auf Leckagen oder Drosselungen in der Arbeitsleitung zu prüfen. Diese beiden Module sind mit der obigen Einschränkung permanent aktiv, da sie stets eindeutige Aussagen liefern. Wenn keine Leckagen oder Drosselungen auftreten, wird das Modul M3 zur Überwachung veränderter Lasten oder Reibung aktiviert. Liefert auch dieses Modul keine Abweichungen von vorgegebenen Referenznormen, kann das Modul M4 zur Detektion von Ventilfehlern aktiviert werden. Sofern ein Fehler in dieser Kette auftritt, wird das nachfolgende Modul stets deaktiviert. Dies ist durch Schalter 27, 28 schematisch dargestellt. Diese Reihenfolge stellt sicher, dass die Diagnosemodule stets eindeutige Fehleraussagen treffen.
  • Das Diagnosemodul M5 arbeitet ständig. Durch dieses Modul M5 werden die Zyklen- und Verfahrzeiten, der Druck und der Luftverbrauch auf Abweichungen überwacht. Dabei werden unabhängig von der Fehlerart Störungen im Subsystem detektiert, die sich in den Verfahrzeiten oder dem Druck oder dem Volumenstrom bemerkbar machen. Somit werden auch Fehler als Störungen erfasst, die nicht eindeutig den Fehlern in den Diagnosemodulen M1 bis M4 zuordenbar sind. Die NOR-Verknüpfung 29 bewirkt, dass die Diagnosemodule M3 und M4 nur aktiviert werden, wenn die Diagnosemodule M1, M2 und M5 keine Fehler oder Störungen melden. Wie bereits ausgeführt, besteht beim Diagnosemodul M4 noch die zusätzliche Bedingung, dass auch das Diagnosemodul M3 keine Fehler oder Störungen detektiert.
  • Beim zur Detektion einer Leckage dienenden ersten Diagnosemodul M1 wird während Pausenphasen, in denen der Kolben 12 in einer seiner beiden Endlagen steht, die unter dem Druck p1 stehende Seite abgesperrt. Beim dargestellten Ausführungsbeispiel handelt es sich hierbei um die Zylinderkammer 19, da diese mit dem Drucksensor 18 verbunden ist. Während dieser Messzeit, die der Länge der Pausenphase entspricht, wird der Druckgradient Δp/Δt bestimmt. Die Druckdifferenz wird dann aus der Differenz zwischen Anfangswert und Endwert ermittelt. Der berechnete Leckagestrom ändert sich über der Zeit, da sich die unter Druck stehende Zylinderkammer 19 entleert. Der Leckagestrom QI ergibt sich zu: Q t = V * Δ p / p N
    Figure imgb0001
  • Dabei ist V das Kammervolumen und PN der Bezugsdruck, die beide Konstanten sind. Um eine Vergleichsgröße über die Größe der Leckagestelle zu gewinnen, wird der Leitwert C berechnet. Der C-Wert ist proportional zur Öffnungsfläche der Leckagestelle und wird wie folgt berechnet: C = Q l p
    Figure imgb0002
  • Der Leitwert C wird wie der Druckgradient während des gesamten Messvorgangs ständig aktualisiert, ist also eine Funktion der Zeit C = C (t). Wenn keine Leckage auftritt, nimmt der Leitwert C Werte von nahezu 0 an. Aufgrund von Messrauschen wird jedoch als Leitwertreferenz Cref ein Wert > 0 angesetzt. Der gemessene C-Wert überschreitet im Falle einer Leckage den Referenzleitwert und ist dann näherungsweise konstant. Um einen aussagekräftigen Vergleichswert zu besitzen, wird aus den während des Messvorgangs ermittelten C-Werten ein Maximalwert Cmax bestimmt. Dieser wird dann mit dem Referenzleitwert verglichen.
  • Die Pausenphasen bzw. Messzeit werden durch Endschaltersignale und durch Kenntnis der Ablaufsequenz detektiert. Falls der Versorgungsdrück p unter einen vorgebbaren Minimalwert von beispielsweise 2 bar sinkt, dann ist die Formel zur Berechnung des Leitwerts nicht mehr gültig, und der Messvorgang wird abgebrochen.
  • Zur Detektion unterschiedlicher Leckagen kann die Größe der Leitwertreferenz individuell angepasst werden. Eine zusätzliche Auswertung gestattet die Unterscheidung zwischen einer internen Leckage am Kolben, zum Beispiel bei undichter oder defekter Kolbendichtung, und einer externen Leckage, bei-spielsweise durch undichte oder defekte Kolbenstangendichtung oder defekte Schläuche bzw. Leitungen. Bei interner Leckage erfolgt die Entlüftung in die andere Zylinderkammer. Dadurch ist der Druckabfall zu Beginn relativ groß, und mit zunehmendem Druckanstieg in der befüllenden Kammer wird der Leckagestrom und der C-Wert immer kleiner, bis bei Druckausgeglichenheit der Volumenstrom und C-Wert gegen null gehen. Dies ist ein eindeutiges Indiz für interne Leckage. Ein zusätzliches Indiz für eine interne Leckage besteht darin, dass beim überströmen der Kolbendichtung und abgesperrter Kammer eine Bewegung des Aktuators möglich ist, wenn es sich um einen Aktor mit unterschiedlichen Wirkflächen handelt, wie dies zum Beispiel beim Differentialzylinder der Fall ist. Beim Überströmen erfolgt ein Druckausgleich zwischen beiden Aktuatorkammern. Durch die unterschiedlichen Kolbenflächen resultiert eine Kraftwirkung, durch die der Aktuator aus der Endlage fährt. Mittels des Endlagenschaltersignals des Positionssensors 24 bzw. 23 ist dies detektierbar.
  • Bei externer Leckage erfolgt eine Entlüftung nach außen. Bei vollkommener Leerung der Zylinderkammer kann definitiv auf externe Leckage geschlossen werden. Der C-Wert ist hier über der Messzeit nahezu konstant, und als Kriterium über die Höhe der Leckage wird der C-Wert am Ende der Messung verwendet. Ist die Messzeit nicht ausreichend lang genug, wird keine vollständige Entleerung erreicht, und es kann nicht mehr eindeutig zwischen externer und interner Leckage unterschieden werden. Für die meisten Anwendungen kann aber bei stetig sinkendem Druck über der Messzeit auf eine externe Leckage geschlossen werden. Die Messzeit sollte daher möglichst lang gewählt werden, das heißt, die Pausenzeiten sollten effektiv ausgenutzt werden.
  • Interessiert die quantitative Größe des Leckagestroms, so muss der Bezugsdruck pn gemäß folgender Gleichung bestimmt werden: p n = κ * ρ N * T * R
    Figure imgb0003
  • ρN ist die Normdichte, wobei je nach gewählter Normierung des Volumenstroms ρN = 1,293 kg/m3. T ist die Bezugstemperatur, wobei die Betriebstemperatur zur Abschätzung verwendet werden kann. Der Entlüftungsvorgang wird als isotherm angenommen, daher gilt κ = 1,0. R beträgt für trockene Luft 287 J/(kg K), und für Luft bei 65 % relativer Luftfeuchtigkeit ist R = 288 J/(kg • K). Damit ergibt sich für Normalbedingungen ein Bezugsdruck, der dem Normdruck von Pn von 1,0135 bar entspricht. Dieser Wert kann in die erste Gleichung eingesetzt werden, woraus sich der Leckagestrom mit Hilfe der übrigen Parameter errechnen lässt.
  • Die Erfassung einer zunehmenden oder auch abnehmenden Drosselung (z.B. Verstellungen der Drossel oder Verstopfungen oder geknickte Schläuche) basiert auf der Nutzung des Drucksignals p1 und des Volumenstroms q in der betreffenden Arbeitsleitung. Die Sensorik wird dabei gemäß Figur 1 auf der Kolbenstangenseite angeordnet, also mit der Zylinderkammer 19 verbunden. Das Diagnosemodul M2 ermittelt, ob eine Drosselung in der gesamten Leitung beginnend vom Ventil 13 bis zum Anschluss an die Zylinderkammer 19 vorliegt. Ursachen für eine zu- bzw. abnehmende Drosselung sind zum Beispiel eine geöffnete oder geschlossene Ablaufdrossel, ein geknickter Schlauch, Verstopfungen im Schlauch, Vereisungen, Drosselungen in der Anschlussleitung des Pneumatikzylinders 10, nicht ganz öffnendes Ventil.
  • Zunächst wird ein Leitwert C als Diagnosewert aus dem Druck p1 und dem Volumenstrom q ermittelt. Dieser C-Wert ist ein Maß für die durchströmte Fläche und wird für die Fehlerdiagnose mit einem Referenzwert verglichen. Zur Kalkulation für den Leitwert C kann die Ausfahr- und/oder die Einfahrrichtung des Aktuators verwendet werden. Ausreichend ist eine Bewegungsphase. Vorzugsweise wird die Bewegungsrichtung X gemäß Figur 1 genutzt, bei welcher eine Entlüftung aus der Zylinderkammer 19 erfolgt. Der Leitwert C für diese Ausfahrrichtung wird gemäß folgender Gleichung berechnet: q = C * p 1 T N T B * 1 - p n / p 1 - b 1 - b 2
    Figure imgb0004

    pu ist dabei der Umgebungsdruck, gegen den entlüftet wird. Die Gleichung beschreibt dabei die Verhältnisse bei unterkritischen Betriebsbedingungen, bei denen gilt pu/p1 > b. Der Kennwert b kann für die Diagnose als Konstante b = 0,528 frei gewählt werden. TN ist die Normtemperatur und TB ist die Temperatur in der Druckkammer, welche näherungsweise der Betriebstemperatur gleichgesetzt werden kann. Wenn keine extremen Temperaturveränderungen vorliegen, so wird die Temperatur für die Diagnose nicht berücksichtigt. Bei großen Änderungen der Temperatur wird das Diagnosemodul M2 deaktiviert.
  • Für überkritische Betriebsbedingungen (pu/p1 <= b) gilt folgende Gleichung: q = C * p 1 T N T B
    Figure imgb0005
  • Der berechnete Leitwert C wird während des gesamten Messvorgangs ständig aktualisiert, ist also eine Funktion der Zeit C = C (t). Bei konstanter Durchströmungsfläche ist jedoch der dynamisch kalkulierte Leitwert nahezu konstant. Im Falle des Entlüftungs- oder Befüllungsbeginns können jedoch Druckspitzen und damit auch kurze Spitzen im Leitwert auftreten. Während des Messvorgangs wird aus den berechneten Leitwerten C ein Mittelwert gebildet und mit einem Referenzleitwert verglichen. Die Differenz aus Messwert und Referenzleitwert wird mit einem maximal zulässigen Toleranzwert verglichen, dessen Überschreitung zu einer Diagnosemeldung führt, dass eine zu große oder zu kleine Drosselung vorliegt. Der Leitwert wird dabei während der Bewegung des Kolbens 21 bestimmt, wozu die beiden Endschaltersignale der Positionssensoren 23, 24 dienen.
  • Das Diagnosemodul M3 dient zur Erkennung von Last- und Reibungsänderungen am Aktuator, also am Pneumatikzylinder 10 bzw. an der angebauten Mechanik. Wie bereits ausgeführt, wird dieses Modul nur aktiviert, wenn zuvor sichergestellt wurde, dass keine Drosselungen oder Leckagen aufgetreten sind, dass also die Diagnosemodule M1 und M2 keine Fehler festgestellt haben, was auch für das Diagnosemodul M5 gilt, das noch beschrieben wird. Für diese Diagnose wird nur der Drucksensor 18 benötigt. Für die Berechnung können die Druckaufbauphase (Befüllung der Zylinderkammer 19) sowie die Bewegungsphasen (Ausfahren und Einfahren) genutzt werden. Diese Phasen werden im Folgenden beschrieben.
  • Während der Druckaufbauphase (Phase 1) steht der Kolben 21. Definiert ist diese Phase ab dem Schaltsignal am Ventil 13, bis zum Zeitpunkt, zu welchem sich der Kolben-12 aus seiner Endlage bewegt. Die Phase 2 ist die Verfahrphase, in der die Zylinderkammer 19 befüllt wird. Phase 3 ist die Verfahrphase in die Gegenrichtung, also in die Richtung X, in der die Zylinderkammer 19 wieder entleert wird.
  • In der Phase 1 wird der auftretende maximale Druck bestimmt. Mit der bekannten Kolbenwirkfläche wird die äquivalente Kraft Fmax berechnet. Dabei wird angenommen, dass die zweite Zylinderkammer 20 bei Stillstand des Kolbens entlüftet ist oder dort ein konstanter Druck vorherrscht. Aus dem gemessenen Druck während der Verfahrzeit in der Phase 2 wird ein mittlerer Druck berechnet, aus dem wiederum eine mittlere äquivalente Kraft Fmed1 berechnet wird. Dasselbe gilt für die Phase 3, in der wiederum eine mittlere äquivalente Kraft Fmed2 berechnet wird. Zur Bildung der mittleren Druckwerte werden diese aufsummiert und durch die Anzahl der Messwerte dividiert. Zur Bildung aussagekräftiger Werte empfiehlt sich eine Aufnahme der Kennwerte über mehrere Zyklen, die Zwischenspeicherung und anschließende Generierung von Mittelwerten.
  • Für alle gemessenen Kraftwerte sind gespeicherte Referenzwerte vorhanden, die bei ordnungsgemäßer Funktion auftreten. Aus diesen und den gemessenen Kraftwerten werden nun jeweils Differenzwerte ΔFmax, ΔFmed1 und Δfmed2 gebildet. Bei der Auswertung wird nun überprüft, ob diese Differenzwerte außerhalb vorgegebener Toleranzgrenzen liegen. Aus den Kombinationen der so erhaltenen Ergebnisse können verschiedene Diagnoseaussagen gemacht werden:
    1. a) Überschreitet einer der Differenzwerte signifikant den vorgegebenen Toleranzwert, so liegt ein Fehler in den Reibungs- oder Lastverhältnissen vor.
    2. b) Sind alle drei Differenzwerte positiv und überschreiten einen vorgegebenen Toleranzwert, so liegt eine ziehende Last vor, also eine gegen die jeweilige Kraftrichtung gerichtete Last.
    3. c) Sind alle drei Differenzwerte negativ und überschreiten einen vorgegebenen Toleranzwert, so liegt eine drückende Last vor, also eine Last, die in Kraftrichtung wirkt.
    4. d) Übersteigt ΔFmax seine zulässige Toleranzgrenze, bleiben die übrigen Werte jedoch innerhalb ihrer Toleranzgrenzen, so liegt eine Haftreibungserhöhuag vor.
    5. e) Steigt der Differenzwert ΔFmedi und sinkt der Wert ΔFmed2 über die jeweilige Toleranzgrenze, so hat sich die Gleitreibung erhöht.
  • Weitere Kombinationen ermöglichen zusätzliche Aussagen. Die jeweiligen Kombinationen können auch aktuatorspezifisch verfeinert werden. Die Ergebnisse können gespeichert und am Display 25 bzw. über den Drucker 26 wiedergegeben werden.
  • Die Referenzwerte können manuell eingegeben werden oder lassen sich automatisch ermitteln. Dabei ist zu beachten, dass diese Referenzwerte im "Gutzustand" des Zylinders (oder eines anderen Aktuators bzw. einer Anlage) bzw. beim Einfahrvorgang aufgenommen werden.
  • Das Diagnosemodul 4, das zur Erkennung von Ventilschaltfehlern dient, wird nur aktiviert, wenn die übrigen Diagnosemodule keine Fehler, Störungen oder Defekte melden. Wenn alle diese Diagnosemodule M1 bis M3 sowie M5 keinen Fehler aufgezeigt haben und trotzdem Änderungen im Druckaufbau auftreten, so ist dies auf ein verzögertes oder beschleunigtes Öffnungsverhalten des Ventils 13 zurückzuführen. Zur Detektion wird nur der Drucksensor 18 in der jeweiligen Arbeitsleitung benötigt. Es wird, ähnlich wie im Diagnosemodul 3 beschrieben, die Druckaufbauphase genutzt, um die Zeit des Druckanstiegs zu messen. Dann wird ein Diagnosekennwert gebildet, der die Schaltzeit charakterisiert. Aus dem Vergleich dieser Schaltzeit mit einer Referenzschaltzeit kann dann auf das korrekte oder nicht korrekte Schalten des Ventils 13 geschlossen werden. Eine Messphase 1 beginnt beim Einschalten des Ventils 13, also mit seinem Einschaltsignal, und endet mit dem Bewegungsstart des Kolbens aus seiner Endlage. Zusätzlich wird als Messphase 2 die Druckabbau- bzw. Entlüftungsphase verwendet. Damit kann auch die Zeit für das Zurückschalten des Ventils bewertet werden. Die Messphase 2 beginnt beim Ein- bzw. Umschalten des Ventils 13, während der Kolben in seiner Endlage steht.
  • In der eine Druckaufbauphase darstellenden Messphase 1 wird die Zeit gemessen, bis der Druck auf einen vorgegebenen Prozentwert seines Endwertes bzw. Maximalwertes angestiegen ist. Ähnliches gilt für die als Druckabbauphase ausgebildete Messphase 2, in der die Zeit gemessen wird, bis der Druck auf einen vorgegebenen Prozentwert seines Maximalwerts abgesunken ist. Die gemessenen Zeitwerte werden mit Referenzzeitwerten verglichen und wiederum die gebildeten Differenzwerte auf Überschreitung vorgegebener Toleranzwerte geprüft.
  • Zur Diagnose wird der Endwert bzw. maximale Druckwert der befüllten Kammer im Stillstand benötigt. Dieser Wert kann einmalig gemessen und abgespeichert werden, kann jedoch auch mit jeder Messung aktualisiert werden.
  • Das Diagnosemodul 5 arbeitet permanent. Es benötigt die Endschaltersignale der Positionssensoren 23, 24 und die Signale des Drucksensors 18 sowie des Volumenstromsensors 17. In diesem Modul werden die Zyklen- und Verfahrzeiten, der Druck und der Luftverbrauch gebildet und auf Abweichungen überwacht. Dieses Diagnosemodul detektiert daher unabhängig von der Fehlerart Störungen im überwachten Subsystem, die sich in den Verfahrzeiten oder den Positionierzeiten oder dem Druck oder dem Verbrauch bemerkbar machen. Somit können auch Fehler als Störungen erfasst werden, die nicht eindeutig den Fehlern zu-. ordenbar sind, die durch die übrigen Module erfassbar sind. Die jeweiligen Messwerte, also Positionierzeit, Verfahrzeit, Luftverbrauch, maximaler Druckwert und mittlerer Druckwert, werden mit entsprechenden Referenzwerten verglichen. Daraus werden Differenzwerte gebildet und auf Unter- oder Überschreitung zulässiger Toleranzwerte überprüft. Diese Fehlergroberkennung kann im Einzelfall dann durch die exaktere Fehlerbestimmung der Diagnosemodule M1 bis M4 spezifiziert werden.
  • Die Diagnosemodul M1 bis M3 stellen die wichtigsten Diagnosemodule dar. Bei einfacheren Ausführungen kann auch auf das Diagnosemodul M4 und/oder M5 verzichtet werden. Es ist dabei selbstverständlich auch möglich, zusätzliche Diagnosemodule anzufügen.
  • Die Diagnosemodule können prinzipiell als separate Diagnoseschaltungen ausgeführt werden, sie werden jedoch bevorzugt als Funktionsgruppen eines Diagnoseprogramms ausgebildet sein, das entweder in der Diagnoseelektronik 22 oder in der elektronischen Steuereinrichtung 21 bzw. einer zentralen Steuerelektronik abläuft.

Claims (17)

  1. Diagnosevorrichtung für wenigstens eine pneumatische Ventil-Aktuator-Anordnung, mit einem Drucksensor (18), einem Volumenstromsensor (17), einer Steuereinrichtung (21) zur Erzeugung von Steuersignalen für die Ventil-Aktuator-Anordnung und mit Positionssensoren (23, 24) zur Positionserfassung wenigstens eines bewegbaren Aktuatorglieds (12), mit einem ersten Diagnosemodul (M1) zur Leckagedetektion, mit einem zweiten Diagnosemodul (M2) zur Detektion einer Drosselung in pneumatischen Zu- oder Abführleitungen und mit wenigstens einem dritten Diagnosemodul (M3, M4) zur Detektion von Lastund Reibungsänderungen beim bewegbaren Aktuatorglied (12) und/oder von Ventilschaltfehlern, dadurch gekennzeichnet, dass Schaltmittel (29, 27) zur Deaktivierung des wenigstens einen dritten Diagnosemoduls bei einer Fehlererkennung durch das erste (M1) und/oder zweite Diagnosemodul (M2) vorgesehen sind.
  2. Diagnosevorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das dritte Diagnosemodul (M3) zur Detektion von Last- und Reibungsänderungen beim bewegbaren Aktuatorglied (12) ausgebildet ist, und dass ein viertes Diagnosemodul (M4) zur Detektion von Ventilschaltfehlern vorgesehen ist, das bei einer Fehlererkennung durch das dritte Diagnosemodul (M3) deaktiviert ist.
  3. Diagnosevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste Diagnosemodul (M1) zur Überwachung des Drucks (p1) mittels des Drucksensors (18) in einer abgeschlossenen, unter Druck stehenden Kammer (19) des Aktuators (10) während vorzugsweise durch Positionssensoren (23, 24) detektierten Pausenphasen ausgebildet ist.
  4. Diagnosevorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass das erste Diagnosemodul (M1) Mittel zur Ermittlung des Druckgradienten (Δp/Δt) und/oder des Leckagevolumenstroms (Q1) und/oder des Strömungsleitwerts (C) für die Leckagestelle sowie Vergleichsmittel zum Vergleich mit Referenzwerten besitzt, deren Überschreitung um vorgebbare Toleranzwerte eine Leckagemeldung erzeugt.
  5. Diagnosevorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das erste Diagnosemodul (M1) Auswertemittel zur Unterscheidung einer internen oder externen Leckage besitzt.
  6. Diagnosevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das zweite Diagnosemodul (M2) zur Überwachung des Strömungsleitwerts (C) während durch die Positionssensoren (23, 24) detektierten Bewegungsphasen des bewegbaren Aktuatorglieds (12) ausgebildet ist.
  7. Diagnosevorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass das zweite Diagnosemodul (M2) Mittel zur Berechnung des Mittelwerts des Strömungsleitwerts (C) während der Bewegung des Aktuatorglieds (12) besitzt, und dass Vergleichsmitel zur Überprüfung dieses Mittelwerts auf Abweichungen von wenigstens einem Referenzwert vorgesehen sind, die ab einer vorgebbaren Toleranzwertabweichung eine Meldung über eine irreguläre Drosselung erzeugen.
  8. Diagnosevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Schaltmittel zur Deaktivierung des zweiten Diagnosemoduls (M2) bei Überschreiten einer vorgebbaren Grenztemperatur vorgesehen sind.
  9. Diagnosevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das dritte Diagnosemodul (M3) zur Überwachung wenigstens eines der folgenden Druckwerte auf Abweichungen von vorgebbaren Normdruckwerten ausgebildet ist:
    Maximaler Druck zwischen Betätigungssignal und entsprechendem Beginn der Bewegungsphase aus einer Endlage, mittlerer Druck während der Bewegungsphase bei Befüllung einer Aktuatorkammer (19), mittlerer Druck während der Bewegungsphase bei Entleerung dieser Aktuatorkammer (19).
  10. Diagnosevorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass Mittel zur Berechnung der äquivalenten Kraftwerte (Fmax Fmed1 und Fmed2) und zur Ermittlung und Bewertung von Differenzwerten (ΔFmax, ΔFmedi und ΔFmed2) von entsprechenden Normwerten vorgesehen sind, wobei eine Überschreitung von vorgebbaren Toleranzwerten zu einer entsprechenden Diagnosemeldung führt.
  11. Diagnosevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das vierte Diagnosemodul (M4) zur Überwachung der Zeit des Druckanstiegs ab einem entsprechenden Ventilschaltsignal (V) bis zu einem vorgebbaren Prozentwert seines Druckendwerts und/oder der Zeit des Druckabbaus ab einem entsprechenden Ventilschaltsignal (V) bis zu einem vorgebbaren Prozentwert seines Druckendwerts ausgebildet ist.
  12. Diagnosevorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass das vierte Diagnosemodul (M4) Mittel zur Erfassung des Druckendwerts bei befüllter Aktuatorkammer (19) und Stillstand des Aktuatorglieds (12) besitzt.
  13. Diagnosevorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das vierte Diagnosemodul (M4) Mittel zur Zeiterfassung der Druckanstiegs- und/oder Druckabbauzeiten und zur Bestimmung von Differenzwerten zu Referenzzeiten besitzt, die ab einer Überschreitung von vorgebbaren Toleranzwerten eine entsprechende Diagnosemeldung erzeugen.
  14. Diagnosevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein fünftes Diagnosemodul (M5) zur Überwachung des Luftverbrauchs und/oder des Druckniveaus und/oder von Positionierzeiten und Zykluszeiten vorgesehen ist, wobei Schaltmittel (27, 29) zur Deaktivierung des wenigstens einen dritten Diagnosemoduls (M3, M4) bei einer Fehlererkennung durch das fünfte Diagnosemodul (M5) vorgesehen sind.
  15. Diagnosevorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass das fünfte Diagnosemodul (M5) Vergleichsmittel zum Vergleich mit entsprechenden Referenzwerten, zur Erfassung von Abweichungen von den Referenzwerten und zur Prüfung der Abweichungen auf Überschreitung von vorgebbaren Toleranzwerten besitzt, die eine entsprechende Diagnosemeldung erzeugen.
  16. Diagnosevorrichtung nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass Mittel zur Erfassung des Luftverbrauchs zwischen einem eine Bewegung auslösenden Ventilsteuersignal (V) und dem Erreichen einer Endposition vorgesehen sind, wobei der Luftverbrauch vorzugsweise das Integral des Volumenstromsignals über der Positionierzeit ist.
  17. Diagnosevorrichtung nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass Mittel zur Erfassung des maximalen Druckwerts und/oder des mittleren Druckwerts während einer Bewegungsphase des Aktuatorglieds (12) vorgesehen sind.
EP04803190A 2004-11-19 2004-11-19 Diagnosevorrichtung für wenigstens eine pneumatische ventil-aktuator-anordnung Not-in-force EP1812718B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2004/013157 WO2006056214A1 (de) 2004-11-19 2004-11-19 Diagnosevorrichtung für wenigstens eine pneumatische ventil-aktuator-anordnung

Publications (2)

Publication Number Publication Date
EP1812718A1 EP1812718A1 (de) 2007-08-01
EP1812718B1 true EP1812718B1 (de) 2008-08-20

Family

ID=34959392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04803190A Not-in-force EP1812718B1 (de) 2004-11-19 2004-11-19 Diagnosevorrichtung für wenigstens eine pneumatische ventil-aktuator-anordnung

Country Status (8)

Country Link
US (1) US7620522B2 (de)
EP (1) EP1812718B1 (de)
JP (1) JP4707717B2 (de)
CN (1) CN101061320B (de)
AT (1) ATE405748T1 (de)
DE (1) DE502004007932D1 (de)
DK (1) DK1812718T3 (de)
WO (1) WO2006056214A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008062290A1 (de) * 2008-12-15 2010-06-24 Abb Technology Ag Verfahren zur Diagnose des Verschleißzustandes einer Ventilanordnung zur Steuerung eines Prozessmediumflusses
DE102008062292A1 (de) * 2008-12-15 2010-06-24 Abb Technology Ag Verfahren zur drucksensorischen Verschleißzustandsermittlung einer Ventilmechanik sowie pneumatisches Ventil
DE102008062289A1 (de) * 2008-12-15 2010-06-24 Abb Technology Ag Verfahren zur weg- und drucksensorischen Verschleißzustandsermittlung einer Ventilmechanik sowie eine solche nutzende Ventilanordnung
RU2454575C1 (ru) * 2010-10-21 2012-06-27 Открытое акционерное общество "Омское машиностроительное конструкторское бюро" Способ определения утечек по уплотнениям пневмопривода двустороннего действия
US8509952B2 (en) 2008-12-22 2013-08-13 Abb Technology Ag Method for position-dependent electronic wear state determination of a valve mechanism, and a pneumatic valve
DE102016200924A1 (de) * 2016-01-22 2017-07-27 Festo Ag & Co. Kg Verfahren und Steuerungseinrichtung zum Bestimmen eines Verschleißzustands
WO2018153524A1 (en) * 2017-02-24 2018-08-30 Siemens Wind Power A/S Method and arrangement to detect an oil leakage between sections of a hydraulic cylinder
DE102018116048A1 (de) * 2018-07-03 2020-01-09 Samson Aktiengesellschaft Diagnose von möglichen Ursachen für Veränderungen an einem Stellventil
DE102019214882A1 (de) * 2019-09-27 2021-04-01 Zf Friedrichshafen Ag Verfahren und Steuergerät zum Betreiben eines pneumatischen Druckstellersystems eines Getriebes
DE102020204735B3 (de) 2020-04-15 2021-07-22 Festo Se & Co. Kg System und Verfahren
DE102021210500A1 (de) 2021-09-21 2023-03-23 Festo Se & Co. Kg Ventilanordnung und Verfahren
DE102022133793A1 (de) 2022-12-19 2024-06-20 Festo Se & Co. Kg Verfahren zur Diagnose einer Prozessventil-Baueinheit und Diagnoseeinrichtung

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464579B2 (en) 2006-04-17 2019-11-05 Ge Global Sourcing Llc System and method for automated establishment of a vehicle consist
US10338580B2 (en) 2014-10-22 2019-07-02 Ge Global Sourcing Llc System and method for determining vehicle orientation in a vehicle consist
DE102007024794A1 (de) * 2007-05-26 2008-11-27 Zf Friedrichshafen Ag Verfahren und Einrichtung zum Steuern des Einrückgrades einer automatischen oder automatisierten Kraftfahrzeugkupplung
US8271141B2 (en) 2008-06-09 2012-09-18 Ross Operating Valve Company Control valve system with cycle monitoring, diagnostics and degradation prediction
DE102009023168A1 (de) * 2009-05-29 2010-12-02 Festo Ag & Co. Kg Positionsmesseinrichtung zur Erfassung der Position wenigstens eines Stellglieds eines fluidischen Systems ohne Positionssensor
JP5252307B2 (ja) * 2009-07-01 2013-07-31 Smc株式会社 流体圧システムの漏れ検出機構及び検出方法
CN102667005B (zh) 2009-09-22 2015-10-07 伊恩.希尔 带有用于将附件联接到工作机械上的销保持***的液压联接器
GB2474572B (en) * 2009-10-16 2014-11-26 Hill Engineering Ltd Control system for a hydraulic coupler
GB2474576B (en) * 2009-10-16 2014-03-19 Ian Hill Coupler
CN103038559B (zh) 2010-04-30 2015-08-19 美卓自动化有限公司 控制阀的诊断
DE102010020258A1 (de) * 2010-05-11 2011-11-17 Lösomat Schraubtechnik Neef Gmbh Schaltungsanordnung zum Betreiben eines Drehmomentschraubers oder dergleichen
WO2013026209A1 (zh) * 2011-08-25 2013-02-28 长沙中联重工科技发展股份有限公司 用于检测液压回路中液压阀的方法、控制器和装置、检测液压回路故障的方法和装置以及液压回路故障处理***
US9897082B2 (en) 2011-09-15 2018-02-20 General Electric Company Air compressor prognostic system
US8984930B2 (en) 2011-09-15 2015-03-24 General Electric Company System and method for diagnosing a reciprocating compressor
DE102012005224A1 (de) * 2012-03-15 2013-09-19 Festo Ag & Co. Kg Fluidsystem und Verfahren zum Betreiben eines Fluidsystems
US9128008B2 (en) 2012-04-20 2015-09-08 Kent Tabor Actuator predictive system
US20130280095A1 (en) * 2012-04-20 2013-10-24 General Electric Company Method and system for reciprocating compressor starting
CN103063420A (zh) * 2012-11-23 2013-04-24 河南龙宇煤化工有限公司 气化炉开关阀综合故障预测方法
US9423800B2 (en) * 2012-12-26 2016-08-23 Eaton Corporation Fail operational modes for an electro-hydraulic system
EP2752585B1 (de) 2013-01-04 2015-05-27 Alfa Laval Corporate AB Steuereinheit für Ventilaktuator
KR20150130316A (ko) * 2013-03-14 2015-11-23 에어로밸브 엘엘씨 공압 유체 재순환 지연 기능을 가진 공압식 방향 제어 밸브를 위한 안전 기구
EP2639657B1 (de) * 2013-04-24 2018-04-04 MOOG GmbH Verzögerungsminimierte Erfassung einer Hilfsregelgröße
CN104344935A (zh) * 2013-07-31 2015-02-11 上海理工大学 气动回路测试***
US9534491B2 (en) * 2013-09-27 2017-01-03 Rosemount Inc. Detection of position of a plunger in a well
US9841122B2 (en) * 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
CN105987046B (zh) * 2015-01-27 2018-05-25 中联重科股份有限公司 工程机械及其液压阀的故障诊断装置、***、方法
TW201704726A (zh) * 2015-04-20 2017-02-01 納克斯馬翠斯有限責任公司 使用方向控制閥以用於滲漏檢測之系統及方法
AT517432B1 (de) * 2015-06-24 2017-09-15 Engel Austria Gmbh Pneumatiksystem und Verfahren zum Betrieb oder zur Inbetriebnahme desselben
EP3196623A1 (de) * 2016-01-25 2017-07-26 Primetals Technologies Germany GmbH Einfache leckagebestimmung bei einer hydraulikzylindereinheit
RU2614950C1 (ru) * 2016-02-04 2017-03-31 федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский государственный университет" Способ диагностирования технического состояния насоса
CN105697460A (zh) * 2016-04-25 2016-06-22 中冶赛迪工程技术股份有限公司 一种高精度液压缸内泄漏检测装置
CN105840582A (zh) * 2016-04-27 2016-08-10 兰州元创机电科技有限公司 一种液压补偿回路的便携式监测装置及调整、整定方法
CN105971975B (zh) * 2016-05-18 2017-11-14 浙江大学 一种大流量负载控制阀的阀芯液动力测试***与测试方法
US10564062B2 (en) * 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
DE102016122632A1 (de) * 2016-11-23 2018-05-24 Bizerba SE & Co. KG Vorrichtung zum Aussondern eines Artikels
DE102016224550A1 (de) * 2016-12-09 2018-06-14 Zf Friedrichshafen Ag Verfahren zum Betreiben eines pneumatischen Stellsystems eines Getriebes und Steuergerät zur Durchführung des Verfahrens
KR20200097689A (ko) 2017-12-21 2020-08-19 스웨이지락 캄파니 작동 밸브의 제어 및 모니터링을 위한 시스템 및 방법
CN108131343A (zh) * 2017-12-26 2018-06-08 上海人造板机器厂有限公司 一种改进型多层中密度人造板生产线用气路***
DE102018132638A1 (de) * 2018-12-18 2020-06-18 Bayerische Motoren Werke Aktiengesellschaft Bearbeitungswerkzeug, insbesondere Presse, zum Bearbeiten von Werkstücken sowie Verfahren zum Betreiben eines solchen Bearbeitungswerkzeugs
CN113227746A (zh) * 2018-12-28 2021-08-06 贝克曼库尔特有限公司 具有高级***诊断能力的气动***
CN110296126A (zh) * 2019-07-12 2019-10-01 南通翔骜液压润滑设备有限公司 具备检测液压油的液压缸
CN110579345B (zh) * 2019-07-30 2021-07-06 浙江省泵阀产品质量检验中心(永嘉县质量技术监督检测研究院) 回转式阀门电动执行器综合测试装置
ES2959445T3 (es) 2019-08-09 2024-02-26 Siko Gmbh Unidad de sensores para un cilindro fluídico y cilindro fluídico
JP7120511B2 (ja) * 2019-10-03 2022-08-17 Smc株式会社 異常検出システム及び異常検出方法
CN110763500B (zh) * 2019-11-04 2021-05-04 中国原子能科学研究院 用于风门性能测试的试验台及测试方法
CN111038423B (zh) * 2019-12-04 2021-06-04 珠海格力电器股份有限公司 一种气动控制方法、装置、计算机可读存储介质及车辆
JP7254745B2 (ja) * 2020-05-29 2023-04-10 Ckd株式会社 流体流路切換装置
CN112145504B (zh) * 2020-08-31 2022-03-25 广州明珞装备股份有限公司 一种夹具检测方法、***、设备及存储介质
CN112628241A (zh) * 2020-12-29 2021-04-09 中国航空工业集团公司西安飞机设计研究所 一种飞机液压***内泄漏检测装置及方法
EP4102083A1 (de) * 2021-06-09 2022-12-14 Goodrich Actuation Systems Limited Steuerungsstrategie für hydrauliksystem
CN113482986B (zh) * 2021-06-23 2022-08-09 河北津西钢板桩型钢科技有限公司 液压控制阀的故障检测电路及设备
CN114576226B (zh) * 2022-02-28 2023-10-13 南通旭泰自动化设备有限公司 一种方便安装的发电机组油压***自动在线监控装置
DE102022113487A1 (de) * 2022-05-30 2023-12-14 Schaeffler Technologies AG & Co. KG Verfahren zur Erkennung eines sicheren Zustands eines Ventils eines Hydrauliksystems

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914493A (ja) * 1982-07-12 1984-01-25 オ−バル機器工業株式会社 アクチユエータの安全装置
FR2623752B1 (fr) * 1987-11-26 1990-03-09 Smh Alcatel Dispositif de commande d'avance et de positionnement d'enveloppes dans une machine d'insertion
US5197328A (en) * 1988-08-25 1993-03-30 Fisher Controls International, Inc. Diagnostic apparatus and method for fluid control valves
US5337262A (en) 1991-12-03 1994-08-09 Hr Textron Inc. Apparatus for and method of testing hydraulic/pneumatic apparatus using computer controlled test equipment
DE19628221C2 (de) 1996-07-15 2000-05-31 Festo Ag & Co Verfahren und Vorrichtung zur Bestimmung von Betriebspositionen einer Arbeitseinrichtung
DE10052664B4 (de) 2000-10-24 2004-10-28 Festo Ag & Co. Vorrichtung zur Prozeßüberwachung
SE517879C2 (sv) * 2000-11-13 2002-07-30 Abb Ab Förfarande och system för utvärdering av statisk friktion
DE20120609U1 (de) * 2001-12-20 2002-03-21 Festo Ag & Co Diagnoseeinrichtung für eine fluidtechnische Einrichtung sowie damit ausgestattete fluidtechnische Einrichtung
US6678584B2 (en) * 2002-05-03 2004-01-13 Fisher Controls International Llc Method and apparatus for performing diagnostics in a control loop of a control valve
US7124057B2 (en) * 2003-08-19 2006-10-17 Festo Corporation Method and apparatus for diagnosing a cyclic system
US6886545B1 (en) * 2004-03-05 2005-05-03 Haldex Hydraulics Ab Control scheme for exhaust gas circulation system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008062292A1 (de) * 2008-12-15 2010-06-24 Abb Technology Ag Verfahren zur drucksensorischen Verschleißzustandsermittlung einer Ventilmechanik sowie pneumatisches Ventil
DE102008062289A1 (de) * 2008-12-15 2010-06-24 Abb Technology Ag Verfahren zur weg- und drucksensorischen Verschleißzustandsermittlung einer Ventilmechanik sowie eine solche nutzende Ventilanordnung
US8443821B2 (en) 2008-12-15 2013-05-21 Abb Technology Ag Method for determining the path and pressure wear condition of a valve mechanism and valve arrangement using such a valve
US8521334B2 (en) 2008-12-15 2013-08-27 Abb Technology Ag Method for diagnosing the state of wear of a valve arrangement for controlling the flow of a process medium
DE102008062290A1 (de) * 2008-12-15 2010-06-24 Abb Technology Ag Verfahren zur Diagnose des Verschleißzustandes einer Ventilanordnung zur Steuerung eines Prozessmediumflusses
US8509952B2 (en) 2008-12-22 2013-08-13 Abb Technology Ag Method for position-dependent electronic wear state determination of a valve mechanism, and a pneumatic valve
RU2454575C1 (ru) * 2010-10-21 2012-06-27 Открытое акционерное общество "Омское машиностроительное конструкторское бюро" Способ определения утечек по уплотнениям пневмопривода двустороннего действия
DE102016200924B4 (de) 2016-01-22 2024-02-29 Festo Se & Co. Kg Verfahren und Steuerungseinrichtung zum Bestimmen eines Verschleißzustands
DE102016200924A1 (de) * 2016-01-22 2017-07-27 Festo Ag & Co. Kg Verfahren und Steuerungseinrichtung zum Bestimmen eines Verschleißzustands
WO2018153524A1 (en) * 2017-02-24 2018-08-30 Siemens Wind Power A/S Method and arrangement to detect an oil leakage between sections of a hydraulic cylinder
CN110300857B (zh) * 2017-02-24 2021-11-30 西门子歌美飒可再生能源公司 检测在液压缸的区段之间的油泄漏的方法和布置结构
US11549528B2 (en) 2017-02-24 2023-01-10 Siemens Gamesa Renewable Energy A/S Method and arrangement to detect an oil leakage between sections of a hydraulic cylinder
CN110300857A (zh) * 2017-02-24 2019-10-01 西门子歌美飒可再生能源公司 检测在液压缸的区段之间的油泄漏的方法和布置
DE102018116048A1 (de) * 2018-07-03 2020-01-09 Samson Aktiengesellschaft Diagnose von möglichen Ursachen für Veränderungen an einem Stellventil
DE102018116048B4 (de) * 2018-07-03 2020-10-01 Samson Aktiengesellschaft Diagnose von möglichen Ursachen für Veränderungen an einem Stellventil
DE102019214882A1 (de) * 2019-09-27 2021-04-01 Zf Friedrichshafen Ag Verfahren und Steuergerät zum Betreiben eines pneumatischen Druckstellersystems eines Getriebes
DE102020204735B3 (de) 2020-04-15 2021-07-22 Festo Se & Co. Kg System und Verfahren
DE102021210500A1 (de) 2021-09-21 2023-03-23 Festo Se & Co. Kg Ventilanordnung und Verfahren
DE102022133793A1 (de) 2022-12-19 2024-06-20 Festo Se & Co. Kg Verfahren zur Diagnose einer Prozessventil-Baueinheit und Diagnoseeinrichtung

Also Published As

Publication number Publication date
WO2006056214A1 (de) 2006-06-01
DK1812718T3 (da) 2008-11-24
US7620522B2 (en) 2009-11-17
US20080065355A1 (en) 2008-03-13
JP2008520919A (ja) 2008-06-19
CN101061320A (zh) 2007-10-24
JP4707717B2 (ja) 2011-06-22
EP1812718A1 (de) 2007-08-01
DE502004007932D1 (de) 2008-10-02
ATE405748T1 (de) 2008-09-15
CN101061320B (zh) 2011-06-08

Similar Documents

Publication Publication Date Title
EP1812718B1 (de) Diagnosevorrichtung für wenigstens eine pneumatische ventil-aktuator-anordnung
DE602004012500T2 (de) Verfahren zur Diagnose eines zyklischen Systems
DE102010015647B4 (de) Verfahren zum Bestimmen einer Betriebsposition eines Auf/Zu-Ventils und Feldgerät
EP2567125B1 (de) Vorrichtung zum bestimmen eines betriebszustandes von wenigstens einer bidirektional betätigbaren hydraulischen stelleinrichtung eines schaltelementes einer getriebeeinrichtung
DE102008062292A1 (de) Verfahren zur drucksensorischen Verschleißzustandsermittlung einer Ventilmechanik sowie pneumatisches Ventil
EP2387523B1 (de) Verfahren zum betreiben eines hydraulischen oder pneumatischen systems
DE102005016786A1 (de) Verfahren und Vorrichtung zum Diagnostizieren eines Lecks in einem Fluidkraftsystem
DE102014109436A1 (de) Fehlerdetektionssystem für Stellglieder
DE102008062289A1 (de) Verfahren zur weg- und drucksensorischen Verschleißzustandsermittlung einer Ventilmechanik sowie eine solche nutzende Ventilanordnung
WO2008098588A1 (de) Verfahren zur fehlereingrenzung und diagnose an einer fluidischen anlage
DE102008045775A1 (de) Verfahren zur Überwachung der Funktionsfähigkeit eines Stellgeräts mit pneumatischem Antrieb und Magnetventil
CH641731A5 (de) Reifendruckueberwachungseinrichtung an einem fahrzeug.
DE102018121859A1 (de) Verfahren zur Funktionsüberwachung, insbesondere zur Dichtheitsüberwachung, einer Bremsvorrichtung und eine Bremsvorrichtung, sowie ein Fahrzeug
DE112019002262T5 (de) Fluid-leckage-erfassungs-system und fluid-druck-system
EP2047118B1 (de) Verfahren zur fehlereingrenzung und diagnose an einer fluidischen anlage
DE102020207434A1 (de) Verfahren und Vorrichtung zum Ermitteln eines verfügbaren Flüssigkeitsvolumens, Bremssystems
EP3230136A1 (de) Verfahren und system zur fehlererkennung in einem druckluftsystem
DE102005032636A1 (de) Verfahren und Vorrichtung zur Erkennung von Fehlern in einem Kraftstoffversorgungssystem eines Kraftfahrzeugs
DE102016200924B4 (de) Verfahren und Steuerungseinrichtung zum Bestimmen eines Verschleißzustands
DE102011078890A1 (de) Überwachungsvorrichtung für zumindest eine Untereinheit eines hydraulischen Bremssystems und Verfahren zum Untersuchen einer Funktionsfähigkeit zumindest einer Untereinheit eines hydraulischen Bremssystems
EP2053290A2 (de) Verfahren zur Emittlung des Zustandes hinsichtlich Verschleiß und/oder Wartungsbedarf automatischer, pneumatisch betätigter Prozessarmaturen
DE202014101508U1 (de) Gasdruckfeder
WO2008128598A1 (de) Verfahren zur diagnose von technischen systemen, insbesondere im kraftfahrzeugbereich
DE102015225999A1 (de) Verfahren zum Überprüfen des Zustandes eines Ventils
EP2937594A2 (de) Gasdruckfeder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KELLER, REINHARD

Inventor name: BREDAU, JAN

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FESTO AG & CO. KG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004007932

Country of ref document: DE

Date of ref document: 20081002

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081201

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090120

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

BERE Be: lapsed

Owner name: FESTO A.G. & CO. KG

Effective date: 20081130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

26N No opposition filed

Effective date: 20090525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090221

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20121126

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20121127

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121115

Year of fee payment: 9

Ref country code: AT

Payment date: 20121122

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140601

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20131130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 405748

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131119

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150923

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161124

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161129

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171013

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004007932

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601