EP1705443A1 - Verfahren und Vorrichtung zur Kühlung eines Gases durch direkten Wärmeaustausch mit einer Kühlflüssigkeit - Google Patents

Verfahren und Vorrichtung zur Kühlung eines Gases durch direkten Wärmeaustausch mit einer Kühlflüssigkeit Download PDF

Info

Publication number
EP1705443A1
EP1705443A1 EP06001111A EP06001111A EP1705443A1 EP 1705443 A1 EP1705443 A1 EP 1705443A1 EP 06001111 A EP06001111 A EP 06001111A EP 06001111 A EP06001111 A EP 06001111A EP 1705443 A1 EP1705443 A1 EP 1705443A1
Authority
EP
European Patent Office
Prior art keywords
gas
flow
cooling
direct contact
cooling liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06001111A
Other languages
English (en)
French (fr)
Inventor
Thomas Nohlen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP06001111A priority Critical patent/EP1705443A1/de
Publication of EP1705443A1 publication Critical patent/EP1705443A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04775Air purification and pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for

Definitions

  • the invention relates to a method for cooling a gas by direct heat exchange with a cooling liquid and a corresponding device.
  • an ascending gas in a direct contact cooler is brought into direct countercurrent contact with a first flow of cooling liquid.
  • cooled gas and a liquid return flow are withdrawn and forwarded as return flow.
  • Such a process is used, for example, in the cooling of compressed air, in particular for pre-cooling of air separation plants.
  • Methods and devices for the cryogenic decomposition of air are known, for example, from Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, Chapter 4 (pages 281 to 337).
  • Examples of air separation plants with direct contact coolers can be found in Wagner, Air separation technology today, 5th symposium to be arranged by LINDE AG in Kunststoff, 25.-27.06.86, Article A (Fig. 1a) and Wagner, development of air separation technology, Linde Symposium Air separation plants 1980, 'Article A ( Figure 11).
  • the air is cooled upstream of the main heat exchanger or a cleaning device, for example from 50 to 150 ° C to 5 to 40 ° C, preferably from 90 to 100 ° C to 8 to 12 ° C.
  • a coolant usually cooling water is used, which is performed in many cases in a cooling water circuit. Often, this cooling water circuit is integrated into a larger cooling water system, which also supplies cooling water for other processes.
  • flow and return temperature are specified, that is, in the direct contact cooler, a certain temperature difference between the first cooling liquid flow and return flow must be achieved. So far, this is achieved by a corresponding dimensioning of the flow rate of the first cooling liquid stream.
  • the invention is based on the object to make such a method economically cheaper.
  • This object is achieved by controlling the temperature of the recycle stream by introducing a second stream of cooling liquid whose temperature is lower than that of the recycle stream into the liquid recycle stream. A part of the available cooling liquid thus does not or at least not completely participate in the direct heat exchange with the gas to be cooled.
  • the liquid load of the direct contact cooler and optionally upstream pressure booster pump is correspondingly lower.
  • These components and the associated lines can be built correspondingly smaller.
  • drive energy can be saved in the pumps.
  • the in itself energetically unfavorable mixing of hot and cold coolant is overcompensated by these advantages by far.
  • a coolant for example, water can be used.
  • the direct contact cooler can basically be designed as a spray zone cooler. As a rule, however, it has internals in the form of mass transfer elements, in particular of sieve trays, random packings and / or ordered packings.
  • an integrated cooling fluid system is used, from which the first and second cooling liquid flow originate and in which Return flow is returned.
  • the return flows of several consumers are summarized, cooled in a liquid cooling device, such as a cooling tower or an evaporative cooler and then made available to the consumers again as a supply.
  • a liquid cooling device such as a cooling tower or an evaporative cooler
  • the second stream of cooling liquid can originate from any source of cooling liquid whose temperature is correspondingly low, in particular by other consumers of the cooling liquid system, for example the intercoolers and / or aftercoolers of a gas compressor, in which the gas to be cooled is compressed.
  • other consumers of the cooling liquid system for example the intercoolers and / or aftercoolers of a gas compressor, in which the gas to be cooled is compressed.
  • the first coolant flow and a second coolant flow are diverted from a main coolant flow, said main coolant flow, in particular, supplies no further coolant consumers.
  • the temperature of the recycle stream is adjusted by adjusting the amounts of the first and second coolant liquid streams.
  • the adjustment of the amounts of the two coolant liquid streams can be made by hand, by an automatic control of the mixing temperature or as a fixed setting of a predetermined ratio or previously determined absolute amounts.
  • the pumps and the lines connected to them can be dimensioned correspondingly small.
  • the invention also relates to a device for cooling a gas according to claim 6 as well as methods and devices for gas separation, in particular for cryogenic air separation according to the following claims.
  • a direct contact cooler 2 Via line 1, gas is introduced into the lower region of a direct contact cooler 2, in the example immediately above the sump.
  • the direct contact cooler has two mass transfer sections 3, 4, which are each equipped with sieve trays, random packings or ordered packings. The liquid distributors above these sections are not shown. At the top of the direct contact cooler, cooled gas exits via line 5.
  • the gas 1 to be cooled preferably originates from a feed gas compressor (not shown), which may have an aftercooler, in which part of the heat of compression is removed by means of indirect heat exchange; However, such an aftercooler is not provided in the exemplary embodiment.
  • the gas 1 enters at a temperature of 90 to 100 ° C in the direct contact cooler 2 and the cooled gas 5 flows out at 8 to 12 ° C again.
  • a main coolant flow is supplied from a coolant system at a predetermined flow temperature of preferably 15 to 45 ° C, for example, about 30 ° C. At least one part is introduced as the first coolant flow 7, 8 by means of, for example, an electrically driven pump 9 onto the lower section 3 of the direct contact cooler 2. This coolant occurs in the direct contact cooler 2, 3 in direct heat exchange with the gas from line 1. It is heated and withdrawn as reflux 10 from the direct contact cooler. The return flow flows via a return line 11 back into the cooling fluid system.
  • the second cooling liquid stream 12 is mixed according to the invention with a second cooling liquid stream 12, 13, whose temperature is lower.
  • the second coolant flow is branched off from the main coolant flow 6 in the example.
  • the return temperature in the conduit 11 (preferably 25 to 55 ° C, for example, about 40 ° C) is determined by the flow rates of the first cooling liquid stream (preferably 30 to 60 ° C, for example, about 45 ° C) and the second cooling liquid stream (preferably 15 ° C) to 45 ° C, for example about 30 ° C) by appropriate adjustment of the valves 15, 14 set.
  • the adjustment of the amounts of the two cooling liquid streams can be done manually, by an automatic temperature control or as a fixed setting of a predetermined ratio or previously determined absolute quantities.
  • the drain valve 17 for the return flow 10 can be included in this scheme.
  • the upper section 4 of the direct contact cooler is not essential to the method according to the invention and can basically be omitted. In the exemplary embodiment, it serves for further cooling of the gas by means of a third coolant flow 16, which can be formed in particular by fresh water or by cold water from an evaporative cooler or a refrigeration system.
  • the gas is formed by atmospheric air.
  • the cooled air 5 is treated in an adsorptive cleaner and then enters the coldbox of a cryogenic separator. There it is cooled in a main heat exchanger to about dew point and introduced into the separation column or in one or more of the separation columns of the distillation column system of the separator.
  • the cooling liquid is formed by water.
  • the temperature of the return flow 10 was increased by 5 K compared to a method without admixture (valve 14 closed).
  • the amount of the first coolant flow 7, 8 could be reduced by about 40%. This makes it possible to reduce the direct contact cooler in cross section by about 10% and save about 40% of the pump power in 9.
  • the return flow 10 with another relatively cold Coolant stream are mixed, for example, with one or more return streams from the intercoolers of one or more gas compressor.
  • a relatively high throughput of cooling fluid is adjusted by the respective intercooler in order to achieve a correspondingly low temperature before mixing with the return flow from the direct contact cooler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Das Verfahren und die Vorrichtung dienen zur Kühlung eines Gases durch direkten Wärmeaustausch mit einer Kühlflüssigkeit. Das zu kühlende Gas (1) wird in den unteren Bereich eines Direktkontaktkühlers (2) eingeführt. Ein erster Kühlflüssigkeitsstrom (8) wird oberhalb der Stelle der Einleitung (1) des Gases in den Direktkontaktkühler (2) eingeleitet. Gekühltes Gas (5) wird oberhalb der Stelle der Einleitung (1) des Gases aus dem Direktkontaktkühler (2) entnommen. Aus dem unteren Bereich des Direktkontaktkühlers (2) wird ein flüssiger Rückstrom (10) abgezogen. Mindestens zeitweise wird ein zweiter Kühlflüssigkeitsstrom (13), dessen Temperatur niedriger als diejenige des Rückstroms (10) ist, in den flüssigen Rückstrom (10) eingeleitet und mit diesem zu einem Rücklaufstrom (11) vereinigt.

Description

  • Die Erfindung betrifft ein Verfahren zur Kühlung eines Gases durch direkten Wärmeaustausch mit einer Kühlflüssigkeit und eine entsprechende Vorrichtung. Hierbei wird ein aufsteigendes Gas in einem Direktkontaktkühler in direkten Gegenstromkontakt mit einem ersten Kühlflüssigkeitsstrom gebracht. Aus dem Direktkontaktkühler werden gekühltes Gas und ein flüssiger Rückstrom abgezogen und als Rücklaufstrom weitergeleitet.
  • Ein derartiger Prozess wird beispielsweise bei der Kühlung komprimierter Luft eingesetzt, insbesondere zur Vorkühlung von Luftzerlegungsanlagen. Dies betrifft sowohl Tieftemperaturverfahren als auch nicht kryogene Trennprozesse, zum Beispiel mit Adsorptions- oder Membrantechnik. Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337) bekannt. Beispiele für Luftzerlegungsanlagen mit Direktkontaktkühler finden sich in Wagner, Air separation technology today, 5th symposium to be arranged by LINDE AG in Munich, 25.-27.06.86, Article A (Fig. 1a) und Wagner, Entwicklung der Luftzerlegertechnologie, Linde-Symposium Luftzerlegungsanlagen 1980,'Artikel A (Bild 11).
  • Bei der Vorkühlung von Einsatzluft für eine Luftzerlegung wird die Luft stromaufwärts des Hauptwärmetauschers beziehungsweise einer Reinigungsvorrichtung abgekühlt, beispielsweise von 50 bis 150°C auf 5 bis 40°C, vorzugsweise von 90 bis 100°C auf 8 bis 12°C. Als Kühlflüssigkeit wird in der Regel Kühlwasser eingesetzt, das in vielen Fällen in einem Kühlwasserkreislauf geführt wird. Häufig ist dieser Kühlwasserkreislauf in ein größeres Kühlwassersystem eingebunden, das auch für andere Prozesse Kühlwasser liefert. In einem solchen Kühlwassersystem sind Vor- und Rücklauftemperatur vorgegeben, das heißt in dem Direktkontaktkühler muss eine bestimmte Temperaturdifferenz zwischen erstem Kühlflüssigkeitsstrom und Rücklaufstrom erreicht werden. Bisher wird dies durch eine entsprechende Dimensionierung des Mengenstroms des ersten Kühlflüssigkeitsstroms erreicht.
  • Der Erfindung liegt die Aufgabe zu Grunde, ein derartiges Verfahren wirtschaftlich günstiger zu gestalten.
  • Diese Aufgabe wird dadurch gelöst, dass die Temperatur des Rücklaufstroms geregelt wird, indem ein zweiter Kühlflüssigkeitsstrom, dessen Temperatur niedriger als diejenige des Rückstroms ist, in den flüssigen Rücklaufstrom eingeleitetwird. Ein Teil der zur Verfügung stehenden Kühlflüssigkeit nimmt also nicht oder zumindest nicht vollständig an dem direkten Wärmeaustausch mit dem zu kühlenden Gas teil.
  • Dies wirkt auf den ersten Blick kontraproduktiv, da die entsprechende Kühlkapazität scheinbar verschenkt wird. Im Rahmen der Erfindung hat sich jedoch herausgestellt, dass bei konventionellen Kühlverfahren der eingangs genannten Art häufig wesentlich größere Kühlflüssigkeitsmengen über den Direktkontaktkühler gefahren werden, als hinsichtlich der gewünschten Abkühlung des Gases erforderlich ist. Bei der Erfindung ist es nun möglich, die über den Direktkontaktkühler gefahrene Kühlflüssigkeitsmenge unabhängig von den Vorgaben für Vor- und Rücklauftemperatur einzustellen. Dabei wird eine erhöhte Temperatur im Rückstrom aus dem Direktkontaktkühler bewirkt. Die vorgegebene Rücklauftemperatur wird dennoch erreicht, indem kalte Kühlflüssigkeit aus dem zweiten Kühlflüssigkeitsstrom zugemischt wird.
  • Bei dem erfindungsgemäßen Verfahren wird also die Flüssigkeitsbelastung des Direktkontaktkühlers und gegebenenfalls vorgeschalteter Druckerhöhungspumpen entsprechend geringer. Diese Bauteile und die dazugehörigen Leitungen können entsprechend kleiner gebaut werden. In den Pumpen kann gleichzeitig Antriebsenergie eingespart werden. Die an sich energetisch ungünstige Vermischung von warmer und kalter Kühlflüssigkeit wird durch diese Vorteile bei Weitem überkompensiert.
  • Als Kühlflüssigkeit kann beispielsweise Wasser eingesetzt werden.
  • Der Direktkontaktkühler kann grundsätzlich als Sprühzonenkühler ausgebildet sein. In der Regel weist er jedoch Einbauten in Form von Stoffaustauschelementen auf, insbesondere von Siebböden, Füllkörpern und/oder geordneten Packungen.
  • Vorzugsweise wird bei dem Verfahren ein integriertes Kühlflüssigkeitssystem genutzt, aus dem der erste und der zweite Kühlflüssigkeitsstrom stammen und in das der Rücklaufstrom zurückgeleitet wird. In dem Kühlflüssigkeitssystem werden die Rücklaufströme mehrerer Verbraucher zusammengefasst, in einer Flüssigkeitskühleinrichtung, beispielsweise einem Kühlturm oder einem Verdunstungskühler abgekühlt und anschließend den Verbrauchern wieder als Vorlauf zur Verfügung gestellt. Aus diesem Kühlwassersystem stammen der erste und in der Regel auch der zweite Kühlflüssigkeitsstrom.
  • Grundsätzlich kann der zweite Kühlflüssigkeitsstrom aus jeder Quelle für Kühlflüssigkeit stammen, deren Temperatur entsprechend niedrig ist, insbesondere von anderen Verbrauchern des Kühlflüssigkeitssystems, zum Beispiel den Zwischenkühlern und/oder Nachkühlern eines Gasverdichters, in dem das zu kühlende Gas verdichtet wird. Um den Prozess im Direktkontaktkühler besonders unabhängig vom übrigen Kühlflüssigkeitsstrom zu machen, ist es jedoch günstig, wenn der erste Kühlflüssigkeitsstrom und ein zweiter Kühlflüssigkeitsstrom aus einem Haupt-Kühlflüssigkeitsstrom abgezweigt werden, wobei dieser Haupt-Kühlflüssigkeitsstrom insbesondere keine weiteren Kühlflüssigkeitsverbraucher versorgt.
  • Vorzugsweise wird die Temperatur des Rücklaufstroms durch Einstellung der Mengen des ersten und des zweiten Kühlflüssigkeitsstroms eingestellt. Die Einstellung der Mengen der beiden Kühlflüssigkeitsstrome kann dabei von Hand, durch eine automatische Regelung der Mischtemperatur oder als feste Einstellung eines vorher bestimmten Verhältnisses beziehungsweise vorher bestimmter absoluter Mengen vorgenommen werden.
  • Wenn der erste Kühlflüssigkeitsstrom separat von dem zweiten Kühlflüssigkeitsstrom durch eine oder mehrere Kühlflüssigkeitspumpen geleitet wird, können die Pumpen und die mit ihnen verbundenen Leitungen entsprechend klein dimensioniert werden.
  • Die Erfindung betrifft außerdem eine Vorrichtung zur Kühlung eines Gases gemäß den Patentanspruch 6 sowie Verfahren und Vorrichtungen zur Gaszerlegung, insbesondere zur Tieftemperatur-Luftzerlegung gemäß den nachfolgenden Ansprüchen.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert.
  • Über Leitung 1 wird Gas in den unteren Bereich eines Direktkontaktkühlers 2 eingeleitet, in dem Beispiel unmittelbar oberhalb des Sumpfs. Der Direktkontaktkühler weist zwei Stoffaustauschabschnitte 3, 4 auf, die jeweils mit Siebböden, Füllkörpern oder geordneten Packungen ausgestattet sind. Die Flüssigkeitsverteiler oberhalb dieser Abschnitte sind nicht dargestellt. Am Kopf des Direktkontaktkühlers tritt über Leitung 5 gekühltes Gas aus.
  • Das zu kühlende Gas 1 stammt vorzugsweise aus einem Einsatzgasverdichter (nicht dargestellt), der unter Umständen einen Nachkühler aufweist, in dem ein Teil der Verdichtungswärme mittels indirekten Wärmeaustauschs abgeführt wird; im Ausführungsbeispiel ist ein solcher Nachkühler jedoch nicht vorgesehen. Hier tritt das Gas 1 mit einer Temperatur von 90 bis 100°C in den Direktkontaktkühler 2 ein und das gekühlte Gas 5 strömt unter 8 bis 12°C wieder aus.
  • Über Leitung 6 wird ein Haupt-Kühlflüssigkeitsstrom von einem Kühlflüssigkeitssystem unter einer vorbestimmten Vorlauftemperatur von vorzugsweise 15 bis 45°C, beispielsweise etwa 30°C geliefert. Mindestens ein Teil wird als erster Kühlflüssigkeitsstrom 7, 8 mittels einer zum Beispiel elektrisch getriebenen Pumpe 9 auf den unteren Abschnitt 3 des Direktkontaktkühlers 2 aufgegeben. Diese Kühlflüssigkeit tritt in dem Direktkontaktkühler 2, 3 in direkten Wärmeaustausch mit dem Gas aus Leitung 1. Sie wird dabei angewärmt und als Rückstrom 10 aus dem Direktkontaktkühler abgezogen. Der Rückstrom fließt über eine Rücklaufleitung 11 zurück in das Kühlflüssigkeitssystem.
  • Zuvor wird er gemäß der Erfindung mit einem zweiten Kühlflüssigkeitsstrom 12, 13 vermischt, dessen Temperatur niedriger ist. Der zweite Kühlflüssigkeitsstrom wird in dem Beispiel aus dem Haupt-Kühlflüssigkeitsstrom 6 abgezweigt. Die Rücklauftemperatur in der Leitung 11 (vorzugsweise 25 bis 55°C, zum Beispiel etwa 40°C) wird über die Durchflussmengen des ersten Kühlflüssigkeitsstroms (vorzugsweise 30 bis 60°C, zum Beispiel etwa 45°C) und des zweiten Kühlflüssigkeitsstroms (vorzugsweise 15 bis 45°C, zum Beispiel etwa 30°C) durch entsprechende Einstellung der Ventile 15, 14 eingestellt. Die Einstellung der Mengen der beiden Kühlflüssigkeitsstrome kann dabei von Hand, durch eine automatische Temperaturregelung oder als feste Einstellung eines vorher bestimmten Verhältnisses beziehungsweise vorher bestimmter absoluter Mengen vorgenommen werden. Gegebenenfalls kann das Abflussventil 17 für den Rückstrom 10 in diese Regelung einbezogen werden.
  • Auf diese Weise ist es möglich, unabhängig von den Vorgaben des Kühlflüssigkeitssystems über Leitung 8 nur die Menge an Kühlflüssigkeit in den Direktkontaktkühler einzuleiten, die für die Gaskühlung in dem Abschnitt 3 tatsächlich benötigt wird. Die von dem Kühlflüssigkeitssystem vorgegebene Rücklauftemperatur wird unabhängig davon über die Zumischung 13 in den Rückstrom 10 erreicht.
  • Der obere Abschnitt 4 des Direktkontaktkühlers ist für das erfindungsgemäße Verfahren nicht wesentlich und kann grundsätzlich weggelassen werden. In dem Ausführungsbeispiel dient er zur weiteren Abkühlung des Gases mittels eines dritten Kühlflüssigkeitsstroms 16, der insbesondere durch Frischwasser oder durch Kaltwasser aus einem Verdunstungskühler oder einer Kälteanlage gebildet werden kann.
  • In dem Ausführungsbeispiel wird das Gas durch atmosphärische Luft gebildet. Die gekühlte Luft 5 wird in einer adsorptiven Reinigungseinrichtung behandelt und tritt anschließend in die Coldbox einer Tieftemperatur-Trenneinrichtung ein. Dort wird sie in einem Hauptwärmetauscher auf etwa Taupunkt abgekühlt und in die Trennsäule beziehungsweise in eine oder mehrere der Trennsäulen des Destilliersäulen-Systems der Trenneinrichtung eingeleitet.
  • Die Kühlflüssigkeit wird durch Wasser gebildet.
  • In einer konkreten Anwendung des Ausführungsbeispiels wurde die Temperatur des Rückstroms 10 im Vergleich zu einem Verfahren ohne Zumischung (Ventil 14 geschlossen) um 5 K erhöht. Die Menge des ersten Kühlflüssigkeitsstroms 7, 8 konnte dabei um etwa 40 % vermindert werden. Hierdurch ist es möglich, den Direktkontaktkühler im Querschnitt um etwa 10 % zu verkleinern und etwa 40 % der Pumpenleistung in 9 einzusparen.
  • Alternativ zu der Abzweigung des zweiten Kühlflüssigkeitsstroms 13 aus dem Kühlflüssigkeitsvorlauf kann der Rückstrom 10 mit einem anderen relativ kalten Kühlflüssigkeitsstrom vermischt werden, beispielsweise mit einem oder mehreren Rückströmen von den Zwischenkühlern eines oder mehrerer Gasverdichter. Hierbei wird im Rahmen der Erfindung ein relativ hoher Durchsatz an Kühlflüssigkeit durch die betreffenden Zwischenkühler eingestellt, um eine entsprechend niedrige Temperatur vor der Vermischung mit dem Rückstrom aus dem Direktkontaktkühler zu erreichen.

Claims (10)

  1. Verfahren zur Kühlung eines Gases durch direkten Wärmeaustausch mit einer Kühlflüssigkeit, bei dem
    - das Gas (1) in den unteren Bereich eines Direktkontaktkühlers (2) eingeführt wird,
    - ein erster Kühlflüssigkeitsstrom (8) oberhalb der Stelle der Einleitung (1) des Gases in den Direktkontaktkühler (2) eingeleitet wird,
    - gekühltes Gas (5) oberhalb der Stelle der Einleitung (1) des Gases aus dem Direktkontaktkühler (2) entnommen wird und
    - aus dem unteren Bereich des Direktkontaktkühlers (2) ein flüssiger Rückstrom (10) abgezogen und als Rücklaufstrom (11) weitergeleitet wird,
    dadurch gekennzeichnet, dass
    die Temperatur des Rücklaufstroms geregelt wird, indem mindestens zeitweise ein zweiter Kühlflüssigkeitsstrom (13), dessen Temperatur niedriger als diejenige des flüssigen Rückstroms (10) ist, in den Rücklaufstrom eingeleitetwird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Rücklaufstrom (11) einem integrierten Kühlflüssigkeitssystem zugeleitet wird, das eine Mehrzahl von Verbrauchern mit kalter Kühlflüssigkeit versorgt und aus dem der erste und gegebenenfalls der zweite Kühlflüssigkeitsstrom entnommen werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste Kühlflüssigkeitsstrom (7, 8) und der zweite Kühlflüssigkeitsstrom (12, 13) aus einem Haupt-Kühlflüssigkeitsstrom (6) abgezweigt werden und der zweite Kühlflüssigkeitsstrom (12, 13) an dem Direktkontaktkühler (2) vorbeigeführt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Temperatur des Rücklaufstroms (11) durch Einstellung (14, 15) der Mengen des ersten und des zweiten Kühlflüssigkeitsstroms eingestellt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der erste Kühlflüssigkeitsstrom (7, 8) separat von dem zweiten Kühlflüssigkeitsstrom durch eine oder mehrere Kühlflüssigkeitspumpen (9) geleitet wird.
  6. Vorrichtung zur Kühlung eines Gases durch direkten Wärmeaustausch mit einer Kühlflüssigkeit
    - mit einem Direktkontaktkühler,
    - mit Mitteln zur Einleitung von Gas in den unteren Bereich des Direktkontaktkühlers,
    - mit Mitteln zur Einleitung einer ersten Kühlflüssigkeitsstrom in den Direktkontaktkühler oberhalb der Stelle der Einleitung des Gases,
    - mit Mitteln zum Abziehen von gekühltem Gas aus dem Direktkontaktkühler oberhalb der Stelle der Einleitung des Gases und
    - mit Mitteln zum Abziehen eines flüssigen Rückstroms aus dem unteren Bereich des Direktkontaktkühlers,
    gekennzeichnet durch
    - Mittel zur Zumischung eines zweiten Kühlflüssigkeitsstroms, dessen Temperatur niedriger als diejenige des Rückstroms ist, in den flüssigen Rückstrom, durch
    - eine Rücklaufleitung für das Gemisch aus zweitem Kühlflüssigkeitsstrom und Rückstrom und
    - durch eine Regeleinrichtung zur Regelung der Temperatur des Rücklaufstroms durch Einstellung der Mengen des ersten und/oder des zweiten Kühlflüssigkeitsstroms.
  7. Verfahren zur Gaszerlegung, insbesondere zur Luftzerlegung, bei dem ein Einsatzgas verdichtet, in dem Verfahren nach einem der Ansprüche 1 bis 5 gekühlt und einer Trenneinrichtung zugeführt wird.
  8. Verfahren zur Tieftemperatur-Zerlegung von Luft, bei dem Einsatzluft verdichtet, in dem Verfahren nach einem der Ansprüche 1 bis 5 gekühlt und einer Reinigungseinrichtung und anschließend einem Destilliersäulen-System mit mindestens einer Trennsäule zugeführt wird.
  9. Vorrichtung zur Gaszerlegung, insbesondere zur Luftzerlegung, mit einem Einsatzgasverdichter, dessen Austritt mit einer Vorrichtung zur Kühlung gemäß Anspruch 6 verbunden ist und mit einer Trenneinrichtung, deren Eintritt mit dem Austritt der Vorrichtung zur Kühlung verbunden ist.
  10. Vorrichtung zur Tieftemperatur-Zerlegung von Luft mit einem Hauptluftverdichter, dessen Austritt mit einer Vorrichtung zur Kühlung gemäß Anspruch 6 verbunden ist und mit einer Trenneinrichtung, deren Eintritt über eine Reinigungseinrichtung mit dem Austritt der Vorrichtung zur Kühlung verbunden ist.
EP06001111A 2005-02-11 2006-01-19 Verfahren und Vorrichtung zur Kühlung eines Gases durch direkten Wärmeaustausch mit einer Kühlflüssigkeit Withdrawn EP1705443A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06001111A EP1705443A1 (de) 2005-02-11 2006-01-19 Verfahren und Vorrichtung zur Kühlung eines Gases durch direkten Wärmeaustausch mit einer Kühlflüssigkeit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05002984 2005-02-11
EP06001111A EP1705443A1 (de) 2005-02-11 2006-01-19 Verfahren und Vorrichtung zur Kühlung eines Gases durch direkten Wärmeaustausch mit einer Kühlflüssigkeit

Publications (1)

Publication Number Publication Date
EP1705443A1 true EP1705443A1 (de) 2006-09-27

Family

ID=36847746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06001111A Withdrawn EP1705443A1 (de) 2005-02-11 2006-01-19 Verfahren und Vorrichtung zur Kühlung eines Gases durch direkten Wärmeaustausch mit einer Kühlflüssigkeit

Country Status (1)

Country Link
EP (1) EP1705443A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107082A (ja) * 1987-10-21 1989-04-24 Hitachi Ltd 空気分離装置の空気予冷却方法
JPH04251181A (ja) * 1990-12-28 1992-09-07 Nippon Sanso Kk 液化天然ガスの寒冷を利用した空気液化分離装置の冷却水冷却方法及び装置
DE10115258A1 (de) * 2001-03-28 2002-07-18 Linde Ag Maschinensystem und dessen Anwendung
EP1284402A2 (de) * 2001-08-15 2003-02-19 The Boc Group, Inc. Vorrichtung und Verfahren zur Kühlung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107082A (ja) * 1987-10-21 1989-04-24 Hitachi Ltd 空気分離装置の空気予冷却方法
JPH04251181A (ja) * 1990-12-28 1992-09-07 Nippon Sanso Kk 液化天然ガスの寒冷を利用した空気液化分離装置の冷却水冷却方法及び装置
DE10115258A1 (de) * 2001-03-28 2002-07-18 Linde Ag Maschinensystem und dessen Anwendung
EP1284402A2 (de) * 2001-08-15 2003-02-19 The Boc Group, Inc. Vorrichtung und Verfahren zur Kühlung

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAUSEN; LINDE, TIEFTEMPERATURTECHNIK, 1985, pages 281 - 337
PATENT ABSTRACTS OF JAPAN vol. 017, no. 027 (M - 1355) 19 January 1993 (1993-01-19) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 18 5 June 2001 (2001-06-05) *

Similar Documents

Publication Publication Date Title
EP0093448B1 (de) Verfahren und Vorrichtung zur Gewinnung von gasförmigem Sauerstoff unter erhöhtem Druck
EP1672301B1 (de) Vorrichtung zur Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft
DE19904527B4 (de) Luftdestillationsanlage mit mehreren kryogenen Destillationseinheiten des gleichen Typs
DE2920270C2 (de) Verfahren zum Erzeugen von Sauerstoff
DE60124506T2 (de) Vorrichtung und verfahren zur produktgasverflüssigung im kleinmassstab
DE10228111A1 (de) Luftzerlegungsverfahren und -anlage mit Mischsäule und Krypton-Xenon-Gewinnung
DE19908451A1 (de) Zweisäulensystem zur Tieftemperaturzerlegung von Luft
DE69912229T2 (de) Kryogenisches Luftzerleggungsverfahren
DE10332863A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP1944074A1 (de) Verfahren und Vorrichtung zur fraktionierten Kryokondensation
EP0768503B1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
DE10302389A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE69910272T2 (de) Kryogenisches Rektifikationsystem zur Herstellung von ultrahochreinem Stickstoff und ultrahochreinem Sauerstoff
WO1999039143A1 (de) Verfahren und vorrichtung zum verdampfen von flüssigem sauerstoff
DE68901667T2 (de) Lufttrennung.
EP0230249A2 (de) Energiesparschaltung für kontinuierlich betriebene Destillationsanlagen
EP1705443A1 (de) Verfahren und Vorrichtung zur Kühlung eines Gases durch direkten Wärmeaustausch mit einer Kühlflüssigkeit
DE19933558B4 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE19855485A1 (de) Verfahren und Vorrichtung zur Gewinnung eines krypton- und/oder xenonangereicherten Gemischs durch Gegenstrom-Stoffaustausch
DE3018476C2 (de) Verfahren und Anlage zur Gewinnung von gasförmigem Stickstoff
DE102005023434A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP3671085A1 (de) Anordnung und verfahren zum rückgewinnen von verdichtungswärme aus luft, die in einer luftbearbeitungsanlage verdichtet und bearbeitet wird
DE10015605A1 (de) Verfahren und Vorrichtung zur Gewinnung von Xenon durch Tieftemperatur-Zerlegung einer Xenon-haltigen Sauerstoff-Fraktion
DE1144308B (de) Wasserstoffdestillieranlage
DE10130754A1 (de) Regelung einer Luftzerlegungsanlage mit Argongewinnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070320

17Q First examination report despatched

Effective date: 20070420

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110701