EP1756415B1 - Injecteur de carburant a multiplication d'actionneur variable - Google Patents

Injecteur de carburant a multiplication d'actionneur variable Download PDF

Info

Publication number
EP1756415B1
EP1756415B1 EP05726519A EP05726519A EP1756415B1 EP 1756415 B1 EP1756415 B1 EP 1756415B1 EP 05726519 A EP05726519 A EP 05726519A EP 05726519 A EP05726519 A EP 05726519A EP 1756415 B1 EP1756415 B1 EP 1756415B1
Authority
EP
European Patent Office
Prior art keywords
piston
valve member
injection valve
fuel injector
spring element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05726519A
Other languages
German (de)
English (en)
Other versions
EP1756415A1 (fr
Inventor
Wolfgang Stoecklein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1756415A1 publication Critical patent/EP1756415A1/fr
Application granted granted Critical
Publication of EP1756415B1 publication Critical patent/EP1756415B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/50Arrangements of springs for valves used in fuel injectors or fuel injection pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic

Definitions

  • fuel injection systems comprising a number of fuel injectors are used.
  • high-pressure accumulator fuel injection systems are used today.
  • the fuel injectors which can each be supplied with fuel via a high-pressure fuel accumulator (common rail), are actuated via solenoid valves or via piezo actuators.
  • a needle-shaped injection valve member can be controlled directly by changing the electrical voltage at the piezoelectric actuator.
  • the crystal stack of the piezoelectric actuator undergoes an elongation when energized.
  • the piezoelectric crystal stack of the piezoelectric actuator is elongated by a different amount.
  • the piezoelectric crystal stack returns to its original length. It has been found that intermediate positions of an injection valve member, which may be designed as a nozzle needle, are only insufficiently stable due to the energization of the piezoelectric crystal stack of the piezoactuator with different current levels.
  • a piezoelectric actuator is used in a fuel injector with directly controlled injection valve member, as required intermediate positions of the injection valve member between its fully open and fully closed position can only be kept insufficiently stable, resulting in a significant scattering of the in an intermediate position of the injection valve member in the combustion chamber of the self-igniting Combustion engine injected fuel amount can go along.
  • the sizes maximum opening force F max which may be in the range of several 100 N, such as 400 N, and the maximum stroke of the injection valve member in the order of 200 to 300 microns essentially determine the size of the fuel injector directly actuated piezoelectric actuator.
  • the ratio of length / diameter of the piezoelectric actuator can be varied by the realization of an example hydraulically acting translation; Only, the volume of the actuator is determined by the maximum to be overcome opening force F max and to be realized maximum stroke of the needle-shaped injection valve member.
  • a fuel injector with a directly actuated via a piezoelectric actuator injection valve member is off DE 195 00 706 A1 known.
  • a translator arrangement is provided with a sleeve-shaped booster piston, which acts on a control chamber. Within the booster piston, a coupler space is formed. The outgoing from the piezoelectric actuator and transmitted via the coupler piston stroke causes an increase in pressure in the control chamber, which is transmitted to a nozzle needle piston of the injection valve member. Due to the corresponding diameter ratio of the coupler piston and the nozzle needle piston of the stroke of the piezoelectric actuator is amplified.
  • a piston-in-piston system is provided which additionally reverses the stroke of the piezoelectric actuator.
  • Another fuel injector with a directly actuated via a piezoelectric actuator injection valve member is off DE 19817 320 C1 known.
  • a plurality of booster pistons are guided in a sleeve for gaining the stroke of the pizo-actuator. Due to the different diameter of the booster piston, the stroke, which is transmitted from the piezo actuator via the booster piston to the nozzle needle, is increased.
  • Out DE 10147 483 A1 is a servo-valve with a hydraulic coupler known, wherein two booster piston are hydraulically coupled via a coupler space. Due to the smaller diameter of the translator piston acting on the valve element, a force amplification of the stroke of the piezoactuator is generated.
  • the force provided by the piezoactuator is converted to the opening force curve, for example by means of a two-stage transmission, for example. to the seat forces of the injection valve member, adapted.
  • inventively proposed adjustment of ⁇ réelleskraftverlaufes is open to open the nozzle needle formed injection valve member at pressurized by system pressure injection valve member, a large force available, with which the injection valve member can be brought from the sitting position.
  • the translation is switched from a certain stroke of the piezoelectric actuator.
  • the inventively proposed multi-stage translation of the provided by the piezoelectric force can also be realized in an advantageous manner, a stable Eisenhubanschlag the injection valve member.
  • Bachub tooen the injection valve member between a defining its closed position stop and the opening position defining stop, ie the maintenance of a ballistic position of the injection valve member, are for the realization of small, to be injected into the combustion chamber of the self-igniting internal combustion engine fuel volumes as particularly critical to watch.
  • a two- or multi-stage translation of the force provided by the piezoelectric available ballistic Eisenhubpositionen the injection valve member of the fuel injector can be reliably approached and maintained stable.
  • FIG. 1 is a longitudinal section through a proposed inventions fuel injector with direct control of the injection valve member and a variable ratio of the stroke of a piezoelectric actuator.
  • a fuel injector 1 comprises an injector body 2, which is also referred to as a holding body.
  • the injector 2 of the fuel injector 1 is connected via a clamping nut 4 with a nozzle body 3 to a screw 5.
  • the injector body 2 comprises a high-pressure port 6, via which a cavity 7 formed in the injector body 2 is subjected to system pressure, such as, for example, the fuel pressure level prevailing in a high-pressure accumulator (common rail). From the cavity 7 of the injector body 2 extends a nozzle chamber inlet 11 to a nozzle body 3 formed in the nozzle chamber 10, which surrounds a needle-shaped injection valve member 9.
  • a pressure stage is formed on the needle-shaped injection valve member 9.
  • the needle-shaped injection valve member 9 is acted upon in the opening direction.
  • a piezoelectric actuator 8 is received in the cavity 7 of the injector 2.
  • the piezoelectric actuator 8 is shown in the illustration FIG. 1 only schematically reproduced and includes a plurality of stacked piezocrystals, which experience an energization of the piezoelectric actuator 8.
  • the piezoactuator 8 expands within the cavity 7 of the injector body 2 in the vertical direction and thereby provides the forces required for actuating the injection valve member 9.
  • the individual piezoelectric crystals arranged one above the other in the vertical direction again assume their original length, as viewed in the vertical direction, so that the piezoactuator 8 as a whole again assumes its original length in the non-energized state.
  • FIG. 1 The representation according to FIG. 1 can be taken that a Vorhubhülse 13 both a first piston 12 (ÜA) and a second piston 14 (ÜB) encloses the two facing each other end faces of the first piston 12 (ÜA) and the second piston 14 (ÜB) and the two pistons 12th and 14 surrounding Vorhubhülse 13 define a hydraulic coupling space 23.
  • the outer diameter of the Vorhubhülse is denoted by d v .
  • the disc-shaped stop 18 acts on both an inner spring element 16 and an outer spring element 17, which may be formed, for example, as spiral springs.
  • the inner spring element 16 is supported on an end face of the Vorhubhülse 13, while the outer spring element 17 is supported on a surface of the injector body 2, which in turn surrounds the Vorhubhülse 13.
  • Both the injector 2 and the Vorhubhülse 13 are located with its the piezoelectric actuator 8 facing away from end faces along a parting line on an upper plane of the nozzle body 3 at.
  • the diameter of the first piston 12 (ÜA) is indicated by d A.
  • control chamber 20 Below the second piston 14 (BB) is the control chamber 20, in which a control chamber spring element 15 is received.
  • the control chamber spring element 15 rests on the one hand on the piston end face 19 of the second piston 14 (BB) and on the other hand is supported on an end face of the needle-shaped injection valve member 9.
  • the diameter of the needle-shaped injection valve member 9 above the nozzle chamber 10 is denoted by d N.
  • the needle-shaped injector member 9 is pressed over the control chamber spring element 15 in the nozzle seat and thus closes the in the FIGS. 1 and 1.1 injection openings, not shown, via which fuel can be injected into the combustion chamber of the self-igniting internal combustion engine.
  • the second piston 14 (BB) is received via the further spring element 21 - in the cavity of the nozzle body 3 - pressed down against a formed in the nozzle body 3 flat surface. At this the piston end face 19 of the second piston 14 (BB) is applied.
  • the spring force of the further spring element 21, received in the cavity of the nozzle body 3 exceeds the spring force of the control chamber spring element 15.
  • the first piston 12 (ÜA) moves out of the hydraulic coupling space 23 due to the dwindling length of the piezocrystals of the piezoactuator 8. Due to this, the pressure in the hydraulic coupling space 23 decreases.
  • the second piston 14 (UB) acts on the pressure change in the hydraulic coupling chamber 23 and moves synchronously with the piezoelectric actuator 8. Due to the vertical movement of the second piston 14 (UB), the pressure in the control chamber 20 is lowered. The further the voltage at the piezoelectric actuator 8 is reduced, the more the pressure in the control chamber 20 drops. If a critical pressure, ie an opening pressure p ö of the needle-shaped injection valve member 9 is reached, this opens.
  • the effective piston diameter with which the piezoelectric actuator 8 generates a negative pressure in the control chamber 20 the diameter d A , ie, the diameter of the first piston 12 (ÜA).
  • d A the diameter of the first piston 12
  • the second transmission ratio i 2 is dimensioned larger than the first transmission ratio i 1 .
  • the voltage at the piezoelectric actuator 8 is initially deflected more, since the piezoelectric actuator 8, the Vorhubhülse 13 with the diameter d V pulls out of the control chamber 20 and the pressure in the control chamber 20 is less than the system pressure, ie rail pressure ,
  • the ratio i 2 can now be selected to be large.
  • the needle-shaped injection valve member 9 will advantageously rest on the preliminary stroke stop until the voltage is raised again in order to close the needle-shaped injection valve member 9.
  • the Vorhubhülse 13 is enclosed by a further sleeve 24. Both the injector body 2, as well as the Vorhubhülse 13 and the further sleeve 24 are based on the upper plane of the nozzle body 3 from. With the in FIG. 2 illustrated embodiment can be compensated in the radial direction extending mounting tolerances. The nozzle body 3 and the injector body 2 interconnecting clamping sleeve 4 is shown in the illustration FIG. 2 not played.
  • the second piston 14 (BB) positioning further spring element 21 omitted.
  • the second piston 14 (BB) positioning spring element 25 is now integrated into the hydraulic coupling chamber 23.
  • the hydraulic coupling chamber 23 through the inner cylindrical surface of the Vorhubhülse 13 and the end faces of the first piston 12 (ÜA) and the second piston 14 (BB) defined.
  • the integrated in the hydraulic coupling chamber 23 spring element 25 may be centered on a pin which is located on the front side of the piston 12 or 14.
  • the outer spring element 17 is supported directly on the injector 2, the outer spring element 17 in the in FIG. 2 illustrated embodiment, the further sleeve 24 to the upper end face of the nozzle body 3 at.
  • the second piston 14 (BB) is set against a plane surface in the nozzle body 3 by the spring element 25 accommodated in the hydraulic coupling space 23 with its collar 26.
  • the control chamber spring element 15 which acts on the needle-shaped injection valve member 9 can be formed.
  • the representation according to FIG. 3 is a further embodiment of the device for variable Aktorhubschreibör refer.
  • FIG. 3 shows that the second piston 14 can also be supported on the injection valve member 9.
  • a pin-shaped extension is provided below the collar 26, which abuts against the upper end face of the needle-shaped injection valve member 9.
  • the collar 26 comprises an upper support surface 27, the lower end face of the Vorhubhülse 13 opposite and a lower abutment surface 28 which assigns the needle-shaped injection valve member 9.
  • the Vorhubhülse 13 is acted upon by the inner spring element 16.
  • the spring element 25 is received within the hydraulic coupling chamber 23 between the first piston (ÜA) and the second piston 14 (BB) and optionally centered by a pin.
  • Reference numeral 30 denotes the stroke course of the injection valve member 9, h max being the maximum stroke of the injection valve member 9 within the nozzle body 3 and h V being the defined distance between the collar 26 on the second piston 14 (BB) and the lower end face of FIG Vorhubhülse 13.
  • F max the maximum applied by the piezoelectric actuator 8 force is called, which is required for lifting the needle-shaped injection valve member 9 from the nozzle seat.
  • FIG. 4 illustrated force-stroke curve 33 of the piezoelectric actuator 8 with stepped ratio takes the force applied by the piezoelectric actuator 8 force until reaching the distance h v up to a quarter of the maximum force F max , wherein until reaching the distance h v, the transmission ratio i 1st prevails.
  • FIG. 4 goes on to show that after reaching the defined distance h V to the maximum opening position of the injection valve member, position h max is applied only a small actuator force by the piezoelectric actuator 8. The course of the applied by the piezoelectric actuator 8 force is degressive.
  • reference numeral 33 the force-stroke characteristic of the piezoelectric actuator 8 with stepped ratio following the proposal according to the invention is identified. Until reaching the distance h V , ie the in FIG.
  • the simply hatched area in FIG. 4 spanned by the triangle between F max , h max , 0 represents the switching energy of an actuator without translation. Since the switching energy to be applied by the actuator determines its volume, it builds up according to the switching energy 32 FIG. 4 characterized actor relatively large. Opposite this, an actuator builds the switching energy 35-represented by the double-hatched area according to FIG. 4 - needed, accordingly smaller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

L'invention concerne un injecteur de carburant (1) servant à injecter du carburant dans la chambre de combustion d'un moteur à combustion interne. L'injecteur de carburant (1) selon l'invention comprend un élément de soupape d'injection (9) qui peut être actionné directement par un actionneur piézoélectrique (8), qui est logé dans un corps de buse (3) de l'injecteur de carburant (1) et qui peut être amené dans sa position fermée au moyen d'un élément ressort (15). Un ensemble multiplicateur hydraulique (12, 14) est placé entre l'actionneur piézoélectrique (8) et l'élément de soupape d'injection (9) afin d'adapter la force à exercer par l'actionneur piézoélectrique (8) à l'évolution de la force d'ouverture de l'élément de soupape d'injection (9).

Claims (7)

  1. Injecteur de carburant pour l'injection de carburant dans la chambre de combustion d'un moteur à combustion interne, comprenant un organe de soupape d'injection (9) pouvant être actionné directement par le biais d'un actionneur piézoélectrique (8), lequel organe est reçu dans un corps de buse (3) et est exposé à un espace de commande (20) et est mis dans une position de fermeture par le biais d'un élément de ressort (15), un agencement de multiplicateur (12, 14) hydraulique étant prévu entre l'actionneur piézoélectrique (8) et l'organe de soupape d'injection (9) pour l'adaptation de la force à appliquer par l'actionneur piézoélectrique (8) à l'allure de la force d'ouverture de l'organe de soupape d'injection (9), l'agencement de multiplicateur présentant un premier piston (12) et un deuxième piston (14), qui sont accouplés hydrauliquement l'un à l'autre par le biais d'un espace d'accouplement (23), l'agencement de multiplicateur (12, 14) comprenant un corps de guidage en forme de douille (13) dans lequel sont guidés le premier piston (12) et le deuxième piston (14), caractérisé en ce que, à l'obtention d'une pression d'ouverture pö de l'organe de soupape d'injection (9) au niveau de l'agencement de multiplicateur (12, 14), un premier rapport de multiplication i1 = dA 2 /dN 2 agit, dA étant le diamètre du premier piston (12) et dN étant le diamètre de l'organe de soupape d'injection (9), et en ce que, lors de l'application d'un épaulement (26) du deuxième piston (14) de l'agencement de multiplicateur (12, 14) sur le corps de guidage en forme de douille (13), un deuxième rapport de multiplication i2 = dV 2/ dN 2 agit, dV étant le diamètre du corps de guidage en forme de douille (13) et dN étant le diamètre de l'organe de soupape d'injection (9).
  2. Injecteur de carburant selon la revendication 1, caractérisé en ce que le corps de guidage en forme de douille (13) est précontraint par le biais d'un élément de ressort (16) interne s'appuyant contre l'actionneur piézoélectrique (8).
  3. Injecteur de carburant selon la revendication 1, caractérisé en ce que le piston (14) de l'agencement de multiplicateur (12, 14) est sollicité par le biais d'un élément de ressort supplémentaire (21) disposé dans l'espace hydraulique du corps de buse (3) et par le biais d'un élément de ressort d'espace de commande (15) disposé dans l'espace de commande (20) ou par le biais de l'élément de ressort (15) disposé dans l'espace de commande (20) et d'un élément de ressort (25) disposé dans l'espace d'accouplement (23).
  4. Injecteur de carburant selon la revendication 1, caractérisé en ce que le corps de guidage en forme de douille (13) est entouré par une douille (24) supplémentaire.
  5. Injecteur de carburant selon la revendication 1, caractérisé en ce que l'espace hydraulique dans le corps de buse (3) et l'espace de commande (20) sont connectés l'un à l'autre hydrauliquement par le biais d'une connexion d'écoulement (22) dans le deuxième piston (14).
  6. Injecteur de carburant selon la revendication 5, caractérisé en ce que la connexion d'écoulement (22) est réalisée sous forme d'alésage de connexion ou de rainure.
  7. Injecteur de carburant selon la revendication 1, caractérisé en ce que le deuxième piston (14) de l'agencement de multiplicateur (12, 14) s'appuie dans la position de repos soit avec sa face frontale de piston (19) contre une face plane du corps de buse (3), soit avec un tourillon directement contre l'organe de soupape d'injection (9).
EP05726519A 2004-06-08 2005-04-15 Injecteur de carburant a multiplication d'actionneur variable Expired - Fee Related EP1756415B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004027824A DE102004027824A1 (de) 2004-06-08 2004-06-08 Kraftstoffinjektor mit variabler Aktorübersetzung
PCT/EP2005/051682 WO2005121544A1 (fr) 2004-06-08 2005-04-15 Injecteur de carburant a multiplication d'actionneur variable

Publications (2)

Publication Number Publication Date
EP1756415A1 EP1756415A1 (fr) 2007-02-28
EP1756415B1 true EP1756415B1 (fr) 2011-08-17

Family

ID=34966774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05726519A Expired - Fee Related EP1756415B1 (fr) 2004-06-08 2005-04-15 Injecteur de carburant a multiplication d'actionneur variable

Country Status (6)

Country Link
US (1) US7406951B2 (fr)
EP (1) EP1756415B1 (fr)
JP (1) JP2007505255A (fr)
CN (1) CN1965162A (fr)
DE (1) DE102004027824A1 (fr)
WO (1) WO2005121544A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006008647A1 (de) * 2006-02-24 2007-08-30 Robert Bosch Gmbh Kraftstoffinjektor mit direktbetätigbarer Düsennadel und variabler Aktorhubübersetzung
DE102006019308A1 (de) * 2006-04-26 2007-10-31 Robert Bosch Gmbh Injektor
JP2010019147A (ja) * 2008-07-09 2010-01-28 Nippon Soken Inc 燃料噴射弁
FI121719B (fi) * 2009-05-28 2011-03-15 Waertsilae Finland Oy Polttoaineen ruiskutusventtiili
CN102933836B (zh) * 2010-05-20 2015-06-03 康明斯知识产权公司 压电燃料喷射器***、估计燃料喷射事件的定时特性的方法
CN101963119B (zh) * 2010-11-08 2012-04-25 郑国璋 一种压电式高压共轨电控喷油器
US8387900B2 (en) 2011-06-24 2013-03-05 Weidlinger Associates, Inc. Directly-actuated piezoelectric fuel injector with variable flow control
US20130081376A1 (en) * 2011-10-03 2013-04-04 Paul Reynolds Pulse Detonation Engine with Variable Control Piezoelectric Fuel Injector
US9562497B2 (en) * 2014-06-18 2017-02-07 Caterpillar Inc. Engine system having piezo actuated gas injector
US20160169180A1 (en) * 2014-07-09 2016-06-16 Mcalister Technologies, Llc Integrated fuel injector ignitor having a preloaded piezoelectric actuator
US9677496B2 (en) * 2014-07-16 2017-06-13 Cummins Inc. System and method of injector control for multipulse fuel injection
CN105327802A (zh) * 2014-08-06 2016-02-17 丹阳市陵口镇郑店土地股份专业合作社 一种大棚用的浇注喷头
CH710127A1 (de) * 2014-09-17 2016-03-31 Ganser Crs Ag Brennstoffeinspritzventil für Verbrennungskraftmaschinen.
JP6453169B2 (ja) * 2015-06-19 2019-01-16 日立オートモティブシステムズ株式会社 燃料噴射制御装置
JP6387985B2 (ja) * 2016-02-24 2018-09-12 株式会社デンソー 燃料噴射装置
CN112780443B (zh) * 2021-03-02 2022-03-01 北京航空航天大学 一种压电陶瓷微动针栓喷注器调节机构

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19500706C2 (de) 1995-01-12 2003-09-25 Bosch Gmbh Robert Zumeßventil zur Dosierung von Flüssigkeiten oder Gasen
DE19817320C1 (de) 1998-04-18 1999-11-11 Daimler Chrysler Ag Einspritzventil für Kraftstoffeinspritzsysteme
DE19835494C2 (de) 1998-08-06 2000-06-21 Bosch Gmbh Robert Pumpe-Düse-Einheit
DE19843535A1 (de) * 1998-09-23 2000-03-30 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19939520C2 (de) * 1999-08-20 2001-06-07 Bosch Gmbh Robert Einspritzsystem und Verfahren zum Betreiben eines Einspritzsystems
DE19946827C1 (de) 1999-09-30 2001-06-21 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
DE10019764B4 (de) * 2000-04-20 2004-09-23 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
DE10019766A1 (de) * 2000-04-20 2001-10-31 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
DE10043625C2 (de) * 2000-09-05 2003-03-27 Bosch Gmbh Robert Hydraulisch übersetztes Ventil
US20030062026A1 (en) * 2000-09-07 2003-04-03 Friedrich Boecking Common rail system
DE10112147A1 (de) * 2001-03-14 2002-09-19 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
DE10147483B4 (de) 2001-09-26 2005-05-19 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
DE102005012929A1 (de) * 2005-03-21 2006-09-28 Robert Bosch Gmbh Kraftstoffinjektor mit direkter Steuerung des Einspritzventilglieds und variabler Übersetzung

Also Published As

Publication number Publication date
US7406951B2 (en) 2008-08-05
DE102004027824A1 (de) 2006-01-05
WO2005121544A8 (fr) 2007-03-01
CN1965162A (zh) 2007-05-16
EP1756415A1 (fr) 2007-02-28
US20070246019A1 (en) 2007-10-25
WO2005121544A1 (fr) 2005-12-22
JP2007505255A (ja) 2007-03-08

Similar Documents

Publication Publication Date Title
EP1756415B1 (fr) Injecteur de carburant a multiplication d'actionneur variable
EP1856403B1 (fr) Injecteur de carburant comprenant un element de soupape d'injection a commande directe qui presente un double siege
EP2004983A1 (fr) Injecteur de carburant
EP1688611A2 (fr) Injecteur de carburant à commande de pointeau directe pour un moteur à combustion interne
DE19946827C1 (de) Ventil zum Steuern von Flüssigkeiten
WO2005121543A1 (fr) Injecteur de carburant a multiplication de course d'actionneur variable
DE102005015997A1 (de) Kraftstoffinjektor mit direkter Steuerung des Einspritzventilgliedes
EP2670970B1 (fr) Injecteur de carburant
DE10221384A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE102009039647A1 (de) Kraftstoffinjektor und Kraftstoff-Einspritzsystem
EP1252433B1 (fr) Soupape d'injection de carburant pour moteurs a combustion interne
EP1872008B1 (fr) Injecteur de carburant s'ouvrant a deux niveaux
DE102008040680A1 (de) Kraftstoff-Injektor
EP1682769B1 (fr) Injecteur de carburant dote d'un element de soupape d'injection en plusieurs parties, en commande directe
EP1651861A1 (fr) Soupape de commande a compensation de pression pour un injecteur de carburant comprenant un multiplicateur de pression
EP1203150A2 (fr) Soupape d'injection de carburant pour moteurs a combustion interne
EP1362179A1 (fr) Soupape d'injection
EP2426348B1 (fr) Soupape d'injection de combustible
EP1908953B1 (fr) Dispositif d'injection de carburant
EP1961953A1 (fr) Soupape à plusieurs voies
DE102005024721B4 (de) Common-Rail-Injektor
EP2204570B1 (fr) Injecteur de carburant
DE102005016794B4 (de) Kraftstoffinjektor mit Hubumkehr
DE10019767A1 (de) Ventil zum Steuern von Flüssigkeiten
DE102021202731A1 (de) Kraftstoffeinspritzeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20070829

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005011777

Country of ref document: DE

Effective date: 20111020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005011777

Country of ref document: DE

Effective date: 20120521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130422

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130424

Year of fee payment: 9

Ref country code: FR

Payment date: 20130523

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140415

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190627

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005011777

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103