EP1786715B1 - Fadenbremsvorrichtung - Google Patents

Fadenbremsvorrichtung Download PDF

Info

Publication number
EP1786715B1
EP1786715B1 EP05778296A EP05778296A EP1786715B1 EP 1786715 B1 EP1786715 B1 EP 1786715B1 EP 05778296 A EP05778296 A EP 05778296A EP 05778296 A EP05778296 A EP 05778296A EP 1786715 B1 EP1786715 B1 EP 1786715B1
Authority
EP
European Patent Office
Prior art keywords
thread
tensioning
tensioning element
magnet
tensioner according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05778296A
Other languages
English (en)
French (fr)
Other versions
EP1786715A1 (de
Inventor
Renato Comotto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iro AB
Original Assignee
Iro AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iro AB filed Critical Iro AB
Publication of EP1786715A1 publication Critical patent/EP1786715A1/de
Application granted granted Critical
Publication of EP1786715B1 publication Critical patent/EP1786715B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/10Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators by devices acting on running material and not associated with supply or take-up devices
    • B65H59/20Co-operating surfaces mounted for relative movement
    • B65H59/22Co-operating surfaces mounted for relative movement and arranged to apply pressure to material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2555/00Actuating means
    • B65H2555/10Actuating means linear
    • B65H2555/13Actuating means linear magnetic, e.g. induction motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a yarn braking device specified in the preamble of claim 1 and claim 2.
  • the flexible second brake element defines a spring arrangement whose spring force, which generates the contact pressure of the second brake element against the first brake element, is controlled by a linear electric motor.
  • the spring force In order for the linear motor to be able to carry out the intended working stroke of its rotor, the spring force must not be greater than the respectively set maximum magnetic contact force, otherwise the linear motor could not overcome the spring force and could not execute a stroke. How the yarn braking device behaves when passing a node in the thread through the yarn braking zone between the first and second brake elements is not disclosed.
  • Known yarn braking device is provided for adjusting an initial position of the second brake element connected to the magnetic element, a return spring which acts on the magnetic armature in the direction of a stopper damping elastic part. How the yarn braking device behaves when passing a node in the thread is not disclosed.
  • the magnetic armature is a coil which is adjustable relative to rod-shaped permanent magnet and is connected to the second brake element. Between the coil and a brake shoe of the second brake element, a rubber buffer is attached. How the yarn braking device behaves when passing a node in the thread is not disclosed.
  • known yarn braking device has plate-shaped brake elements.
  • the first brake element is pressed by the second brake element with the adjustable Magnetanpresskraft against the stationary stop.
  • the repulsive magnet is arranged on the rear side of the second brake element facing away from the first brake element and acts on the magnetic armature arranged in the second brake element.
  • the Magnetanpresskraft can be changed while the thread is running and continuously.
  • the mass of the second brake element together with the mass of the magnetic armature and against the repulsive magnetic force of the magnet must be pushed away from the first braking element supported on the stationary stop. Due to the inertia of the large mass, especially the magnetic armature creates a momentary increase in thread tension, which can lead to tearing of the thread.
  • the first brake element is provided on a stationary magnetic body.
  • the second brake element is movable relative to the first brake element and is urged by the first brake element through a magnet with pulling magnetic force.
  • the second brake element is moved against the magnetic force from the first brake element away, with the decisive for the strength of the magnetic force gap width changes, even if the second brake element only tilts laterally.
  • This instantaneous enlargement of the gap width significantly reduces the magnetic force, so that the braking effect is reduced and the second braking element returns to the starting position relatively delayed after the node has passed through with a critical transient. With thick thread material, the recovery takes place very slowly and with a significant settling.
  • the first brake element is provided on a stationary magnetic body.
  • the second brake element is held in a self-movable manner in a hinged lid which engages over the magnetic body and is acted upon by the first brake element with pulling magnetic force and pressed against the first brake element.
  • the second brake element Upon passage of a thickening or a knot in the thread, the second brake element is lifted against the pulling magnetic force, whereby the strength of the magnetic force is reduced and changes the braking effect.
  • the invention has for its object to provide a yarn braking device of the type mentioned above, which allows thickening and knots in the thread pass without risk to the thread, the braking effect is not noticeably changed, and adjusts the passage of the node or thickening directly back to the original braking effect ,
  • the yarn braking device should be particularly suitable for thick yarn qualities.
  • the function of the yarn braking device takes into account the phenomenon that a node passing through the yarn braking zone (or a thickening) when the yarn is running at relatively high speed generates a relatively high-frequency momentary energy impact transversely to the yarn running direction.
  • the energy pulse either speaks according to claim 1, the first brake element under withdrawal from the stationary stop against the spring force to yield, while the second brake element and the mass of the solenoid valve inertially not react appreciably, or are according to claim 2, the second brake element against the spring force while the solenoid valve does not react appreciably thanks to its large mass.
  • the yarn braking device is equally suitable for practically all thread qualities with this design, but especially for thick thread material, which generates a considerable release movement when a knot or a thickening passes.
  • the mass of the respective brake element is designed so small that it can be displaced by the energy impact of the node, while the much larger mass of the solenoid valve does not shift under the influence of this energy impact.
  • the mass of the first spring element is displaced against the spring force at a node, while the magnetic armature with the second brake element remains at least substantially motionless.
  • the first spring element remains under spring force on the stationary stop so that it acts as a stationary braking surface for the second brake element.
  • the spring arrangement provided between the second brake element and the magnetic armature forms a mass decoupling upon passage of a node, so that the second brake element is displaced from the node against the spring force and relative to the magnetic armature with substantially immobile magnetic armature.
  • the yarn brake is a controlled leaf spring brake, in which the first brake element is a leaf spring, and the second brake element is a brake surface forming body.
  • the first and / or second brake element is not based on a leaf spring, but for example, is rigid.
  • the leaf spring is expediently J-shaped with a cantilevered end, and is anchored to the J-hook on a, preferably mosver constituen, abutment. From the abutment, the spring force is generated, with which the leaf spring is pressed against the stationary stop, so that the leaf spring behaves like a stationary braking surface during normal braking operation or does not leave the stationary stop, even at maximum set Magnetanpresskraft appreciably.
  • a rotationally adjustable abutment can be, for. adjust the effective spring force as needed.
  • the second brake element is suitably a U-shaped body, which may be rigid or resilient, e.g. a leaf spring body which is movably supported in a guide approximately in the direction of the adjustable Magnetanpresskraft.
  • the guide positions the body relative to the leaf spring and so that the set Magnetanpresskraft in the braking zone comes to effect as desired.
  • the guide can allow easy replacement of the second brake element.
  • the leaf spring (first brake element) is wider at least in the area of the stationary stop than the body forming the braking surface (second brake element).
  • the leaf spring is supported with the over the body laterally projecting edge portions of the stationary stop.
  • the repelling Magnetaktuator expediently has a proportional solenoid coil which is connected to a current control.
  • a proportional solenoid coil which is connected to a current control.
  • the magnetic pressing force depends directly on the magnitude of the energizing current of the coil.
  • a stable support of the leaf spring is achieved in that ribs are provided on both sides of the body for both edge regions of the leaf spring.
  • two yarn braking devices are arranged on a common carrier substantially mirror images of each other, preferably with an offset in the yarn running direction.
  • This yarn braking device is compact and can be used for processing two threads running close to each other. Nevertheless, each yarn braking device is individually controllable.
  • the braking surface forming body is arranged on a plate, preferably with interposition of a resilient member, and the plate via a connection to the magnetic armature, preferably a permanent magnet coupled.
  • the magnetic armature is guided together with the plate in an axial guidance, so that the magnetic armature smoothly transmits the Magnetanpresskraft and the plate acts on the second brake element centered.
  • the axial guide is supported in a preferred embodiment in a housing of the Magnetaktuators.
  • the ribs defining the stationary stop for the first brake element can also be expediently arranged on the housing, preferably even in one piece.
  • the compound which takes over the leadership task and the power transmission, has a guide body on which the plate is held by a clamping element and an axially and radially compressed O-ring.
  • the guide body can provide a long guide surface for axial guidance.
  • the compressed O-ring centers and provides a desirable elasticity in the connection.
  • a braking device expediently works with a low base braking effect when the coil is not energized, it is expedient to place in alignment and at an axial distance from the magnetic armature a stationary auxiliary permanent magnet having an opposite polarity of the magnetic armature polarity, and the magnetic armature permanently impinged.
  • a permanent magnet instead of such a permanent magnet, alternatively, a light spring, which can be adjustable, could be provided.
  • a yarn braking device B is shown schematically in a position during normal yarn travel and in a position when passing a node in the thread.
  • the yarn braking device B has a first brake element E1, for example a leaf spring L, which is pressed by a spring 2 or by a corresponding bias with a spring force f2 against a stationary stop 1.
  • the spring 2 is supported e.g. on a stationary abutment 3 from.
  • the spring force f2 is optionally adjustable.
  • the first brake element E1 has a mass mE1.
  • the yarn braking device B a second brake element E2, which is also a braking surface forming body F, for example, a leaf spring body F, wherein the first and second brake elements E1, E2 are arranged relative to each other so that in a thread running direction of a dot-dash line indicated thread Y tapered inlet gap 4 leads to a braking zone between the brake elements E1, E2.
  • the second brake element E2 is located on the side of the stopper 1, but is freely movable relative to the stationary stop 1. With the second brake element E2, a magnetic fitting A is connected, which has a mass mA.
  • the magnetic armature A is acted upon by an adjustable Magnetanpresskraft fm of a repulsive Magnetaktuators M and pressed against the first brake element E1.
  • the magnetic actuator M suitably contains a proportional electromagnetic coil which is connected to a current control CU and generates the magnetic contact force fm in accordance with the application of current.
  • the magnetic armature A is e.g. a permanent magnet, so that a repulsive linear magnetic actuator M is formed.
  • the spring force f2 for the first brake element E1 is greater, at least in the braking zone, than the respectively set maximum magnet contact force fm.
  • the mass mE1 of the first brake element E1 is, at least in the braking zone, smaller than the mass mA of the magnetic armature A.
  • the node K passes through the yarn brake device B with the possibly relatively high running speed of the yarn Y.
  • the node K generates an energy impact, which tries to move the two brake elements E1, E2 away from each other. Since the mass mA of the magnetic armature A, which acts with the set Magnetanpresskraft fm via the second brake element E2 in the yarn braking zone on the first brake element E1 and has a certain inertia, because of the mass mA by the Energyimpakt not appreciable in Fig.
  • the in the 3 and 4 embodiment of the yarn braking device B shown differs from that of Fig. 1 and 2 in that the spring force f2 is generated for example by a spring arrangement 2 'between the magnetic armature A and the second brake element E2, which has a mass mE2, which is significantly lower than the mass mA of the magnetic armature A.
  • the spring force f2 is greater than the respective set maximum magnetic contact force fm.
  • the second brake element E2 is either formed on the stationary stop 1 or arranged there as a body F, which is located on the side facing away from the second brake element E2 side of the braking zone. Normal threadline (no knots or thickening, Fig.
  • the second brake element E2 is pressed against the first brake element E1 with the set Magnetanpresskraft fm.
  • the spring assembly 2 ' is not noticeably compressed, since the spring force f2 is greater than the respective set maximum Magnetanpresskraft fm. There is a dependent on the energization of the magnetic coil braking effect.
  • the mass mE2 of the second brake element E2 becomes substantially motionless relative to that due to inertia persisting mass mA of the magnetic armature and against the spring force f2 by the energy impulse resulting force fK shifted to the left to pass through the node K.
  • the Magnetanpresskraft fm acts unchanged, and also thanks to the compression of the spring assembly 2 'an even slightly higher spring force f2, so that the set braking effect despite the node K does not change significantly.
  • the second brake element E2 immediately returns to the position according to FIG Fig. 3 back, under the forces fm and f2. In this case, no transient occurs since the lower end of the leaf spring body F (second brake element E2) is already reset, while the node is on its way out of the yarn braking device.
  • Fig. 5 shows a concrete embodiment of a yarn braking device B, in which two yarn braking devices approximately in the Fig. 1 and 2 shown type are arranged together on a support 5.
  • yarn loops 6 are provided, which basically set the yarn paths through the two yarn braking devices.
  • Each yarn braking device could also be arranged in a single arrangement on a carrier 5.
  • Each first brake element E1 is a leaf spring L in the form of a J, wherein the free end 10 of the J cantilevered, and the J-hook is anchored to an abutment 8 arranged on the support 5 so that in the respective braking zone, the first brake element E1 is pressed against the stationary stop 1 with the spring force f2.
  • the spring force f2 can be adjusted for example by turning the abutment 8.
  • Each magnetic actuator M is contained in a housing 7, on which the stationary stop 1 in the form of two ribs R is formed.
  • the second brake element E2 here is a U-shaped body F, e.g. from a leaf spring or optionally of a rigid material, which is narrower than the leaf spring L, so that the leaf spring L rests with its lateral edge regions on the ribs R.
  • a movement guide 11, 12 is provided on the magnet housing 7, for example in the form of longitudinal slots 12 in the legs of the U, in which pins 11 engage.
  • This longitudinal guide allows mobility of the second brake element in variations of the Magnetanpresskraft and / or in the braking operation.
  • Fig. 6 is an axial section through main components of the yarn braking device B about the Fig. 5 and the Fig. 1 and 2 , while Fig. 7 an associated exploded view is.
  • the magnetic actuator M is housed with the coil in the housing 7 and defines an inner channel in which the magnetic armature A (a permanent magnet) linearly movable and by the repulsive magnetic force fm in Fig. 6 can be acted upon to the right.
  • a stationary auxiliary permanent magnet PM may be placed in the housing 7, which is axially aligned with and axially spaced from the magnet armature A.
  • the auxiliary permanent magnet PM generates a weak magnetic urging force for the second brake element E2 to generate a base braking effect even when the coil is not energized.
  • the stationary stopper 1 is defined by the ribs R integrally formed on the magnet housing 7, which constitute the second braking element E2, i. the leaf spring body F, record without contact between them.
  • the braking surface forming the body F rests on a plate 13, wherein optionally a resilient member 14 is interposed, which is positioned in a recess of the plate 13, such that the rear side of the body F the plate 13 may not be contacted.
  • the plate 13 is coupled to the magnetic armature A via a connection 15, the clamping elements 17, 17 a and a guide body 16 has. Between the guide body 16 and the plate 13 a under the action of the clamping element 17a axially and radially compressed O-ring 18 is provided to integrate a certain elasticity in the connection 15 and to center the plate 13 clean and somewhat yielding.
  • the guide body 16 is axially guided in an axial guide 19, such that the guide body 16 guides both the magnetic armature A and the plate 13 in the axial direction.
  • the axial guide 19 could be a plastic sleeve which is fixed in the housing 7.
  • the body F is formed, for example, of a thin spring steel strip quadrangular shape by bending U-shaped, wherein it on its braking side a square flat braking area, then slightly receding Areas, and round end portions to the U-legs containing the slots 12 ( Fig. 7 ).
  • the plate 13 deforms the O-ring 18 with a conical or rounded chamfer 13a and the guide body 16 with an axial distance, so that here a clean centering of the plate 13 is formed, and yet a certain Mobility of the plate 13 relative to the guide body 16 is possible.
  • the basic braking effect adjusting spring could be arranged in the housing 7.

Landscapes

  • Tension Adjustment In Filamentary Materials (AREA)
  • Braking Arrangements (AREA)

Abstract

Bei einer Fadenbremsvorrichtung (B) mit eine Fadenbremszone definierenden Bremselementen (E1, E2) liegt das erste Bremselement (E1) an einem Anschlag (1) an und ist das zweite Bremselement (E2) durch eine Magnetarmatur (A) und einen abstoßenden Magnetaktuator (M) mit einstellbarer Magnetanpresskraft (Fm) gegen das erste Bremselement (E1) anpressbar. Der Anschlag (1) ist an der dem ersten Bremselement (E1) gegenüberliegenden Seite der Fadenbremszone angeordnet. Das erste Bremselement (E1) wird in Richtung zum zweiten Bremselement (E2) und ge­gen den Anschlag (1) durch eine Federkraft (f2) belastet. Die Federkraft (f2) ist in der Fadenbremszone größer als die jeweils eingestellte maximale Magnetanpresskraft (fm). Die Masse (mE1) des ersten Bremselements (E1) ist kleiner als die Masse (mA) der Magnetarmatur (A).

Description

  • Die Erfindung betrifft eine Fadenbremsvorrichtung der im Oberbegriff des Patentanspruchs 1 und des Patentanspruchs 2 angegebenen Art.
  • Bei der aus EP-A-1 072 707 bekannten Fadenbremsvorrichtung ist das durch die einstellbare Magnetanpresskraft gegen das erste stationäre Bremselement anpressbare zweite Bremselement bogenförmig und flexibel und mit beiden Bogenenden in einem starren Stab festgelegt, der mit der Magnetarmatur spielfrei verbunden ist. Das flexible zweite Bremselement definiert eine Federanordnung, deren den Anpressdruck des zweiten Bremselementes gegen das erste Bremselement erzeugende Federkraft durch einen elektrischen Linearmotor gesteuert wird. Damit der Linearmotor den vorgesehenen Arbeitshub seines Rotors auszuführen vermag, darf die Federkraft nicht größer sein als die jeweils eingestellte maximale Magnetanpresskraft, weil sonst der Linearmotor die Federkraft nicht überwinden und keinen Hub ausführen könnte. Wie sich die Fadenbremsvorrichtung bei Durchgang eines Knotens im Faden durch die Fadenbremszone zwischen den ersten und zweiten Bremselementen verhält, wird nicht offenbart.
  • Bei der aus EP-A-0 961 393 , Fig. 3, bekannten Fadenbremsvorrichtung ist zum Einstellen einer Ausgangsstellung des mit der Magnetarmatur verbundenen zweiten Bremselementes eine Rückstellfeder vorgesehen, die die Magnetarmatur in Richtung zu einem den Anschlag dämpfenden elastischen Teil beaufschlagt. Wie sich die Fadenbremsvorrichtung bei Durchgang eines Knotens im Faden verhält, wird nicht offenbart.
  • Bei der aus DE-U-87 13 749 bekannten Fadenbremsvorrichtung ist die Magnetarmatur eine Spule, die relativ zu stabförmigen Permanentmagneten verstellbar ist und mit dem zweiten Bremselement verbunden wird. Zwischen der Spule und einer Bremsbacke des zweiten Bremselementes ist ein Gummipuffer angebracht. Wie sich die Fadenbremsvorrichtung bei Durchgang eines Knotens im Faden verhält, wird nicht offenbart.
  • Die aus US 5 979 810 ( DE 195 31 579 B1 ) bekannte Fadenbremsvorrichtung weist tellerförmige Bremselemente auf. Das erste Bremselement wird vom zweiten Bremselement mit der einstellbaren Magnetanpresskraft gegen den stationären Anschlag gepresst. Der abstoßende Magnet ist an der dem ersten Bremselement abgewandten Hinterseite des zweiten Bremselements angeordnet und beaufschlagt die im zweiten Bremselement angeordnete Magnetarmatur. Die Magnetanpresskraft kann bei laufendem Faden und stufenlos verändert werden. Im Falle einer Verdickung oder eines Knotens im Faden muss die Masse des zweiten Bremselementes zusammen mit der Masse der Magnetarmatur und gegen die abstoßende Magnetkraft des Magneten von dem am stationären Anschlag abgestützten ersten Bremselement weggedrückt werden. Aufgrund der Trägheit der großen Masse speziell der Magnetarmatur entsteht ein momentaner Fadenspannungsanstieg, der zum Reißen des Fadens führen kann.
  • Bei der aus US 6 161 595 A bekannten Fadenbremsvorrichtung ist das erste Bremselement an einem stationären Magnetkörper vorgesehen. Das zweite Bremselement ist relativ zum ersten Bremselement beweglich und wird durch das erste Bremselement hindurch durch einen Magneten mit ziehender Magnetkraft beaufschlagt. Bei Durchgang eines Knotens im Faden wird das zweite Bremselement gegen die Magnetkraft vom ersten Bremselement weg bewegt, wobei sich die für die Stärke der Magnetkraft entscheidende Spaltweite ändert, selbst wenn das zweite Bremselement nur seitlich kippt. Diese momentane Vergrößerung der Spaltweite verringert die Magnetkraft deutlich, so dass der Bremseffekt verringert wird und das zweite Bremselement nach Durchgang des Knotens mit einem kritischen Einschwingvorgang relativ verzögert in die Ausgangsposition zurückkehrt. Bei dickem Fadenmaterial findet die Rückstellung sehr langsam und mit einem deutlichen Einschwingen statt.
  • Bei der aus WO03/033385 A1 bekannten Fadenbremsvorrichtung ist das erste Bremselement an einem stationären Magnetkörper vorgesehen. Das zweite Bremselement ist in einem über den Magnetkörper greifenden Klappdeckel eigenbeweglich gehalten und wird durch das erste Bremselement hindurch mit ziehender Magnetkraft beaufschlagt und gegen das erste Bremselement angepresst. Bei Durchgang einer Verdickung oder eines Knotens im Faden wird das zweite Bremselement gegen die ziehende Magnetkraft abgehoben, wodurch die Stärke der Magnetkraft reduziert wird und sich der Bremseffekt verändert. Speziell bei dickem Fadenmaterial kann sich die Rückstellung des zweiten Bremselementes nach Durchgang eines Knotens oder einer Verdickung verzögern oder mit einem Einschwingvorgang ablaufen, während dessen der Bremseffekt variiert.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Fadenbremsvorrichtung der eingangs genannten Art anzugeben, die Verdickungen und Knoten im Faden ohne Gefahr für den Faden passieren lässt, den Bremseffekt dabei nicht spürbar verändert, und nach Durchgang des Knotens oder der Verdickung unmittelbar wieder den ursprünglichen Bremseffekt einstellt. Die Fadenbremsvorrichtung soll insbesondere für dicke Fadenqualitäten geeignet sein.
  • Die gestellte Aufgabe wird erfindungsgemäß entweder mit den Merkmalen des Anspruchs 1 oder mit den Merkmalen des nebengeordneten Anspruchs 2 gelöst.
  • Die Funktion der erfindungsgemäßen Fadenbremsvorrichtung berücksichtigt das Phänomen, dass ein bei laufendem Faden mit relativ hoher Geschwindigkeit die Fadenbremszone passierender Knoten (oder eine Verdickung) einen relativ hochfrequenten momentanen Energieimpakt quer zur Fadenlaufrichtung erzeugt. Auf das Auftreten des Energieimpakts spricht entweder gemäß Anspruch 1 das erste Bremselement unter Abheben vom stationären Anschlag gegen die Federkraft nachgebend an, während das zweite Bremselement und die Masse der Magnetarmatur trägheitsbedingt nicht nennenswert reagieren, oder gibt gemäß Anspruch 2 das zweite Bremselement gegen die Federkraft nach, während die Magnetarmatur dank ihrer großen Masse nicht nennenswert reagiert. In jedem Fall ist sichergestellt, dass der Bremseffekt beim Durchgang des Knotens nicht spürbar verringert wird, weil die eingestellte Magnetanpresskraft bzw. die Federkraft im Wesentlichen unvermindert wirksam bleibt. Ferner kehrt das ausgelenkte Bremselement, da es nach wie vor unter unverminderter Krafteinwirkung der Federkraft steht, nach Durchgang des Knotens unmittelbar und ohne Einschwingen in die Ausgangsposition zurück. Die Fadenbremsvorrichtung ist mit dieser Bauweise für praktisch alle Fadenqualitäten gleichermaßen geeignet, ganz speziell jedoch für dickes Fadenmaterial, das bei Durchgang eines Knotens oder einer Verdickung eine beträchtliche Lüftbewegung erzeugt. Die Masse des jeweiligen Bremselementes ist so gering ausgelegt, dass sie durch den Energieimpakt des Knotens verlagerbar ist, während sich die wesentlich größere Masse der Magnetarmatur unter dem Einfluss dieses Energieimpaktes nicht verlagert.
  • Gemäß Anspruch 1 wird bei einem Knoten die Masse des ersten Federelementes gegen die Federkraft verlagert, während die Magnetarmatur mit dem zweiten Bremselement zumindest im Wesentlichen bewegungslos verharrt. Während der normalen Bremsung des Fadens ohne einen Knoten oder eine Verdickung bleibt das erste Federelement unter der Federkraft am stationären Anschlag gehalten, so dass es für das zweite Bremselement wie eine stationäre Bremsfläche agiert.
  • Gemäß Anspruch 2 bildet die zwischen dem zweiten Bremselement und der Magnetarmatur vorgesehen Federanordnung bei Durchgang eines Knotens eine Massenentkopplung, so dass das zweite Bremselement bei im Wesentlichen bewegungslos verharrender Magnetarmatur von dem Knoten gegen die Federkraft und relativ zur Magnetarmatur verlagert wird.
  • In beiden Fällen verändert sich bei Durchgang eines Knotens der zuvor eingestellte Bremseffekt nicht. Außerdem kehrt das verlagerte Bremselement nach Durchgang eines Knotens unmittelbar in die Ausgangsposition zurück, da es von der gegebenenfalls sogar erhöhten Federkraft bzw. der Federkraft und der eingestellten Magnetanpresskraft belastet bleibt.
  • Zweckmäßig ist die Fadenbremse eine gesteuerte Blattfederbremse, in der das erste Bremselement eine Blattfeder ist, und das zweite Bremselement ein eine Bremsfläche bildender Körper.
  • Es könnte sich hierbei auch um eine andere Art einer gesteuerten Fadenbremse handeln, deren erstes und/oder zweites Bremselement nicht auf einer Blattfeder basiert, sondern beispielsweise starr ist.
  • Die Blattfeder ist zweckmäßig J-förmig mit einem frei auskragenden Ende ausgebildet, und ist mit dem J-Haken an einem, vorzugsweise drehverstellbaren, Widerlager verankert. Von dem Widerlager wird die Federkraft erzeugt, mit der die Blattfeder an den stationären Anschlag angepresst wird, so dass sich die Blattfeder bei normalem Bremsbetrieb wie eine stationäre Bremsfläche verhält bzw. den stationären Anschlag auch bei maximal eingestellter Magnetanpresskraft nicht nennenswert verlässt. Mittels eines drehverstellbaren Widerlagers lässt sich z.B. die wirksame Federkraft nach Bedarf einstellen.
  • Das zweite Bremselement ist zweckmäßig ein U-förmiger Körper, der starr oder federnd sein kann, z.B. ein Blattfederkörper, der in einer Führung in etwa in Richtung der einstellbaren Magnetanpresskraft beweglich gehaltert ist. Die Führung positioniert den Körper relativ zur Blattfeder und so, dass die eingestellte Magnetanpresskraft in der Bremszone wie gewünscht zur Wirkung kommt. Außerdem kann die Führung einen leichten Austausch des zweiten Bremselements zulassen.
  • Bei einer zweckmäßigen Ausführungsform ist die Blattfeder (erstes Bremselement) zumindest im Bereich des stationären Anschlags breiter als der die Bremsfläche bildende Körper (zweites Bremselement). Die Blattfeder stützt sich mit den über den Körper seitlich überstehenden Randbereichen am stationären Anschlag ab.
  • Der abstoßende Magnetaktuator weist zweckmäßig eine Proportional-Elektromagnetspule auf, die an eine Stromsteuerung angeschlossen ist. Auf diese Weise ist es möglich, die Bremskraft der Magnetarmatur, z.B. einen Permanentmagneten, extrem rasch und feinfühlig zu verstellen, beispielsweise bei Einsatz der Fadenbremsvorrichtung zwischen einem Fadenliefergerät und einer schützen losen Webmaschine, in der relativ hohe Fadengeschwindigkeiten auftreten und eine möglichst gleichmäßige Fadenspannung erwünscht ist, die innerhalb eines Eintragvorganges gegebenenfalls mehrfach geändert werden muss. Die Magnetanpresskraft hängt direkt von der Stärke des Beaufschlagungsstroms der Spule ab.
  • Bei einer Ausführungsform wird eine stabile Abstützung der Blattfeder dadurch erreicht, dass beiderseits des Körpers Rippen für beide Randbereiche der Blattfeder vorgesehen sind.
  • Bei einer besonders zweckmäßigen Ausführungsform sind an einem gemeinsamen Träger zwei Fadenbremsvorrichtungen im Wesentlichen spiegelbildlich zueinander, vorzugsweise mit einer Versetzung in Fadenlaufrichtung, angeordnet. Diese Fadenbremsvorrichtung ist kompakt und lässt sich zum Bearbeiten zweier nahe nebeneinander laufender Fäden einsetzen. Dennoch ist jede Fadenbremsvorrichtung individuell steuerbar.
  • Bei einer baulich einfachen, funktionssicheren und kompakten Ausführungsform ist der die Bremsfläche bildende Körper auf einem Teller angeordnet, vorzugsweise unter Zwischenschalten eines federelastischen Gliedes, und ist der Teller über eine Verbindung mit der Magnetarmatur, vorzugsweise einem Permanentmagneten, gekoppelt. Dabei wird die Magnetarmatur zusammen mit dem Teller in einer Axialführung geführt, so dass die Magnetarmatur leichtgängig beweglich die Magnetanpresskraft überträgt und der Teller das zweite Bremselement zentriert beaufschlagt.
  • Die Axialführung ist bei einer bevorzugten Ausführungsform in einem Gehäuse des Magnetaktuators gehaltert.
  • Die den stationären Anschlag für das erste Bremselement definierenden Rippen können zweckmäßig ebenfalls am Gehäuse angeordnet sein, vorzugsweise sogar einstückig.
  • Die Verbindung, die die Führungsaufgabe und die Kraftübertragung übernimmt, weist einen Führungskörper auf, an dem der Teller über ein Spannelement und einen axial und radial komprimierten O-Ring gehalten ist. Der Führungskörper kann eine lange Führungsfläche zur axialen Führung bieten. Der komprimierte O-Ring zentriert und erbringt eine wünschenswerte Elastizität in der Verbindung.
  • Da eine solche Bremsvorrichtung zweckmäßig mit einer niedrigen Basisbremswirkung arbeitet, wenn die Spule nicht bestromt wird, ist es zweckmäßig, in Ausrichtung und in axialem Abstand von der Magnetarmatur einen stationären Hilfs-Permanentmagneten zu platzieren, der eine zur Polung der Magnetarmatur entgegengesetzte Polung aufweist, und die Magnetarmatur permanent abstoßend beaufschlagt. Anstelle eines solchen Permanentmagneten könnte alternativ auch eine leichte Feder, die einstellbar sein kann, vorgesehen sein.
  • Anhand der Zeichnungen werden Ausführungsformen des Erfindungsgegenstandes erläutert. Es zeigen:
  • Fig. 1
    schematisch eine erste Ausführungsform einer Fadenbremsvorrichtung, bei normalem Fadenlauf,
    Fig. 2
    die Bremsvorrichtung von Fig. 1 bei Durchgang eines Knotens im Faden,
    Fig. 3
    schematisch eine andere Ausführungsform einer Fadenbremsvorrichtung, bei normalem Fadenlauf,
    Fig. 4
    die Fadenbremsvorrichtung von Fig. 3 bei Durchgang eines Knotens im Faden,
    Fig. 5
    eine Perspektivdraufsicht auf eine weitere Ausführungsform einer Faden- bremsvorrichtung,
    Fig. 6
    einen Axialschnitt durch einen Hauptteil der Fadenbremsvorrichtung bei- spielsweise der Fig. 1, 2 und 5, und
    Fig. 7
    eine Explosionsdarstellung zu Fig. 6.
  • In den Fig. 1 und 2 wird eine Fadenbremsvorrichtung B schematisch in einer Stellung bei normalem Fadenlauf und in einer Stellung bei Durchlauf eines Knotens im Faden gezeigt.
  • Die Fadenbremsvorrichtung B weist ein erstes Bremselement E1 auf, beispielsweise eine Blattfeder L, die durch eine Feder 2 oder durch entsprechende Vorspannung mit einer Federkraft f2 gegen einen stationären Anschlag 1 angepresst wird. Die Feder 2 stützt sich z.B. an einem stationären Widerlager 3 ab. Die Federkraft f2 ist gegebenenfalls einstellbar. Das erste Bremselement E1 hat eine Masse mE1.
  • Ferner weist die Fadenbremsvorrichtung B ein zweites Bremselement E2 auf, das ein ebenfalls eine Bremsfläche bildender Körper F ist, beispielsweise ein Blattfederkörper F, wobei die ersten und zweiten Bremselemente E1, E2 relativ zueinander so angeordnet sind, dass ein sich in Fadenlaufrichtung eines strichpunktiert angedeuteten Fadens Y verjüngender Einlaufspalt 4 zu einer Bremszone zwischen den Bremselementen E1, E2 führt. Das zweite Bremselement E2 befindet sich auf der Seite des Anschlags 1, ist jedoch gegenüber dem stationären Anschlag 1 frei beweglich. Mit dem zweiten Bremselement E2 ist eine Magnetarmatur A verbunden, die eine Masse mA hat. Die Magnetarmatur A wird mit einer einstellbaren Magnetanpresskraft fm eines abstoßenden Magnetaktuators M beaufschlagt und gegen das erste Bremselement E1 angepresst. Der Magnetaktuator M enthält zweckmäßig eine Proportional-elektromagnetspule, die mit einer Stromsteuerung CU verbunden ist und die Magnetanpresskraft fm entsprechend der Strombeaufschlagung generiert. Die Magnetarmatur A ist z.B. ein Permanentmagnet, so dass ein abstoßender, linearer Magnetaktuator M gebildet ist.
  • Die Federkraft f2 für das erste Bremselement E1 ist zumindest in der Bremszone größer als die jeweils eingestellte maximale Magnetanpresskraft fm. Die Masse mE1 des ersten Bremselements E1 ist, zumindest in der Bremszone, kleiner als die Masse mA der Magnetarmatur A.
  • Bei normalem Fadendurchlauf (Fig. 1) wird der Faden Y in der Bremszone entsprechend der Größe der eingestellten Magnetanpresskraft fm gebremst, wobei das erste Bremselement E1 zumindest im Wesentlichen am stationären Anschlag 1 gehalten bleibt.
  • Tritt im Faden Y eine Verdickung oder ein Knoten K (Fig. 2) auf, dann läuft der Knoten K mit der gegebenenfalls relativ hohen Laufgeschwindigkeit des Fadens Y durch die Fadenbremsvonichtung B durch. Der Knoten K erzeugt dabei einen Energieimpakt, der die beiden Bremselemente E1, E2 voneinander wegzubewegen versucht. Da die Masse mA der Magnetarmatur A, die mit der eingestellten Magnetanpresskraft fm über das zweite Bremselement E2 in der Fadenbremszone am ersten Bremselement E1 wirkt und eine bestimmte Trägheit hat, wegen der die Masse mA durch den Energieimpakt nicht nennenswert in Fig. 2 nach links verlagert werden kann, gibt das erste Bremselement E1 mit seiner gegenüber der Masse mA gegebenenfalls deutlich kleineren Masse mE1 unter dem Energieimpakt und gegen die Federkraft f2 nach, weil der Energieimpakt eine in Fig. 2 nach rechts gerichtete Kraft fK erzeugt. Beim Durchgang des Knotens K wirkt jedoch weiterhin die eingestellte Magnetanpresskraft fm und auch die Federkraft f2, so dass sich der Bremseffekt nicht spürbar verändert. Sobald der Knoten K passiert hat, kehrt die geringe Masse mE1 des ersten Bremselements E1 unter der Federkraft F2 sofort und ohne Einschwingen wieder in die Position von Fig. 1 zurück.
  • Die in den Fig. 3 und 4 gezeigte Ausführungsform der Fadenbremsvorrichtung B unterscheidet sich von der der Fig. 1 und 2 dadurch, dass die Federkraft f2 z.B. von einer Federanordnung 2' zwischen der Magnetarmatur A und dem zweiten Bremselement E2 erzeugt wird, das eine Masse mE2 hat, die deutlich geringer ist als die Masse mA der Magnetarmatur A. Die Federkraft f2 ist größer als die jeweils eingestellte maximale Magnetanpresskraft fm. Das zweite Bremselement E2 ist entweder an dem stationären Anschlag 1 gebildet oder als Körper F dort angeordnet, der sich auf der dem zweiten Bremselement E2 abgewandten Seite der Bremszone befindet. Bei normalem Fadenlauf (kein Knoten oder keine Verdickung, Fig. 3) wird das zweite Bremselement E2 gegen das erste Bremselement E1 mit der eingestellten Magnetanpresskraft fm angepresst. Die Federanordnung 2' ist dabei nicht spürbar komprimiert, da die Federkraft f2 größer ist als die jeweils eingestellte maximale Magnetanpresskraft fm. Es liegt eine von der Bestromung der Magnetspule abhängige Bremswirkung vor.
  • Sobald ein Knoten K im Faden Y auftritt (Fig. 4), wird die Masse mE2 des zweiten Bremselements E2 relativ zu der aufgrund der Trägheit im Wesentlichen bewegungslos verharrenden Masse mA der Magnetarmatur und gegen die Federkraft f2 durch die aus dem Energieimpakt entstehende Kraft fK nach links verlagert, um den Knoten K durchgehen zu lassen. Dabei wirkt die Magnetanpresskraft fm unverändert, und auch dank der Kompression der Federanordnung 2' eine sogar geringfügig höhere Federkraft f2, so dass sich die eingestellte Bremswirkung trotz des Knotens K nicht nennenswert verändert. Sobald der Knoten K passiert hat kehrt das zweite Bremselement E2 unmittelbar wieder in die Position gemäß Fig. 3 zurück, und zwar unter den Kräften fm und f2. Dabei tritt kein Einschwingverhalten auf, da das untere Ende des Blattfederkörpers F (zweites Bremselement E2) schon zurückgestellt wird, während der Knoten auf dem Weg aus der Fadenbremsvorrichtung ist.
  • Fig. 5 zeigt eine konkrete Ausführungsform einer Fadenbremsvorrichtung B, in der zwei Fadenbremsvorrichtungen etwa der in den Fig. 1 und 2 gezeigten Art gemeinsam auf einem Träger 5 angeordnet sind. An dem Träger 5 sind Fadenösen 6 vorgesehen, die die Fadenlaufwege durch die beiden Fadenbremsvorrichtungen grundsätzlich festlegen. Jede Fadenbremsvorrichtung könnte auch in Einzelanordnung auf einem Träger 5 angeordnet sein.
  • Jedes erste Bremselement E1 ist eine Blattfeder L mit der Form eines J, wobei das freie Ende 10 des J frei auskragt, und der J-Haken an einem am Träger 5 angeordneten Widerlager 8 so verankert ist, dass in der jeweiligen Bremszone das erste Bremselement E1 mit der Federkraft f2 an den stationären Anschlag 1 angepresst wird. Die Federkraft f2 lässt sich beispielsweise durch Verdrehen des Widerlagers 8 einstellen.
  • Jeder Magnetaktuator M ist in einem Gehäuse 7 enthalten, an dem der stationäre Anschlag 1 in Form zweier Rippen R angeformt ist. Das zweite Bremselement E2 ist hier ein U-förmiger Körper F, z.B. aus einer Blattfeder oder gegebenenfalls aus starrem Material, der schmaler ist als die Blattfeder L, so dass die Blattfeder L mit ihren seitlichen Randbereichen auf den Rippen R aufliegt.
  • Für das zweite Bremselement E2 ist eine Bewegungsführung 11, 12 am Magnetgehäuse 7 vorgesehen, beispielsweise in Form von Längsschlitzen 12 in den Schenkeln des U's, in die Stifte 11 eingreifen. Diese Längsführung ermöglicht die Beweglichkeit des zweiten Bremselementes bei Variationen der Magnetanpresskraft und/oder bei der Bremsoperation.
  • Fig. 6 ist ein Achsschnitt durch Hauptkomponenten der Fadenbremsvorrichtung B etwa der Fig. 5 und der Fig. 1 und 2, während Fig. 7 eine zugehörige Explosionsdarstellung ist. Der Magnetaktuator M ist mit der Spule in dem Gehäuse 7 untergebracht und definiert einen Innenkanal, in welchem die Magnetarmatur A (ein Permanentmagnet) linear beweglich und durch die abstoßende Magnetkraft fm in Fig. 6 nach rechts beaufschlagbar ist. Als Option kann im Gehäuse 7 ferner ein stationärer Hilfs-Permanentmagnet PM platziert sein, der auf die Magnetarmatur A axial ausgerichtet und von dieser axial beabstandet ist. Der Hilfs-Permanentmagnet PM erzeugt eine schwache Magnetanpresskraft für das zweite Bremselement E2, um eine Basisbremswirkung zu erzeugen, selbst wenn die Spule nicht strombeaufschlagt ist.
  • Der stationäre Anschlag 1 wird von den am Magnetgehäuse 7 einstückig angeformten Rippen R definiert, die das zweite Bremselement E2, d.h. den Blattfederkörper F, berührungsfrei zwischen sich aufnehmen.
  • Der die Bremsfläche bildende Körper F, hier beispielsweise aus einem Federblech gebogen, liegt auf einem Teller 13 auf, wobei gegebenenfalls ein federelastisches Glied 14 zwischengeschaltet ist, das in einer Vertiefung des Tellers 13 positioniert ist, derart, dass die Hinterseite des Körpers F den Teller 13 gegebenenfalls gar nicht kontaktiert. Der Teller 13 ist mit der Magnetarmatur A über eine Verbindung 15 gekoppelt, die Spannelemente 17, 17a und einen Führungskörper 16 aufweist. Zwischen dem Führungskörper 16 und dem Teller 13 ist ein unter der Wirkung des Spannelementes 17a axial und radial komprimierter O-Ring 18 vorgesehen, um eine gewisse Elastizität in die Verbindung 15 zu integrieren und den Teller 13 sauber und etwas nachgiebig zu zentrieren. Der Führungskörper 16 wird in einer Axialführung 19 axial geführt, derart, dass der Führungskörper 16 sowohl die Magnetarmatur A als auch den Teller 13 in axialer Richtung führt. Die Axialführung 19 könnte eine Kunststoffhülse sein, die im Gehäuse 7 festgelegt ist. Der Körper F ist z.B. aus einem dünnen Federstahlstreifen viereckiger Form durch Biegen U-förmig ausgebildet, wobei er an seiner Bremsseite einen viereckigen ebenen Bremsbereich, daran anschließend leicht zurückweichende Flächen, und runde Endbereiche zu den die Schlitze 12 enthaltenden U-Schenkeln aufweist (Fig. 7).
  • Der Teller 13 (und/oder der Führungskörper 16) deformiert den O-Ring 18 mit einer konischen oder gerundeten Fase 13a und liegt dem Führungskörper 16 mit einem axialen Abstand gegenüber, so dass hier eine saubere Zentrierung des Tellers 13 entsteht, und dennoch eine gewisse Beweglichkeit des Tellers 13 relativ zum Führungskörper 16 möglich ist.
  • Anstelle des Hilfs-Permanentmagneten PM könnte auch eine schwache, die grundsätzliche Bremswirkung einstellende Feder im Gehäuse 7 angeordnet sein.

Claims (15)

  1. Fadenbremsvorrichtung (B), mit ersten und zweiten, eine Fadenbremszone definierenden Bremselementen (E1, E2), von denen das erste Bremselement mit einem stationären Anschlag (1) zusammenwirkt, und das zweite Bremselement (E2) mittels einer mit dem zweiten Bremselement (E2) verbunden Magnetarmatur (A) und einem abstoßenden Magnetaktuator (M) mit einstellbarer Anpresskraft (fm) gegen das erste Bremselement (E1) anpressbar ist, dadurch gekennzeichnet, dass der stationäre Anschlag (1) an der dem ersten Bremselement (E1) gegenüberliegenden Seite der Fadenbremszone angeordnet ist, dass das erste Bremselement (E1) in Richtung zum zweiten Bremselement (E2) gegen den stationären Anschlag (1) durch eine Federkraft (f2) belastet ist, die in der Bremszone größer ist als die jeweils eingestellte maximale Magnetanpresskraft (fm), und dass die Masse (mE1) des ersten Bremselements (E1) kleiner ist als die Masse (mA) der Magnetarmatur (A).
  2. Fadenbremsvorrichtung (B) mit ersten und zweiten, eine Fadenbremszone definierenden Bremselementen (E1, E2), von denen das erste Bremselement (E1) mit einem stationären Anschlag (1) zusammenwirkt, und das zweite Bremselement (E2) mittels einer mit dem zweiten Bremselement (E2) verbundenen Magnetarmatur (A) und einem abstoßenden Magnetaktuator (M) mit einstellbarer Anpresskraft (fm) gegen das erste Bremselement (E1) anpressbar ist, wobei der stationäre Anschlag an der dem zweiten Bremselement (E2) gegenüberliegenden Seite der Fadenbremszone angeordnet ist, und das erste Bremselement (E1) aufweist, und zwischen der Magnetarmatur (A) und dem relativ zur Magnetarmatur (A) beweglich angeordneten zweiten Bremselement (E2) eine Federanordnung (2') vorgesehen ist, und dass das zweite Bremselement (E2) in Richtung zum stationären Anschlag (1) und gegen das erste Bremselement (E1) durch eine Federkraft (f2) der Federanordnung (2') belastet ist, dadurch gekennzeichnet, dass die Masse (mE2) des zweiten Bremselementes (E2) kleiner ist als die Masse (mA) der Magnetarmatur (A), dass die Federkraft (f2) in der Fadenbremszone größer ist als die jeweils eingestellte maximale Magnetanpresskraft (fm), und dass die Masse (mE2) des zweiten Bremselementes (E2) bei Durchgang eines Knotens (K) im Faden (Y) durch die Fadenbremszone gegen die Federkraft (f2) relativ zu der aufgrund der Trägheit im Wesentlichen bewegungslos verharrenden Masse (mA) der Magnetarmatur (A) in Richtung von dem ersten Bremselement (E1) weg verlagert wird.
  3. Fadenbremsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das erste Bremselement (E1) eine Blattfeder (L) ist.
  4. Fadenbremsvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Blattfeder (L) J-förmig ausgebildet und mit einem frei auskragenden Ende (10) mit dem J-Haken (9) an einem, vorzugsweise drehverstellbaren, Widerlager (8) verankert ist.
  5. Fadenbremsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das zweite Bremselement (E2) ein vorzugsweise annähernd U-förmiger, eine Bremsfläche bildender Körper (F) ist, vorzugsweise ein U-förmig gebogener Federstahlstreifen, der in einer Führung (11, 12) zumindest in etwa in Richtung der einstellbaren Magnetanpresskraft (fm) beweglich gehaltert ist.
  6. Fadenbremsvorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Blattfeder (L) zumindest im Bereich des stationären Anschlags (1) breiter ist als der Körper (F).
  7. Fadenbremsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der abstoßende Magnetaktuator (M) eine Proportional-Elektromagnetspule aufweist, die an eine Stromsteuerung (CU) angeschlossen ist.
  8. Fadenbremsvorrichtung nach Anspruch 3 und 4, dadurch gekennzeichnet, dass der stationäre Anschlag (1) beiderseits des Körpers (F) angeordnete Rippen (R) für beide Randbereiche der Blattfeder (L) aufweist.
  9. Fadenbremsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass an einem gemeinsamen Träger (5) zwei Fadenbremsvorrichtungen (B) im Wesentlichen spiegelbildlich zueinander, vorzugsweise mit einer Versetzung in Fadenlaufrichtung, angeordnet sind.
  10. Fadenbremsvorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Körper (F) auf einem Teller (13) aufliegt, vorzugsweise unter Zwischenschaltung eines federelastischen Gliedes (14), dass der Teller (13) über eine Verbindung (15) mit der Magnetarmatur (A), vorzugsweise einem Permanentmagneten, gekoppelt ist, und dass die Magnetarmatur (A) und der Teller (13) in einer Axialführung (19) geführt sind.
  11. Fadenbremsvorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Axialführung (19) in einem Gehäuse (7) des Magnetaktuators (M) festgelegt ist.
  12. Fadenbremsvonichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Rippen (R) am Gehäuse (7), vorzugsweise einstückig, angeordnet sind.
  13. Fadenbremsvorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Verbindung (15) einen Führungskörper (16) aufweist, an dem der Teller (13) über ein Spannelement (17a) und einen axial und radial komprimierten O-Ring (18) abgestützt und, vorzugsweise nachgiebig, zentriert ist.
  14. Fadenbremsvorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass zwischen dem Teller (13) und dem Führungskörper (16) ein Axialspiel vorliegt, und dass der Teller (13) und/oder der Führungskörper (16) eine konische oder gerundete Fase (13a) aufweist, die über das Spannelement (17a) den dazwischen positionierten O-Ring (18) komprimiert.
  15. Fadenbremsvorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass im Gehäuse (7) in Ausrichtung auf die und in axialem Abstand von der Magnetarmatur (A) ein Hilfs-Permanentmagnet (PM) positioniert ist, der eine umgekehrte Polung aufweist, wie der Permanentmagnet der Magnetarmatur (A).
EP05778296A 2004-09-10 2005-09-07 Fadenbremsvorrichtung Active EP1786715B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004043867A DE102004043867A1 (de) 2004-09-10 2004-09-10 Fadenbremsvorrichtung
PCT/EP2005/009619 WO2006027233A1 (de) 2004-09-10 2005-09-07 Fadenbremsvorrichtung

Publications (2)

Publication Number Publication Date
EP1786715A1 EP1786715A1 (de) 2007-05-23
EP1786715B1 true EP1786715B1 (de) 2009-11-11

Family

ID=35311597

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05778296A Active EP1786715B1 (de) 2004-09-10 2005-09-07 Fadenbremsvorrichtung

Country Status (5)

Country Link
US (1) US7661621B2 (de)
EP (1) EP1786715B1 (de)
CN (1) CN101039859B (de)
DE (2) DE102004043867A1 (de)
WO (1) WO2006027233A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG132562A1 (en) * 2005-11-14 2007-06-28 Agency Science Tech & Res Nano-positioning electromagnetic linear actuator
EP2354070B1 (de) 2010-02-01 2013-01-02 Iro Ab Garnspanner
ITMI20120478A1 (it) * 2012-03-27 2013-09-28 Savio Macchine Tessili Spa Dispositivo tendifilo dei filati in avvolgimento
JP6210363B2 (ja) * 2013-05-24 2017-10-11 株式会社安川電機 訓練装置
CN103395661A (zh) * 2013-07-23 2013-11-20 吴江市世华丝绸有限公司 一种纱线张力装置
CN105752732A (zh) * 2014-12-18 2016-07-13 驰马拉链(安徽)有限公司 一种张力调节装置
CN106463083B (zh) * 2014-12-29 2020-02-18 平面***公司 具有隐藏磁性致动定位的安装件
CN104773610A (zh) * 2015-03-31 2015-07-15 如皋市丁堰纺织有限公司 一种络筒张力调节装置
CN104975438B (zh) * 2015-07-16 2017-07-28 合肥奥瑞数控科技有限公司 一种带有电磁张力调整器的模板缝纫机
CN105088560B (zh) * 2015-07-16 2017-07-28 合肥奥瑞数控科技有限公司 一种电磁缝线张力调整装置
CN105040292B (zh) * 2015-07-16 2017-07-28 合肥奥瑞数控科技有限公司 一种带有电磁张力调整器的智能模板缝纫机
CN104963124B (zh) * 2015-07-16 2017-10-03 合肥奥瑞数控科技有限公司 一种缝线张力自动调整的模板缝纫机
CN104928856B (zh) * 2015-07-16 2017-07-28 合肥奥瑞数控科技有限公司 一种缝线张力自动调整的智能模板缝纫机
UY4685U (es) * 2018-05-29 2018-06-29 Ines Costa Saravia Maria Tensor de hilo para tejido crochet retractil
CN110371034B (zh) * 2019-06-25 2021-04-09 湖州银都铝业科技有限公司 一种高强度汽车行李架,及其制备方法和设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1200676A (fr) 1957-07-30 1959-12-23 Procédé pour le réglage automatique du freinage d'un fil et frein de fil pour l'exécution de ce procédé
FR2300734A1 (fr) 1975-02-13 1976-09-10 Gabet Denimal Dispositif de frein
DE3446567C1 (de) * 1984-12-20 1986-05-07 Lindauer Dornier Gmbh, 8990 Lindau Schussfadenbremse mit stufenweise steuerbarer Bremswirkung
US4875506A (en) * 1987-05-27 1989-10-24 Sulzer Brothers Limited Yarn brake for a weft yarn
DE8713749U1 (de) * 1987-10-13 1987-12-10 Elitex koncern textilního strojírenství, Reichenberg/Liberec Fadenbremse
WO1991014032A1 (en) 1990-03-12 1991-09-19 Iro Ab Output yarn brake
BE1004027A3 (nl) 1990-04-17 1992-09-08 Picanol Nv Universele draadrem.
CH686955A5 (de) 1992-03-16 1996-08-15 Der Loepfe Ag Geb Fadenbremseinrichtung.
IT1260645B (it) * 1993-04-08 1996-04-22 Lgl Electronics Spa Dispositivo di frenatura modulata del filato per apparecchi alimentatori di trama
DE19531579C1 (de) 1995-08-28 1997-01-23 Barth Tex Instr & Software Gmb Fadenbremse
BE1011089A3 (nl) 1997-04-07 1999-04-06 Picanol Nv Draadrem met twee remelementen.
EP0961393A1 (de) * 1998-05-28 1999-12-01 Sulzer Rüti Ag Linearmotor für eine Textilmaschine sowie Vorrichtung mit einem Linearmotor und Webmaschine mit dieser Vorrichtung
IT1308066B1 (it) * 1999-06-01 2001-11-29 Lgl Electronics Spa Dispositivo di comando di frenatrama, particolarmente per telaidi tessitura e simili
CN2377261Y (zh) * 1999-07-13 2000-05-10 海鹰企业集团有限责任公司 磁性张力器
US6286562B1 (en) 1999-10-26 2001-09-11 L.G.L. Electronics S.P.A. Electro-magnetic lamina type weft brake
DE10150504A1 (de) 2001-10-12 2003-04-17 Iropa Ag Fadenbremse
CN2501890Y (zh) * 2001-11-27 2002-07-24 胡才祥 磁悬浮数控张力器

Also Published As

Publication number Publication date
US20080257994A1 (en) 2008-10-23
DE102004043867A1 (de) 2006-03-16
EP1786715A1 (de) 2007-05-23
WO2006027233A1 (de) 2006-03-16
DE502005008494D1 (de) 2009-12-24
CN101039859B (zh) 2013-07-03
US7661621B2 (en) 2010-02-16
CN101039859A (zh) 2007-09-19

Similar Documents

Publication Publication Date Title
EP1786715B1 (de) Fadenbremsvorrichtung
EP2486575B1 (de) Aktuator für eine verbrennungskraftmaschine
DE102009020032B4 (de) Kettenwirkmaschine
CH668089A5 (de) Schussfadenbremse mit stufenweise steuerbarer bremswirkung.
DE1760405B2 (de) Mustervorrichtung an Textilmaschinen
DE19531579C1 (de) Fadenbremse
DE19639043A1 (de) Schließvorrichtung für einen Flügel eines Fensters, einer Tür oder dergleichen
DE2743700C2 (de) Schußfadenbremse für Düsen-Webmaschinen
EP0027894B1 (de) Klappankermagnet
EP1401751B1 (de) Fadengreifer
CH686955A5 (de) Fadenbremseinrichtung.
EP1173379A1 (de) Aktuator und fadenbremse mit einem aktuator
EP0973686B1 (de) Fadenbremse
EP0344100A1 (de) Elektromagnetische Einrichtung für Webmaschinen
DE4429765A1 (de) Platinenantriebseinrichtung für Jacquardmaschine
EP2616294A1 (de) Stromlos geschlossenes magnetventil
DE102006052453B3 (de) Vorrichtung zur Erzeugung einer definierten Kraft
WO1994003668A1 (de) Textilmaschine
DE102007028191A1 (de) Linearspanner
DE3838162C2 (de)
EP2176156B1 (de) Vorrichtung zum schneiden eines fadenförmigen körpers
DD142316A1 (de) Druckmagneteinheit fuer den typendruck in seriendruckwerken
EP1218275B1 (de) Fadenbremsvorrichtung
DE19538138A1 (de) Fadenbremse
DE2003895A1 (de) Fuehrungsmittel fuer Typentraegerbaender bei den Druckmaschinen mit beweglichen Typen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE IT TR

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): BE DE IT TR

17Q First examination report despatched

Effective date: 20080102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE IT TR

REF Corresponds to:

Ref document number: 502005008494

Country of ref document: DE

Date of ref document: 20091224

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005008494

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005008494

Country of ref document: DE

Owner name: VANDEWIELE SWEDEN AB, SE

Free format text: FORMER OWNER: IRO AB, ULRICEHAMN, SE

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: VANDEWIELE SWEDEN AB; SE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME

Effective date: 20210217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230901

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230919

Year of fee payment: 19

Ref country code: BE

Payment date: 20230918

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 19