EP1788197A1 - Aube de turbine pour turbine à vapeur - Google Patents

Aube de turbine pour turbine à vapeur Download PDF

Info

Publication number
EP1788197A1
EP1788197A1 EP05025359A EP05025359A EP1788197A1 EP 1788197 A1 EP1788197 A1 EP 1788197A1 EP 05025359 A EP05025359 A EP 05025359A EP 05025359 A EP05025359 A EP 05025359A EP 1788197 A1 EP1788197 A1 EP 1788197A1
Authority
EP
European Patent Office
Prior art keywords
turbine
turbine blade
blade
section
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05025359A
Other languages
German (de)
English (en)
Inventor
Detlef Dr. Haje
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP05025359A priority Critical patent/EP1788197A1/fr
Priority to PCT/EP2006/067923 priority patent/WO2007057294A1/fr
Priority to BRPI0618860-5A priority patent/BRPI0618860A2/pt
Priority to ES06819186T priority patent/ES2338369T3/es
Priority to AT06819186T priority patent/ATE458900T1/de
Priority to RU2008125060/06A priority patent/RU2418956C2/ru
Priority to CN2006800434023A priority patent/CN101313129B/zh
Priority to JP2008540562A priority patent/JP4772873B2/ja
Priority to EP06819186A priority patent/EP1951991B1/fr
Priority to PL06819186T priority patent/PL1951991T3/pl
Priority to US12/085,274 priority patent/US20100014982A1/en
Priority to DE502006006279T priority patent/DE502006006279D1/de
Publication of EP1788197A1 publication Critical patent/EP1788197A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Definitions

  • the invention relates to a turbine blade for a steam turbine with an airfoil section and a foot section. Moreover, the invention relates to a steam turbine with such a turbine blade.
  • Such turbine blades in particular designed as blades turbine blades of this type are made in the prior art of steel or titanium.
  • Turbine blades in general and in particular end-stage blades are exposed to high centrifugal forces due to their function, since they are intended to provide the highest possible outflow area in order to achieve high efficiency and thus have to have a large blade length.
  • High-strength steels are therefore used for common applications. Where these are no longer applicable for reasons of centrifugal stresses, titanium vanes are used, which also experience lower centrifugal force stresses due to the lower density.
  • these blades are much more expensive than steel blades.
  • the outflow surfaces for full-speed machines (50 Hz) are limited to approximately 16 m 2 , which entails corresponding consequences for the achievable blade lengths.
  • the number of low-pressure floods is often increased in the prior art in low-pressure stages of steam turbines. This can be done, for example, by switching from single-flow to double-flow turbine stages or by using several low-pressure turbine parts. Also, the speed of the turbo set can be reduced. In this case larger outflow areas can be used. However, all these measures are associated with sometimes considerable costs.
  • An object of the invention is to provide a steam turbine with a turbine blade of the type mentioned, which allows a particularly high efficiency of the steam turbine and at the same time can be operated safely in the steam turbine.
  • This object is achieved according to the invention with a generic turbine blade, wherein the blade section is designed for use in a low-pressure stage of the steam turbine and at least partially contains fiber composite material.
  • the object is also achieved according to the invention with a steam turbine having such a turbine blade according to the invention.
  • Fiber composite blades are thus used according to the invention as low-pressure stage or final stage blades. Comparing the relative strengths of different materials clearly shows the advantage of fiber composites for use as a final stage blade material.
  • the strength above the density (R p0.2 / ⁇ ) for high-strength tempering steel is 115 m 2 / s 2 , for titanium 221 m 2 / s 2 , for the fiber-reinforced material CFK-HM, however, 563 m 2 / s 2 .
  • Due to the substantially higher strength of the fiber composite material turbine blades manufactured with conventional dimensions can be utilized to a greater extent or the turbine blades can be produced with a greater length. The resulting centrifugal force stresses can then be absorbed by the turbine blade without further loss of operational reliability due to the significantly increased strength / density ratio.
  • Due to the high strength / density ratio of a turbine blade according to the invention containing fiber composite can be provided due to the design of the airfoil section for use in a low pressure stage of the steam turbine despite the high centrifugal forces a greatly enlarged outflow. This can be done in particular by providing a particularly large blade length. Thus, the efficiency of the steam turbine can be significantly increased.
  • the turbine blade according to the invention is particularly suitable for the last row of blades of a steam turbine, but can also be used according to the invention for the second and possibly the third last row of blades. It can also be combined with steel or titanium precursor blades become.
  • the blade blade section of the turbine blade according to the invention containing at least in some regions fiber composite material preferably has the fiber composite material at least in the outer wall region.
  • the entire airfoil section can also consist of fiber composite material.
  • the number of fibers decreases advantageously in the longitudinal direction of the airfoil section when the airfoil section becomes leaner to the blade tip.
  • the above object is further achieved according to the invention with a generic turbine blade, wherein the blade section at least partially fiber composite material, wherein at least the fiber composite material containing area is surrounded with a deformable moisture-impermeable protective layer, which prevents the penetration of moisture into the fiber composite material during operation of the turbine blade ,
  • the object is achieved with a steam turbine, which is provided with such a turbine blade.
  • a moisture absorption of the airfoil section during operation in the steam turbine can be effectively prevented.
  • Moisture absorption is an undesirable time-dependent process that can cause weight gain of the component and thus potential rotor imbalance.
  • a moisture absorption can cause a deformation of the fiber composite material as well as permanent damage the damage of the matrix and thus a failure of the component containing the fiber composite material.
  • the provision according to the invention of a moisture-impermeable protective layer avoids the consequences listed above which endanger the operational reliability of the steam turbine.
  • the protective layer according to the invention is made deformable.
  • the protective layer is within the meaning of the invention designed so deformable that the protective layer does not lose its moisture impermeability over its life despite occurring during operation of the blade deformations of the fiber composite material containing portion of the airfoil section.
  • This can be achieved in particular by the protective layer having an elastic area of use which exceeds the utilized expansion range of the base material.
  • the turbine blade embodiment according to the invention can be used particularly reliably by the moisture-impermeable protective layer according to the invention.
  • the moisture-repellent protective layer encloses the airfoil section completely. Moreover, it may also be desirable for the protective layer to cover the entire turbine blade, i. also the blade foot, encloses.
  • the protective layer should be designed so that a secure adhesion of the protective layer is given even in drops.
  • the design of the base material of the airfoil section should be such that continuous droplet impacts do not cause any fatigue or disruption of the base material.
  • the aforementioned object is further achieved according to the invention with a generic turbine blade, in which both the airfoil section and the foot section in each case at least partially contains fiber composite material.
  • the object is achieved with a steam turbine, which is provided with such a turbine blade.
  • the use of fiber composite material in the airfoil section makes it possible to design the turbine blade with a large outflow surface due to the low density of the fiber composite material.
  • the fiber composite material advantageously contains glass fibers, plastic fibers, such as aramid fibers, and / or plastic fibers.
  • the fiber-reinforced material CFK-HM can be used as a fiber composite material.
  • the fiber composite material has fibers which are guided in the area of the blade leaf section at an angle deviating from a main axis of the turbine blade, in particular at an angle of ⁇ 15 °, ⁇ -30 ° and / or ⁇ 45 ° with respect to the main axis.
  • the fiber composite layers can be arranged mirror-symmetrically to the blade center surface, whereby a twist is avoided.
  • the anisotropy can also be used to achieve a targeted change in the blade geometry as a function of the operating stresses.
  • a twisting can be provided, in which the blade grid opens at overspeeds, so that the flow draws less energy and thus does not contribute to a further run-up.
  • the twisting can be used to adjust an optimized flow profile depending on the flow and load.
  • the blade grid can be closed with a smaller flow and be opened correspondingly with a larger flow.
  • the blade blade section has a packing arranged in the middle of the blade, which is completely enclosed by the fiber composite material.
  • an electrically conductive layer is arranged under the protective layer.
  • This electrically conductive layer serves as a warning mechanism, with which damage to the protective layer can be detected, whereupon countermeasures, such as replacement or replacement of the affected component, or repair of the protective layer can be made in good time.
  • Such an electrically conductive layer may be provided either individually or in pairs with an insulating layer therebetween.
  • the layer structure of the airfoil section in the surface region thereof a successive arrangement of the fiber composite material, an electrically conductive, in particular metallic layer, an insulating layer, another electrically conductive, in particular metallic layer and the protective layer.
  • the insulation resistance to the environment or between the two electrically conductive layers can then be measured.
  • the electrical capacity of the electrically conductive layer, the insulating layer, and the further electrically conductive layer comprising arrangement for monitoring the function of the protective layer are measured.
  • the measurement of the insulation resistance relative to the environment or of the electrical resistance of the electrically conductive layer for monitoring the function of the protective layer is appropriate.
  • water-soluble chemical substances are arranged under the protective layer, which are detectable in dissolved form, in particular in a chemical, optical and / or radiological manner.
  • This measure represents an alternative monitoring possibility of the function of the protective layer.
  • the condensate of the water-steam cycle of the steam power plant can be continuously checked. If the chemical substances arranged under the protective layer are detectable in this, this indicates damage to the protective layer.
  • a leading edge of the turbine blade is provided with an edge reinforcement for protection against droplet impact.
  • edge reinforcement may be provided by adhering to the turbine blade or by laminating into the turbine blade.
  • an edge reinforcement can be made by means of a sealed protective or intermediate layer.
  • the basic component of the turbine blade itself can be designed with a turbine-like edge reinforcement.
  • protection against gobbing may be achieved by a laminate construction of the turbine blade in which the fibers are transverse.
  • the foot portion of the turbine blade a contact element for making contact with a Schaufelfußhalterung in a rotor shaft of a Steam turbine, wherein the contact element contains fiber composite material and / or a metallic material.
  • the contact element made of fiber composite or metallic materials.
  • the corresponding metallic materials should be chosen such that they allow a stable and dimensionally stable connection to the rotor shaft and prevent overstressing of the fiber composite surrounding the contact element of the blade root.
  • the contact element can be formed by a metallic sleeve.
  • the foot section has a deflection element, by means of which a substantial number of fibers of the blade is deflected, and / or a guide element, by means of which an advantageous fiber guidance in the blade root is diverted into a fiber guide adapted to the geometry of the blade section.
  • the deflecting element and / or the guide element may each consist of fiber composite material or a metallic material.
  • the contact element and the guide element or the contact element and the deflecting element can each be formed by the same element.
  • the foot portion is designed as a plug-in foot, which can be inserted into a blade root holder of a rotor shaft of the turbine with respect to the rotor shaft radial direction.
  • the fibers of the fiber composite material are guided around serving as contact elements sleeves.
  • the sheet curvature in the foot region can advantageously be modeled by an assignment to different pin positions of the plug foot, so that advantageously result in low deflections from the foot to the blade area in such a foot. The effort for guide elements remains limited.
  • the deformable moisture-impermeable protective layer also surrounds the foot section.
  • penetration of moisture is effectively prevented even in the fiber composite material contained in the foot section.
  • life of the turbine blade can be further increased.
  • the foot section of the turbine blade is designed as a sliding foot, which can be inserted into a blade root holder of a rotor shaft of the turbine in a direction substantially axial with respect to the rotor shaft.
  • substantially axial direction is to be understood that the insertion direction can deviate by up to ⁇ 40 ° from the axial direction.
  • the foot portion is curved, with the foot curvature substantially following the curvature of the airfoil portion present in the vicinity of the foot.
  • this has a device for monitoring the vibration behavior of the turbine blade.
  • a change in the natural frequency of the turbine blade can be detected, which may be due to a moisture absorption of the fiber composite material in the airfoil portion during operation of the steam turbine.
  • Such a change in the natural frequency of the turbine blade should then be taken as an opportunity to check the functionality of the aforementioned deformable moisture-impermeable protective layer and possibly repair the protective layer, so that a failure of the component can be prevented.
  • the steam turbine has at least one heatable guide blade.
  • a device for extracting moisture on at least one vane may be provided.
  • fiber composite blades are preferably carried out by the usual methods in which fibers are wound and impregnated with the matrix material or applied in the form of so-called prepregs. Thereafter, they are brought in a so-called die in its final form, whereby a curing of the matrix takes place.
  • optional contact, deflection or guide elements are already inserted or attached. Thereafter, it may be necessary to place the blades at certain locations, e.g. by grinding, for example, to achieve the required dimensional accuracy, tolerance compliance and surface quality.
  • deflection or guide elements can be edited or these elements are attached after the molding process.
  • an edge protector can also be mounted which is integrated into the blade profile by subsequent fitting work, such as grinding. This is followed by coating with the layers required for the protective layer and the warning system. In this case, individual layers can be reinforced at certain points in order to improve protection or amplification functions.
  • Fig. 1 shows a first embodiment of a turbine blade 10 according to the invention, which is designed in particular for use in a low-pressure stage of a steam turbine.
  • the turbine blade 10 comprises an airfoil section 12 and a foot section 14 in the form of a plug-in foot.
  • the foot section 14 has insertion tabs 16 for a pin connection.
  • the airfoil section 12 is made of fiber composite material 18 containing glass fibers and / or carbon fibers.
  • the main fiber direction 20 runs along a main axis 21 of the turbine blade 10.
  • the airfoil section 12 has an additional fiber composite layer 22.
  • the supplemental fiber composite layer 22 includes additional fibers that extend at a different angle to the major axis 21 of the turbine blade 10, e.g. at an angle of ⁇ 15 °, ⁇ 30 ° or ⁇ 45 ° and are provided for stiffening the airfoil section 12. It is also possible to provide a plurality of such additional fiber composite layers 22. In this case, these layers can be arranged mirror-symmetrically to the blade center surface, whereby a distortion is avoided. An asymmetrical arrangement of the additional fiber composite layers leads to a twist. This may possibly be used for self-adjustment purposes.
  • FIG. 2 shows the section II-II in the blade section 12 according to FIG. 1.
  • This section shows a packing 24 arranged in the area of large sheet thickness for weight and stiffness optimization. This packing is surrounded by the fiber composite material 18.
  • the turbine blade 10 is flown by means of turbine steam 26 according to FIG. 2 from the left.
  • the inflowing turbine steam 26 facing the leading edge of the turbine blade 10 is provided with an edge reinforcement 28.
  • Edge reinforcement 28 is shown in greater detail in FIG. 2c. It consists of metal and is attached by means of an adhesive bond 40 with a sticky and fiber composite fair outlet 42 to the leading edge 27 of the turbine blade 10.
  • FIG. 2a illustrates a first embodiment of the construction of the turbine blade 10 of FIG. 2 in a surface area thereof.
  • the inner fiber composite material 18 is surrounded by a first electrically conductive layer 36 in the form of a metallic layer, an insulating layer 34, a second electrically conductive layer 32 in the form of a metallic layer, and finally a protective layer 30.
  • the protective layer 30 is moisture-repellent for sealing the airfoil section 12 to liquid.
  • the protective layer 30 thus prevents moisture from penetrating into the fiber composite material 18.
  • the protective layer 30 is deformable in such a way that it compensates for the deformations to be expected during operation of the turbine blade 10 without loss of its sealing function.
  • the successive arrangement of the electrically conductive layer 32, the insulating layer 34 and the electrically conductive layer 36 serves to monitor the function of the protective layer 30.
  • FIG. 2b shows a second embodiment of the construction of the turbine blade 10 according to FIG. 2 in a surface area thereof.
  • the fiber composite material 18 is surrounded by a layer of indication material 38, which in turn is surrounded by the protective layer 30.
  • the indication material 38 is in the form of water-soluble substances which are detectable in dissolved form in a chemical, optical and / or radiological manner.
  • the indication material 38 thus serves to detect a leak in the protective layer 30. If moisture penetrates into the interior of the airfoil section 12, the water-soluble chemical substances of the indication material 38 are released and can be detected in the condensate leaving the turbine.
  • FIG. 3 a shows a second exemplary embodiment of a turbine blade 110 according to the invention.
  • a foot section 43 adjoins an airfoil section 12, which is only partially shown, with fiber composite material 18.
  • the fibers of the fiber composite material 18 are guided starting from the blade section 12 in the foot section 43 and guided around a contact and deflection element 46 in the form of a metallic sleeve, whereupon the fiber then again runs back into the airfoil section 12.
  • the element 46 thus fulfills a deflection function.
  • it also fills a contact function in which it makes contact with a shaft groove 48 of a rotor shaft 47 of a steam turbine.
  • the turbine blade 110 according to FIG. 3 a comprises a so-called guide element 44, by means of which an advantageous fiber guidance in the blade root is diverted into a fiber guide of the fiber composite material 18 adapted to the geometry of the blade blade section 12.
  • FIG. 3b the section III-III of Fig. 3a is shown.
  • the foot portion 43 is designed in the form of a plug foot with insertion tabs 45 for insertion into corresponding transversely to a longitudinal axis 50 of a rotor shaft 47 extending shaft grooves 48.
  • the push-in tabs 45 are then secured in the shaft grooves 48 by means of insertion pins arranged transversely thereto.
  • Each of these plug-in feet 45 has one of the contact and deflection elements 46.
  • a third embodiment of a turbine blade 210 according to the invention is illustrated with a foot portion 52 in the form of a sliding foot.
  • the foot portion 52 which is shown in more detail in Fig. 4b in sectional view, is inserted into a running in the axial direction of the rotor shaft shaft groove 60.
  • the foot section 52 is provided with a curvature, as shown in Fig. 4a and has a deflecting element 56 around which a substantial number of fibers of the fiber composite material 18 is guided around. These fibers are surrounded by a guide or contact element 54.
  • This element initially fulfills the function of redirecting an advantageous fiber guide in the foot section 52 into a fiber guide adapted to the geometry of the blade section 12.
  • the element 54 fulfills the function of making contact with a shaft groove 60 of the rotor shaft 58.
  • the guide and contact element 54 completely surrounds the fiber composite material 18 of the foot section 14 and also adjoins the fiber composite material 18 in the lower region of the fiber blade leaf section 12.
  • a gap 62 is provided between the fiber composite material 18 and the element 54.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laminated Bodies (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
EP05025359A 2005-11-21 2005-11-21 Aube de turbine pour turbine à vapeur Withdrawn EP1788197A1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP05025359A EP1788197A1 (fr) 2005-11-21 2005-11-21 Aube de turbine pour turbine à vapeur
PCT/EP2006/067923 WO2007057294A1 (fr) 2005-11-21 2006-10-30 Aube de turbine pour une turbine a vapeur
BRPI0618860-5A BRPI0618860A2 (pt) 2005-11-21 2006-10-30 lámina de turbina para uma turbina a vapor
ES06819186T ES2338369T3 (es) 2005-11-21 2006-10-30 Alabe de turbina para una turbina de vapor.
AT06819186T ATE458900T1 (de) 2005-11-21 2006-10-30 Turbinenschaufel für eine dampfturbine
RU2008125060/06A RU2418956C2 (ru) 2005-11-21 2006-10-30 Турбинная лопатка для паровой турбины и паровая турбина с такой лопаткой
CN2006800434023A CN101313129B (zh) 2005-11-21 2006-10-30 用于汽轮机的涡轮叶片
JP2008540562A JP4772873B2 (ja) 2005-11-21 2006-10-30 蒸気タービンのタービン翼
EP06819186A EP1951991B1 (fr) 2005-11-21 2006-10-30 Aube de turbine pour une turbine a vapeur
PL06819186T PL1951991T3 (pl) 2005-11-21 2006-10-30 Łopatka turbiny dla turbiny parowej
US12/085,274 US20100014982A1 (en) 2005-11-21 2006-10-30 Turbine Blade for a Steam Turbine
DE502006006279T DE502006006279D1 (de) 2005-11-21 2006-10-30 Turbinenschaufel für eine dampfturbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05025359A EP1788197A1 (fr) 2005-11-21 2005-11-21 Aube de turbine pour turbine à vapeur

Publications (1)

Publication Number Publication Date
EP1788197A1 true EP1788197A1 (fr) 2007-05-23

Family

ID=36010462

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05025359A Withdrawn EP1788197A1 (fr) 2005-11-21 2005-11-21 Aube de turbine pour turbine à vapeur
EP06819186A Not-in-force EP1951991B1 (fr) 2005-11-21 2006-10-30 Aube de turbine pour une turbine a vapeur

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06819186A Not-in-force EP1951991B1 (fr) 2005-11-21 2006-10-30 Aube de turbine pour une turbine a vapeur

Country Status (11)

Country Link
US (1) US20100014982A1 (fr)
EP (2) EP1788197A1 (fr)
JP (1) JP4772873B2 (fr)
CN (1) CN101313129B (fr)
AT (1) ATE458900T1 (fr)
BR (1) BRPI0618860A2 (fr)
DE (1) DE502006006279D1 (fr)
ES (1) ES2338369T3 (fr)
PL (1) PL1951991T3 (fr)
RU (1) RU2418956C2 (fr)
WO (1) WO2007057294A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387205A (zh) * 2007-09-13 2009-03-18 斯奈克玛 复合材料叶片的减振装置
EP2113635A1 (fr) * 2008-04-30 2009-11-04 Siemens Aktiengesellschaft Turbine à vapeur à condensation à plusieurs étages
WO2010007131A1 (fr) * 2008-07-16 2010-01-21 Siemens Aktiengesellschaft Installation de turbine à vapeur et procédé de conduite d'une turbine à vapeur
DE102008061573A1 (de) 2008-12-11 2010-08-05 Siemens Aktiengesellschaft Turbinenschaufel mit Beschichtung
WO2010097277A2 (fr) * 2009-02-25 2010-09-02 Siemens Aktiengesellschaft Procédé pour monter ou confectionner un anneau de renfort fermé pour un aubage mobile d'un étage de turbine et aubage mobile d'un étage de turbine pour une turbine
WO2011039075A1 (fr) * 2009-09-30 2011-04-07 Siemens Aktiengesellschaft Aube mobile d'étage final d'une turbine à vapeur
EP2322763A1 (fr) * 2009-11-17 2011-05-18 Siemens Aktiengesellschaft Aube de turbine ou de compresseur
DE102010004663A1 (de) 2010-01-14 2011-07-21 Siemens Aktiengesellschaft, 80333 Turbinenschaufel mit Beschichtung
WO2012113623A1 (fr) * 2011-02-22 2012-08-30 Siemens Aktiengesellschaft Aube de turbine ainsi que procédé de fabrication d'une aube de turbine
EP2669479A1 (fr) * 2012-05-31 2013-12-04 Alstom Technology Ltd Système de commande pour turbine à écoulement axial et procédé d'opération
DE102012213596A1 (de) * 2012-08-01 2014-02-06 Siemens Aktiengesellschaft Schaufel, Laufbeschaufelung oder Leitbeschaufelung einer Turbine sowie Verfahren zur Herstellung zumindest einer Schaufel einer Turbine
EP2341216A3 (fr) * 2010-01-04 2014-05-07 General Electric Company Aube de turbine comprenant un renforcement de zone d'impact
DE102019216073A1 (de) * 2019-09-23 2021-03-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer Leichtbau-Turbinenschaufel als Verbundbauteil sowie eine mit dem Verfahren hergestellte Leichtbau-Turbinenschaufel
DE102020201867A1 (de) 2020-02-14 2021-08-19 Siemens Aktiengesellschaft Faserverstärkte Laufschaufel für eine Strömungsmaschine sowie Verfahren zum Herstellen einer solchen Laufschaufel

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090077802A1 (en) * 2007-09-20 2009-03-26 General Electric Company Method for making a composite airfoil
DE102009006418A1 (de) * 2009-01-28 2010-12-09 Siemens Aktiengesellschaft Turbinenschaufel, insbesondere Laufschaufel für eine Dampfturbine, sowie Herstellungsverfahren hierfür
DE102009036624A1 (de) * 2009-08-07 2011-02-17 Siemens Aktiengesellschaft Beschaufelung einer Turbinenstufe einer Turbine sowie Turbine
CH705171A1 (de) * 2011-06-21 2012-12-31 Alstom Technology Ltd Turbinenschaufel mit einem Schaufelblatt aus Verbundwerkstoff und Verfahren zum Herstellen davon.
JP5967883B2 (ja) * 2011-09-05 2016-08-10 三菱日立パワーシステムズ株式会社 回転機械翼
SG10201810768XA (en) * 2014-06-03 2019-01-30 United Technologies Corp Systems and methods for pre-stressing blades
US10099434B2 (en) * 2014-09-16 2018-10-16 General Electric Company Composite airfoil structures
FR3041684B1 (fr) * 2015-09-28 2021-12-10 Snecma Aube comprenant un bouclier de bord d'attaque et procede de fabrication de l'aube
EP3380704B1 (fr) 2016-01-12 2023-09-06 Siemens Energy Global GmbH & Co. KG Amortisseur flexible pour aubes de turbine
CA2958351A1 (fr) * 2016-02-16 2017-08-16 RAB Lighting Inc. Appareil d'eclairage encastre dote d'un dispositif d'ajustement d'orientation
US11383494B2 (en) * 2016-07-01 2022-07-12 General Electric Company Ceramic matrix composite articles having different localized properties and methods for forming same
USD848657S1 (en) 2017-01-19 2019-05-14 Nora Lighting, Inc. Recessed lighting fixture with independent adjustment between a light assembly and a driver assembly
JP6968006B2 (ja) * 2018-03-09 2021-11-17 三菱重工業株式会社 前縁カバー部材、前縁カバー部材ユニット、複合材翼、前縁カバー部材の製造方法及び複合材翼の製造方法
US10941665B2 (en) * 2018-05-04 2021-03-09 General Electric Company Composite airfoil assembly for an interdigitated rotor
US10483659B1 (en) * 2018-11-19 2019-11-19 United Technologies Corporation Grounding clip for bonded vanes
US11326455B2 (en) 2019-07-04 2022-05-10 Doosan Heavy Industries & Construction Co., Ltd. 3D-printed composite compressor blade having stress-oriented fiber and method of manufacturing the same
FR3116229B1 (fr) * 2020-11-17 2023-11-17 Safran Aircraft Engines Pièce composite, notamment pour une turbomachine d’aéronef

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1178140A (fr) * 1956-07-05 1959-05-04 Licentia Gmbh Aube pour un étage traversé par de la vapeur humide d'une turbine à vapeur
DE2243132A1 (de) * 1972-08-15 1974-02-28 Bbc Brown Boveri & Cie Leichtschaufel fuer axiale stroemungsmaschine
US3883267A (en) * 1972-08-04 1975-05-13 Snecma Blades made of composite fibrous material, for fluid dynamic machines
DE2450253A1 (de) * 1973-11-21 1975-05-22 Inst Energetik Verfahren zur verringerung der erosion von turbinenteilen, insbesondere von turbinenschaufeln der nassdampfturbinen
US5240377A (en) * 1992-02-25 1993-08-31 Williams International Corporation Composite fan blade
EP1462606A1 (fr) * 2002-01-08 2004-09-29 General Electric Company Aube hybride pour turbines à gaz composée de plusieurs composants
EP1577422A1 (fr) * 2004-03-16 2005-09-21 General Electric Company Structures de protection résistantes à l'érosion et à l'abrasion pour composants de moteur à turbine
EP1593811A2 (fr) * 2004-05-05 2005-11-09 General Electric Company Aube de turbine hybride

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3737250A (en) * 1971-06-16 1973-06-05 Us Navy Fiber blade attachment
JPS58165501A (ja) * 1982-03-26 1983-09-30 Mitsui Eng & Shipbuild Co Ltd 軸流回転機動翼の製造方法
JPS6262224A (ja) * 1985-09-12 1987-03-18 Mitsubishi Heavy Ind Ltd 翼振動計測装置
JPS63263204A (ja) * 1987-04-21 1988-10-31 Toshiba Corp タ−ビンの羽根侵食防止装置
US5049036A (en) * 1988-09-09 1991-09-17 Airfoil Textron Inc Composite blade with divergent root and method for making same
JPH06137103A (ja) * 1992-10-26 1994-05-17 Mitsubishi Heavy Ind Ltd 繊維強化複合材ブレード
JP3100301B2 (ja) * 1995-01-17 2000-10-16 三菱重工業株式会社 蒸気タービン静翼
DE19640298A1 (de) * 1996-09-30 1998-04-09 Siemens Ag Dampfturbine, Verfahren zur Kühlung einer Dampfturbine im Ventilationsbetrieb sowie Verfahren zur Kondensationsminderung bei einer Dampfturbine im Leistungsbetrieb
JP3285771B2 (ja) * 1996-10-01 2002-05-27 三菱重工業株式会社 翼振動計測装置
US7300255B2 (en) * 2002-09-27 2007-11-27 Florida Turbine Technologies, Inc. Laminated turbomachine airfoil with jacket and method of making the airfoil
US7306826B2 (en) * 2004-02-23 2007-12-11 General Electric Company Use of biased fabric to improve properties of SiC/SiC ceramic composites for turbine engine components
US7186092B2 (en) * 2004-07-26 2007-03-06 General Electric Company Airfoil having improved impact and erosion resistance and method for preparing same
US7753653B2 (en) * 2007-01-12 2010-07-13 General Electric Company Composite inlet guide vane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1178140A (fr) * 1956-07-05 1959-05-04 Licentia Gmbh Aube pour un étage traversé par de la vapeur humide d'une turbine à vapeur
US3883267A (en) * 1972-08-04 1975-05-13 Snecma Blades made of composite fibrous material, for fluid dynamic machines
DE2243132A1 (de) * 1972-08-15 1974-02-28 Bbc Brown Boveri & Cie Leichtschaufel fuer axiale stroemungsmaschine
DE2450253A1 (de) * 1973-11-21 1975-05-22 Inst Energetik Verfahren zur verringerung der erosion von turbinenteilen, insbesondere von turbinenschaufeln der nassdampfturbinen
US5240377A (en) * 1992-02-25 1993-08-31 Williams International Corporation Composite fan blade
EP1462606A1 (fr) * 2002-01-08 2004-09-29 General Electric Company Aube hybride pour turbines à gaz composée de plusieurs composants
EP1577422A1 (fr) * 2004-03-16 2005-09-21 General Electric Company Structures de protection résistantes à l'érosion et à l'abrasion pour composants de moteur à turbine
EP1593811A2 (fr) * 2004-05-05 2005-11-09 General Electric Company Aube de turbine hybride

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387205A (zh) * 2007-09-13 2009-03-18 斯奈克玛 复合材料叶片的减振装置
US8740546B2 (en) 2008-04-30 2014-06-03 Siemens Aktiengesellschaft Guide vane for a condensation steam turbine and associated condensation steam turbine
EP2113635A1 (fr) * 2008-04-30 2009-11-04 Siemens Aktiengesellschaft Turbine à vapeur à condensation à plusieurs étages
WO2009133146A1 (fr) * 2008-04-30 2009-11-05 Siemens Aktiengesellschaft Aube directrice pour une turbine à vapeur à condensation et turbine à vapeur à condensation correspondante
WO2010007131A1 (fr) * 2008-07-16 2010-01-21 Siemens Aktiengesellschaft Installation de turbine à vapeur et procédé de conduite d'une turbine à vapeur
US8770914B2 (en) 2008-07-16 2014-07-08 Siemens Aktiengesellschaft Steam turbine system and method for operating a steam turbine
DE102008061573A1 (de) 2008-12-11 2010-08-05 Siemens Aktiengesellschaft Turbinenschaufel mit Beschichtung
DE102008061573B4 (de) * 2008-12-11 2016-03-31 Siemens Aktiengesellschaft Turbinenschaufel mit Beschichtung
WO2010097277A2 (fr) * 2009-02-25 2010-09-02 Siemens Aktiengesellschaft Procédé pour monter ou confectionner un anneau de renfort fermé pour un aubage mobile d'un étage de turbine et aubage mobile d'un étage de turbine pour une turbine
WO2010097277A3 (fr) * 2009-02-25 2011-06-23 Siemens Aktiengesellschaft Procédé pour monter ou confectionner un anneau de renfort fermé pour un aubage mobile d'un étage de turbine et aubage mobile d'un étage de turbine pour une turbine
EP2483526B1 (fr) * 2009-09-30 2015-09-16 Siemens Aktiengesellschaft Aube mobile d'étage final d'une turbine à vapeur comportant une piece de protection conte l'érosion
WO2011039075A1 (fr) * 2009-09-30 2011-04-07 Siemens Aktiengesellschaft Aube mobile d'étage final d'une turbine à vapeur
WO2011061192A1 (fr) * 2009-11-17 2011-05-26 Siemens Aktiengesellschaft Aube pour turbine ou pour compresseur
EP2322763A1 (fr) * 2009-11-17 2011-05-18 Siemens Aktiengesellschaft Aube de turbine ou de compresseur
US8807931B2 (en) 2010-01-04 2014-08-19 General Electric Company System for impact zone reinforcement
EP2341216A3 (fr) * 2010-01-04 2014-05-07 General Electric Company Aube de turbine comprenant un renforcement de zone d'impact
DE102010004663A1 (de) 2010-01-14 2011-07-21 Siemens Aktiengesellschaft, 80333 Turbinenschaufel mit Beschichtung
WO2012113623A1 (fr) * 2011-02-22 2012-08-30 Siemens Aktiengesellschaft Aube de turbine ainsi que procédé de fabrication d'une aube de turbine
EP2669479A1 (fr) * 2012-05-31 2013-12-04 Alstom Technology Ltd Système de commande pour turbine à écoulement axial et procédé d'opération
US9638053B2 (en) 2012-05-31 2017-05-02 General Electric Technology Gmbh Control system for an axial flow turbine
DE102012213596A1 (de) * 2012-08-01 2014-02-06 Siemens Aktiengesellschaft Schaufel, Laufbeschaufelung oder Leitbeschaufelung einer Turbine sowie Verfahren zur Herstellung zumindest einer Schaufel einer Turbine
DE102019216073A1 (de) * 2019-09-23 2021-03-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer Leichtbau-Turbinenschaufel als Verbundbauteil sowie eine mit dem Verfahren hergestellte Leichtbau-Turbinenschaufel
DE102019216073B4 (de) 2019-09-23 2021-12-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer Leichtbau-Turbinenschaufel als Verbundbauteil sowie eine mit dem Verfahren hergestellte Leichtbau-Turbinenschaufel
DE102020201867A1 (de) 2020-02-14 2021-08-19 Siemens Aktiengesellschaft Faserverstärkte Laufschaufel für eine Strömungsmaschine sowie Verfahren zum Herstellen einer solchen Laufschaufel

Also Published As

Publication number Publication date
US20100014982A1 (en) 2010-01-21
JP2009516798A (ja) 2009-04-23
CN101313129A (zh) 2008-11-26
RU2008125060A (ru) 2009-12-27
DE502006006279D1 (de) 2010-04-08
ATE458900T1 (de) 2010-03-15
CN101313129B (zh) 2011-07-06
WO2007057294A1 (fr) 2007-05-24
ES2338369T3 (es) 2010-05-06
EP1951991B1 (fr) 2010-02-24
PL1951991T3 (pl) 2010-07-30
BRPI0618860A2 (pt) 2011-09-13
EP1951991A1 (fr) 2008-08-06
RU2418956C2 (ru) 2011-05-20
JP4772873B2 (ja) 2011-09-14

Similar Documents

Publication Publication Date Title
EP1951991B1 (fr) Aube de turbine pour une turbine a vapeur
EP2137381B1 (fr) Procédé de fabrication d'aubes mobiles de turbine recouvertes
EP2238374B1 (fr) Assemblage avec joint brosse et procédé de montage d'un joint brosse
EP2730743A2 (fr) Arbre de turbine à gaz
EP1843044A1 (fr) Compresseur axial pour une turbine à gaz
EP2730395B1 (fr) Procédé de fabrication d'un arbre de turbine à gaz
WO2005056983A1 (fr) Rotor a renfort de fibres pour turbogenerateur
EP3564523B1 (fr) Raccordement à bride pour une pale de rotor d'éolienne, base de raidissement pour un raccordement à bride, insert de bride, pale de rotor d'éolienne, éolienne ainsi que procédé de fabrication d'un raccordement à bride
EP2282010A1 (fr) Aube de rotor pour une turbomachine à flux axial
WO2011051362A2 (fr) Aube d'un étage de turbine à vapeur et aubage mobile ou aubage directeur d'un étage de turbine à vapeur
EP2022944A1 (fr) Fixation d'aube dans une rainure circonférentielle au moyen d'une masse céramique durcissable
EP2090751A1 (fr) Aube pour turbomachine
EP2436878B1 (fr) Boulons de couplage pour aubes de turbines
EP0602631B1 (fr) Procédé pour la construction d'une rangée d'aubes statoriques, en particulier pour un compresseur axial
EP4088007A1 (fr) Aube de rotor renforcée par des fibres pour une turbomachine et procédé de fabrication d'une telle aube de rotor
EP2401477A2 (fr) Procédé de fixation ou de fabrication d' un anneau de renfort fermé pour un rotor d'un étage de turbine et rotor de turbine
DE102008006485A1 (de) Bürstendichtung und Verfahren zur Montage einer Bürstendichtung
EP2339124A1 (fr) Rotor avec joint à brosses et procédé associé de fabrication
DE102009012749B4 (de) Endstufe mit Faserverbund
DE102023100609A1 (de) Geteiltes Windenergieanlagenrotorblatt sowie Verfahren zum Verbinden zweier Rotorblattsegmente eines Windenergieanlagenrotorblatts
EP3025029A1 (fr) Ensemble permettant de fixer des aubes de turbine
DE102018210262A1 (de) Turbomaschinen-Schaufelanordnung
EP2236753A1 (fr) Ensemble d'aubes pour turbomachine
DE102009043096A1 (de) Laufschaufel für eine Dampfturbine
DE102009019920A1 (de) Verfahren zur Bestimmung einer axialen Position einer Schaufel eines Rotors sowie eine Messvorrichtung zur Bestimmung von Schwingungen einer Schaufel eines Rotors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071124

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566