EP1756279A1 - Verfahren zur herstellung von l-aminosäuren unter verwendung rekombinanter coryneformer bakterien mit verminderter aktivität des regulators asur - Google Patents

Verfahren zur herstellung von l-aminosäuren unter verwendung rekombinanter coryneformer bakterien mit verminderter aktivität des regulators asur

Info

Publication number
EP1756279A1
EP1756279A1 EP05700861A EP05700861A EP1756279A1 EP 1756279 A1 EP1756279 A1 EP 1756279A1 EP 05700861 A EP05700861 A EP 05700861A EP 05700861 A EP05700861 A EP 05700861A EP 1756279 A1 EP1756279 A1 EP 1756279A1
Authority
EP
European Patent Office
Prior art keywords
asur
methionine
amino acids
bacteria
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05700861A
Other languages
English (en)
French (fr)
Inventor
Daniel Koch
Christian RÜCKERT
Jörn Kalinowski
Alfred Pühler
Brigitte Bathe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of EP1756279A1 publication Critical patent/EP1756279A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium

Definitions

  • the invention relates to a process for the fermentative production of L-amino acids, in particular 5 L-methionine, using coryneform bacteria in which the asuR gene is weakened.
  • the asuR gene codes for the regulator AsuR.
  • Chemical compounds in particular L-0 amino acids, vitamins, nucleosides and nucleotides and D-amino acids, are used in human medicine, in the pharmaceutical industry, in cosmetics, in the food industry and in animal nutrition.
  • Process improvements can relate to fermentation-related measures such as stirring and supply of oxygen, or the composition of the nutrient media such as the sugar concentration during fermentation, or the processing into the product form by, for example, ion exchange chromatography or the intrinsic performance properties of the microorganism itself.
  • strains are obtained which are resistant to antimetabolites such as the lysine analogue S- (2-aminoethyl) cysteine or the methionine analogues ⁇ -methyl-methionine, ethionine, norleucine, N-acetylnorleucine, S-trifluoromethylhomocysteine, 2 -amino-5- Heprenoitklare, seleno-methionine, methionine sulfoximine, methoxine, 1-aminocyclopentane carboxylic acid or are auxotrophic for regulatory-important metabolites and produce L-amino acids.
  • antimetabolites such as the lysine analogue S- (2-aminoethyl) cysteine or the methionine analogues ⁇ -methyl-methionine, ethionine, norleucine, N-acetylnorleucine, S-trifluoromethylhomocy
  • the inventors have set themselves the task of providing new foundations for improved processes for the fermentative production of L-amino acids, in particular L-methionine, with coryneform bacteria.
  • one or more of the protein amino acids including their salts are selected from the group L-aspartic acid, L-asparagine, L-threonine, L-serine, L-
  • L-methionine is particularly preferred.
  • Proteinogenic amino acids are those
  • Amino acids that are found in natural proteins, i.e. in proteins from microorganisms, plants, animals and humans. They serve as structural units for proteins in which they are linked to one another via peptide bonds. If L-methionine or methionine are mentioned in the following, this also means the salts such as, for example, methionine hydrochloride or methionine sulfate.
  • the regulator AsuR is an activator of genes that are involved in the uptake and utilization of sulfur-containing compounds, in particular sulfonates. It is repressed by sulfate. AsuR also represses genes of cysteine biosynthesis. Cysteine biosynthesis is of great importance for methionine biosynthesis, since the sulfur required for the biosynthesis of methionine comes from sulfite and cysteine from cysteine biosynthesis.
  • the term “asuR” is derived from "alternate sulfur source utilization regulator".
  • Regulatory proteins that regulate the expression of other genes are those proteins that can bind to DNA, for example, by means of a specific protein structure called a helix-turn-helix motif and can thus either increase or decrease the transcription of other genes.
  • the weakening, in particular switching off, of the asuR gene coding for the regulator AsuR improves the production of L-methionine in the corresponding coryneform bacteria compared to the starting organisms without weakening or switching off this gene.
  • the invention relates to a process for the fermentative production of L-amino acids using coryneform bacteria, which in particular already produce L-amino acids and in which that for regulatory protein AsuR-encoding asuR gene is weakened, in particular switched off or is expressed at a low level.
  • This invention furthermore relates to a process for the fermentative production of L-amino acids, in which the following steps are carried out:
  • the coryneform bacteria used preferably produce L-amino acids, especially L-methionine, even before the asuR gene is weakened or switched off.
  • microorganisms preferably coryneform bacteria, produce L-amino acids, in particular L-methionine, in an improved manner after weakening, in particular switching off the regulator AsuR.
  • Corynebacterium glutamicum is state of the art and can be found in various patent applications and in the database of the National Center for Biotechnology Information (NCBI) and the National Library of Medicine (Bethesda, MD, USA).
  • NCBI National Center for Biotechnology Information
  • the nucleotide sequence of the gene coding for the regulator AsuR of Corynebacterium glutamicum can be found in patent application EP1108790 as sequence No. 12 and as sequence No. 1.
  • the nucleotide sequence is also stored in the database of the National Center for Biotechnology Information (NCBI) of the National Library of Medicin (Bethesda, MD, USA) under the accession number AX120096 and under the accession number AX120085. It can also be found under the accession number BX927148 from nucleotide 11177 to 10104 of the sequence given, the amino acid sequence of the associated protein is stored under the accession number CAF18575.
  • sequence described in the text passage coding for the gene asuR can be used according to the invention. Furthermore, alleles of the gene mentioned can be used, which result from the degeneracy of the genetic code or from function-neutral sense mutations (“sense mutations”).
  • weakening or “weakening” describes the reduction or elimination of the intracellular activity of one or more enzymes or proteins in a microorganism that are encoded by the corresponding DNA, for example by using a weak promoter or a gene or allele used which codes for a corresponding enzyme with a low activity or inactivates the corresponding gene or enzyme or protein and optionally combines these measures.
  • the attenuation measures generally reduce the activity or concentration of the corresponding protein to 0 to 75%, 0 to 50%, 0 to 25%, 0 to 10% or 0 to 5% of the activity or concentration of the wild-type protein, or the activity or concentration of the protein in the starting microorganism, is lowered.
  • the reduction in the protein concentration can be demonstrated by means of 1- and 2-dimensional protein gel separation and subsequent optical identification of the protein concentration using the appropriate evaluation software in the gel.
  • a common method for preparing the protein gels in coryneform bacteria and for identifying the proteins is that of Hermann et al. (Electrophoresis, 22: 1712-23 (2001)).
  • the protein concentration can also be determined by Western blot hybridization with an antibody specific for the protein to be detected (Sambrook et al., Molecular cloning: a laboratory manual. 2 nd Ed.
  • DNA-binding proteins can be measured by means of DNA band shift assays (also referred to as gel retardation) as described, for example, in the textbook “Bioanalytics” (Lotttechnisch / Zorbas, Spectrum Academic Publishing House Ginbh, Heidelberg, Germany, 1998) and by Wilson et al. (J. Bacteriol.
  • the microorganisms which are the subject of the present invention can produce amino acids from glucose, sucrose, lactose, fructose, maltose, molasses, starch, cellulose or from glycerol and ethanol. It can be Representatives of coryneform bacteria, in particular the genus Corynebacterium. In the genus Corynebacterium, the species Corynebacterium glutamicum should be mentioned in particular, which is known in the art for its ability to produce L-amino acids.
  • Suitable strains of the genus Corynebacterium, in particular of the species Corynebacterium glutamicum, are particularly the known wild-type strains
  • ATCC American Type Culture Collection
  • FERM National Institute of Advanced Industrial Science and Technology
  • ASIST Tsukuba Central 6, 1-1 -1 Higashi, Tsukuba Ibaraki, Japan The aforementioned strain of Corynebacterium thermoaminogenes (FERM BP-1539) is described in US-A-5,250,434.
  • the expression of the genes or the catalytic or regulatory properties of the enzyme proteins can be reduced or switched off. If necessary, both measures can be combined.
  • the gene expression can be reduced by appropriate culture management or by genetic modification (mutation) of the signal structures of the gene expression.
  • Signal structures of gene expression are, for example, repressor genes, activator genes, operators, promoters,
  • Attenuators riboso binding sites, the start codon and terminators.
  • the person skilled in the art finds information on this e.g. in patent application WO 96/15246, in Boyd and Murphy (Journal of Bacteriology 170: 5949-5952 (1988)), in Voskuil and Chambliss (Nucleic Acids Research 26: 3584-3590 (1998), in Patek et al.
  • An example of the targeted regulation of gene expression is the cloning of the gene to be weakened under the control of a promoter which can be induced by adding dosed amounts of IPTG (isopropyl - /? - D-thiogalactopyranoside) such as, for example, the trc promoter or the tac promoter.
  • IPTG isopropyl - /? - D-thiogalactopyranoside
  • vectors such as the Escherichia coli expression vector pXK99E (WO0226787; deposited according to the Budapest Treaty on July 31, 2001 in
  • DH5alpha / pXK99E as DSM14440 at the German Collection for Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany)) or pVWEx2 (Wendisch, Ph. D. thesis, reports from Anlagenstechnik Anlagenlich, Jül-3397, ISSN 0994-2952, Weglich, Germany ( 1997)), which enable IPTG-dependent expression of the cloned gene in Corynebacterium glutamicum.
  • Another method for specifically reducing> gene expression is the antisense technique, in which short oligodeoxyucleotides or vectors are brought into the target cells for the synthesis of longer antisense RNA.
  • the antisense RNA can bind to complementary sections of specific RNAs and reduce their stability or block translatability. An example of this can be found by the person skilled in the art in Srivastava et al. (Applied Environmental Microbiology 2000 Oct; 66 (10): 4366-4371).
  • Enzyme activity is spoken of missense mutations or nonsense mutations. Insertions or deletions of at least one base pair in a gene lead to frame shift mutations, in the result of which incorrect amino acids are incorporated or the translation terminates prematurely. Deletions from multiple codons typically result in complete loss of enzyme activity. Instructions for generating such mutations are state of the art and can be found in well-known textbooks of genetics and molecular biology such as the textbook by Knippers ("Molecular Genetics", 6th edition, Georg Thieme Verlag, Stuttgart, Germany, 1995), that of Winnacker (“ Gene and Clones “, VCH Verlagsgesellschaft, Weinheim, Germany, 1990) or that of Hagemann (“Institute Genetik “, Gustav Fischer Verlag, Stuttgart, 1986).
  • a central part of the coding region of the gene of interest is cloned into a plasmid vector which can replicate in a host (typically E. coli) but not in C. glutamicum.
  • vectors are PSUP301 (Simon et al., Bio / Technology 1, 784-791 (1983)), pKl ⁇ mob, pKl9mob, pKl ⁇ mobsacB or pKl9mobsacB (Schäfer et al., Gene 145, 69-73 (1994)), pGEM- T (Promega Corporation, Madison, WI, USA), pCR2.1-TOPO (Invitrogen, Groningen, The Netherlands; Shu an (1994).
  • the invention also relates to vectors which contain at least 15, preferably 25 successive nucleotides of the central part of the coding region of the gene asuR.
  • a mutation such as, for example, a deletion, insertion or base exchange in the gene of interest is produced in vitro.
  • the allele produced is in turn cloned into a vector which is not replicative for C. glutamicum and then cloned by Transformation or conjugation into the desired host of C. glutamicum after homologous recombination by means of a first, integration-causing "cross-over” event and a suitable second, excision-causing "cross-over” event in the target gene or in the
  • the target sequence is achieved by inserting the mutation or the allele.
  • a deletion, insertion or base exchange can be incorporated into one or more of the genes selected from the group yaeC, abc and yaeE.
  • L-amino acids in addition to the weakening of the regulator AsuR, one or more enzymes of the respective biosynthetic pathway, glycolysis, anaplerotic, the citric acid cycle, the pentose phosphate cycle, the amino acid export and possibly regulatory Either to amplify proteins, in particular to overexpress them, or to weaken them, in particular to switch them off or to reduce expression.
  • amplification or “amplification” describes the increase in the intracellular activity or concentration of one or more enzymes or proteins in a microorganism that are encoded by the corresponding DNA, for example by changing the number of copies of the gene or Genes increased, a strong promoter or a gene or all! used, which codes for a corresponding enzyme or protein with a high activity and optionally combines these measures.
  • the measures of enhancement in particular overexpression, generally reduce the activity or concentration of the corresponding protein by at least 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% or 500% , up to 1000% or 2000% based on that of the wild type Protein or the activity or concentration of the protein in the starting microorganism increased.
  • Endogenous genes or “endogenous nucleotide sequences” means the genes or nucleotide sequences present in the population of a species.
  • genes selected from the group of genes or alleles of methionine production can be amplified, in particular overexpressed, for the production of L-methionine.
  • Genes or alleles of methionine production are understood to mean all, preferably endogenous, open reading frames, genes or alleles, the strengthening / overexpression of which can bring about an improvement in methionine production.
  • genes or alleles include the following open reading frames, genes or alleles: accBC, accDA, aecD, cstA, cysD, cysE, cysH, cysK, cysN, cysQ, dps, eno, fda, gap, gap2, gdh, gnd, glyA, hom, hom FBR , lysC, lysC FBR , metA, metB, metE, metH, metY, msiK, opcA, oxyR, ppc, ppc FBR , pgk, pknA, pknB, pknD, pknG, ppsA, ptsH, ptsl, ptsM, pyc, pyc P458S, sigC, sigD, sigE, sigH, sig
  • L-methionine in addition to the weakening of the regulator AsuR, to simultaneously weaken, in particular switch off, one or more of the genes selected from the group of genes or alleles which are not essential for growth or methionine production or decrease expression.
  • genes or alleles include the following open reading frames, genes or alleles: brnQ, ccpAl, ccpA2, citA, citB, citE, ddh, gluA, gluB, gluC, gluD, luxR, luxS, lysRl, lysR2, lysR3, menE, ' metD, etK , pck, pgi, poxB and zwa2. These are summarized and explained in Table 2. Table 2
  • microorganisms produced according to the invention are also a subject of the invention and can be cultured continuously or batchwise in the batch process (batch cultivation) or in the fed batch (feed process) or repeated fed batch process (repetitive feed process) for the purpose of producing L-amino acids.
  • the culture medium to be used must meet the requirements of the respective strains in a suitable manner. Descriptions of culture media of various microorganisms are contained in the manual "Manual of Methods for General Bacteriology” of the American Society for Bacteriology (Washington D.C., USA, 1981).
  • Sugar and carbohydrates such as e.g. Glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats such as e.g. Soybean oil, sunflower oil, peanut oil and coconut fat, fatty acids. such as. Palmitic acid, stearic acid and linoleic acid, alcohols such as e.g. Glycerin and ethanol and organic
  • Acids such as Acetic acid can be used. These substances can be used individually or as a mixture.
  • Organic nitrogen-containing compounds such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate can be used as the nitrogen source.
  • the nitrogen sources can be used individually or as a mixture.
  • Potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used.
  • the culture medium must also contain salts of metals such as e.g. Magnesium sulfate or iron sulfate, which are necessary for growth. After all, essential
  • Growth substances such as amino acids and vitamins can be used in addition to the substances mentioned above.
  • Suitable precursors can also be added to the culture medium.
  • the feedstocks mentioned can be used for culture in the form of a added one-off approach or added in a suitable manner during cultivation.
  • Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or ammonia water or acidic compounds such as phosphoric acid or sulfuric acid are used in a suitable manner to control the pH of the culture.
  • Anti-foam agents such as e.g. Fatty acid polyglycol esters are used.
  • suitable 'selectively acting substances such as e.g.
  • Antibiotics are added.
  • oxygen or gas mixtures containing oxygen e.g. Air entered the culture.
  • the temperature of the culture is usually 20 ° C to 45 ° C and preferably 25 ° C to 40 ° C.
  • the culture is continued until a maximum of the desired product has formed. This goal is usually achieved within 10 hours to 160 hours.
  • Combinations thereof can be improved by at least 0.5%, at least 1% or at least 2%.
  • the method according to the invention serves for the fermentative production of L-methionine.
  • the concentration of L-methionine in the end product can optionally be adjusted to the desired value by adding L-methionine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Methionin, bei dem man die die gewünschte L-Aminosäure produzierenden coryneformen Bakterien fermentiert, bei denen man den Regulator AsuR abschwächt, insbesondere ausschaltet oder auf niedrigem Niveau exprimiert. Die Erfindung betrifft weiterhin diese rekombinanten Mikroorganismen.

Description

VERFAHREN ZUR HERSTELLUNG VON L-AMINOSÄUREN UNTER VERWENDUNG REKOMBINANTER CORYNEFORMER BAKTERIEN MIT VERMINDERTER AKTIVITÄT DES REGULATORS ASUR
Gegenstand der Erfindung ist ein Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere 5 L-Methionin, unter Verwendung von coryneformen Bakterien, in denen das asuR-Gen abgeschwächt wird. Das asuR-Gen kodiert für den Regulator AsuR.
Stand der Technik
Chemische Verbindungen, mit denen insbesondere L-0 Aminosäuren, Vitamine, Nukleoside und Nukleotide und D- Aminosäuren gemeint sind, finden in der Humanmedizin, in der pharmazeutischen Industrie, in der Kosmetik, in der Lebensmittelindustrie und in der Tierernährung Anwendung.
Zahlreiche dieser Verbindungen werden durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.
Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der- Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite wie z.B. das Lysin-Analogon S- (2-Aminoethyl) -Cystein oder die Methionin- Analoga α-Methyl-Methionin, Ethionin, Norleucin, N- acetylnorleucin, S-Trifluoromethylhomocystein, 2-amino-5- heprenoitsäure, Seleno-Methionin, Methioninsulfoximin, Methoxin, 1-Aminocyclopentan-Carboxylsäure sind oder auxotroph für regulatorisch bedeutsame Metabolite sind und L-Aminosäuren produzieren. Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung L- Aminosäure produzierender Stämme von Corynebacterium glutamicum eingesetzt, indem man einzelne Aminosäure- Biosynthesegene amplifiziert und die Auswirkung auf die L- Aminosäure-Produktion untersucht.
Aufgabe der Erfindung
Die Erfinder haben sich die Aufgabe gestellt, neue Grundlagen für verbesserte Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Methionin, mit coryneformen Bakterien bereitzustellen.
Beschreibung der Erfindung
Werden im folgenden L-Aminosäuren oder Aminosäuren erwähnt, sind damit eine oder mehrere der proteinen Aminosäuren einschließlich ihrer Salze, ausgewählt aus der Gruppe L- Asparaginsäure, L-Asparagin, L-Threonin, L-Serin, L-
Gluta insäure, L-Glutamin, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L- Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan, L-Arginin und L-Prolin gemeint. Besonders bevorzugt ist L-Methionin.
Unter proteinogenen Aminosäuren versteht man die
Aminosäuren, die in natürlichen Proteinen, das heißt in Proteinen von Mikroorganismen, Pflanzen, Tieren und Menschen vorkommen. Sie dienen als Struktureinheiten für Proteine, in denen sie über Peptidbindungen miteinander verknüpft sind. Werden im folgenden L-Methionin oder Methionin erwähnt, sind damit auch die Salze wie z.B. Methionin-Hydrochlorid oder Methionin-Sulfat gemeint.
Der Regulator AsuR ist ein Aktivator von Genen, die in die Aufnahme und Verwertung von Schwefel-haltigen Verbindungen, insbesondere von Sulfonaten, involviert sind. Er wird durch Sulfat reprimiert. Weiterhin reprimiert AsuR Gene der Cystein-Biosynthese. Die Cystein-Biosynthese ist von grosser Bedeutung für die Methionin-Biosynthese, da der für die Biosynthese von Methionin benötigte Schwefel aus Sulfit und Cystein aus der Cystein-Biosynthese stammt. Die Bezeichnung „asuR" leitet sich ab von „alternate sulfur source utilization regulator" .
Regulatorische Proteine, welche die Expression anderer Gene regulieren sind solche Proteine, die beispielsweise durch eine spezifische Proteinstruktur, genannt Helix-Turn-Helix- Motiv, an DNA binden können und so die Transkription anderer Gene entweder verstärken oder abschwächen können.
Es wurde gefunden, dass die Funktion des Regulators AsuR aus Corynebacterium glutamicum die Expression von Genen, die in die Aufnahme und Verwertung von Schwefel-haltigen Verbindungen, insbesondere Sulfonaten, involviert sind, aktiviert und Gene der Cystein-Biosynthese reprimiert.
Das Abschwächen, insbesondere Ausschalten des für den Regulator AsuR kodierenden asuR-Gens verbessert die Produktion von L-Methionin in den entsprechenden coryneformen Bakterien im Vergleich zu den AusgangsOrganismen ohne Abschwächung oder Ausschaltung dieses Gens.
Gegenstand der Erfindung ist ein Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von coryneformen Bakterien, die insbesondere bereits L-Aminosäuren produzieren und in denen das für das regulatorische Protein AsuR kodierende asuR-Gen abgeschwächt, insbesondere ausgeschaltet ist oder auf niedrigem Niveau exprimiert wird.
Gegenstand dieser Erfindung ist weiterhin ein Verfahren zur fermentativen Herstellung von L-Aminosäuren, in dem folgende Schritte durchgeführt werden:
a) Fermentation der L-Aminosäure produzierenden reko binanten coryneformen Bakterien in einem Medium, wobei in diesen das für den Regulator AsuR kodierende Gen asuR abgeschwächt, insbesondere ausgeschaltet ist oder auf niedrigem Niveau exprimiert wird,
b) Anreicherung der L-Aminosäuren im Medium oder in den Zellen der Bakterien, und
c) Isolierung der gewünschten L-Aminosäuren, wobei gegebenenfalls Bestandteile der Fermentationsbrühe und/oder der Biomasse in Anteilen (> 0 bis 100 %) oder in ihren Gesamtmengen im Endprodukt verbleiben.
Die eingesetzten coryneformen Bakterien produzieren bevorzugt bereits vor der Abschwächung oder dem Ausschalten des asuR-Gens L-Aminosäuren, insbesondere L-Methionin.
Es wurde gefunden, dass Mikroorganismen, bevorzugt coryneforme Bakterien nach Abschwächung, insbesondere Ausschalten des Regulators AsuR, in verbesserter Weise L- Aminosäuren, insbesondere L-Methionin, produzieren.
Die Nukleotidsequenzen des genannten Gens von
Corynebacterium glutamicum gehören zum Stand der Technik und können verschiedenen Patentanmeldungen sowie der Datenbank des National Center for Biotechnology Information (NCBI).der National Library of Medicine (Bethesda, MD, USA) entnommen werden. Die Nukleotidsequenz des für den Regulator AsuR von Corynebacterium glutamicum kodierenden Gens kann der Patentanmeldung EP1108790 als Sequenz Nr. 12 sowie als Sequenz Nr. 1 entnommen werden. Die Nukleotidsequenz ist ebenfalls in der Datenbank des National Center for Biotechnology Information (NCBI) der National Library of Medicin (Bethesda, MD, USA) unter der Accession Number AX120096 und unter der Accession Number AX120085 hinterlegt. Weiterhin ist sie unter der Accession Number BX927148 von Nukleotid 11177 bis 10104 der angegebenen Sequenz zu finden, die Aminosäuresequenz des zugehörigen Proteins ist unter der Accession Number CAF18575 hinterlegt.
Die in der angegebenen Textstelle beschriebene Sequenz kodierend für das Gen asuR kann erfindungsgemäß verwendet werden. Weiterhin können Allele des genannten Gens verwendet werden, die sich aus der Degeneriertheit des genetischen Kodes oder durch funktionsneutrale Sinnmutationen („sense mutations") ergeben.
Bevorzugte Ausführungsformen finden sich in den Ansprüchen.
Der Begriff „Abschwächung" bzw. „Abschwächen" beschreibt in diesem Zusammenhang die Verringerung oder Ausschaltung der intrazellulären Aktivität eines oder mehrerer Enzyme bzw. Proteine in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor verwendet oder ein Gen bzw. Allel verwendet, das für ein entsprechendes Enzym mit einer niedrigen Aktivität kodiert bzw. das entsprechende Gen oder Enzym bzw. Protein inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.
Durch die Maßnahmen der Abschwächung wird die Aktivität oder Konzentration des entsprechenden Proteins im allgemeinen auf 0 bis 75%, 0 bis 50%, 0 bis 25%, 0 bis 10% oder 0 bis 5% der Aktivität oder Konzentration des Wildtyp- Proteins, beziehungsweise der Aktivität oder Konzentration des Proteins im Ausgangs-Mikroorganismus, abgesenkt.
Die Herabsetzung der Proteinkonzentration ist über 1- und 2-dimensionale Proteingelauftrennung und anschließende optische Identifizierung der Proteinkonzentration mit enstprechender Auswertesoftware im Gel nachweisbar. Eine gebräuchliche Methode zur Präparation der Proteingele bei coryneformen Bakterien und zur Identifizierung der Proteine ist die von Hermann et al . (Electrophoresis, 22:1712-23 (2001)) beschriebene Vorgehensweise. Die Proteinkonzentration kann ebenfalls durch Western-Blot- Hybridisierung mit einem für das nachzuweisende Protein spezifischen Antikörper (Sambrook et al . , Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) und anschließender optischer Auswertung mit ensprechender Software zur Konzentrationsbestimmung (Lohaus und Meyer (1998) Biospektrum 5:32-39; Lottspeich, Angewandte Chemie 111: 2630-2647 (1999)) analysiert werden. Die Aktivität von DNA-bindenden Proteinen kann mittels DNA Band-Shift-Assays (auch als Gelretardation bezeichnet) gemessen werden wie beispielsweise im Lehrbuch „Bioanalytik" (Lottspeich/ Zorbas, Spektrum Akademischer Verlag Ginbh, Heidelberg, Deutschland, 1998) beschrieben und bei Wilson et al . (J. Bacteriol . 183: 2151-2155 (2001)) angewendet. Die Wirkung von DNA-bindenden Proteinen auf die Expression anderer Gene kann durch verschiedene gut beschriebene Methoden des Reportergen-Assays nachgewiesen werden (Sambrook et al . , Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).
Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können Aminosäuren aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.
Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum, sind besonders die bekannten Wildtypstamme
Corynebacterium glutamicum ATCC13032 Corynebacterium acetoglutamicum ATCC15806 Corynebacterium acetoacidophilum ATCC13870 Corynebacterium melassecola ATCC17965 Corynebacterium thermoaminogenes FERM BP-1539 Brevibacterium flavum ATCC14067 Brevibacterium lactofermentum ATCC13869 und Brevibacterium divaricatum ATCC14020
oder wie beispielsweise der L-Methionin produzierende Stamm
Corynebacterium glutamicum ATCC21608.
Stämme mit der Bezeichnung „ATCC" können von der American Type Culture Collection (Manassas, VA, USA) bezogen werden. Stämme mit der Bezeichnung „FERM" können vom National Institute of Advanced Industrial Science and Technology (AIST Tsukuba Central 6, 1-1-1 Higashi, Tsukuba Ibaraki, Japan) bezogen werden. Der genannte Stamm von Corynebacterium thermoaminogenes (FERM BP-1539) ist in der US-A-5.250.434 beschrieben.
Zur Erzielung einer Abschwächung können entweder die Expression der Gene oder die katalytischen oder regulatorischen Eigenschaften der Enzymproteine herabgesetzt oder ausgeschaltet werden. Gegebenenfalls können beide Maßnahmen kombiniert werden. Die Genexpression kann durch geeignete Kulturführung oder durch genetische Veränderung (Mutation) der Signalstrukturen der Genexpression verringert werden. Signalstrukturen der Genexpression sind beispielsweise Repressorgene, Aktivatorgene, Operatoren, Promotoren,
Attenuatoren, Riboso enbindungsstellen, das Startkodon und Terminatoren. Angaben hierzu findet der Fachmann z.B. in der Patentanmeldung WO 96/15246, bei Boyd und Murphy (Journal of Bacteriology 170: 5949-5952 (1988)), bei Voskuil und Chambliss (Nucleic Acids Research 26: 3584-3590 (1998), bei Patek et al . (Microbiology 142: 1297-309 (1996) und Journal of Biotechnology 104: 311-323 (2003)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie wie z.B. dem Lehrbuch von Knippers („Molekulare Genetik", 6. Auflage, Georg Thieme Verlag, Stuttgart, Deutschland, 1995) oder dem von Winnacker („Gene und Klone", VCH Verlagsgesellschaft, Weinheim, Deutschland, 1990) .
Ein Beispiel für die gezielte Regulation der Genexpression ist die Klonierung des abzuschwächenden Gens unter die Kontrolle eines durch Zugabe dosierter Mengen von IPTG (Isopropyl-/?-D-thiogalactopyranosid) induzierbaren Promotors wie zum Beispiel des trc-Promotors oder des tac- Promotors . Hierzu eignen sich Vektoren wie beispielsweise der Escherichia coli Expressionsvektor pXK99E (WO0226787; hinterlegt gemäß Budapester Vertrag am 31. Juli 2001 in
DH5alpha/pXK99E als DSM14440 bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland)) oder pVWEx2 (Wendisch, Ph. D. thesis, Berichte des Forschungszentrums Jülich, Jül-3397, ISSN 0994-2952, Jülich, Deutschland (1997)), die eine IPTG- abhängige Expression des klonierten Gens in Corynebacterium glutamicum ermöglichen.
Eingesetzt wurde diese Methode beispielsweise in der Patentschrift WO0226787 zur regulierten Expression des deaD-Gens durch Integration des Vektors pXK99EdeaD in das Genom von Corynebacterium glutamicum und von Simic et al . (Applied and Environmental Microbiology 68: 3321-3327 (2002)) zur regulierten Expression des glyA-Gens durch Integration des Vektors pKlδmobglyA' in Corynebacterium glutamicum.
Eine weitere Methode zur spezifischen Verringerung der > Genexpression ist die Antisense-Technik, wobei kurze Oligodesoxyukleotide oder Vektoren zur Synthese längerer Antisense-RNA in die Zielzellen gebracht werden. Die Antisense-RNA kann dort an komplementäre Abschnitte spezifischer RNAs binden und deren Stabilität verringern oder die Translatierbarkeit blocken. Ein Beispiel hierzu findet der Fachmann bei Srivastava et al . (Applied Environmental Microbiology 2000 Oct; 66 (10) : 4366 - 4371) .
Mutationen, die zu einer Veränderung bzw. Herabsetzung der katalytischen Eigenschaften von Enzymproteinen führen, sind aus dem Stand der Technik bekannt; als Beispiele seien die Arbeiten von Qiu und Goodman (Journal of Biological Chemistry 272: 8611-8617 (1997)), Sugi oto et al . (Bioscience Biotechnology and Biochemistry 61: 1760-1762 (1997)) und Möckel (Ph. D. thesis, Berichte des Forschungszentrums Jülich, Jül-2906, ISSN09442952, Jülich, Deutschland (1994)) genannt. Zusammenfassende Darstellungen können bekannten Lehrbüchern der Genetik und Molekularbiologie wie z.B. dem von Hagemann („Allgemeine
Genetik", Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden.
Als Mutationen kommen Transitionen, Transversionen, Insertionen und Deletionen in Betracht. In Abhängigkeit von der Wirkung des Aminosäureaustausches auf die
Enzymaktivität wird von Fehlsinnmutationen („missense mutations") oder Nichtsinnmutationen . („nonsense mutations") gesprochen. Insertionen oder Deletionen von mindestens einem Basenpaar in einem Gen führen zu Rasterverschiebungsmutationen („frame shift mutations"), in deren Folge falsche Aminosäuren eingebaut werden oder die Translation vorzeitig abbricht. Deletionen von mehreren Kodonen führen typischerweise zu einem vollständigen Ausfall der Enzymaktivität. Anleitungen zur Erzeugung derartiger Mutationen gehören zum Stand der Technik und können bekannten Lehrbüchern der Genetik und Molekularbiologie wie z.B. dem Lehrbuc von Knippers („Molekulare Genetik", 6. Auflage, Georg Thieme Verlag, Stuttgart, Deutschland, 1995), dem von Winnacker („Gene und Klone", VCH Verlagsgesellschaft, Weinheim, Deutschland, 1990) oder dem von Hagemann („Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden.
Eine gebräuchliche Methode, Gene von C. glutamicum zu mutieren, ist die von Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991)) beschriebene Methode der Gen-Unterbrechung („gene disruption") und des Gen-Austausche („gene replacement") .
Bei der Methode der Gen-Unterbrechung wird zum Beispiel ein zentraler Teil der Kodierregion des interessierenden Gens in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli) , nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise PSUP301 (Simon et al . , Bio/Technology 1, 784-791 (1983)), pKlδmob, pKl9mob, pKlβmobsacB oder pKl9mobsacB (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega Corporation, Madison, WI, USA), pCR2.1-TOPO (Firma Invitrogen, Groningen, Niederlande; Shu an (1994) . Journal of Biological Chemistry 269:32678-84; US-Patent 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al . , Journal of Molecular Biology, 234: 534-541 (1993)) oder pEMl (Schrumpf et al, 1991, Journal of Bacteriology 173:4510-4516) in Frage. Der Plasmidvektor, der den zentralen Bereich der Kodierregion des Gens enthält, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode der Konjugation ist beispielsweise bei Schäfer et al . (Journal of Bacteriology 172: 1663-1666 (1990) und Applied and Environmental Microbiology 60: 756- 759 (1994)) beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al . (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al . (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben. Nach homologer Rekombination mittels eines "cross-over"- Ereignisses wird die Kodierregion des betreffenden Gens durch die Vektorsequenz unterbrochen und man erhält zwei unvollständige Allele, denen jeweils das 3'- bzw. das 5'- Ende fehlt. Diese Methode wurde beispielsweise von Fitzpatrick et al . (Applied Microbiology and Biotechnology 42, 575-580 (1994)) zur Ausschaltung des recA-Gens von C. glutamicum verwendet.
Gegenstand der Erfindung sind ebenfalls Vektoren, die mindestens 15, bevorzugt 25 aufeinanderfolgende Nukleotide des zentralen Teils der Kodierregion des Gens asuR enthalten.
Bei der Methode des Genaustausches („gene replacement") wird eine Mutation wie z.B. eine Deletion, Insertion oder Basenaustausch in dem interessierenden Gen in-vitro hergestellt. Das hergestellte Allel wird wiederum in einen für C. glutamicum nicht replikativen Vektor kloniert und dieser anschließend durch Transformation oder Konjugation in den gewünschten Wirt von C. glutamicum überführt. Nach homologer Rekombination mittels eines ersten, Integration bewirkenden "cross-over"-Ereignisses und eines geeigneten zweiten, eine Exzision bewirkenden "cross-over"-Ereignisses im Zielgen bzw. in der Zielsequenz erreicht man den Einbau der Mutation bzw. des Allels . Diese Methode -ist bei Scharzer und Pühler (Bio/Technology 9: 84-87 (1991) beschrieben und wurde beispielsweise von Peters-Wendisch et al. (Microbiology 144, 915 - 927 (1998)) verwendet, um das pyc-Gen von C. glutamicum durch eine Deletion auszuschalten oder von Wehmeier et al . (Microbiology 144: 1853-1862 (1998)) zum Einfügen einer Deletion in das rel-Gen von C. glutamicum. Einen Überblick über verschiedene gentechnische Methoden bei C. glutamicum geben Kirchner und Tauch (Journal of Biotechnology 104: 287-299 (2003).
In eines oder mehrere der Gene, ausgewählt aus der Gruppe yaeC, abc unc yaeE kann auf diese Weise eine Deletion, Insertion oder ein Basenaustausch eingebaut werden.
Weiterhin kann es für die Produktion von L-Aminosäuren vorteilhaft sein, zusätzlich zur Abschwächung des Regulators AsuR eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Zitronensäure-Zyklus, des Pentosephosphat-Zyklus, des Aminosäure-Exports und gegebenenfalls regulatorische Proteine entweder zu verstärken, insbesondere überzuexprimieren, oder abzuschwächen, insbesondere auszuschalten oder die Expression zu verringern.
Der Begriff „Verstärkung" bzw. „Verstärken" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität oder Konzentration eines oder mehrerer Enzyme bzw. Proteine in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor oder ein Gen bzw. Alle! verwendet, das für ein entsprechendes Enzym bzw. Protein mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.
Durch die Maßnahmen der Verstärkung, insbesondere Überexpression, wird die Aktivität oder Konzentration des entsprechenden Proteins im allgemeinen um mindestens 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% oder 500%, maximal bis 1000% oder 2000% bezogen auf die des Wildtyp- Proteins beziehungsweise der Aktivität oder Konzentration des Proteins im Ausgangs-Mikroorganismus erhöht.
Die Verwendung endogener Gene wird im allgemeinen bevorzugt. Unter „endogenen Genen" oder „endogenen Nukleotidsequenzen" versteht man die in der Population einer Art vorhandenen Gene beziehungsweise Nukleotidsequenzen.
So kann beispielsweise für die Herstellung von L-Methionin neben der Abschwächung des Regulators AsuR eines oder mehrere der Gene ausgewählt aus der Gruppe der Gene oder Allele der Methioninproduktion verstärkt, insbesondere überexprimiert werden. Unter „Gene oder Allele der Methioninproduktion" sind sämtliche, bevorzugt endogene, offene Leserahmen, Gene oder Allele zu verstehen, deren VerStärkung/Überexpression eine Verbesserung der Methioninproduktion bewirken kann.
Hierzu gehören unter anderem folgende offene Leserahmen, Gene oder Allele: accBC, accDA, aecD, cstA, cysD, cysE, cysH, cysK, cysN, cysQ, dps, eno, fda, gap, gap2 , gdh, gnd, glyA, hom, homFBR, lysC, lysCFBR, metA, metB, metE, metH, metY, msiK, opcA, oxyR, ppc, ppcFBR, pgk, pknA, pknB, pknD, pknG, ppsA, ptsH, ptsl, ptsM, pyc, pyc P458S, sigC, sigD, sigE, sigH, sigM, tal, thyA, tkt, tpi, zwal, zwf und zwf A213T. Diese sind in Tabelle 1 zusammengefasst und erläutert.
Tabelle 1
Gene und Allele der Methioninproduktion
Weiterhin kann es für die Produktion L--Methionin vorteilhaft sein, zusätzlich zur Abschwächung des Regulators AsuR gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe der Gene oder Allele, die für das Wachstum oder die Methioninproduktion nicht essentiell sind, abzuschwächen, insbesondere auszuschalten oder die Expression zu verringern.
Hierzu gehören unter anderem folgende offene Leserahmen, Gene oder Allele: brnQ, ccpAl, ccpA2, citA, citB, citE, ddh, gluA, gluB, gluC, gluD, luxR, luxS, lysRl, lysR2, lysR3, menE,' metD, etK, pck, pgi, poxB und zwa2. Diese sind in Tabelle 2 zusammengefasst und erläutert. Tabelle 2
Gene und Allele, die für die Methioninproduktion nicht essentiell sind
Schließlich kann es für die Produktion von Aminosäuren, insbesondere L-Methionin, vorteilhaft sein, neben der Abschwächung Regulators AsuR unerwünschte Nebenreaktionen auszuschalten (Nakayama: „Breeding of Amino Acid Producing Microorganisms" , in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).
Die erfindungsgemäß hergestellten Mikroorganismen sind ebenfalls Gegenstand der Erfindung und können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von L-Aminosäuren kultiviert werden. Eine Zusammenfassung über bekannte
Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991) ) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994) ) beschrieben.
Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch „Manual of Methods for General Bacteriology,, der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten.
Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren . wie z.B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z.B. Glycerin und Ethanol und organische
Säuren wie z.B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.
Als Stickstoffquelle können organische Stickstoff-haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.
Als Phosphorquelle können Phosphorsäure,
Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten wie z.B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle
Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.
Zur pH-Kontrolle der Kultur werden basische .Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z.B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete' selektiv wirkende Stoffe wie z.B.
Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff- haltige Gasmischungen wie z.B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.
Mit den Methoden der Erfindung kann die Leistung der
Bakterien oder des Fermentationsprozesses bezüglich der Produkt-Konzentration ( (Produkt pro Volumen) , der Produkt- Ausbeute (gebildetes Produkt pro verbrauchter Kohlenstoff- Quelle) , der Produkt-Bildung (gebildetes Produkt pro Volumen und Zeit) oder anderer Prozess-Parameter und
Kombinationen davon um mindestens 0,5%, mindestens 1% oder mindestens 2% verbessert werden.
Methoden zur Bestimmung von L-Aminosäuren sind aus dem Stand der Technik bekannt. Die Analyse kann so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1185-
1190) beschrieben durch Anionenaustauschchromatographie mit anschließender Ninhydrin Derivatisierung erfolgen, oder sie kann durch reversed phase HPLC erfolgen, so wie bei Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174) beschrieben. Informationen dazu findet der Fachmann auch bei Ashman et al . (in: Tschesche (Hrsg), Modern Methods in Protein Chemistry. 155-172, de Gruyter, Berlin 1985) .
Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von L-Methionin.
Die Konzentration von L-Methionin im Endprodukt kann gegebenenfalls durch den Zusatz von L-Methionin auf den gewünschten Wert eingestellt werden.

Claims

Patentansprüche
1. Verfahren zur Herstellung von L-Aminosäuren durch Fermentation rekombinanter coryneformer Bakterien, dadurch gekennzeichnet, dass man Bakterien einsetzt, in denen der Regulator AsuR abgeschwächt, insbesondere ausgeschaltet oder auf niedrigem Niveau exprimiert wird.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass man L-Methionin herstellt.
3. Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Methionin gemäss Anspruch 1, dadurch gekennzeichnet, dass man folgende Schritte durchführt : a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen der Regulator AsuR abgeschwächt, insbesondere ausgeschaltet oder auf niedrigem Niveau exprimiert ist; b) Anreicherung des gewünschten Produkts im Medium oder in den Zellen der Bakterien, und c) Isolierung der gewünschten L-Aminosäure, wobei gegebenenfalls Bestandteile der Fermentationsbrühe und/oder Biomasse in ihrer Gesamtheit oder in Anteilen (> 0 bis 100 %) im Endprodukt verbleiben.
4. Verfahren gemäß Anspruch 1 oder 3, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges von L- Methionin verstärkt.
5. Verfahren gemäß Anspruch 1 oder 3 , dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung von L-Methionin verringern.
6. Verfahren gemäß Anspruch 1 oder 3 , dadurch gekennzeichnet, daß man die Expression des (der) Polynukleotids (e) , das (die) für den Regulator AsuR kodiert, verringert.
7. Verfahren gemäß Anspruch 1 oder 3 , dadurch gekennzeichnet, daß man die regulatorischen und/oder katalytischen Eigenschaften der Polypeptide (Enzymproteine) verringert, für die die Polynukleotide yaeC, abc und yaeE kodieren.
8. Verfahren gemäß Anspruch 1 oder 3 , dadurch gekennzeichnet, daß man für die Herstellung von I.Aminosäuren, insbesondere L-Methionin, coryneforme Bakterien fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der in Tabelle 1 aufgeführten Gruppe verstärkt, insbesondere überexprimiert :
Verfahren gemäß Anspruch 1 oder 3 , dadurch gekennzeichnet, daß man zur Herstellung von L- Aminosäuren, insbesondere L-Methionin, coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der in Tabelle 2 aufgeführten Gruppe abschwächt, insbesondere ausschaltet oder die Expression verringert:
10. Verfahren gemäß einem oder mehreren der Ansprüche 1-9, dadurch gekennzeichnet, dass man Mikroorganismen der Art Corynebacterium glutamicum einsetzt.
11. Rekombinante Mikroorganismen, bevorzugt coryneforme Bakterien, in denen zumindest das für den Regulator AsuR kodierende Gen abgeschwächt, insbesondere ausgeschaltet oder auf niedrigem Niveau exprimiert vorliegt, verglichen mit dem AusgangsOrganismus ohne Abschwächung oder Abschaltung des Gens für den Regulator AsuR.
12. Vektor, der ein Fragment mit mindestens 15 aufeinanderfolgenden Nukleotiden der Sequenz (en) von mindestens einem der Gene yaeC, abc und yaeE enthält und in C. glutamicum nicht replizieren kann.
EP05700861A 2004-02-27 2005-01-13 Verfahren zur herstellung von l-aminosäuren unter verwendung rekombinanter coryneformer bakterien mit verminderter aktivität des regulators asur Withdrawn EP1756279A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410009453 DE102004009453A1 (de) 2004-02-27 2004-02-27 Verfahren zur Herstellung von L-Aminosäuren unter Verwendung von coryneformen Bakterien
PCT/EP2005/000243 WO2005083082A1 (de) 2004-02-27 2005-01-13 Verfahren zur herstellung von l-aminosäuren unter verwendung rekombinanter coryneformer bakterien mit verminderter aktivität des regulators asur

Publications (1)

Publication Number Publication Date
EP1756279A1 true EP1756279A1 (de) 2007-02-28

Family

ID=34853738

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05700861A Withdrawn EP1756279A1 (de) 2004-02-27 2005-01-13 Verfahren zur herstellung von l-aminosäuren unter verwendung rekombinanter coryneformer bakterien mit verminderter aktivität des regulators asur

Country Status (4)

Country Link
EP (1) EP1756279A1 (de)
CN (1) CN1922322A (de)
DE (1) DE102004009453A1 (de)
WO (1) WO2005083082A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006269864A1 (en) * 2005-07-18 2007-01-25 Evonik Degussa Gmbh Methionine producing recombinant microorganisms
CN101164694A (zh) 2006-10-20 2008-04-23 德古萨股份公司 用于催化气相氧化的混合氧化物催化剂
DE102006054202A1 (de) * 2006-11-17 2008-05-21 Evonik Degussa Gmbh Allele des oxyR-Gens aus coryneformen Bakterien
EP2121735A1 (de) * 2007-02-19 2009-11-25 Evonik Degussa GmbH Verfahren zur herstellung von methionin in corynebakterien mittels überexprimierung von enzymen des pentosephosphatweges
KR101756338B1 (ko) * 2016-01-15 2017-07-10 고려대학교 산학협력단 L-시스테인 생산용 변이미생물 및 이를 이용한 l-시스테인의 제조방법
JP7074133B2 (ja) * 2016-10-26 2022-05-24 味の素株式会社 目的物質の製造方法
CN116731950A (zh) * 2023-08-10 2023-09-12 中国科学院天津工业生物技术研究所 谷氨酸棒杆菌抗逆工程菌及其在生产酸性生物基化学品中应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623825B2 (ja) * 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド
DE10126164A1 (de) * 2001-05-30 2002-12-05 Degussa Für das metD-gen kodierende Nukleotidsequenzen
DE10128510A1 (de) * 2001-06-13 2002-12-19 Degussa Methode zur Fermentationskontrolle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005083082A1 *

Also Published As

Publication number Publication date
CN1922322A (zh) 2007-02-28
DE102004009453A1 (de) 2005-09-15
WO2005083082A1 (de) 2005-09-09

Similar Documents

Publication Publication Date Title
EP2041276B1 (de) Verfahren zur herstellung von l-aminosäuren mittels mutanten des glta-gens kodierend für citratsynthase
EP2276845B1 (de) Verfahren zur herstellung von l-aminosäuren
DE102010003419B4 (de) Verfahren zur fermentativen Herstellung von L-Ornithin
EP2354235B1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
EP1725672B1 (de) Verfahren zur produktion von l-lysin unter verwendung coryneformer bakterien
ES2346448T3 (es) Metodo para la preparacion por fermentacion de metionina mediante uso de bacterias corineformes recombinantes.
EP2026662A2 (de) Verfahren zur herstellung eines l-lysin enthaltende futtermitteladditives
EP1574582A1 (de) Verfahren zur Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
WO2005083082A1 (de) Verfahren zur herstellung von l-aminosäuren unter verwendung rekombinanter coryneformer bakterien mit verminderter aktivität des regulators asur
DE10112992A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE102005045301A1 (de) Verfahren zur Herstellung von organisch-chemischen Verbindungen unter Verwendung coryneformer Bakterien
EP2089525B1 (de) Allele des oxyr-gens aus coryneformen bakterien
DE60218215T2 (de) Allele des siga gens aus coryneformen bakterien
DE10117816A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE10144493A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coyneformer Bakterien
EP1659174A2 (de) Allele des metK-Gens aus coryneformen Bakterien
DE10224088A1 (de) Verfahren zur Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien die ein abgeschwächtes mez-Gen enthalten
DE10210527A1 (de) Allele des aceA-Gens aus coryneformen Bakterien
EP1538213A2 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE10162650A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE10163167A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren und Verwendung coryneformer Bakterien
DE10113011A1 (de) Verfahren zur fermentativen Herstellun von L-Aminosäuren unter Verwendung coryneforme Bakterien
DE10220574A1 (de) Verfahren zur Herstellung von Aminosäuren mit coryneformen Bakterien unter Verwendung von Phosphoglucose-Isomerasen aus coryneformen Bakterien
EP1143003A2 (de) Nukleotidsequenzen, die für das rplk-Gen kodieren, und Verfahren zur Herstellung von L-Aminosäuren
DE10017057A1 (de) Neue für das rpIK Gen kodierende Nukleotidsequenzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060726

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KALINOWSKI, JOERN

Inventor name: BATHE, BRIGITTE

Inventor name: RUECKERT, CHRISTIAN

Inventor name: KOCH, DANIEL

Inventor name: PUEHLER, ALFRED

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK DEGUSSA GMBH

17Q First examination report despatched

Effective date: 20071016

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK DEGUSSA GMBH

18D Application deemed to be withdrawn

Effective date: 20080227