EP1722901B1 - Method for plasma cleaning of a component - Google Patents

Method for plasma cleaning of a component Download PDF

Info

Publication number
EP1722901B1
EP1722901B1 EP05701389A EP05701389A EP1722901B1 EP 1722901 B1 EP1722901 B1 EP 1722901B1 EP 05701389 A EP05701389 A EP 05701389A EP 05701389 A EP05701389 A EP 05701389A EP 1722901 B1 EP1722901 B1 EP 1722901B1
Authority
EP
European Patent Office
Prior art keywords
component
crack
plasma
chamber
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05701389A
Other languages
German (de)
French (fr)
Other versions
EP1722901A1 (en
Inventor
Ursus KRÜGER
Ralph Reiche
Jan Steinbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP05701389A priority Critical patent/EP1722901B1/en
Publication of EP1722901A1 publication Critical patent/EP1722901A1/en
Application granted granted Critical
Publication of EP1722901B1 publication Critical patent/EP1722901B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents

Definitions

  • the invention relates to a method for the plasma cleaning of a component according to claim 1.
  • the contaminants may be dust grains, oil or grease films or even corrosion products on the surface of the component.
  • Plasma-assisted vacuum etching processes of components within known PVD or CVD coating processes immediately prior to vapor deposition are known.
  • the basic principle of this surface treatment is the sputtering or sputtering of adhering impurities and the upper atomic layers of the material to be removed into particles of atomic size by bombardment with inert gas ions.
  • the very finely atomized impurity has virtually passed into the gas phase and can be sucked off.
  • Such plasmas can be achieved by coupling suitable electrode arrangements to high voltage RF generators. However, these methods are only used for cleaning flat surfaces.
  • the EP 0 313 855 A2 discloses a method of generating a gas plasma in which the voltage is controlled to a certain value.
  • the EP 0 740 989 A2 discloses a method for cleaning a vulcanizing mold in which a plasma stream is generated.
  • the object is achieved by a method for plasma cleaning according to claim 1.
  • FIG. 1 shows an exemplary device 25 to perform the inventive method. It consists of a chamber 13, in which a vacuum p prevails. The vacuum p is generated by a pump 16 which is connected to the chamber 13. In the chamber 13, a component 1 is present, which has a crack 4, starting from a surface 22.
  • an electrode 10 is arranged above the surface 22 of a component 1 in order to initiate and maintain a plasma 7.
  • This electrode 10 has a certain distance d from the surface 22 of the component 1.
  • a reactive gas 31 may be present, which reacts with a corrosion product in the crack 4, for example, and thus promotes a cleaning of the crack 4.
  • the component 1 may be metallic or ceramic.
  • the component 1 is an iron-, cobalt- or nickel-based superalloy, which is used, for example, for producing a turbine blade 12, 130 (FIG. Fig. 3 . 5 ) or combustor liner 155 (FIG. Fig. 4 ) of a turbine 100 ( Fig. 5 ) serves.
  • Other components of a gas or steam turbine can be cleaned with this method. Cracks 4 in the component 1 may already be present directly after production or have formed after the operational use of the component 1.
  • Such worn components 1, 120, 130, 155 are often refurbished. In this case 22 corrosion products are removed from the surface. Corrosion products in the crack 4 are more difficult to remove. After the crack 4 has been cleaned by the method according to the invention, the crack 4 can be welded or soldered, since the solder can adhere very well to a cleaned surface.
  • FIG. 2 shows a further device 25 'with the method of the invention can be performed.
  • the device 25 ' has a control unit 19 which regulates the pressure p in the chamber 13. Since for the maintenance of a plasma 7 the condition "distance times pressure equal to constant" applies, the pressure p can also be varied in order to initiate and maintain a plasma 7 in the crack 4 at a fixed distance d between electrode 10 and surface 22 , By, for example, a constant decrease in the pressure p, the plasma 7 moves ever deeper to the crack tip 34 of the crack 4.
  • a reactive gas 31 may be present, which reacts with a corrosion product in the crack 4, for example, and thus promotes a cleaning of the crack 4.
  • Another possibility is to simultaneously vary the pressure and distance so that the plasma 7 is maintained, but the condition for the maintenance of a plasma 7 (distance times equal pressure constant) is maintained.
  • the distance d and the pressure p can be varied simultaneously or alternately.
  • an inert gas may be present (Ar, H 2 , N 2 ).
  • FIG. 3 shows a perspective view of a blade 120, 130 which extends along a longitudinal axis 121.
  • the blade 120 may be a blade 120 or stator 130 of a turbomachine for plasma generation.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjoining thereto and an airfoil 406.
  • the blade at its blade tip 415 may have another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. When the blade 120, 130 is to be cooled, it is hollow and may still have film cooling holes (not shown).
  • the blade 120, 130 for example, corresponding mostly metallic coatings and as protection against heat usually still a ceramic coating.
  • the FIG. 4 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 102 arranged around the turbine shaft 103 in the circumferential direction open into a common combustion chamber space.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the turbine shaft 103 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material. Due to the high temperatures in the interior of the combustion chamber 110, a cooling system is additionally provided for the heat shield elements 155 or for their holding elements.
  • the materials of the combustion chamber wall and its coatings may be similar to the turbine blades.
  • the combustion chamber 110 is designed in particular for detecting losses of the heat shield elements 155. Is to a number of temperature sensors 158 are positioned between the combustion chamber wall 153 and the heat shield elements 155.
  • FIG. 5 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example.
  • Each turbine stage 112 is formed, for example, from two blade rings.
  • a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110. From there it flows Working medium 113 along the hot gas channel 111 past the vanes 130 and the blades 120. On the blades 120, the working fluid 113 relaxes momentum transfer, so that the blades 120 drive the rotor 103 and this the machine coupled to him.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106. To withstand the prevailing temperatures, they can be cooled by means of a coolant.
  • substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • As the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110 for example, iron-, nickel- or cobalt-based superalloys are used. Such superalloys are, for example, from the EP 1204776 . EP 1306454 . EP 1319729 . WO 99/67435 or WO 00/44949 known; these writings are part of the revelation.
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths) and heat through a thermal barrier coating.
  • the thermal barrier coating consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Abstract

Cracks are conventionally difficult to clean which often leads to damage to other regions of the component for cleaning. According to the invention, a plasma cleaning method is used, whereby a pressure (p) and/or a separation (d) of an electrode (10) to the component (1) are varied, in order to achieve a plasma cleaning in the crack (4).

Description

Die Erfindung betrifft ein Verfahren zur Plasmareinigung eines Bauteils gemäß Anspruch 1.The invention relates to a method for the plasma cleaning of a component according to claim 1.

Oberflächen von Bauteilen müssen für die Anwendung oder in Zwischenschritten verschiedener Verfahren oft von Verunreinigungen gereinigt werden. Die Verunreinigen können Staubkörner, Öl oder Fettfilme oder auch Korrosionsprodukte auf der Oberfläche des Bauteils sein.Surfaces of components must often be cleaned of contaminants for use or in intermediate steps of various processes. The contaminants may be dust grains, oil or grease films or even corrosion products on the surface of the component.

Als Stand der Technik sind einfache Verfahren des Wischens oder des Trockeneisstrahlens bekannt.
Wenn jedoch eine Vertiefung oder ein Riss gereinigt werden soll, so müssen aufwändigere Verfahren angewendet werden. Dies geschieht beispielsweise durch Fluorid-Ionen-Reinigung (FIC), Wasserstoffglühung oder Salzbadreinigung. Bei diesen Prozessen, die erheblichen apparativen Aufwand bedeuten, werden auch die nicht zu reinigenden Flächen teilweise erheblich beeinträchtigt.
As the prior art, simple methods of wiping or dry ice blasting are known.
However, if a depression or a crack is to be cleaned, more complex procedures must be used. This is done for example by fluoride ion cleaning (FIC), hydrogen annealing or salt bath cleaning. In these processes, which mean considerable expenditure on equipment, even the areas not to be cleaned are in some cases significantly impaired.

Plasma-gestützte Vakuumätzprozesse von Bauteilen innerhalb bekannter PVD- oder CVD-Beschichtungsverfahren unmittelbar vor der Dampfabscheidung sind bekannt. Grundprinzip dieser Oberflächenbehandlung ist das Zerstäuben oder auch Sputtern anhaftender Verunreinigungen und der oberen Atomlagen des zu entfernenden Werkstoffes zu Partikeln in atomarer Größenordnung durch den Beschuss mit Inertgasionen. Die sehr fein zerstäubte Verunreinigung ist quasi in die Gasphase übergetreten und kann abgesaugt werden.
Solche Plasmen können durch die Kopplung geeigneter Elektrodenanordnungen mit Hochspannungs-HochfrequenzGeneratoren erreicht werden. Diese Verfahren werden jedoch nur zur Reinigung ebener Flächen angewendet.
Plasma-assisted vacuum etching processes of components within known PVD or CVD coating processes immediately prior to vapor deposition are known. The basic principle of this surface treatment is the sputtering or sputtering of adhering impurities and the upper atomic layers of the material to be removed into particles of atomic size by bombardment with inert gas ions. The very finely atomized impurity has virtually passed into the gas phase and can be sucked off.
Such plasmas can be achieved by coupling suitable electrode arrangements to high voltage RF generators. However, these methods are only used for cleaning flat surfaces.

Die EP 0 313 855 A2 offenbart ein Verfahren zur Erzeugung eines Gasplasmas, bei dem die Spannung auf einem bestimmten Wert kontrolliert wird.The EP 0 313 855 A2 discloses a method of generating a gas plasma in which the voltage is controlled to a certain value.

Die EP 0 740 989 A2 offenbart eine Methode zum Reinigen von einer Vulkanisierform, bei der ein Plasmastrom erzeugt wird.The EP 0 740 989 A2 discloses a method for cleaning a vulcanizing mold in which a plasma stream is generated.

Es ist daher Aufgabe der Erfindung ein Verfahren aufzuzeigen, mit dem ein Riss einfacher und schneller von Verunreinigungen gereinigt werden kann, ohne dass andere Bereiche des Bauteils beeinträchtigt werden.It is therefore an object of the invention to provide a method by which a crack can be cleaned easier and faster from impurities, without affecting other areas of the component.

Die Aufgabe wird gelöst durch ein Verfahren zur Plasmareinigung gemäß Anspruch 1.The object is achieved by a method for plasma cleaning according to claim 1.

In den Unteransprüchen sind weitere vorteilhafte Verfahrensschritte des erfindungsgemäßen Verfahrens aufgelistet.
Die in den Unteransprüchen aufgelisteten Maßnahmen können in vorteilhafter Art und Weise miteinander kombiniert werden.
In the subclaims, further advantageous method steps of the method according to the invention are listed.
The measures listed in the subclaims can be combined with each other in an advantageous manner.

Es zeigen

Figur 1, 2
Vorrichtungen, um das erfindungsgemäße Verfahren durchzuführen,
Figur 3
eine Turbinenschaufel,
Figur 4
eine Brennkammer und
Figur 5
eine Gasturbine.
Show it
FIG. 1, 2
Devices for carrying out the method according to the invention
FIG. 3
a turbine blade,
FIG. 4
a combustion chamber and
FIG. 5
a gas turbine.

Figur 1 zeigt eine beispielhafte Vorrichtung 25 um das erfindungsgemäße Verfahren durchzuführen. Sie besteht aus einer Kammer 13, in der ein Vakuum p herrscht. Das Vakuum p wird durch eine Pumpe 16 erzeugt, die an die Kammer 13 angeschlossen ist.
In der Kammer 13 ist ein Bauteil 1 vorhanden, das einen Riss 4 ausgehend von einer Oberfläche 22 aufweist.
FIG. 1 shows an exemplary device 25 to perform the inventive method. It consists of a chamber 13, in which a vacuum p prevails. The vacuum p is generated by a pump 16 which is connected to the chamber 13.
In the chamber 13, a component 1 is present, which has a crack 4, starting from a surface 22.

Ebenso ist eine Elektrode 10 oberhalb der Oberfläche 22 eines Bauteils 1 angeordnet, um ein Plasma 7 zu initiieren und aufrechtzuerhalten.
Diese Elektrode 10 weist einen bestimmten Abstand d zur Oberfläche 22 des Bauteils 1 auf.
Für die Aufrechterhaltung eines Plasmas 7 gilt die Bedingung, dass das Produkt aus Abstand mal Druck konstant ist (d x p = const.).
Da der Riss 4 eine bestimmte Tiefe t bis zur Rissspitze 34 aufweist, wird die Innenfläche 28 des Risses 4 nicht vollständig von dem Plasma 7 erfasst, da der Abstand der Elektrode 10 zu der äußeren Oberfläche 22 des Bauteils 1 und der Abstand bis zur Rissspitze 34 des Risses 4 verschieden sind.
Daher wird beispielsweise der Abstand d der Elektrode 10 zu der Oberfläche 22 variiert, so dass das Plasma 7 von der Rissspitze zur Oberfläche 22 oder von der Oberfläche 22 des Bauteils 1 zur Rissspitze 37 des Risses 4 wandert.
So kann der Abstand d, insbesondere stetig, erniedrigt werden, so dass das Plasma 7 von der Oberfläche 22 in den Riss 4 hineinwandert.
Likewise, an electrode 10 is arranged above the surface 22 of a component 1 in order to initiate and maintain a plasma 7.
This electrode 10 has a certain distance d from the surface 22 of the component 1.
For the maintenance of a plasma 7 the condition applies that the product of distance times pressure is constant (dxp = const.).
Since the crack 4 has a certain depth t to the crack tip 34, the inner surface 28 of the crack 4 is not completely covered by the plasma 7, since the distance of the electrode 10 to the outer surface 22 of the component 1 and the distance to the crack tip 34th of the tear 4 are different.
Therefore, for example, the distance d of the electrode 10 to the surface 22 is varied so that the plasma 7 migrates from the crack tip to the surface 22 or from the surface 22 of the component 1 to the crack tip 37 of the crack 4.
Thus, the distance d, in particular continuously, can be lowered so that the plasma 7 migrates from the surface 22 into the crack 4.

Ebenso kann in der Kammer 13 ein Reaktivgas 31 vorhanden sein, das beispielsweise mit einem Korrosionsprodukt in dem Riss 4 reagiert und so eine Reinigung des Risses 4 fördert.Likewise, in the chamber 13, a reactive gas 31 may be present, which reacts with a corrosion product in the crack 4, for example, and thus promotes a cleaning of the crack 4.

Das Bauteil 1 kann metallisch oder keramisch sein. Insbesondere ist das Bauteil 1 eine eisen-, kobalt- oder nickel-basierte Superlegierung, die beispielsweise zur Herstellung einer Turbinenschaufel 12, 130 (Fig. 3, 5) oder Brennkammerauskleidung 155 (Fig. 4) einer Turbine 100 (Fig. 5) dient. Weitere Bauteile einer Gas- oder Dampfturbine können mit diesem Verfahren gereinigt werden. Risse 4 in dem Bauteil 1 können bereits direkt nach dem Herstellen vorhanden sein oder haben sich nach dem betrieblichen Einsatz des Bauteils 1 gebildet.The component 1 may be metallic or ceramic. In particular, the component 1 is an iron-, cobalt- or nickel-based superalloy, which is used, for example, for producing a turbine blade 12, 130 (FIG. Fig. 3 . 5 ) or combustor liner 155 (FIG. Fig. 4 ) of a turbine 100 ( Fig. 5 ) serves. Other components of a gas or steam turbine can be cleaned with this method. Cracks 4 in the component 1 may already be present directly after production or have formed after the operational use of the component 1.

Solche abgenutzten Bauteile 1, 120, 130, 155 werden oft wieder aufgearbeitet (Refurbishment). Dabei werden von der Oberfläche 22 Korrosionsprodukte entfernt. Korrosionsprodukte in dem Riss 4 lassen sich schwieriger entfernen.
Nachdem der Riss 4 mit dem erfindungsgemäßen Verfahren gereinigt worden ist, kann der Riss 4 zugeschweißt oder zugelötet werden, da das Lot sehr gut auf einer gereinigten Oberfläche haften kann.
Such worn components 1, 120, 130, 155 are often refurbished. In this case 22 corrosion products are removed from the surface. Corrosion products in the crack 4 are more difficult to remove.
After the crack 4 has been cleaned by the method according to the invention, the crack 4 can be welded or soldered, since the solder can adhere very well to a cleaned surface.

Figur 2 zeigt eine weitere Vorrichtung 25' mit der das erfindungsgemäße Verfahren durchgeführt werden kann.
Die Vorrichtung 25' weist eine Steuerungseinheit 19 auf, die den Druck p in der Kammer 13 regelt. Da für die Aufrechterhaltung eines Plasmas 7 die Bedingung "Abstand mal Druck gleich konstant" gilt, kann auch der Druck p variiert werden, um bei einem festen Abstand d zwischen von Elektrode 10 und Oberfläche 22 ein Plasma 7 in dem Riss 4 zu initiieren und aufrechtzuerhalten. Durch beispielsweise stetige Erniedrigung des Drucks p wandert das Plasma 7 immer tiefer bis zur Rissspitze 34 des Risses 4.
FIG. 2 shows a further device 25 'with the method of the invention can be performed.
The device 25 'has a control unit 19 which regulates the pressure p in the chamber 13. Since for the maintenance of a plasma 7 the condition "distance times pressure equal to constant" applies, the pressure p can also be varied in order to initiate and maintain a plasma 7 in the crack 4 at a fixed distance d between electrode 10 and surface 22 , By, for example, a constant decrease in the pressure p, the plasma 7 moves ever deeper to the crack tip 34 of the crack 4.

Ebenso kann in der Kammer 13 ein Reaktivgas 31 vorhanden sein, das beispielsweise mit einem Korrosionsprodukt in dem Riss 4 reagiert und so eine Reinigung des Risses 4 fördert.Likewise, in the chamber 13, a reactive gas 31 may be present, which reacts with a corrosion product in the crack 4, for example, and thus promotes a cleaning of the crack 4.

Eine weitere Möglichkeit besteht darin, gleichzeitig Druck und Abstand so zu variieren, dass das Plasma 7 aufrechterhalten wird, wobei aber die Bedingung für die Aufrechterhaltung eines Plasmas 7 (Abstand mal Druck gleich konstant) eingehalten wird.
Der Abstand d und der Druck p können gleichzeitig oder abwechselnd variiert werden.
Another possibility is to simultaneously vary the pressure and distance so that the plasma 7 is maintained, but the condition for the maintenance of a plasma 7 (distance times equal pressure constant) is maintained.
The distance d and the pressure p can be varied simultaneously or alternately.

In der Kammer 13 kann ein Inertgas vorhanden sein (Ar, H2, N2...)In the chamber 13, an inert gas may be present (Ar, H 2 , N 2 ...)

Figur 3 zeigt in perspektivischer Ansicht eine Schaufel 120, 130, die sich entlang einer Längsachse 121 erstreckt. FIG. 3 shows a perspective view of a blade 120, 130 which extends along a longitudinal axis 121.

Die Schaufel 120 kann zur Plasmaerzeugung eine Laufschaufel 120 oder Leitschaufel 130 einer Strömungsmaschine sein. Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.The blade 120 may be a blade 120 or stator 130 of a turbomachine for plasma generation. The turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.

Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 auf.
Als Leitschaufel 130 kann die Schaufel an ihrer Schaufelspitze 415 eine weitere Plattform aufweisen (nicht dargestellt).
The blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjoining thereto and an airfoil 406.
As a guide blade 130, the blade at its blade tip 415 may have another platform (not shown).

Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt).
Der Schaufelfuß 183 ist bspw. als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.
Die Schaufel 120, 130 weist für ein Medium, das an dem Schaufelblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf.
In the mounting region 400, a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
The blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
The blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.

Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 bspw. massive metallische Werkstoffe verwendet.
Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
In conventional blades 120, 130, massive metallic materials are used in all regions 400, 403, 406 of the blade 120, 130, for example.
The blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.

Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.
Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.
Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.
Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
The production of such monocrystalline workpieces, for example, by directed solidification from the melt. These are casting methods in which the liquid metallic alloy solidifies into a monocrystalline structure, ie a single-crystal workpiece, or directionally.
Here, dendritic crystals are aligned along the heat flow and form either a columnar crystalline Grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the entire workpiece consists of a single crystal. In these processes, it is necessary to avoid the transition to globulitic (polycrystalline) solidification, since non-directional growth necessarily produces transverse and longitudinal grain boundaries which negate the good properties of the directionally solidified or monocrystalline component.

Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures).The term generally refers to directionally solidified microstructures, which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.

Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 A1 bekannt.Such methods are known from U.S. Patent 6,024,792 and the EP 0 892 090 A1 known.

Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wiederbeschichtung des Bauteils 120, 130 und ein erneuter Einsatz des Bauteils 120, 130.Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.

Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher (nicht dargestellt) auf.The blade 120, 130 may be hollow or solid. When the blade 120, 130 is to be cooled, it is hollow and may still have film cooling holes (not shown).

Als Schutz gegen Korrosion weist die Schaufel 120, 130 bspw. entsprechende meistens metallische Beschichtungen auf und als Schutz gegen Wärme meistens noch eine keramische Beschichtung.As protection against corrosion, the blade 120, 130, for example, corresponding mostly metallic coatings and as protection against heat usually still a ceramic coating.

Die Figur 4 zeigt eine Brennkammer 110 einer Gasturbine.
Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um die Turbinenwelle 103 herum angeordneten Brennern 102 in einen gemeinsamen Brennkammerraum münden. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Turbinenwelle 103 herum positioniert ist.
The FIG. 4 shows a combustion chamber 110 of a gas turbine.
The combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 102 arranged around the turbine shaft 103 in the circumferential direction open into a common combustion chamber space. For this purpose, the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the turbine shaft 103 around.

Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen. Jedes Hitzeschildelement 155 ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht ausgestattet oder aus hochtemperaturbeständigem Material gefertigt. Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 ist zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen.To achieve a comparatively high efficiency, the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C. In order to enable a comparatively long service life even with these, for the materials unfavorable operating parameters, the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155. Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material. Due to the high temperatures in the interior of the combustion chamber 110, a cooling system is additionally provided for the heat shield elements 155 or for their holding elements.

Die Materialien der Brennkammerwand und deren Beschichtungen können ähnlich der Turbinenschaufeln sein.The materials of the combustion chamber wall and its coatings may be similar to the turbine blades.

Die Brennkammer 110 ist insbesondere für eine Detektion von Verlusten der Hitzeschildelemente 155 ausgelegt. Dazu ist zwischen der Brennkammerwand 153 und den Hitzeschildelementen 155 eine Anzahl von Temperatursensoren 158 positioniert.The combustion chamber 110 is designed in particular for detecting losses of the heat shield elements 155. Is to a number of temperature sensors 158 are positioned between the combustion chamber wall 153 and the heat shield elements 155.

Die Figur 5 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt.
Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 auf, der auch als Turbinenläufer bezeichnet wird.
Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer 106, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
Die Ringbrennkammer 106 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinandergeschaltete Turbinenstufen 112 die Turbine 108.
Jede Turbinenstufe 112 ist bspw. aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
The FIG. 5 shows by way of example a gas turbine 100 in a longitudinal partial section.
The gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
Along the rotor 103 follow one another an intake housing 104, a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
The annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example. There, for example, four turbine stages 112 connected in series form the turbine 108.
Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.

Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 bspw. mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.
An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).
The guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
Coupled to the rotor 103 is a generator or work machine (not shown).

Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.During operation of the gas turbine 100, air 105 is sucked in and compressed by the compressor 105 through the intake housing 104. The compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel. The mixture is then burned to form the working fluid 113 in the combustion chamber 110. From there it flows Working medium 113 along the hot gas channel 111 past the vanes 130 and the blades 120. On the blades 120, the working fluid 113 relaxes momentum transfer, so that the blades 120 drive the rotor 103 and this the machine coupled to him.

Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 106 auskleidenden Hitzeschildsteinen am meisten thermisch belastet.
Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.
Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).
Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden bspw. eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.
Solche Superlegierungen sind bspw. aus der EP 1204776 , EP 1306454 , EP 1319729 , WO 99/67435 oder WO 00/44949 bekannt; diese Schriften sind Teil der Offenbarung.
The components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100. The guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106.
To withstand the prevailing temperatures, they can be cooled by means of a coolant.
Likewise, substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
As the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110, for example, iron-, nickel- or cobalt-based superalloys are used.
Such superalloys are, for example, from the EP 1204776 . EP 1306454 . EP 1319729 . WO 99/67435 or WO 00/44949 known; these writings are part of the revelation.

Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden) und Wärme durch eine Wärmedämmschicht aufweisen.
Die Wärmedämmschicht besteht beispielsweise ZrO2, Y2O4-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
Also, the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths) and heat through a thermal barrier coating.
The thermal barrier coating consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.

Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.By suitable coating methods, e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.

Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.The vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot. The vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Claims (6)

  1. Process for the plasma cleaning of a component (1), the component (1) being arranged in a chamber (13) having an electrode (10) for initiating a plasma (7),
    wherein certain parameters (p, d) of the plasma are to be complied with in order to maintain the plasma (7),
    with at least one parameter (p, d) being varied,
    characterized in that
    a crack (4),
    which starts from the surface (22) of the component (1), being cleaned, wherein either
    • a constant pressure (p) prevails in the chamber (13) and the distance (d) from the electrode (10) to the surface (22) is varied as a function of the crack depth (t) of the crack (4),
    or
    • the distance (d) from an electrode (10) for initiating a plasma (7) to the surface (22) of the component (1) is kept constant and the pressure (p) of the chamber (13) is varied,
    or
    • both the distance (d) from an electrode (10) to the surface (22) of the component (1),
    and the pressure (p) within the chamber (13) are varied,
    with the product of distance (d) and pressure (p) remaining constant.
  2. Process as claimed in Claim 1,
    characterized in that
    the distance (d) from the electrode (10) to the surface (22) of the component (1) is reduced, in particular continuously, in order to achieve plasma cleaning in the crack (4).
  3. Process as claimed in Claim 1,
    characterized in that
    the pressure (p) is reduced, in particular continuously, in order for the plasma (7), starting from the surface (22), to effect plasma cleaning in the crack (4).
  4. Process as claimed in one of the preceding claims,
    characterized
    in that the component (1) is arranged in a chamber (13), and in that the chamber (13) is supplied with a reactive gas (31),
    which reacts with a product that is to be removed in the crack (4).
  5. Process as claimed in Claim 1,
    characterized in that
    the component (1) is a turbine blade or vane (120, 130), a combustion chamber wall (155) or another housing part of a turbomachine, in particular of a turbine (100), in particular of a gas turbine.
  6. Process as claimed in Claim 1 or 5,
    characterized in that
    the component (1) is a component (1) that is to be refurbished.
EP05701389A 2004-03-02 2005-02-09 Method for plasma cleaning of a component Not-in-force EP1722901B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05701389A EP1722901B1 (en) 2004-03-02 2005-02-09 Method for plasma cleaning of a component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04004892A EP1570921A1 (en) 2004-03-02 2004-03-02 Process for cleaning by plasma an object
EP05701389A EP1722901B1 (en) 2004-03-02 2005-02-09 Method for plasma cleaning of a component
PCT/EP2005/001301 WO2005084830A1 (en) 2004-03-02 2005-02-09 Method for plasma cleaning of a component

Publications (2)

Publication Number Publication Date
EP1722901A1 EP1722901A1 (en) 2006-11-22
EP1722901B1 true EP1722901B1 (en) 2009-04-22

Family

ID=34745985

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04004892A Withdrawn EP1570921A1 (en) 2004-03-02 2004-03-02 Process for cleaning by plasma an object
EP05701389A Not-in-force EP1722901B1 (en) 2004-03-02 2005-02-09 Method for plasma cleaning of a component

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04004892A Withdrawn EP1570921A1 (en) 2004-03-02 2004-03-02 Process for cleaning by plasma an object

Country Status (5)

Country Link
US (1) US7513955B2 (en)
EP (2) EP1570921A1 (en)
CN (1) CN100586586C (en)
DE (1) DE502005007139D1 (en)
WO (1) WO2005084830A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544254B2 (en) * 2006-12-14 2009-06-09 Varian Semiconductor Equipment Associates, Inc. System and method for cleaning an ion implanter
DE102008019892A1 (en) * 2008-04-21 2009-10-29 Mtu Aero Engines Gmbh Method for cleaning an aircraft engine
DE102008058913A1 (en) 2008-11-25 2010-05-27 Rolls-Royce Deutschland Ltd & Co Kg Method for producing hybrid components for aircraft gas turbines
FR2994538B1 (en) 2012-08-14 2014-07-25 Snecma TOOLING FOR THE DESSABLAGE OF A TURBOMACHINE
DE102013107400B4 (en) * 2013-07-12 2017-08-10 Ks Huayu Alutech Gmbh Method for removing the overspray of a thermal spray burner
US11668198B2 (en) 2018-08-03 2023-06-06 Raytheon Technologies Corporation Fiber-reinforced self-healing environmental barrier coating
US10934220B2 (en) * 2018-08-16 2021-03-02 Raytheon Technologies Corporation Chemical and topological surface modification to enhance coating adhesion and compatibility
US11505506B2 (en) 2018-08-16 2022-11-22 Raytheon Technologies Corporation Self-healing environmental barrier coating
US11535571B2 (en) 2018-08-16 2022-12-27 Raytheon Technologies Corporation Environmental barrier coating for enhanced resistance to attack by molten silicate deposits

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028787A (en) * 1975-09-15 1977-06-14 Cretella Salvatore Refurbished turbine vanes and method of refurbishment thereof
US4098450A (en) * 1977-03-17 1978-07-04 General Electric Company Superalloy article cleaning and repair method
US4853081A (en) * 1987-10-30 1989-08-01 Ibm Corporation Process for removing contaminant
US5769953A (en) * 1995-05-01 1998-06-23 Bridgestone Corporation Plasma and heating method of cleaning vulcanizing mold for ashing residue
EP1135540B1 (en) 1998-10-21 2002-03-13 Siemens Aktiengesellschaft Method and device for cleaning a product
US7451774B2 (en) * 2000-06-26 2008-11-18 Applied Materials, Inc. Method and apparatus for wafer cleaning
FR2836157B1 (en) * 2002-02-19 2004-04-09 Usinor METHOD FOR CLEANING THE SURFACE OF A MATERIAL COATED WITH ORGANIC SUSBSTANCE, GENERATOR AND DEVICE FOR IMPLEMENTING SAME
US20050035085A1 (en) * 2003-08-13 2005-02-17 Stowell William Randolph Apparatus and method for reducing metal oxides on superalloy articles

Also Published As

Publication number Publication date
EP1570921A1 (en) 2005-09-07
WO2005084830A1 (en) 2005-09-15
CN100586586C (en) 2010-02-03
EP1722901A1 (en) 2006-11-22
US7513955B2 (en) 2009-04-07
CN1946489A (en) 2007-04-11
US20070215174A1 (en) 2007-09-20
DE502005007139D1 (en) 2009-06-04

Similar Documents

Publication Publication Date Title
EP1722901B1 (en) Method for plasma cleaning of a component
EP2032310B1 (en) Peening device
EP1772228A1 (en) Process for repairing a workpiece with an oriented microstructure
WO2005072884A1 (en) Method for removing a layer
EP1669545A1 (en) Coating system, use and method of manufacturing such a coating system
EP1808508A1 (en) Component located in the flow channel of a turbomachine and spraying process for generating a coating.
EP1816316B1 (en) Method for Repairing a Component
EP1941965A1 (en) Re-opening of holes using thermography and component
WO2007110277A1 (en) Method for electrical discharge machining of electrically non-conductive material
EP1849879A1 (en) Cyclic heat treatment process for a superalloy
WO2007048696A1 (en) Fluoride ion cleaning method for oxidised or corroded components
EP1666625A1 (en) Method of coating a component inside an apparatus
EP1839801A1 (en) Repairing method to restore components
WO2006056500A1 (en) Component provided a material filled recess
EP1772531A1 (en) Method and apparatus for internal coating.
EP1686240A1 (en) Component with a flat portion in a hole
EP1797985A1 (en) Method and device for welding
WO2009053154A1 (en) Method for removing a metal layer by means of fic in an intermediate step
EP1808251B1 (en) Method of dressing an erosion electrode and of electroerosive machining
EP1674193A1 (en) Method of the fabrication of a hole
EP1561839A1 (en) Process of manufacturing a layered structure comprising a columnar ceramic layer
EP1812186A2 (en) Casting method and casting article
EP1811055A1 (en) Method for manufacturing a component with holes
EP1676938A1 (en) Method of manufacturing a component part of a turbine and a component of a turbine
EP1772533A1 (en) Apparatus for coating inner surfaces, retort and method therefor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 502005007139

Country of ref document: DE

Date of ref document: 20090604

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170419

Year of fee payment: 13

Ref country code: CH

Payment date: 20170502

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180212

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180226

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005007139

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190209