EP1781932A1 - Steuerventil für eine einspritzdüse - Google Patents

Steuerventil für eine einspritzdüse

Info

Publication number
EP1781932A1
EP1781932A1 EP05771474A EP05771474A EP1781932A1 EP 1781932 A1 EP1781932 A1 EP 1781932A1 EP 05771474 A EP05771474 A EP 05771474A EP 05771474 A EP05771474 A EP 05771474A EP 1781932 A1 EP1781932 A1 EP 1781932A1
Authority
EP
European Patent Office
Prior art keywords
valve
fuel
control
needle
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05771474A
Other languages
English (en)
French (fr)
Inventor
Jaroslav Hlousek
Franz Guggenbichler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1781932A1 publication Critical patent/EP1781932A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid

Definitions

  • the invention relates to a control valve for a Ein ⁇ injection nozzle for injecting fuel into the combustion chamber of an internal combustion engine with an axially displaceable in an injector nozzle needle, which dips into a feedable with fuel under pressure control chamber whose pressure on the at least one or Drain channel for fuel opening or closing control valve is controllable.
  • Control valves of injectors for common rail systems for injecting high viscosity fuels into the combustion chamber of internal combustion engines are known in different embodiments.
  • a heating up to 150 0 C is required to achieve the necessary injection viscosity.
  • abrasive Fest ⁇ materials and high temperature naturally increases the Veschl employ and thus affects the reliability.
  • an injector for a Commonraileinspritz- system has different parts, which are usually held together by a nozzle retaining nut.
  • the actual injector nozzle contains a nozzle needle, which is guided axially displaceably in the nozzle body of the injector nozzle and has a plurality of free surfaces through which fuel can flow from the nozzle passage to the needle tip.
  • the nozzle needle itself carries a collar on which a compression spring is supported, and immersed in a control chamber, which can be acted upon with fuel under pressure.
  • An inlet channel can be connected to this control chamber via an inlet throttle and an outlet channel via an outlet throttle, wherein the respective pressure built up in the control chamber together with the force of the compression spring holds the nozzle needle in the closed position.
  • the pressure in the control chamber can be controlled by a control valve, which is usually operated by an electromagnet. With appropriate wiring opening the control valve can drain the fuel through a throttle cause, so that a decrease in the hydraulic holding force leads to the dipping into the control chamber end face of the nozzle needle for opening the nozzle needle. In this way, the fuel can pass through the injection openings in the combustion chamber of the engine in the sequence.
  • an inlet throttle is usually also provided, wherein the opening speed of the nozzle needle is determined by the flow difference between the inlet and outlet throttle.
  • the invention now aims to provide a design of a Der ⁇ like control valve, which remains prone to interference even at high temperatures and even with highly viscous oils and a high proportion of abrasive solids in the fuel and even under extreme conditions has increased reliability ,
  • the design is such that the valve seat of the valve is arranged in a separate from the valve body valve sleeve made of wear-resistant material.
  • valve sleeve wherein such a separate component, namely the valve sleeve, can be posi ⁇ tioned in a correspondingly free space of the valve body, it is possible such a valve sleeve in the context of service work in case of excessive wear on the valve seat in easier To exchange way and possibly together with the corresponding valve needle to replace.
  • the separate valve sleeve can be pressed into the valve body.
  • the design is such that the separate valve tilsen is floatingly mounted in a space of the valve body, which also results in a particularly easy interchangeability of possibly worn components.
  • Such a valve sleeve allows the arrangement of a number of additional control channels in the valve bush carrying the valve body, without causing unwanted material weakening.
  • the training for this purpose is such that the Ventil ⁇ bushing on its outer cylindrical surfaces or the end faces Nu ⁇ th or bevels to form channels to a Ab ⁇ running and / or inlet throttle for fuel in or out of the control room whereby a number of additional functions are available via the channels formed in this way.
  • the design may be such that the valve needle carries grooves or grooves on its jacket, which cooperate with stub lines which open onto the jacket of the valve needle, whereby a stub line of this type can serve for cooling and lubrication by engine oil.
  • a stub line of this type can serve for cooling and lubrication by engine oil.
  • leak fuel it is also possible leak fuel to lead in a non-pressurized sequence.
  • the service life and thus reliability can also be increased by ensuring that appropriate cooling and flushing.
  • a further liquid can be used for such cooling, wherein preferably a lubricating oil is used, as it is usually also used as engine oil.
  • a corresponding guidance of lubricant channels through the nozzle body leads to a vig ⁇ additional cooling of the injector, particularly exposed components such as the leadership of the valve needle in the valve body can be flushed in a particularly advantageous manner of a der ⁇ like coolant.
  • the training is advantageously made for this purpose so that a spur line opens with lubricating oil, in particular engine oil at the valve needle cooperating with the valve seat.
  • valve needle lubricating oil By means of such guided on the outer circumference of the valve needle lubricating oil, it is now possible not only the valve needle to cool but at the same time by appropriate design on the outside of the valve needle to flush the guide of the valve needle in the valve body, in order to flush away any Ablager ⁇ ments of impurities in heavy oil again.
  • the engine oil used thus not only serves to cool sensitive components but at the same time also flushes the valve needle in the valve body
  • FIG. 3 shows a section through a first inventive design of the control valve
  • Figure 4 shows a representation of the injector with an inventive control valve and channels for the cooling of the injector
  • 5 shows a section through the valve body with pressed-in valve bushing
  • FIG. 6 shows an enlarged view of the control valve as used in FIG. 4
  • FIG. 7 shows the construction of the valve body with a floating valve bushing for the control valve.
  • FIG. 1 shows an injector 1 which has an injector body 2, a valve body 3, an intermediate plate 4 and an injector nozzle 5. All these components are held together by a nozzle lock nut 6.
  • the injector nozzle 5 contains hiebei a nozzle needle 7, which is guided longitudinally displaceably in the nozzle body of the injector 5 and has a plurality of open spaces through which fuel from a nozzle leading 8 fuel to the needle tip can flow. During an opening movement of the nozzle needle 7, fuel is injected through a plurality of injection openings 9 into the combustion chamber of the internal combustion engine.
  • a collar is visible, on which a compression spring 10 is supported.
  • the other end of the compression spring 10 is supported on a control sleeve 11 which itself rests again on the underside of the intermediate plate 4.
  • the Control sleeve 11 defines with the upper end face of the nozzle needle 7 and the underside of the intermediate plate 4 a control chamber 12.
  • the pressure prevailing in the control chamber 12 is decisive for the control of the movement of the nozzle needle, via a fuel inlet bore 13 shown in FIG the fuel pressure on the one hand in the nozzle front chamber 8 effective, where he exerts a force in ⁇ réelles ⁇ direction of the nozzle needle 7 via a pressure shoulder of the nozzle needle 7.
  • this fuel pressure acts on the inlet channel 14 and the inlet throttle 15, as shown in Fig. 2, in the control chamber 12 and supported by the force of the compression spring 10, the Düsen ⁇ needle 7 in its closed position.
  • a magnet armature 17 and a valve needle 18 connected to the magnet armature 17 are lifted and a valve seat 19 is opened.
  • the fuel from the control chamber 12 can flow in this way through an outlet throttle 20 and the open valve seat 19 in a non-pressurized drain passage 21.
  • the fuel from the nozzle antechamber reaches the combustion chamber of the engine through the injection openings 9 in this way.
  • the injector nozzle 5 is open, high-pressure fuel simultaneously flows through the inlet throttle 15 into the control chamber 12 and over the outlet throttle 20 a slightly greater amount.
  • the so-called control amount is discharged without pressure into the outlet channel 21 and taken in addition to the injection quantity from the common rail.
  • the opening speed of the nozzle needle 7 is determined by the flow difference between the supply throttle 15 and the outlet throttle 20.
  • FIGS. 1 and 2 The embodiment of an injector shown in FIGS. 1 and 2 is in principle suitable for fuels of low viscosity. With highly viscous fuels preheating is er ⁇ conducive that heating temperatures of a fuel requires up to 150 0 C. Furthermore, highly viscous fuels usually also have a higher proportion of impurities, wherein in addition to the required heating of the fuel, heating of the solenoid valve by the control current leads to excessive heating and possible destruction of the component. Fuel contaminants would lead to pinching of the valve needle and excessive wear of the valve needle and valve seat after a short time.
  • valve seat is arranged here in a valve sleeve 23, which is accommodated in a cylindrically cleared space 24 of the valve body 3.
  • the valve sleeve 23 can hiebei either be pressed into the valve body 3, as will be explained in more detail in the following in the illustration of FIG. 5, or between the surface 25 in the Ventil ⁇ body 3, which limits the space 24 upwards and the be guided floating upper end surface of the intermediate plate 4. In such a case the centering takes place by a cone 26 at the lower end of the valve needle 18.
  • valve bushing 23 may be made of a particularly wear-resistant hard metal, whereby, if excessive wear on the valve seat 19 of the valve bushing 23 is detected, a cost-effective replacement together with the valve needle 18 is possible.
  • heating of the fuel is necessary in the case of combustion engines operated with heavy oil, with additional heat loads acting on the common rail injectors.
  • the projecting into the combustion chamber nozzle tip undergoes heating by the hot combustion gases.
  • the control current for the solenoid valve also causes further heating.
  • cooling is provided in this case in a particularly advantageous manner, wherein the injector is constantly flushed with engine oil.
  • the scavenging passages in the injector are shown in black in FIG. 4, the engine oil passing through these passages into the region of the nozzle tip and into a chamber 29 of the valve body 3, in which the magnet armature 17 of the solenoid valve is located.
  • a Ringein ⁇ stitch 27 in which in the valve body 3 engine oil is also passed into the leadership of the valve needle 18 and in this way cleans this area of any deposits and impurities in heavy oil.
  • Fig. 5 is a valve body in. Section shown in which the valve sleeve 23 is pressed. Channels for supply of the high-pressure fuel to the inlet throttle 15 and for the discharge of the fuel via the outlet throttle 20 to the valve seat 19 of the valve sleeve 23 are incorporated in the underside of the valve body 3. On the cylindrical outer contour of the valve sleeve 23, a plurality of surfaces are worked together with grooves on the top of the valve sleeve 23 a connection of the outlet throttle 20 via at least one of the open spaces formed and limited flow channel 28 to the valve seat.
  • a valve body is shown in section, wherein a ring recess 27 can be seen, which makes it possible that from the valve seat 19 up coming leak fuel and the top of the valve needle 18 along leaked engine oil are fed into a non-pressurized flow.
  • Fig. 7 the section of a valve body is shown with floating valve sleeve.
  • the fuel supply from the outlet throttle to the valve seat of the valve bush takes place here via a hollow cylindrical space between the valve body and the floating valve bushing 23.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Bei einem Steuerventil für eine Einspritzdüse zum Einspritzen von Kraftstoffen in den Brennraum einer Brennkraftmaschine mit einer in einer Injektordüse (5) axial verschieblichen Düsennadel (7), welche in einen mit Kraftstoff unter Druck speisbaren Steuerraum (12) eintaucht, dessen Druck über das wenigstens einen Zu- oder Ablaufkanal für Kraftstoff öffnende oder schließende Steuerventil (16) steuerbar ist, ist der Ventilsitz (19) des Ventils (16) in einer vom Ventilkörper (3) gesonderten Ventilbüchse (23) aus verschleißfestem Material angeordnet.

Description

Steuerventil für eine Einspritzdüse
Die Erfindung bezieht sich auf ein Steuerventil für eine Ein¬ spritzdüse zum Einspritzen von Kraftstoffen in den Brennraum einer Brennkraftmaschine mit einer in einer Injektordüse axial verschieblichen Düsennadel, welche in einen mit Kraftstoff unter Druck speisbaren Steuerraum eintaucht, dessen Druck über das wenigstens einen Zu- oder Ablaufkanal für Kraftstoff öffnende oder schließende Steuerventil steuerbar ist.
Steuerventile von Injektoren für Commonrailsysteme zum Ein¬ spritzen von Kraftstoffen mit hoher Viskosität in den Brenn¬ raum von Brennkraftmaschinen sind in unterschiedlicher Ausbil¬ dung bekannt. Im Fall von Schweröl ist eine Erwärmung auf bis zu 1500C erforderlich, um die notwendige Einspritzviskosität zu erreichen. Bei hohem Anteil an abrasiv wirkenden Fest¬ stoffen und hoher Temperatur steigt naturgemäß der Veschleiß und beeinträchtigt damit die Betriebssicherheit.
Grundsätzlich hat ein Injektor für ein Commonraileinspritz- system verschiedene Teile, welche in aller Regel durch eine Düsenspannmutter zusammengehalten werden. Die eigentliche In¬ jektordüse enthält eine Düsennadel, welche im Düsenkörper der Injektordüse axial verschieblich geführt ist und mehrere Freiflächen aufweist, durch welche aus dem Düsenvorraum Kraft¬ stoff zur Nadelspitze strömen kann. Die Düsennadel selbst trägt einen Bund, an welchem sich eine Druckfeder abstützt, und taucht in einen Steuerraum ein, welcher mit Kraftstoff unter Druck beaufschlagbar ist. An diesen Steuerraum kann ein Zulaufkanal über eine Zulaufdrossel und ein Ablaufkanal über eine Ablaufdrossel angeschlossen sein, wobei der jeweilige im Steuerraum aufgebaute Druck gemeinsam mit der Kraft der Druckfeder die Düsennadel in der Schließstellung hält. Der Druck im Steuerraum kann von einem Steuerventil kontrolliert werden, welches zumeist von einem Elektromagneten betätigt wird. Bei entsprechender Beschaltung kann ein Öffnen des Steuerventils einen Abfluss des Kraftstoffes über eine Drossel bewirken, sodass ein Absinken der hydraulischen Haltekraft auf die in den Steuerraum eintauchende Stirnfläche der Düsennadel zum Öffnen der Düsennadel führt. Auf diese Weise kann in der Folge der Kraftstoff durch die Einspritzöffnungen in den Brennraum des Motors gelangen.
Neben einer Ablaufdrossel ist auch meist eine Zulaufdrossel vorgesehen, wobei die Öffnungsgeschwindigkeit der Düsennadel durch den Durchflussunterschied zwischen Zu- und Ablaufdrossel bestimmt wird. Wenn das Steuerventil geschlossen wird, wird der Ablaufweg des Kraftstoffes durch die Ablaufdrossel ge¬ sperrt und über die Zulaufdrossel neuerlich Druck im Steuer¬ raum aufgebaut und das Schließen der Düsennadel bewirkt.
Die Erfindung zielt nun darauf ab, eine Ausbildung eines der¬ artigen Steuerventiles zu schaffen, welches auch bei hohen Temperaturen und auch bei hochviskosen Ölen sowie einem hohen Anteil an abrasiv wirkenden Feststoffen im Kraftstoff stö- rungsunanfällig bleibt und auch unter extremen Bedingungen eine erhöhte Zuverlässigkeit aufweist. Zur Lösung dieser Auf¬ gabe ist die Ausbildung so getroffen, dass der Ventilsitz des Ventils in einer vom Ventilkörper gesonderten Ventilbüchse aus verschleißfestem Material angeordnet ist. Dadurch, dass eine gesonderte Ventilbüchse zum Einsatz gelangt, wobei ein derartiger gesonderter Bauteil, nämlich die Ventilbüchse, in einem entsprechend freigestellten Raum des Ventilkörpers posi¬ tioniert werden kann, wird es möglich eine derartige Ventilbüchse im Rahmen von Servicearbeiten bei übermäßigem Verschleiß am Ventilsitz in einfacher Weise zu tauschen und ggf. gemeinsam mit der entsprechenden Ventilnadel zu ersetzen.
Prinzipiell kann die gesonderte Ventilbüchse in den Ventilkör¬ per eingepresst werden. In besonders vorteilhafter Weise ist die Ausbildung jedoch so getroffen, dass die gesonderte Ven- tilbüchse schwimmend in einem Raum des Ventilkörpers gelagert ist, wodurch sich auch eine besonders leichte Austauschbarkeit ggf. verschlissener Bauteile ergibt. Eine derartige Ventilbüchse erlaubt die Anordnung einer Reihe von zusätzlichen Steuerkanälen in dem die Ventilbüchse tragen¬ den Ventilkörper, ohne dass es zu unerwünschten Material¬ schwächungen kommt. In besonders vorteilhafter Weise ist die Ausbildung zu diesem Zwecke so getroffen, dass die Ventil¬ büchse an ihren Zylinderaußenflächen oder den Stirnflächen Nu¬ ten oder Anfasungen unter Ausbildung von Kanälen zu einer Ab¬ lauf- und/oder Zulaufdrossel für Kraftstoff in oder aus dem Steuerraum aufweist, wodurch eine Reihe zusätzlicher Fun- ktionen über die auf diese Weise ausgebildeten Kanäle zur Ver¬ fügung stehen. Beispielsweise kann die Ausbildung in diesem Falle so getroffen sein, dass die Ventilnadel an ihrem Mantel Nuten oder Rillen trägt, welche mit an den Mantel der Ventil¬ nadel mündenden Stichleitungen zusammenwirken, wobei eine der- artige Stichleitung der Kühlung und Schmierung durch Motoröl dienen kann. Ebenso ist es aber auch möglich Leckkraftstoff in einen drucklosen Ablauf zu führen.
Neben der geeigneten Materialwahl für den Ventilsitz und der Möglichkeit im Verschleißfalle die verschlissenen Teile in einfacher Weise tauschen zu können, kann die Standzeit und damit Betriebssicherheit nämlich auch dadurch erhöht werden, dass für eine entsprechende Kühlung und eine Spülung gesorgt wird. Prinzipiell kann für eine derartige Kühlung eine weitere Flüssigkeit herangezogen werden, wobei bevorzugt ein Schmieröl zum Einsatz gelangt, wie es üblicherweise auch als Motoröl verwendet wird. Eine entsprechende Führung von Schmiermittel- kanälen durch den Düsengrundkörper führt zu einer grund¬ sätzlichen Kühlung des Injektors, wobei besonders exponierte Bauteile wie beispielsweise die Führung der Ventilnadel im Ventilkörper in besonders vorteilhafter Weise von einem der¬ artigen Kühlmittel gespült werden können. Wie bereits erwähnt, ist zu diesem Zweck die Ausbildung mit Vorteil so getroffen, dass an der mit dem Ventilsitz zusammenwirkenden Ventilnadel eine Stichleitung mit Schmieröl, insbesondere Motoröl mündet. Mittels eines derartigen an den Außenumfang der Ventilnadel geführten Schmieröls gelingt es nun nicht nur die Ventilnadel zu kühlen sondern gleichzeitig auch durch entsprechende Ge¬ staltung an der Außenseite der Ventilnadel die Führung der Ventilnadel im Ventilkörper zu spülen, um allfällige Ablager¬ ungen von Verunreinigungen im Schweröl wiederum wegzuspülen. Das zum Einsatz gelangende Motoröl dient somit nicht nur der Kühlung empfindlicher Bauteile sondern gleichzeitig auch der Spülung der Ventilnadel im Ventilkörper
Die Erfindung wird nachfolgend anhand von in der Zeichnung schematisch dargestellten Ausführungsbeispielen näher er¬ läutert. In dieser zeigen Fig. 1 und 2 den grundsätzlichen Aufbau eines Injektors gemäß dem Stand der Technik, Fig.3 einen Schnitt durch eine erste erfindungsgemäße Ausbildung des Steuerventiles, Fig.4 eine Darstellung des Injektors mit einem erfindungsgemäßem Steuerventil und Kanälen für die Kühlung des Injektors, Fig. 5 einen Schnitt durch den Ventilkörper mit eingepresster Ventilbüchse, Fig. 6 eine vergrößerte Dar¬ stellung des Steuerventiles wie es auch in Fig. 4 Verwendung findet und Fig. 7 die Ausbildung des Ventilkörpers mit einer schwimmenden Ventilbüchse für das Steuerventil.
In Fig. 1 ist ein Injektor 1 dargestellt, welcher einen In¬ jektorkörper 2, einen Ventilkörper 3, eine Zwischenplatte 4 und eine Injektordüse 5 aufweist. Alle diese Bauteile werden durch eine Düsenspannmutter 6 zusammengehalten. Die Injektor¬ düse 5 enthält hiebei eine Düsennadel 7, welche im Düsenkörper der Injektordüse 5 längsverschieblich geführt ist und mehrere Freiflächen aufweist, durch welche aus einem Düsenvorraum 8 Kraftstoff zur Nadelspitze strömen kann. Bei einer Öffnungs- bewegung der Düsennadel 7 wird Kraftstoff über mehrere Ein¬ spritzöffnungen 9 in den Brennraum der Brennkraftmaschine eingespritzt.
An der Düsennadel 7 ist ein Bund ersichtlich, an welchem eine Druckfeder 10 abgestützt ist. Das andere Ende der Druckfeder 10 ist an einer Steuerhülse 11 abgestützt, welche selbst wie¬ derum an der Unterseite der Zwischenplatte 4 anliegt. Die Steuerhülse 11 definiert mit der oberen Stirnfläche der Düsen¬ nadel 7 und der Unterseite der Zwischenplatte 4 einen Steuer¬ raum 12. Der im Steuerraum 12 herrschende Druck ist für die Steuerung der Bewegung der Düsennadel maßgeblich, über eine in Fig. 2 ersichtliche Kraftstoffzulaufbohrung 13 wird der Kraft¬ stoffdruck einerseits im Düsenvorraum 8 wirksam, wo er über eine Druckschulter der Düsennadel 7 eine Kraft in Öffnungs¬ richtung der Düsennadel 7 ausübt. Andererseits wirkt dieser Kraftstoffdruck über den Zulaufkanal 14 und die Zulaufdrossel 15, wie sie in Fig. 2 dargestellt sind, im Steuerraum 12 und hält unterstützt von der Kraft der Druckfeder 10 die Düsen¬ nadel 7 in ihrer Schließstellung.
Wenn in der Folge ein Elektromagnet 16 angesteuert wird, wird ein Magnetanker 17 sowie eine mit dem Magnetanker 17 verbun¬ dene Ventilnadel 18 angehoben und ein Ventilsitz 19 geöffnet. Der Kraftstoff aus dem Steuerraum 12 kann auf diese Weise durch eine Ablaufdrossel 20 und den offenen Ventilsitz 19 in einen drucklosen Ablaufkanal 21 abströmen. Das auf diese Weise bewirkte Absinken der hydraulischen Kraft auf die obere Stirn¬ fläche der Düsennadel 7 führt zu einem Öffnen der Düsennadel 7. Der Kraftstoff aus dem Düsenvorraum gelangt auf diese Weise durch die Einspritzöffnungen 9 in den Brennraum des Motors. Bei geöffnetem Zustand der Injektordüse 5 fließt gleichzeitig Hochdruckkraftstoff durch die Zulaufdrossel 15 in den Steuerraum 12 zu und über die Ablaufdrossel 20 eine etwas größere Menge ab. Die sogenannte Steuermenge wird drucklos in den Ablaufkanal 21 abgeführt und zusätzlich zur Einspritzmenge aus dem Commonrail entnommen. Die Öffnungsgeschwindigkeit der Düsennadel 7 wird durch den Durchflussunterschied zwischen Zu¬ laufdrossel 15 und Ablaufdrossel 20 bestimmt.
Sobald der Elektromagnet 16 abgeschaltet wird, wird der Ma¬ gnetanker 17 durch die Kraft einer Druckfeder 22 nach unten gedrückt und die Ventilnadel 18 an den Ventilsitz 19 gepresst. Auf diese Weise wird der Ablaufweg des Kraftstoffes durch die Ablaufdrossel 20 gesperrt. Über die Zulaufdrossel 15 wird im Steuerraum 12 wieder Kraftstoffdruck aufgebaut und erzeugt eine zusätzliche Schließkraft, welche die hydraulische Kraft auf die Druckschulter der Düsennadel 7, vermindert um die Kraft der Druckfeder 10, übersteigt. Die Düsennadel 7 ver- schließt den Weg zu den Einspritzöffnungen 9, wodurch der Ein¬ spritzvorgang beendet wird.
Die in den Fig. 1 und 2 dargestellte Ausführung eines Injek¬ tors ist prinzipiell für Kraftstoffe niedriger Viskosität ge- eignet. Bei hochviskosen Kraftstoffen ist eine Vorwärmung er¬ forderlich, welche Aufheiztemperaturen eines Kraftstoffes auf bis zu 1500C erfordert. Weiters haben hochviskose Kraftstoffe meist auch einen höheren Anteil an Verunreinigungen, wobei zu¬ sätzlich zu der erforderlichen Erwärmung des Kraftstoffes eine Erwärmung des Magnetventiles durch den Steuerstrom zu einer übermäßigen Aufheizung und möglichen Zerstörung des Bau¬ elementes führt. KraftstoffVerunreinigungen würden nach kurzer Zeit zu einem Klemmen der Ventilnadel und zu einem übermäßigen Verschleiß der Ventilnadel und des Ventilsitzes führen.
Um diesem Nachteil zu begegnen, wurde die in Fig. 3 darge¬ stellte erfindungsgemäße Ausbildung des Steuerventiles ge¬ schaffen. Der Ventilsitz ist hier in einer Ventilbüchse 23 an¬ geordnet, die in einem zylindrisch freigestellten Raum 24 des Ventilkörpers 3 untergebracht ist. Die Ventilbüchse 23 kann hiebei entweder in den Ventilkörper 3 eingepresst sein, wie dies im Folgenden bei der Darstellung nach Fig. 5 noch näher erläutert wird, oder aber zwischen der Fläche 25 im Ventil¬ körper 3, die den Raum 24 nach oben begrenzt und der oberen Stirnfläche der Zwischenplatte 4 schwimmend geführt sein. In einem derartigen Fall erfolgt die Zentrierung durch einen Kegel 26 am unteren Ende der Ventilnadel 18. Dieser Kegel 26 wird auf den Ventilsitz in der Ventilbüchse 23 gepresst, wobei die schwimmende Ventilbüchse 23 aufgrund der auf' sie ein- wirkenden hydraulischen Kräfte auch in geöffnetem Zustand des Ventils stets in Kontakt mit der Zwischenplatte gehalten wird. Die Ventilbüchse 23 kann aus besonders verschleißfestem Hart¬ metall ausgeführt sein, wobei dann, wenn übermäßiger Ver¬ schleiß am Ventilsitz 19 der Ventilbüchse 23 festgestellt wird, ein kostengünstiger Ersatz gemeinsam mit der Ventilnadel 18 möglich ist.
Wie bereits erwähnt, ist bei mit Schweröl betriebenen Brenn¬ kraftmaschinen eine Aufwärmung des Kraftstoffes erforderlich, wobei zusätzliche Wärmebelastungen auf die Commonrailinjekto- ren wirksam werden. Neben dem bereits zur Herabsetzung der Viskosität auf bis zu 15O0C vorgewärmten Kraftstoff, erfährt die in den Brennraum ragende Düsenspitze eine Aufheizung durch die heißen Verbrennungsgase. Auch der Steuerstrom für das Ma¬ gnetventil bewirkt eine weitere Erwärmung. Wie in Fig. 4 ersichtlich, ist in diesem Falle in besonders vorteilhafter Weise eine Kühlung vorgesehen, wobei der Injektor ständig mit Motoröl durchspült wird. Die Spülkanäle im Injektor sind in Fig. 4 schwarz dargestellt, wobei das Motoröl über diese Ka¬ näle in den Bereich der Düsenspitze und in eine Kammer 29 des Ventilkörpers 3 gelangt, in welcher sich auch der Magnetanker 17 des Magnetventiles befindet. Es ist weiters ein Ringein¬ stich 27 ersichtlich, bei welchem im Ventilkörper 3 Motoröl auch in die Führung der Ventilnadel 18 geleitet wird und auf diese Weise diesen Bereich von allfälligen Ablagerungen und Verunreinigungen im Schweröl reinigt.
In Fig. 5 ist ein Ventilkörper im. Schnitt dargestellt, bei welchem die Ventilbüchse 23 eingepresst ist. Kanäle zur Zu¬ führung des Hochdruckkraftstoffes zur Zulaufdrossel 15 und zur Ableitung des Kraftstoffes über die Ablaufdrossel 20 zum Ventilsitz 19 der Ventilbüchse 23 sind in die Unterseite des Ventilkörper 3 eingearbeitet. An der zylindrischen Außenkontur der Ventilbüchse 23 sind mehrere Flächen angearbeitet, die ge¬ meinsam mit Nuten an der Oberseite der Ventilbüchse 23 eine Verbindung von der Ablaufdrossel 20 über wenigstens einen von den Freiflächen gebildeten und begrenzten Ablaufkanal 28 zum Ventilsitz darstellen. In Fig. 6 ist ein Ventilkörper im Schnitt dargestellt, wobei ein Ringeinstich 27 ersichtlich ist, welcher es ermöglicht, dass vom Ventilsitz 19 hochkommender Leckkraftstoff und das von oben an der Ventilnadel 18 entlangleckende Motoröl in einen drucklosen Ablauf geführt werden.
In Fig. 7 ist der Schnitt eines Ventilkörpers mit schwimmender Ventilbüchse dargestellt. Die Kraftstoffführung von der Ab¬ laufdrossel zum Ventilsitz der Ventilbüchse erfolgt hier über einen hohlzylindrischen Raum zwischen Ventilkörper und schwim¬ mender Ventilbüchse 23.

Claims

Patentansprüche:
1. Steuerventil für eine Einspritzdüse zum Einspritzen von Kraftstoffen in den Brennraum einer Brennkraftmaschine mit einer in einer Injektordüse (5) axial verschieblichen Düsen¬ nadel (7), welche in einen mit Kraftstoff unter Druck speis¬ baren Steuerraum (12) eintaucht, dessen Druck über das wenigstens einen Zu- oder Ablaufkanal für Kraftstoff öffnende oder schließende Steuerventil (16) steuerbar ist, dadurch ge¬ kennzeichnet, dass der Ventilsitz (19) des Ventils (16) in einer vom Ventilkörper (3) gesonderten Ventilbüchse (23) aus verschleißfestem Material angeordnet ist.
2. Steuerventil nach Anspruch 1, dadurch gekennzeichnet, dass die gesonderte Ventilbüchse (23) schwimmend in einem Raum des Ventilkörpers (3) gelagert ist.
3. Steuerventil nach Anspruch 1 oder 2, dadurch gekennzeich- net, dass die Ventilbüchse (23) an ihren Zylinderaußenflächen oder den Stirnflächen Nuten oder Anfasungen unter Ausbildung von Kanälen (28) zu einer Ablauf- und/oder Zulaufdrossel (15,20) für Kraftstoffe in oder aus dem Steuerraum (12) aufweist.
4. Steuerventil nach Anspruch 1, 2 oder 3, dadurch gekenn¬ zeichnet, dass die Ventilnadel (18) an ihrem Mantel Nuten oder Rillen trägt, welche mit an den Mantel der Ventilnadel (18) mündenden Stichleitungen (27) zusammenwirken.
EP05771474A 2004-08-24 2005-08-18 Steuerventil für eine einspritzdüse Withdrawn EP1781932A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0142604A AT501668B1 (de) 2004-08-24 2004-08-24 Steuerventil für eine einspritzdüse
PCT/AT2005/000331 WO2006021015A1 (de) 2004-08-24 2005-08-18 Steuerventil für eine einspritzdüse

Publications (1)

Publication Number Publication Date
EP1781932A1 true EP1781932A1 (de) 2007-05-09

Family

ID=34981633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05771474A Withdrawn EP1781932A1 (de) 2004-08-24 2005-08-18 Steuerventil für eine einspritzdüse

Country Status (6)

Country Link
US (1) US20080006723A1 (de)
EP (1) EP1781932A1 (de)
JP (1) JP2008510915A (de)
CN (1) CN101006269A (de)
AT (1) AT501668B1 (de)
WO (1) WO2006021015A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006047294A1 (de) * 2006-10-06 2008-04-24 Man Diesel Se Kraftstoffversorgungsanlage einer Brennkraftmaschine
DE102007040115A1 (de) 2007-08-24 2009-02-26 Robert Bosch Gmbh Steuerventil für einen Kraftstoffinjektor
DE102009032305A1 (de) * 2009-07-09 2011-01-13 Man Diesel & Turbo Se Kraftstoffversorgungsanlage einer Brennkraftmaschine
US8549840B2 (en) * 2010-11-12 2013-10-08 Cummins Cal Pacific, Llc Fluid injector
JP2012197698A (ja) * 2011-03-18 2012-10-18 Yanmar Co Ltd 燃料噴射ポンプ
EP2602474A3 (de) * 2011-12-06 2013-07-24 International Engine Intellectual Property Company, LLC Zweiwegenadelschieber
AT512296B1 (de) * 2012-01-27 2013-07-15 Bosch Gmbh Robert Ventilplatte/ventilkörper mit eingepresster kegelhülse aus hartmetall
DE102012104531A1 (de) 2012-05-25 2013-10-24 L'orange Gmbh Ventilanordnung, insbesondere für Kraftstoff-Einspritzinjektoren
DE102014107046A1 (de) 2014-05-19 2015-11-19 L'orange Gmbh Steuerventil für einen Kraftstoff-Einspritzinjektor
US20140346254A1 (en) * 2014-08-07 2014-11-27 Caterpillar Inc. Fuel injector for gaseous injection
DE102021200868A1 (de) 2021-02-01 2022-08-04 Robert Bosch Gesellschaft mit beschränkter Haftung Steuerventil für ein Einspritzventil, Einspritzventil mit Steuerventil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949415A2 (de) * 1998-04-11 1999-10-13 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959360A (en) * 1957-09-20 1960-11-08 Alco Products Inc Fuel injectors
US2985378A (en) * 1960-07-19 1961-05-23 Gen Motors Corp Accumulator type injection apparatus
JPS6187963A (ja) * 1984-10-08 1986-05-06 Kanesaka Gijutsu Kenkyusho:Kk 燃料噴射装置
DE4142940C2 (de) * 1991-12-24 1994-01-27 Bosch Gmbh Robert Elektrisch gesteuerte Pumpedüse
JPH0666220A (ja) * 1992-08-11 1994-03-08 Nippondenso Co Ltd ディーゼル機関用燃料噴射装置
DE4418228A1 (de) * 1994-03-24 1995-09-28 Nagel Peter Einspritzventil für die Kraftstoff-Einspritzung von Otto-Einspritzmotoren und Dieselmotoren
JP3719468B2 (ja) * 1996-09-02 2005-11-24 株式会社デンソー 蓄圧式燃料噴射装置
DE69719461T2 (de) * 1996-11-21 2004-01-15 Denso Corp Speicherkraftstoffeinspritzvorrichtung für Verbrennungsmotor
DE19741850A1 (de) * 1997-09-23 1999-03-25 Bosch Gmbh Robert Eispritzventil
GB9805854D0 (en) * 1998-03-20 1998-05-13 Lucas France Fuel injector
DE19844891A1 (de) * 1998-09-30 2000-04-06 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
GB9823134D0 (en) * 1998-10-23 1998-12-16 Lucas Ind Plc Valve
GB9906092D0 (en) * 1999-03-18 1999-05-12 Lucas France Fuel injector
DE10017657A1 (de) * 2000-04-08 2001-10-11 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10026286A1 (de) * 2000-05-26 2001-12-13 Orange Gmbh Einspritzventil zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine
JP3829604B2 (ja) * 2000-08-30 2006-10-04 トヨタ自動車株式会社 燃料噴射装置
DE10053928A1 (de) * 2000-10-31 2002-05-29 Siemens Ag Einspritzventil mit einem Mittel zum Fernhalten von Kraftstoff von einer Aktoreinheit
DE10056165C2 (de) * 2000-11-13 2003-06-12 Bosch Gmbh Robert Sammelraumbeaufschlagter Injektor mit kaskadenförmiger Steuerungsanordnung
US6557776B2 (en) * 2001-07-19 2003-05-06 Cummins Inc. Fuel injector with injection rate control
ITTO20010814A1 (it) * 2001-08-14 2003-02-14 Fiat Ricerche Iniettore di combustibile per un motore endotermico e relativo metododi fabbricazione.
US6663014B1 (en) * 2002-06-28 2003-12-16 Caterpillar Inc Method and system of intensifier piston control
JP2006504904A (ja) * 2002-10-31 2006-02-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 低圧入口に玉型弁を備えた燃料高圧ポンプ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949415A2 (de) * 1998-04-11 1999-10-13 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006021015A1 *

Also Published As

Publication number Publication date
CN101006269A (zh) 2007-07-25
US20080006723A1 (en) 2008-01-10
JP2008510915A (ja) 2008-04-10
WO2006021015A1 (de) 2006-03-02
AT501668B1 (de) 2007-03-15
AT501668A1 (de) 2006-10-15

Similar Documents

Publication Publication Date Title
EP1781931B1 (de) Einspritzdüse für brennkraftmaschinen
EP1778968B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP1781932A1 (de) Steuerventil für eine einspritzdüse
DE69636585T2 (de) Kraftstoffeinspritzdüse
EP1774166B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
AT505666B1 (de) Verfahren und vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP2183476B1 (de) Kraftstoffeinspritzventil mit verbesserter dichtheit am dichtsitz eines druckausgeglichenen steuerventils
DE102006000035B4 (de) Fluideinspritzventil
DE102005035347B3 (de) Kraftstoffinjektor
DE60022991T2 (de) Kraftstoffinjektor
AT501914B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP0961025A1 (de) Brennstoffeinspritzdüse
DE19950779A1 (de) Hochdruckkraftstoffinjektor mit hydraulisch gesteuertem Steuerschieber
DE102008035087A1 (de) Einspritzventil
AT512296B1 (de) Ventilplatte/ventilkörper mit eingepresster kegelhülse aus hartmetall
WO2006003041A1 (de) Kraftstoffeinspritzvorrichtung
DE102005023179B3 (de) Einspritzventil mit einem erhöhten Druck im Ablaufraum
EP2156044B1 (de) Injektor mit druckausgeglichenem steuerventil
DE102005003449A1 (de) Spielausgleichselement mit einer steuerbaren Drosselstelle für einen Kraftstoffinjektor sowie Kraftstoffinjektor mit einem Spielausgleichselement
DE102007013248A1 (de) Druckausgeglichenes Schaltventil
EP1685321B1 (de) Ventil zum steuern eines fluids
WO2009033964A1 (de) Leckagefreier kraftstoffinjektor mit langer düsennadel
DE102007018042A1 (de) Injektor mit mehrteiligem Ventilelement
DE10164394A1 (de) Kraftstoffeinspritzventil für eine Brennkraftmaschine
EP2084390A1 (de) Injektor mit axial-druckausgeglichenem steuerventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20070129

17Q First examination report despatched

Effective date: 20070621

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090303