EP1740813B1 - VERFAHREN ZUM BESTIMMEN EINER SCHLIEßZEIT EINES SCHLIEßGLIEDES UND SCHALTUNGSANORDNUNG - Google Patents

VERFAHREN ZUM BESTIMMEN EINER SCHLIEßZEIT EINES SCHLIEßGLIEDES UND SCHALTUNGSANORDNUNG Download PDF

Info

Publication number
EP1740813B1
EP1740813B1 EP05729139A EP05729139A EP1740813B1 EP 1740813 B1 EP1740813 B1 EP 1740813B1 EP 05729139 A EP05729139 A EP 05729139A EP 05729139 A EP05729139 A EP 05729139A EP 1740813 B1 EP1740813 B1 EP 1740813B1
Authority
EP
European Patent Office
Prior art keywords
voltage
values
closing time
valve
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05729139A
Other languages
English (en)
French (fr)
Other versions
EP1740813A1 (de
Inventor
Christian Rissler
Jörg BEILHARZ
Hans-Jörg Wiehoff
Sven Rebeschiess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP1740813A1 publication Critical patent/EP1740813A1/de
Application granted granted Critical
Publication of EP1740813B1 publication Critical patent/EP1740813B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time

Definitions

  • the invention relates to a method for determining a closing time of a closing member according to the preamble of patent claim 1 and a circuit arrangement for determining the closing time of a closing member according to the preamble of patent claim 5.
  • a pump-nozzle system uses valves that are actuated with a piezoelectric actuator.
  • determining the closing time of the valve, which adjusts the hydraulic pressure is an important parameter that must be precisely detected and controlled.
  • the fuel injection valve has a control chamber communicating in a high-pressure accumulator and with a control valve.
  • prevailing pressures act on a movable nozzle body with a nozzle needle for opening and closing of injection holes.
  • the control valve is actuated by the piezoelectric actuator.
  • the voltage at the piezoelectric actuator is detected after its initial charging and from the measured voltage, the start of injection and / or the needle opening time of the injection valve is determined.
  • the object of the invention is to provide a robust and precise method for determining the closing time of the closing member of the piezoelectrically driven valve.
  • the object of the invention is a To provide a circuit device with which the closing time of the piezoelectric actuator driven valve can be determined in a simple manner.
  • the object of the invention is achieved by the method according to claim 1 and by the circuit arrangement according to claim 5.
  • An advantage of the method according to the invention is that the closing time of the valve can be determined precisely.
  • a comparison straight line is laid between a start and an end point of a measuring interval, and the voltage applied to the piezoelectric actuator is detected during the measuring interval. Difference values are determined between the measured voltage values and the comparison straight line and the closing time is recognized at the time at which the difference value has the largest value within the measuring interval.
  • the measured voltage values are further processed as squared quantities. As a result, a precise detection of the closing time is possible.
  • a closing time is only recognized if the difference value exceeds a specified comparison value. In this way it is avoided that a closing time is detected for a non-closed valve.
  • a closing time is detected only when the sum of the difference values of the measuring interval exceeds a predetermined comparison sum. Also these others Prerequisite is to reliably detect a closing time.
  • FIG. 1 shows schematically the structure of a pump-nozzle unit.
  • the pump-nozzle unit is used for supplying fuel into a combustion chamber 1 of an internal combustion engine.
  • the pump-nozzle unit has a pump 2, which compresses via a piston 3, which is guided in a cylinder 4, fuel.
  • the piston 3 is driven directly or indirectly via a camshaft, not shown, of the internal combustion engine.
  • a first pressure chamber 5 is formed adjacent to the piston 3.
  • the first pressure chamber 5 is connected via a fuel line 6 with a valve 7.
  • the valve 7 serves to either close the fuel line 6 or to connect it to a low-pressure region 8.
  • the pressure chamber 5 is also connected via a second fuel line 9 with an injection chamber 10 in connection.
  • a nozzle needle 11 is arranged, the closing surfaces is associated with a sealing seat 41.
  • the sealing seat 41 is arranged between injection holes 12 and the injection space 10.
  • the nozzle needle 11 has pressure surfaces 13.
  • the nozzle needle 11 is biased by a fuel pressure in the injection chamber 10 against a closing direction of the sealing seat 41 away.
  • the nozzle needle 11 is biased by a spring element 15 on the sealing seat 41 via a pressure pin 14.
  • the valve 7 has a closing member 16 which is associated with a valve seat 17.
  • the closing member 16 is in operative connection with a piezoelectric actuator 18, which is controlled by a control unit 19.
  • valve 7 If the valve 7 is open, the piston 3 sucks in a suction upward fuel over the low pressure region 8, the valve 7 and the fuel line 6 in the pressure chamber 5.
  • the low pressure region 8 is connected to a fuel tank. During a compression movement of the piston 3 downwards, the fuel is pressed back into the low-pressure region 8 when the valve 7 is open.
  • the fuel lines, the injection space 10 and the second fuel line 9 are completely filled with power.
  • the valve 7 is closed by the control unit 19 and the piezoelectric actuator 18 in a compression stroke in which the piston 3 moves down.
  • the fuel compressed by the piston 3 can not escape via the low-pressure region 8, but a high pressure is generated in the injection chamber 10.
  • the high pressure lifts the nozzle needle 11 from the associated sealing seat 41. Consequently, fuel is discharged from the injection space 10 via the injection holes 12 into the combustion chamber 1 of the internal combustion engine.
  • the valve 7 is opened, that is, the closing member 16 lifted from the associated sealing seat 17 by the piezoelectric actuator 18, the fuel pressure in the fuel line 6 and thus also in the injection chamber 10 decreases. Consequently, the nozzle needle 11 is pressed back onto the sealing seat and the connection between the injection space 10 and the injection holes 12 closed. This ends the injection.
  • the voltage applied to the piezoelectric actuator 18 voltage is evaluated.
  • the piezoelectric actuator 18 is supplied via voltage lines 20 from the controller 19 with voltage.
  • the control unit 19 detects via the voltage lines 20, the voltage applied to the piezoelectric actuator voltage.
  • the control unit 19 thus has both a voltage source and a voltmeter.
  • the control unit 19 is connected to a data memory 42.
  • the valve 7 is formed in such a way that in the de-energized state of the piezoelectric actuator 18, the closing member 16 is lifted from the valve seat 17 and thus the valve 7 is opened.
  • FIG. 2 shows a schematic program flow for performing the method.
  • the control unit 19 detects various operating conditions, such. As the speed of the engine and the driver's request and then determines the beginning of the injection and the duration of the injection. For this purpose, the control unit 19 accesses corresponding data and characteristics which are stored in the data memory 42.
  • the control unit 19 applies a corresponding voltage via the voltage lines 20 to the piezoelectric actuator 18. The piezoelectric actuator 18 then expands and presses the closing member 16 onto the valve sealing seat 17 during a compression stroke of the piston 3.
  • the control unit 19 monitors the voltage applied to the piezoelectric actuator 18 in parallel with the application of the voltage to the piezoelectric actuator 18 , For this purpose, the control unit 19 detects at specified intervals the voltage which is at Actuator 18 is present. A diagram with a corresponding trace is in FIG. 3 shown.
  • FIG. 3 shows the measurement curve, which results from the detected voltage values, and which is stored by the control unit 19 in the data memory 42.
  • the control unit 19 determines a starting point TS and an end point TE of a measuring interval in the measuring curve.
  • the starting point TS is preferably preset and is a fixed time after the beginning of the energization of the piezoelectric actuator.
  • the end point is also preferably preset and is a fixed second time after the start of the energization of the piezoelectric actuator.
  • the control unit 19 calculates in a following program point 54 a comparison straight line between the measured value of the starting point and the measured value of the end point.
  • the control unit 19 determines, for each measured voltage value in the measuring interval between the starting point and the end point, the difference value to the corresponding value of the reference curve. For this purpose, the measured voltage value and value of the reference curve belonging to the same time are deducted from each other.
  • the difference values are stored by the control unit 19 in the memory 21.
  • FIG. 4 shows a corresponding measurement diagram in which the starting point TS and the end point TE are drawn.
  • the comparison line VG is shown in the form of a line with asterisks.
  • the measured values of the voltage of the piezoelectric actuator detected by the control unit 19 are shown in the form of crosses and an approximated line MW.
  • control unit 19 preferably uses squared voltage values, since thereby the determination of the closing time is possible in a more precise manner.
  • control unit 19 determines the largest difference value between a measured voltage value and the simultaneous value of the reference curve within the measurement interval and assigns the time at which the largest difference value occurred, the closing time of the valve 7. In the presentation of the FIG. 4 If the closing time TF is also drawn.
  • FIG. 5 the difference values between the measured voltage values and the time values of the comparison straight line are shown, wherein the difference values were determined on the basis of squared voltage values.
  • the program point 56 it is additionally checked at the following program point 57 whether the calculated maximum difference value lies above a defined comparison value. If the comparison reveals that the maximum difference value is not above the comparison value, then no closing time of the valve 7 is detected.
  • the specified comparison value was previously determined experimentally, for example. In this way, a malfunction of the valve 7 in the determination of the closing time can be filtered out.
  • the sum of the difference values is formed and compared with a comparison sum. If the comparison shows that the sum of the difference values is smaller than the comparison sum, then likewise no closing time of the valve is recognized.
  • the comparison sum is also preferably determined experimentally and serves to filter out malfunctions of the valve, in which no closing of the valve takes place, when determining the closing time.
  • the comparison of the sum of the difference values with the comparison sum makes it possible to obtain negative difference values in which the measured values Voltages above the comparison straight line, which however do not correspond to a closing of the valve, filter out.
  • the comparison sum is preferably determined experimentally for the respective pump-nozzle unit.
  • FIG. 6 shows a detailed illustration of the circuit arrangement, which is preferably formed in the control unit 19.
  • the voltage detected at the piezoelectric actuator 18 is fed via an input 21 and a linearization device 22 to a second input of a switch 23.
  • the detected voltage value is squared and fed via an output to a second input of the switch 23.
  • An output of the switch 23 is connected to a first calculation block 24 in connection.
  • the first calculation block 24 limits the detection range in which the voltage is detected.
  • a start block 25 and an end block 26 are provided which are each connected to a signal line to an input of the first calculation block 24.
  • the start block 25 contains a start time for the measurement, which is determined by the control unit 19.
  • the start time is passed to the first calculation block 24.
  • the end block 26 includes an end time for the measurement, which is also set by the controller 19.
  • the end time is passed on to the first calculation block 24.
  • an entire injection process is recorded with a multiplicity of measured values, ie voltage values. For example, 40 measured values are recorded which have a defined time interval and are numbered consecutively with a continuous index. The time of the measurement can be determined from the start time, the defined time interval and the index.
  • the first calculation block 24 gives the voltage values supplied by the switch 23, which is an entire measurement curve, as in FIG Fig. 4 represented, via a first output 27 to a second calculation block 29 on.
  • the second calculation block 29 determines on the basis of the supplied voltage values within the measuring interval voltage reference values corresponding to the comparison line Fig. 4 represent.
  • the second calculation block 29 forwards the voltage reference values to an adder unit 30 via an output.
  • the linearized or nonlinearized voltage values of a measurement curve with a negative sign are fed to the adder unit 30 by the switch 23.
  • difference values for simultaneous voltage values and reference voltage values of the measurement curve are formed which are fed via an output of the adder unit 30 to an input of a third and a fourth calculation block 31, 32.
  • the maximum difference value is determined within the measurement interval defined by the start time and the end time and fed via an output to a fifth calculation block 34.
  • the time of the maximum difference value and thus the closing time of the valve is calculated on the basis of the index of the maximum difference value and forwarded to the control unit 19 via an output.
  • each index is assigned a time value in an allocation table.
  • a second output 35 of the third calculation block 31 outputs the maximum difference value to a comparison device 36.
  • a first memory field 37 is provided, in which a minimum comparison value is determined. The minimum comparison value has been determined experimentally.
  • the first memory field 37 specifies a minimum voltage difference value, which is supplied to a second input of the comparator 36.
  • the comparator 36 compares whether the maximum difference value is greater than or equal to the minimum difference value, and passes a signal via an output to a second comparator 38 when this condition is met.
  • the fourth calculation block 32 sums the difference values of the individual measurement points within the measurement interval of Trace on and outputs a sum difference value via an output to a third comparator 39 on.
  • the third comparator 39 is connected to a second input to an output of a second memory array 40 in connection. In the second memory field 40, a minimum sum is stored, which is the third comparator 39 is supplied.
  • the third comparator 39 compares the difference sum calculated by the fourth calculation block 32 with the minimum sum stored in the memory array 40. If the comparison of the third comparison device 39 reveals that the difference sum is greater than or equal to the minimum sum, then a signal is output to the second comparison device 38. If the comparison device 38 recognizes two signals at the two inputs, then the second comparison device 38 outputs an enable signal to the control signal 19, which confirms the validity of the detected closing time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Es wird ein Verfahren zur Bestimmung der Schließzeit eines Ventils beschrieben, das von einem piezoelektrischen Aktor betätigt wird. Zur Erfassung der Schließzeit wird die Spannung am piezoelektrischen Aktor erfasst und der Zeitpunkt ermittelt, zu dem die erfasste Spannung einen maximalen Differenzwert zu einer Vergleichskurve aufweist. Die Differenzkurve wird zwischen einem Start- und einem Endpunkt einer Messkurve gebildet, die die am piezoelektrischen Aktor anliegenden Spannungswerte beinhaltet. Auf diese Weise kann eine präzise Festlegung der Schließzeit durchgeführt werden.

Description

  • Die Erfindung betrifft ein Verfahren zum Bestimmen einer Schließzeit eines Schließgliedes gemäß dem Oberbegriff des Patentanspruchs 1 und eine Schaltungsanordnung zum Bestimmen der Schließzeit eines Schließgliedes gemäß dem Oberbegriff des Patentanspruchs 5..
  • Im Bereich der Kraftfahrzeugtechnik werden bei hydraulisch gesteuerten Einspritzsystemen, wie z. B. einem Pumpe-Düse-System Ventile verwendet, die mit einem piezoelektrischen Aktor betätigt werden. Für das hydraulisch gesteuerte Einspritzsystem ist die Bestimmung der Schließzeit des Ventils, mit dem der hydraulische Druck eingestellt wird, ein wichtiger Parameter, der präzise erfasst und gesteuert werden muss.
  • Aus DE 199 30 309 C2 ist ein Verfahren und eine Vorrichtung zur Regelung der Einspritzmenge bei einem Kraftstoffeinspritzventil mit einem Piezoelement-Aktor bekannt. Das Kraftstoffeinspritzventil weist eine Steuerkammer auf, die in einem Hochdruckspeicher und mit einem Steuerventil in Verbindung steht. In der Steuerkammer herrschende Drücke wirken auf einen beweglichen Düsenkörper mit einer Düsennadel zum Öffnen und Schließen von Einspritzlöchern. Zum Öffnen des Einspritzventils wird das Steuerventil von dem piezoelektrischen Aktor betätigt. Die Spannung am piezoelektrischen Aktor wird nach dessen anfänglicher Aufladung erfasst und aus der gemessenen Spannung wird der Einspritzbeginn und/oder die Nadelöffnungszeit des Einspritzventils ermittelt.
  • Aus WO 03/104633 A1 ist auch ein Verfahren und eine Vorrichtung zum Bestimmer der Schließzeit eines piezoelektrischen angetriebenen Ventils bekannt.
  • Die Aufgabe der Erfindung besteht darin, ein robustes und präzises Verfahren zum Bestimmen der Schließzeit des Schließgliedes des piezoelektrisch angetriebenen Ventils bereit zu stellen. Zudem besteht die Aufgabe der Erfindung darin, eine Schaltungsvorrichtung bereitzustellen, mit der auf einfache Weise die Schließzeit des vom piezoelektrischen Aktor angetriebenen Ventils ermittelt werden kann.
  • Die Aufgabe der Erfindung wird durch das Verfahren gemäß Patentanspruch 1 und durch die Schaltungsanordnung gemäß Patentanspruch 5 gelöst.
  • Weitere vorteilhafte Ausführungsformen der Erfindung sind in den abhängigen Ansprüchen angegeben.
  • Ein Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass die Schließzeit des Ventils präzise ermittelt werden kann. Zur Ermittlung der Schließzeit wird erfindungsgemäß eine Vergleichsgerade zwischen einem Start- und einem Endpunkt eines Messintervalls gelegt und die am piezoelektrischen Aktor anliegende Spannung wird während des Messintervalls erfasst. Zwischen den gemessenen Spannungswerten und der Vergleichsgeraden werden Differenzwerte ermittelt und die Schließzeit wird zu dem Zeitpunkt erkannt, zu dem der Differenzwert innerhalb des Messintervalls den größten Wert aufweist.
  • In einer bevorzugten Ausführungsform werden die gemessenen Spannungswerte als quadrierte Größen weiter verarbeitet. Dadurch ist eine präzise Erfassung der Schließzeit möglich.
  • In einer weiteren bevorzugten Ausführungsform wird eine Schließzeit nur erkannt, wenn der Differenzwert einen festgelegten Vergleichswert überschreitet. Auf diese Weise wird vermieden, dass für ein nicht geschlossenes Ventil eine Schließzeit erfasst wird.
  • In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine Schließzeit nur dann erkannt, wenn die Summe der Differenzwerte des Messintervalls eine festgelegte Vergleichssumme überschreiten. Auch diese weitere Voraussetzung dient dazu, zuverlässig eine Schließzeit zu erkennen.
  • Die Erfindung wird im Folgenden anhand der Figuren näher erläutert. Es zeigen:
    • Figur 1 eine schematische Darstellung eines Einspritzventils, das nach dem Pumpe-Düse-Prinzip ausgebildet ist;
    • Figur 2 einen schematischen Programmablauf zur Bestimmung der Schließzeit;
    • Figur 3 Messkurve der am Aktor anliegenden Spannung während eines Schließvorganges des Ventils;
    • Figur 4 die Messkurze mit einer Referenzkurve;
    • Figur 5 eine Differenzkurve, die aus der Messkurve und der Referenzkurve gebildet ist; und
    • Figur 6 eine detaillierte Darstellung der Schaltungsanordnung, die zur Erfassung der Schließzeit verwendet wird;
  • Figur 1 zeigt schematisch den Aufbau einer Pumpe-Düse-Einheit. Die Pumpe-Düse-Einheit dient zum Zuführen von Kraftstoff in einen Verbrennungsraum 1 einer Brennkraftmaschine. Die Pumpe-Düse-Einheit weist eine Pumpe 2 auf, die über einen Kolben 3, der in einem Zylinder 4 geführt ist, Kraftstoff verdichtet. Der Kolben 3 wird direkt oder indirekt über eine nicht dargestellte Nockenwelle der Brennkraftmaschine angetrieben. Im Zylinder 4 ist angrenzend an den Kolben 3 ein erster Druckraum 5 ausgebildet. Der erste Druckraum 5 ist über eine Kraftstoffleitung 6 mit einem Ventil 7 verbunden. Das Ventil 7 dient dazu, die Kraftstoffleitung 6 entweder zu verschließen oder mit einem Niederdruckbereich 8 zu verbinden. Der Druckraum 5 steht zudem über eine zweite Kraftstoffleitung 9 mit einem Einspritzraum 10 in Verbindung. Im Einspritzraum 10 ist eine Düsennadel 11 angeordnet, deren Schließflächen einem Dichtsitz 41 zugeordnet ist. Der Dichtsitz 41 ist zwischen Einspritzlöchern 12 und dem Einspritzraum 10 angeordnet. Im oberen Bereich des Einspritzraums 10 weist die Düsennadel 11 Druckflächen 13 auf. Über die Druckfläche 13 wird die Düsennadel 11 von einem Kraftstoffdruck im Einspritzraum 10 entgegen einer Schließrichtung vom Dichtsitz 41 weg vorgespannt. Die Düsennadel 11 ist über einen Druckstift 14 von einem Federelement 15 auf den Dichtsitz 41 vorgespannt.
  • Das Ventil 7 weist ein Schließglied 16 auf, das einem Ventildichtsitz 17 zugeordnet ist. Das Schließglied 16 steht in Wirkverbindung mit einem piezoelektrischen Aktor 18, der von einem Steuergerät 19 angesteuert wird.
  • Ist das Ventil 7 geöffnet, so saugt der Kolben 3 bei einer Ansaugbewegung nach oben Kraftstoff über den Niederdruckbereich 8, das Ventil 7 und die Kraftstoffleitung 6 in den Druckraum 5. Der Niederdruckbereich 8 ist dazu mit einem Kraftstofftank verbunden. Bei einer Verdichtungsbewegung des Kolbens 3 nach unten wird der Kraftstoff bei geöffnetem Ventil 7 wieder zurück in den Niederdruckbereich 8 gedrückt. Die Kraftstoffleitungen, der Einspritzraum 10 und die zweite Kraftstoffleitung 9 sind vollständig mit Kraft gefüllt.
  • Zum Starten einer Einspritzung wird bei einem Verdichtungstakt, bei dem der Kolben 3 sich nach unten bewegt, über das Steuergerät 19 und den piezoelektrischen Aktor 18 das Ventil 7 verschlossen. Somit kann der vom Kolben 3 verdichtete Kraftstoff nicht über den Niederdruckbereich 8 entweichen, sondern es wird im Einspritzraum 10 ein hoher Druck erzeugt. Der hohe Druck hebt die Düsennadel 11 vom zugeordneten Dichtsitz 41 ab. Folglich wird Kraftstoff aus dem Einspritzraum 10 über die Einspritzlöcher 12 in den Verbrennungsraum 1 der Brennkraftmaschine abgegeben. Wird das Ventil 7 geöffnet, d. h. das Schließglied 16 vom zugeordneten Dichtsitz 17 durch den piezoelektrischen Aktor 18 abgehoben, so sinkt der Kraftstoffdruck in der Kraftstoffleitung 6 und damit auch im Einspritzraum 10. Folglich wird die Düsennadel 11 wieder auf den Dichtsitz gedrückt und die Verbindung zwischen dem Einspritzraum 10 und den Einspritzlöchern 12 verschlossen. Damit endet die Einspritzung.
  • Für eine präzise Feststellung des Zeitpunktes, zu dem das Ventil 7 mit dem Schließglied 16 wieder auf den Ventildichtsitz 17 gedrückt wird, wird die am piezoelektrischen Aktor 18 anliegende Spannung ausgewertet. Der piezoelektrische Aktor 18 wird über Spannungsleitungen 20 vom Steuergerät 19 mit Spannung versorgt. Zudem erfasst das Steuergerät 19 über die Spannungsleitungen 20, die am piezoelektrischen Aktor anliegende Spannung. Das Steuergerät 19 verfügt somit sowohl über eine Spannungsquelle als auch über einen Spannungsmesser. Zudem ist das Steuergerät 19 mit einem Datenspeicher 42 verbunden.
  • Das Ventil 7 ist in der Weise ausgebildet, dass im unbestromten Zustand des piezoelektrischen Aktors 18 das Schließglied 16 vom Ventildichtsitz 17 abgehoben ist und somit das Ventil 7 geöffnet ist.
  • Figur 2 zeigt einen schematischen Programmablauf zur Durchführung des Verfahrens. Bei Programmpunkt 50 erfasst das Steuergerät 19 verschiedene Betriebszustände, wie z. B. die Drehzahl der Brennkraftmaschine und den Fahrerwunsch und ermittelt daraufhin den Beginn der Einspritzung und die Dauer der Einspritzung. Dazu greift das Steuergerät 19 auf entsprechende Daten und Kennlinien zu, die im Datenspeicher 42 abgelegt sind. Beim folgenden Programmpunkt 51 legt das Steuergerät 19 eine entsprechende Spannung über die Spannungsleitungen 20 an den piezoelektrischen Aktor 18 an. Daraufhin dehnt sich der piezoelektrische Aktor 18 aus und drückt das Schließglied 16 auf den Ventildichtsitz 17, während eines Verdichtungshubes des Kolbens 3. Im Folgenden Programmpunkt 52 überwacht das Steuergerät 19 parallel zum Anlegen der Spannung an den piezoelektrischen Aktor 18 die am piezoelektrischen Aktor 18 anliegende Spannung. Dazu erfasst das Steuergerät 19 in festgelegten Zeitabständen die Spannung, die am Aktor 18 anliegt. Ein Diagramm mit einer entsprechenden Messkurve ist in Figur 3 dargestellt.
  • Figur 3 zeigt die Messkurve, die sich aufgrund der erfassten Spannungswerte ergibt, und die vom Steuergerät 19 im Datenspeicher 42 abgelegt wird.
  • Im folgenden Programmpunkt 53 ermittelt das Steuergerät 19 in der Messkurve einen Startpunkt TS und einen Endpunkt TE eines Messintervalls. Der Startpunkt TS ist vorzugsweise voreingestellt und liegt eine festgelegte Zeit nach dem Beginn der Bestromung des piezoelektrischen Aktors. Der Endpunkt ist ebenfalls vorzugsweise voreingestellt und liegt eine festgelegte zweite Zeit nach dem Beginn der Bestromung des piezoelektrischen Aktors. Zudem berechnet das Steuergerät 19 in einem folgenden Programmpunkt 54 eine Vergleichsgerade zwischen dem Messwert des Startpunktes und dem Messwert des Endpunktes. In einem folgenden Programmpunkt 55 ermittelt das Steuergerät 19 für jeden gemessenen Spannungswert in dem Messintervall zwischen dem Startpunkt und dem Endpunkt den Differenzwert zu dem entsprechenden Wert der Referenzkurve. Dazu werden der zum gleichen Zeitpunkt gehörende gemessene Spannungswert und Wert der Referenzkurve voneinander abgezogen. Die Differenzwerte legt das Steuergerät 19 im Speicher 21 ab.
  • Figur 4 zeigt ein entsprechendes Messdiagramm, in dem der Startpunkt TS und der Endpunkt TE eingezeichnet sind. Zudem ist die Vergleichsgerade VG in Form einer Linie mit Sternchen dargestellt. Die vom Steuergerät 19 erfassten Messwerte der Spannung des piezoelektrischen Aktors sind in Form, von Kreuzen und einer approximierten Linie MW dargestellt.
  • Anstelle der gemessenen Spannungswerte verwendet das Steuergerät 19 vorzugsweise quadrierte Spannungswerte, da dadurch das Ermitteln der Schließzeit präziser möglich ist.
  • In dem folgenden Programmpunkt 56 ermittelt das Steuergerät 19 den größten Differenzwert zwischen einem gemessenen Spannungswert und dem zeitgleichen Wert der Referenzkurve innerhalb des Messintervalls und ordnet dem Zeitpunkt, zu dem der größte Differenzwert aufgetreten ist, den Schließzeitpunkt des Ventils 7 zu. In der Darstellung der Figur 4 ist der Schließzeitpunkt TF ebenfalls eingezeichnet.
  • In Figur 5 sind die Differenzwerte zwischen den gemessenen Spannungswerten und den zeitlichen Werten der Vergleichsgeraden dargestellt, wobei die Differenzwerte anhand von quadrierten Spannungswerten ermittelt wurden.
  • In einer bevorzugten Ausführungsform wird nach dem Programmpunkt 56 zusätzlich bei dem folgenden Programmpunkt 57 überprüft, ob der berechnete maximale Differenzwert über einem festgelegten Vergleichswert liegt. Ergibt der Vergleich, dass der maximale Differenzwert nicht über dem Vergleichswert liegt, so wird keine Schließzeit des Ventils 7 erkannt. Der festgelegte Vergleichswert wurde beispielsweise zuvor experimentell ermittelt. Auf diese Weise kann eine Fehlfunktion des Ventils 7 bei der Ermittlung der Schließzeit ausgefiltert werden.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung wird entweder zusätzlich zum Programmpunkt 57 oder anstelle des Programmpunkts 57 bei einem folgenden Programmpunkt 58 vom Steuergerät 19 die Summe aus den Differenzwerten gebildet und mit einer Vergleichssumme verglichen. Ergibt der Vergleich, dass die Summe der Differenzwerte kleiner ist als die Vergleichssumme, so wird ebenfalls keine Schließzeit des Ventils erkannt. Die Vergleichssumme wird ebenfalls vorzugsweise experimentell ermittelt und dient dazu, Fehlfunktionen des Ventils, bei denen kein Schließen des Ventil stattfindet, beim Ermitteln der Schließzeit herauszufiltern. Der Vergleich der Summe der Differenzwerte mit der Vergleichssumme ermöglicht es, negative Differenzwerte, bei denen die gemessenen Spannungen oberhalb der Vergleichsgeraden liegen, die jedoch nicht zu einem Schließen des Ventils korrespondieren, herauszufiltern. Die Vergleichssumme wird vorzugsweise experimentell für die jeweilige Pumpe-Düse-Einheit ermittelt.
  • Figur 6 zeigt eine detaillierte Darstellung der Schaltungsanordnung, die vorzugsweise im Steuergerät 19 ausgebildet ist.
  • Die am piezoelektrischen Aktor 18 erfasste Spannung wird über einen Eingang 21 und einen Linearisierungsbaustein 22 einem zweiten Eingang eines Schalters 23 zugeführt. Im Linearisierungsbaustein 22 wird der erfasste Spannungswert quadriert und über einen Ausgang einem zweiten Eingang des Schalters 23 zugeführt. Ein Ausgang des Schalters 23 steht mit einem ersten Berechnungsblock 24 in Verbindung. Der erste Berechnungsblock 24 begrenzt den Detektionsbereich, in dem die Spannung erfasst wird. Weiterhin ist ein Startblock 25 und ein Endeblock 26 vorgesehen, die mit einer Signalleitung jeweils mit einem Eingang des ersten Berechnungsblockes 24 verbunden sind. Der Startblock 25 enthält einen Startzeitpunkt für die Messung, der vom Steuergerät 19 festgelegt wird. Der Startzeitpunkt wird an den ersten Berechnungsblock 24 weitergegeben. Der Endeblock 26 enthält einen Endzeitpunkt für die Messung, die ebenfalls vom Steuergerät 19 festgelegt wird. Der Endzeitpunkt wird an den ersten Berechnungsblock 24 weiter gegeben. Bei der Erfassung der Messkurve wird ein gesamter Einspritzvorgang mit einer Vielzahl von Messwerten, d. h. Spannungswerten erfasst. Es werden beispielsweise 40 Messwerte erfasst, die einen festgelegten zeitlichen Abstand aufweisen und mit einem fortlaufenden Index durchnummeriert werden. Aus der Startzeit, dem festgelegten zeitlichen Abstand und dem Index kann der Zeitpunkt der Messung festgelegt werden. Der erste Berechnungsblock 24 gibt die vom Schalter 23 zugeführten Spannungswerte, die eine gesamte Messkurve, wie in Fig. 4 dargestellt, darstellen, über einen ersten Ausgang 27 an einen zweiten Berechnungsblock 29 weiter. Der zweite Berechnungsblock 29 ermittelt aufgrund der zugeführten Spannungswerte innerhalb des Messintervalls Spannungsreferenzwerte die die Vergleichsgerade gemäß Fig. 4 darstellen. Der zweite Berechnungsblock 29 gibt über einen Ausgang die Spannungsreferenzwerte an eine Addiereinheit 30 weiter. Zudem werden vom Schalter 23 die linerarisierten oder nicht linerarisierten Spannungswerte einer Messkurve mit einem negativen Vorzeichen an die Addiereinheit 30 geführt. In der Addiereinheit 30 werden Differenzwerte für zeitgleiche Spannungswerte und Referenzspannungswerte der Messkurve gebildet, die über einen Ausgang der Addiereinheit 30 einem Eingang eines dritten und eines vierten Berechnungsblockes 31, 32 zugeführt werden.
  • Im dritten Berechnungsblock 31 wird innerhalb des durch den Startzeitpunkt und den Endzeitpunkt festgelegten Messintervalls der maximale Differenzwert ermittelt und über einen Ausgang einem fünften Berechnungsblock 34 zugeführt. Im fünften Berechnungsblock 34 wird aufgrund des Index des maximalen Differenzwertes der Zeitpunkt des maximalen Differenzwertes und damit die Schließzeit des Ventils berechnet und über einen Ausgang an das Steuergerät 19 weitergegeben. Dazu ist jedem Index ein Zeitwert in einer Zuordnungstabelle zugeordnet. Ein zweiter Ausgang 35 des dritten Berechnungsblockes 31 gibt den maximalen Differenzwert an eine Vergleichseinrichtung 36. Weiterhin ist ein erstes Speicherfeld 37 vorgesehen, in dem ein minimaler Vergleichswert festgelegt ist. Der minimale Vergleichswert ist experimentell ermittelt. Das erste Speicherfeld 37 gibt einen minimalen Spannungsdifferenzwert vor, der einem zweiten Eingang der Vergleichseinrichtung 36 zugeführt wird. Die Vergleichseinrichtung 36 vergleicht, ob der maximale Differenzwert größer oder gleich dem minimalen Differenzwert ist und gibt ein Signal über einen Ausgang an eine zweite Vergleichseinrichtung 38 weiter, wenn diese Bedingung erfüllt ist.
  • Der vierte Berechnungsblock 32 summiert die Differenzwerte der einzelnen Messpunkte innerhalb des Messintervalls der Messkurve auf und gibt einen Summendifferenzwert über einen Ausgang an eine dritte Vergleichseinrichtung 39 weiter. Die dritte Vergleichseinrichtung 39 steht mit einem zweiten Eingang mit einem Ausgang eines zweiten Speicherfeldes 40 in Verbindung. Im zweiten Speicherfeld 40 ist eine minimale Summe abgelegt, die der dritten Vergleichseinrichtung 39 zugeführt wird. Die dritte Vergleichseinrichtung 39 vergleicht die vom vierten Berechnungsblock 32 berechnete Differenzsumme mit der minimalen Summe, die im Speicherfeld 40 abgelegt ist. Ergibt der Vergleich der dritten Vergleichseinrichtung 39, dass die Differenzsumme größer oder gleich der minimalen Summe ist, so wird ein Signal an die zweite Vergleichseinrichtung 38 abgegeben. Erkennt die Vergleichseinrichtung 38 an den zwei Eingängen zwei Signale, so gibt die zweite Vergleichseinrichtung 38 ein Enable-Signal an das Steuersignal 19, das die Gültigkeit der erkannten Schließzeit bestätigt.
  • In Abhängigkeit von der gewählten Ausführungsform kann auch auf einzelne oder alle Vergleichseinrichtungen 36, 39, 38, die eine Plausibilisierung der Messwerte durchführen verzichtet werden.

Claims (5)

  1. Verfahren zum Bestimmen einer Schließzeit eines Ventils, das ein Schließglied aufweist, das von einem piezoelektrischen Aktor betätigt wird, wobei während eines Schließvorganges des Ventils die elektrische Spannung am Aktor erfasst wird, wobei die Spannung zur Bestimmung der Schließzeit ausgewertet wird,
    dadurch gekennzeichnet, dass Spannungswerte für die Spannung in einem Messintervall mit einem Start und einem Endpunkt erfasst werden, dass zwischen den Spannungswerten des Start- und dem Endpunktes eine Vergleichskurve festgelegt wird, dass für mehrere gemessene Spannungswerte Differenzwerte zwischen den gemessenen Spannungswerten und den zeitgleichen Werten der Vergleichskurve ermittelt werden, dass der Zeitpunkt als Schließzeit erkannt wird, zu dem der Differenzwert am größten ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Spannungswerte als quadrierte Größe verwendet werden.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass eine Schließzeit nur erkannt wird, wenn der Differenzwert einen festgelegten Vergleichswert überschreitet.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Schließzeit unter der Voraussetzung erkannt wird, dass die Summe der Differenzwerte eine festgelegte Vergleichssumme überschreitet.
  5. Schaltungsanordnung zum Bestimmen einer Schließzeit eines Schließgliedes (16) eines Ventils (7), das mit einem piezoelektrischen Aktor (18) auf einen Ventilsitz (17) gedrückt oder vom Ventilsitz (17) abgehoben wird, mit einem ersten Mittel (19) zum Erfassen der Spannung, das während eines Schließvorganges des Ventils (7) die elektrische Spannung am Aktor (18) erfasst, mit einem zweiten Mittel (24, 29, 31, 34), das die Spannung zur Bestimmung der Schließzeit auswertet,
    dadurch gekennzeichnet, dass ein drittes Mittel (24, 29) vorgesehen ist, das ein Messintervall mit einem Startpunkt und einem Endpunkt festlegt, dass ein viertes Mittel (29) vorgesehen ist, das zwischen gemessenem Spannungswert des Startpunktes und des Endpunktes eine Vergleichskurve festlegt, dass ein fünftes Mittel (30) vorgesehen ist, das für mehrere Zeitpunkte innerhalb des Messintervalls Differenzwerte zwischen den erfassten Spannungswerten und den zeitgleichen Werten der Vergleichskurve ermittelt, dass ein sechstes Mittel (31) vorgesehen ist, das einen Zeitpunkt als Schließzeit festlegt, an dem der größte Differenzwert vorliegt.
EP05729139A 2004-04-28 2005-03-26 VERFAHREN ZUM BESTIMMEN EINER SCHLIEßZEIT EINES SCHLIEßGLIEDES UND SCHALTUNGSANORDNUNG Expired - Fee Related EP1740813B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004020937A DE102004020937B4 (de) 2004-04-28 2004-04-28 Verfahren zum Bestimmen einer Schließzeit eines Schließgliedes und Schaltungsanordnung
PCT/EP2005/003223 WO2005108765A1 (de) 2004-04-28 2005-03-26 VERFAHREN ZUM BESTIMMEN EINER SCHLIEßZEIT EINES SCHLIEßGLIEDES UND SCHALTUNGSANORDNUNG

Publications (2)

Publication Number Publication Date
EP1740813A1 EP1740813A1 (de) 2007-01-10
EP1740813B1 true EP1740813B1 (de) 2011-07-06

Family

ID=34963343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05729139A Expired - Fee Related EP1740813B1 (de) 2004-04-28 2005-03-26 VERFAHREN ZUM BESTIMMEN EINER SCHLIEßZEIT EINES SCHLIEßGLIEDES UND SCHALTUNGSANORDNUNG

Country Status (5)

Country Link
US (1) US7413160B2 (de)
EP (1) EP1740813B1 (de)
CN (1) CN100564847C (de)
DE (1) DE102004020937B4 (de)
WO (1) WO2005108765A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520266B2 (en) * 2006-05-31 2009-04-21 Caterpillar Inc. Fuel injector control system and method
DE102006033932B4 (de) 2006-07-21 2018-06-14 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102006058742A1 (de) * 2006-12-12 2008-06-19 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffeinspritzventils
DE102010022109B3 (de) 2010-05-31 2011-09-29 Continental Automotive Gmbh Bestimmung des Schließzeitpunkts eines Einspritzventils basierend auf einer Auswertung der Ansteuerspannung unter Verwendung eines adaptierten Referenzspannungssignals
DE102010041320B4 (de) * 2010-09-24 2021-06-24 Vitesco Technologies GmbH Bestimmung des Schließzeitpunkts eines Steuerventils eines indirekt angetriebenen Kraftstoffinjektors
DE102010063099A1 (de) 2010-12-15 2012-06-21 Robert Bosch Gmbh Verfahren zum Betreiben einer Kraftstoffeinspitzanlage einer Brennkraftmaschine
DE102012209965A1 (de) * 2012-06-14 2013-12-19 Robert Bosch Gmbh Verfahren zum Betreiben eines Ventils
DE102013205518B4 (de) * 2013-03-27 2023-08-10 Vitesco Technologies GmbH Ermittlung des Zeitpunkts eines vorbestimmten Öffnungszustandes eines Kraftstoffinjektors
DE102013214412B4 (de) * 2013-07-24 2016-03-31 Continental Automotive Gmbh Ermittlung des Zeitpunkts eines vorbestimmten Öffnungszustandes eines Kraftstoffinjektors
DE102014208753B4 (de) 2014-05-09 2016-03-31 Continental Automotive Gmbh Ermittlung von Parameterwerten für einen Kraftstoffinjektor
DE102015201514A1 (de) * 2015-01-29 2016-08-04 Robert Bosch Gmbh Verfahren zum Ermitteln eines charakteristischen Zeitpunktes eines Einspritzvor-gangs eines Kraftstoffinjektors
CN107709750B (zh) * 2015-07-09 2020-03-24 日立汽车***株式会社 燃料喷射装置的控制装置
GB2561549B (en) * 2017-04-06 2019-05-29 Delphi Tech Ip Ltd Method of detecting a doser valve opening or closing event
GB2566919A (en) * 2017-07-05 2019-04-03 Delphi Automotive Systems Lux Method of determining the closing response of a solenoid actuated fuel injector
DE102022207806A1 (de) 2022-07-28 2024-02-08 Prognost Systems Gmbh Verfahren zur automatischen Überwachung einer Kolbenmaschine, nach dem Verfahren überwachbare Kolbenmaschine und Computerprogramm mit einer Implementation des Verfahrens

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3118425A1 (de) * 1981-05-09 1982-12-09 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zum erfassen der den brennraeumen eines dieselmotors zugefuehrten kraftstoffmenge
JP2576958B2 (ja) * 1987-09-28 1997-01-29 株式会社ゼクセル 電磁弁制御式の分配型燃料噴射装置
GB9509610D0 (en) * 1995-05-12 1995-07-05 Lucas Ind Plc Fuel system
DE19930309C2 (de) * 1999-07-01 2001-12-06 Siemens Ag Verfahren und Vorrichtung zur Regelung der Einspritzmenge bei einem Kraftstoffeinspritzventil mit Piezoelement-Aktor
DE19958262B4 (de) * 1999-12-03 2007-03-22 Siemens Ag Verfahren und Vorrichtung zum Aufladen eines piezoelektrischen Aktors
EP1138909B1 (de) * 2000-04-01 2005-09-21 Robert Bosch GmbH Verfahren und Vorrichtung zur Steuerung eines Brennstoffeinspritzverfahrens
DE10143501C1 (de) * 2001-09-05 2003-05-28 Siemens Ag Verfahren zum Ansteuern eines piezobetriebenen Kraftstoff-Einspritzventils
DE10146747A1 (de) * 2001-09-22 2003-04-10 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
US6766241B2 (en) * 2001-12-26 2004-07-20 Deere & Company Fuel injection control system
WO2003067073A1 (de) * 2002-02-07 2003-08-14 Volkswagen Mechatronic Gmbh & Co. Kg Verfahren und vorrichtung zur detektion von betriebszuständen einer pumpe-düse-einheit
DE10225911B3 (de) * 2002-06-11 2004-02-12 Siemens Ag Verfahren und Vorrichtung zum Messen und Regeln der Schließ- und Öffnungszeit eines Piezo-Steuerventils
JP2004052596A (ja) * 2002-07-17 2004-02-19 Keihin Corp プランジャ式燃料ポンプの制御装置

Also Published As

Publication number Publication date
DE102004020937A1 (de) 2005-11-24
WO2005108765A1 (de) 2005-11-17
US20070251492A1 (en) 2007-11-01
DE102004020937B4 (de) 2010-07-15
US7413160B2 (en) 2008-08-19
CN101010503A (zh) 2007-08-01
CN100564847C (zh) 2009-12-02
EP1740813A1 (de) 2007-01-10

Similar Documents

Publication Publication Date Title
EP1740813B1 (de) VERFAHREN ZUM BESTIMMEN EINER SCHLIEßZEIT EINES SCHLIEßGLIEDES UND SCHALTUNGSANORDNUNG
EP1825124B1 (de) Verfahren zum steuern eines piezoelektrischen aktors und steuereinheit zum steuern eines piezoelektrischen aktors
EP1711704B1 (de) Verfahren zum überwachen der funktionsfähigkeit eines kraftstoffeinspritzsystems
WO2002006655A1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE102010016093A1 (de) Kraftstoffeinspritzerfassungsvorrichtung
DE102010016078A1 (de) Kraftstoffeinspritzerfassungssystem
DE102010016079A1 (de) Kraftstoffeinspritzerfassungsvorrichtung
DE102010016094A1 (de) Kraftstoffeinspritzerfassungsvorrichtung
EP1735673B1 (de) Verfahren zum überwachen einer kraftstoffzuführeinrichtung einer brennkraftmaschine
DE10329331B3 (de) Verfahren zur Diagnose eines Volumenstromregelventils bei einer Brennkraftmaschine mit Hochdruck-Speichereinspritzsystem
DE102012111162A1 (de) Kraftstoffdrucksensor-Diagnosevorrichtung
EP0974826B1 (de) Verfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine
DE102008043237A1 (de) Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine
DE102016105625B4 (de) Kraftstoffeinspritzvorrichtung für Brennkraftmaschine
DE102011053459A1 (de) Kraftstoffeinspritzungszustandsdetektor
EP1551065A2 (de) Verfahren und Vorrichtung zur Bestimmung der Ansteuerspannung für einen piezoelektrischen Aktor eines Einspritzventils
DE102016220123B4 (de) Verfahren und Vorrichtung zur Plausibilierung der Funktionsfähigkeit eines Hochdrucksensors eines Kraftstoffeinspritzsystems eines Kraftfahrzeugs
CH708777A2 (de) Motorsteuergerät.
DE102018217327B4 (de) Verfahren und Vorrichtung zur Plausibilisierung der Funktionsfähigkeit eines Hochdrucksensors einer Hochdruckkraftstoffeinspritzvorrichtung eines Kraftfahrzeugs
EP1564394A2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP3976952B1 (de) Verfahren zur überwachung eines injektors auf mechanische schädigung
DE19935237A1 (de) Verfahren und Vorrichtung zum Bestimmen des Beladungszustandes eines Kraftstoffilters
DE102004033008B4 (de) Verfahren zum Einspritzen von Kraftstoff beim Start
WO2006063909A1 (de) Vorrichtung zur ermittlung der kraftstoffrücklaufmenge eines injektors einer kraftstoffeinspritzeinrichtung einer brennkraftmaschine
WO2002018765A1 (de) Verfahren zur verkürzung der startzeit bei brennkraftmaschinen mit speichereinspritzsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005011585

Country of ref document: DE

Effective date: 20110908

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005011585

Country of ref document: DE

Effective date: 20120411

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180323

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180331

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005011585

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005011585

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE