EP1722901B1 - Procede de nettoyage au plasma d'un composant - Google Patents

Procede de nettoyage au plasma d'un composant Download PDF

Info

Publication number
EP1722901B1
EP1722901B1 EP05701389A EP05701389A EP1722901B1 EP 1722901 B1 EP1722901 B1 EP 1722901B1 EP 05701389 A EP05701389 A EP 05701389A EP 05701389 A EP05701389 A EP 05701389A EP 1722901 B1 EP1722901 B1 EP 1722901B1
Authority
EP
European Patent Office
Prior art keywords
component
crack
plasma
chamber
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05701389A
Other languages
German (de)
English (en)
Other versions
EP1722901A1 (fr
Inventor
Ursus KRÜGER
Ralph Reiche
Jan Steinbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP05701389A priority Critical patent/EP1722901B1/fr
Publication of EP1722901A1 publication Critical patent/EP1722901A1/fr
Application granted granted Critical
Publication of EP1722901B1 publication Critical patent/EP1722901B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents

Definitions

  • the invention relates to a method for the plasma cleaning of a component according to claim 1.
  • the contaminants may be dust grains, oil or grease films or even corrosion products on the surface of the component.
  • Plasma-assisted vacuum etching processes of components within known PVD or CVD coating processes immediately prior to vapor deposition are known.
  • the basic principle of this surface treatment is the sputtering or sputtering of adhering impurities and the upper atomic layers of the material to be removed into particles of atomic size by bombardment with inert gas ions.
  • the very finely atomized impurity has virtually passed into the gas phase and can be sucked off.
  • Such plasmas can be achieved by coupling suitable electrode arrangements to high voltage RF generators. However, these methods are only used for cleaning flat surfaces.
  • the EP 0 313 855 A2 discloses a method of generating a gas plasma in which the voltage is controlled to a certain value.
  • the EP 0 740 989 A2 discloses a method for cleaning a vulcanizing mold in which a plasma stream is generated.
  • the object is achieved by a method for plasma cleaning according to claim 1.
  • FIG. 1 shows an exemplary device 25 to perform the inventive method. It consists of a chamber 13, in which a vacuum p prevails. The vacuum p is generated by a pump 16 which is connected to the chamber 13. In the chamber 13, a component 1 is present, which has a crack 4, starting from a surface 22.
  • an electrode 10 is arranged above the surface 22 of a component 1 in order to initiate and maintain a plasma 7.
  • This electrode 10 has a certain distance d from the surface 22 of the component 1.
  • a reactive gas 31 may be present, which reacts with a corrosion product in the crack 4, for example, and thus promotes a cleaning of the crack 4.
  • the component 1 may be metallic or ceramic.
  • the component 1 is an iron-, cobalt- or nickel-based superalloy, which is used, for example, for producing a turbine blade 12, 130 (FIG. Fig. 3 . 5 ) or combustor liner 155 (FIG. Fig. 4 ) of a turbine 100 ( Fig. 5 ) serves.
  • Other components of a gas or steam turbine can be cleaned with this method. Cracks 4 in the component 1 may already be present directly after production or have formed after the operational use of the component 1.
  • Such worn components 1, 120, 130, 155 are often refurbished. In this case 22 corrosion products are removed from the surface. Corrosion products in the crack 4 are more difficult to remove. After the crack 4 has been cleaned by the method according to the invention, the crack 4 can be welded or soldered, since the solder can adhere very well to a cleaned surface.
  • FIG. 2 shows a further device 25 'with the method of the invention can be performed.
  • the device 25 ' has a control unit 19 which regulates the pressure p in the chamber 13. Since for the maintenance of a plasma 7 the condition "distance times pressure equal to constant" applies, the pressure p can also be varied in order to initiate and maintain a plasma 7 in the crack 4 at a fixed distance d between electrode 10 and surface 22 , By, for example, a constant decrease in the pressure p, the plasma 7 moves ever deeper to the crack tip 34 of the crack 4.
  • a reactive gas 31 may be present, which reacts with a corrosion product in the crack 4, for example, and thus promotes a cleaning of the crack 4.
  • Another possibility is to simultaneously vary the pressure and distance so that the plasma 7 is maintained, but the condition for the maintenance of a plasma 7 (distance times equal pressure constant) is maintained.
  • the distance d and the pressure p can be varied simultaneously or alternately.
  • an inert gas may be present (Ar, H 2 , N 2 ).
  • FIG. 3 shows a perspective view of a blade 120, 130 which extends along a longitudinal axis 121.
  • the blade 120 may be a blade 120 or stator 130 of a turbomachine for plasma generation.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjoining thereto and an airfoil 406.
  • the blade at its blade tip 415 may have another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. When the blade 120, 130 is to be cooled, it is hollow and may still have film cooling holes (not shown).
  • the blade 120, 130 for example, corresponding mostly metallic coatings and as protection against heat usually still a ceramic coating.
  • the FIG. 4 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 102 arranged around the turbine shaft 103 in the circumferential direction open into a common combustion chamber space.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the turbine shaft 103 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material. Due to the high temperatures in the interior of the combustion chamber 110, a cooling system is additionally provided for the heat shield elements 155 or for their holding elements.
  • the materials of the combustion chamber wall and its coatings may be similar to the turbine blades.
  • the combustion chamber 110 is designed in particular for detecting losses of the heat shield elements 155. Is to a number of temperature sensors 158 are positioned between the combustion chamber wall 153 and the heat shield elements 155.
  • FIG. 5 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example.
  • Each turbine stage 112 is formed, for example, from two blade rings.
  • a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110. From there it flows Working medium 113 along the hot gas channel 111 past the vanes 130 and the blades 120. On the blades 120, the working fluid 113 relaxes momentum transfer, so that the blades 120 drive the rotor 103 and this the machine coupled to him.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106. To withstand the prevailing temperatures, they can be cooled by means of a coolant.
  • substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • As the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110 for example, iron-, nickel- or cobalt-based superalloys are used. Such superalloys are, for example, from the EP 1204776 . EP 1306454 . EP 1319729 . WO 99/67435 or WO 00/44949 known; these writings are part of the revelation.
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths) and heat through a thermal barrier coating.
  • the thermal barrier coating consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Des fissures sont difficiles à nettoyer par des procédés actuels et entraînent souvent une détérioration d'autres zones du composant à nettoyer. Selon la présente invention, on utilise un procédé de nettoyage au plasma consistant à faire varier une pression (p) et/ou un écartement (d) d'une électrode (10) par rapport au composant (1) pour permettre un nettoyage au plasma de la fissure (4).

Claims (6)

  1. Procédé de nettoyage au plasma d'un composant (1),
    dans lequel le composant (1) est mis dans une chambre (13) ayant une électrode (10) pour amorcer un plasma (7),
    dans lequel certains paramètres (p, d) du plasma doivent être respectés pour maintenir le plasma (7),
    dans lequel on fait varier au moins l'un des paramètres (p, d)
    caractérisé en ce que
    on nettoie une fissure (4)
    qui part de la surface (22) du composant, dans lequel ou bien
    • il règne dans la chambre (13) une pression (p) constante et on fait varier une distance (d) de l'électrode (10) à la surface (22) en fonction de la profondeur (t) de la fissure (4),
    ou bien
    • on maintient constante la distance (d) d'une électrode (10) pour amorcer un plasma (7) à la surface (22) du composant (1) et on fait varier la pression (p) de la chambre (13),
    ou bien
    • on fait varier à la fois la distance (d) d'une électrode (10) à la surface (22) du composant (1),
    et la pression (p) à l'intérieur de la chambre (13), en laissant constant le produit de la distance (d) par la pression (p).
  2. Procédé suivant la revendication 1,
    caractérisé en ce que
    on diminue, notamment continuellement, la distance (d) de l'électrode (10) à la surface (22) du composant (1) pour obtenir un nettoyage par plasma dans la fissure (4).
  3. Procédé suivant la revendication 1,
    caractérisé en ce que
    on abaisse, notamment continuellement, la pression (p) autour du plasma (7) en partant de la surface (22) pour obtenir un nettoyage au plasma dans la fissure (4).
  4. Procédé suivant l'une des revendications précédentes,
    caractérisé en ce que
    on met le composant dans une chambre (13) et en ce que l'on envoie un gaz (31) réactif dans la chambre (13),
    qui réagit avec un produit à éliminer dans la fissure (4).
  5. Procédé suivant la revendication 1,
    caractérisé en ce que
    le composant (1) est une aube (120, 130) de turbine une paroi (155) de chambre de combustion ou une autre partie de carter d'une turbomachine, notamment d'une turbine (100), notamment d'une turbine à gaz.
  6. Procédé suivant la revendication 1 ou 5,
    caractérisé en ce que
    le composant (1) est un composant (1) à retraiter.
EP05701389A 2004-03-02 2005-02-09 Procede de nettoyage au plasma d'un composant Not-in-force EP1722901B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05701389A EP1722901B1 (fr) 2004-03-02 2005-02-09 Procede de nettoyage au plasma d'un composant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04004892A EP1570921A1 (fr) 2004-03-02 2004-03-02 Procédé pour le nettoyage par plasma d'une pièce
EP05701389A EP1722901B1 (fr) 2004-03-02 2005-02-09 Procede de nettoyage au plasma d'un composant
PCT/EP2005/001301 WO2005084830A1 (fr) 2004-03-02 2005-02-09 Procede de nettoyage au plasma d'un composant

Publications (2)

Publication Number Publication Date
EP1722901A1 EP1722901A1 (fr) 2006-11-22
EP1722901B1 true EP1722901B1 (fr) 2009-04-22

Family

ID=34745985

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04004892A Withdrawn EP1570921A1 (fr) 2004-03-02 2004-03-02 Procédé pour le nettoyage par plasma d'une pièce
EP05701389A Not-in-force EP1722901B1 (fr) 2004-03-02 2005-02-09 Procede de nettoyage au plasma d'un composant

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04004892A Withdrawn EP1570921A1 (fr) 2004-03-02 2004-03-02 Procédé pour le nettoyage par plasma d'une pièce

Country Status (5)

Country Link
US (1) US7513955B2 (fr)
EP (2) EP1570921A1 (fr)
CN (1) CN100586586C (fr)
DE (1) DE502005007139D1 (fr)
WO (1) WO2005084830A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544254B2 (en) * 2006-12-14 2009-06-09 Varian Semiconductor Equipment Associates, Inc. System and method for cleaning an ion implanter
DE102008019892A1 (de) * 2008-04-21 2009-10-29 Mtu Aero Engines Gmbh Verfahren zum Reinigen eines Flugtriebwerks
DE102008058913A1 (de) 2008-11-25 2010-05-27 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung hybrider Bauteile für Fluggasturbinen
FR2994538B1 (fr) * 2012-08-14 2014-07-25 Snecma Outillage pour le dessablage d'une turbomachine
DE102013107400B4 (de) * 2013-07-12 2017-08-10 Ks Huayu Alutech Gmbh Verfahren zur Entfernung des Oversprays eines thermischen Spritzbrenners
US11668198B2 (en) 2018-08-03 2023-06-06 Raytheon Technologies Corporation Fiber-reinforced self-healing environmental barrier coating
US11505506B2 (en) 2018-08-16 2022-11-22 Raytheon Technologies Corporation Self-healing environmental barrier coating
US10934220B2 (en) * 2018-08-16 2021-03-02 Raytheon Technologies Corporation Chemical and topological surface modification to enhance coating adhesion and compatibility
US11535571B2 (en) 2018-08-16 2022-12-27 Raytheon Technologies Corporation Environmental barrier coating for enhanced resistance to attack by molten silicate deposits

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028787A (en) * 1975-09-15 1977-06-14 Cretella Salvatore Refurbished turbine vanes and method of refurbishment thereof
US4098450A (en) * 1977-03-17 1978-07-04 General Electric Company Superalloy article cleaning and repair method
US4853081A (en) * 1987-10-30 1989-08-01 Ibm Corporation Process for removing contaminant
US5769953A (en) * 1995-05-01 1998-06-23 Bridgestone Corporation Plasma and heating method of cleaning vulcanizing mold for ashing residue
JP2002527628A (ja) 1998-10-21 2002-08-27 シーメンス アクチエンゲゼルシヤフト 製品の浄化方法と被覆方法およびそのための装置
US7451774B2 (en) * 2000-06-26 2008-11-18 Applied Materials, Inc. Method and apparatus for wafer cleaning
FR2836157B1 (fr) * 2002-02-19 2004-04-09 Usinor Procede de nettoyage de la surface d'un materiau enduit d'une susbstance organique, generateur et dispositif de mise en oeuvre
US20050035085A1 (en) * 2003-08-13 2005-02-17 Stowell William Randolph Apparatus and method for reducing metal oxides on superalloy articles

Also Published As

Publication number Publication date
WO2005084830A1 (fr) 2005-09-15
US20070215174A1 (en) 2007-09-20
CN1946489A (zh) 2007-04-11
CN100586586C (zh) 2010-02-03
EP1570921A1 (fr) 2005-09-07
DE502005007139D1 (de) 2009-06-04
US7513955B2 (en) 2009-04-07
EP1722901A1 (fr) 2006-11-22

Similar Documents

Publication Publication Date Title
EP1722901B1 (fr) Procede de nettoyage au plasma d'un composant
EP2032310B1 (fr) Dispositif de projection
EP1772228A1 (fr) Procédé pour la réparation d'une pièce à microstructure orientée.
WO2005072884A1 (fr) Procede pour eliminer une couche
EP1669545A1 (fr) Système de couches, utilisation et procédé pour la fabrication d'un système multicouche
EP1808508A1 (fr) Composant disposé dans le conduit d'écoulement d'une turbomachine et procédé de pulvérisation pour produire un revêtement.
EP1816316B1 (fr) Procédé de réparation de composants
EP1941965A1 (fr) Réouverture de trous à l'aide de la thermographie et d'un composant
WO2007110277A1 (fr) Procédé d'usinage par électroérosion d'une matière non électroconductrice
EP1864742A1 (fr) Procédé pour usiner par électro-érosion des materiaux électriquement non-conducteur
EP1849879A1 (fr) Procédé de traitement thermique cyclique pour un superalliage
DE102005051310A1 (de) Reinigung von oxidierten oder korrodierten Bauteilen
EP1666625A1 (fr) Procédé de revêtement d'un composant a l'interieur d'un aparat
EP1839801A1 (fr) Méthode de réparation pour la remise en état de pièces
WO2006056500A1 (fr) Composant comprenant une cavite remplie de matiere
EP1797985A1 (fr) Procédé et dispositif de soudage
EP1772531A1 (fr) Procédé et appareil de revêtement intérieur.
EP1686240A1 (fr) Composant avec une portion applatie dans un trou
WO2009053154A1 (fr) Procédé pour éliminer une couche métallique au moyen du procédé fic au cours d'une étape intermédiaire
EP1808251B1 (fr) Procédé de dressage d'un électrode d'érosion et d'usinage par électro-érosion
EP1674193A1 (fr) Procédé de fabrication d'un trou
EP1561839A1 (fr) Procédé de fabrication d'une structure en couches comprenant une couche céramique et colonnaire
EP1812186A2 (fr) Procédé et pièce de coulée
EP1811055A1 (fr) Methode pour fabriquer un composant avec des orifices
EP1676938A1 (fr) Methode de fabrication d'un component d'une turbine et le component d'une turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 502005007139

Country of ref document: DE

Date of ref document: 20090604

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170419

Year of fee payment: 13

Ref country code: CH

Payment date: 20170502

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180212

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180226

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005007139

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190209