EP1677788A1 - Alcynes iii - Google Patents

Alcynes iii

Info

Publication number
EP1677788A1
EP1677788A1 EP04795637A EP04795637A EP1677788A1 EP 1677788 A1 EP1677788 A1 EP 1677788A1 EP 04795637 A EP04795637 A EP 04795637A EP 04795637 A EP04795637 A EP 04795637A EP 1677788 A1 EP1677788 A1 EP 1677788A1
Authority
EP
European Patent Office
Prior art keywords
prop
methyl
hydrogen
pyridine
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04795637A
Other languages
German (de)
English (en)
Inventor
Peter AstraZeneca R & D Molndal BACH
Udo AstraZeneca R & D Molndal BAUER
Karolina AstraZeneca R & D Molndal NILSSON
Andreas AstraZeneca R & D Molndal WALLBERG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AstraZeneca AB
Shire NPS Pharmaceuticals Inc
Original Assignee
AstraZeneca AB
NPS Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AstraZeneca AB, NPS Pharmaceuticals Inc filed Critical AstraZeneca AB
Publication of EP1677788A1 publication Critical patent/EP1677788A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/08Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/61Halogen atoms or nitro radicals

Definitions

  • the present invention is directed to novel compounds, to a process for their preparation, their use in therapy and pharmaceutical compositions comprising the novel compounds.
  • mGluR metabotropic glutamate receptors
  • CNS central nervous system
  • Eight metabotropic glutamate receptor subtypes have been identified and are subdivided into three groups based on sequence similarity.
  • Group I consists of mGluRl and mGluR5. These receptors activate phospholipase C and increase neuronal excitability.
  • Group II consisting of mGluR2 and mGluR3 as well as group III, consisting of mGluR4, mGluR.6, mGluR7 and mGluR8 are capable of inhibiting adenylyl cyclase activity and reduce synaptic transmission.
  • the lower esophageal sphincter (LES) is prone to relaxing intermittently. As a consequence, fluid from the stomach can pass into the esophagus since the mechanical barrier is temporarily lost at such times, an event hereinafter referred to as "reflux".
  • Gastro-esophageal reflux disease is the most prevalent upper gastrointestinal tract disease. Current pharmacotherapy aims at reducing gastric acid secretion, or at neutralizing acid in the esophagus. The major mechanism behind reflux has been considered to depend on a hypotonic lower esophageal sphincter. However, e.g. Holloway & Dent (1990) Gastroenterol. Clin. N. Amer. 19, pp. 517-535, has shown that most reflux episodes occur during transient lower esophageal sphincter relaxations (TLESRs), i.e. relaxations not triggered by swallows. It has also been shown that gastric acid secretion usually is normal in patients with GERD.
  • TLESRs transient lower esophageal sphincter relaxations
  • the problem underlying the present invention was to find new compounds useful in the treatment of GERD.
  • WO 01/16121 Al discloses a compound A-L-B, where A is a 5-, 6- o rr 77--nmembered heterocycle
  • L i an alkenylene, alkynylene or azo
  • B is a hydrocarbyl; cyclohydrocarbyl; heterocycle (optionally containing one or more double bonds); or aryl.
  • WO 99/02497 A2 discloses compounds of the formula
  • X may be an alkenylene or an alkynylene bonded via vicinal unsaturated carbon atoms, or an azo group; and R 5 may be an aromatic or heteroaromatic group.
  • the present invention is directed to novel compounds according to the general formula I:
  • R 1 is selected from hydrogen, - alkyl, C 3 -C 6 cycloalkyl, aryl and heteroaryl, wherein the aryl or heteroaryl may be substituted by C ! -C alkyl;
  • R is selected from hydrogen and Ci-C 4 alkyl
  • R is selected from hydrogen, C 1 -C 4 alkyl, F, CF 3 , CHF and CH 2 F;
  • R 4 is selected from hydrogen, F, CF 3 , CHF 2 , CH 2 F and CH 3 ;
  • R 5 is selected from hydrogen and F; R is selected from hydrogen and F;
  • Y 1 is selected from hydrogen; halogen; nitrile; -C 4 alkoxy; C 1 -C 4 alkyl wherein one or more of the hydrogen atoms of the alkyl group may be substituted for a fluorine atom; benzyloxy; nitro in the meta or para position; and C 1 -C 4 alkyl ester;
  • Y 2 is selected from hydrogen; halogen; nitrile; C 1 -C 4 alkoxy; C 1 -C 4 alkyl wherein one or more of the hydrogen atoms of the alkyl group may be substituted for a fluorine atom; and
  • Y 3 is selected from hydrogen; halogen; nitrile; C 1 -C 4 alkoxy; C 1 -C 4 alkyl wherein one or more of the hydrogen atoms of the alkyl group may be substituted for a fluorine atom; and
  • C 1 -C 4 alkyl ester or Y 1 and Y 2 may form an aromatic or non-aromatic ring, optionally substituted by halogen, nitrile, C1-C4 alkoxy, C1-C4 alkyl wherein one or more of the hydrogen atoms of the alkyl group may be substituted for a fluorine atom, benzyloxy or C 1 -C 4 alkyl ester; with the proviso that when Y is hydrogen, Y is selected from halogen, nitrile, C 1 -C 4 alkoxy, and C 1 -C4 alkyl; as well as pharmaceutically acceptable salts, hydrates, isoforms and/or optical isomers thereof.
  • Halogen is chloro, fluoro, bromo or iodo.
  • C 1 -C 4 alkyl is a straight or branched alkyl group, each independently containing 1, 2, 3 or 4 carbon atoms, for example methyl, ethyl, n-propyl, n-butyl or isopropyl.
  • the alkyl groups may contain one or more heteroatoms selected from O, N and S. Examples of such groups are methyl-ethylether, methyl-ethylamine and methyl- thiomethyl.
  • Cycloalkyl is a cyclic alkyl, each independently containing 3, 4, 5 or 6 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • C 1 -C 4 alkoxy is an alkoxy group containing 1, 2, 3 or 4 carbon atoms, such as methoxy, ethoxy, n-propoxy, n-butoxy or isopropoxy.
  • aryl means aromatic rings with 6-14 carbon atoms including both single rings and poly cyclic compounds, such as phenyl, benzyl or naphtyl.
  • heteroaryl as used herein means aromatic rings with 5-14 carbon atoms, including both single rings and polycyclic compounds, such as imidazopyridine, in which one or several of the ring atoms is either oxygen, nitrogen or sulphur, such as furanyl or thiophenyl.
  • salts of the compound of formula I are also within the scope of the present invention.
  • Such salts are for example salts formed with mineral acids such as hydrochloric acid; alkali metal salts such as sodium or potassium salts; or alkaline earth metal salts such as calcium or magnesium salts.
  • novel compounds according to the present invention are useful in therapy.
  • said compounds are useful for the inhibition of transient lower esophageal sphincter relaxations (TLESRs) and thus for treatment or prevention of gastro- esophageal reflux disorder (GERD).
  • TLESRs transient lower esophageal sphincter relaxations
  • GERD gastro- esophageal reflux disorder
  • the compounds according to the present invention are useful for the prevention of reflux, treatment or prevention of regurgitation, treatment or prevention of asthma, treatment or prevention of laryngitis, treatment or prevention of lung disease and for the management of failure to thrive.
  • a further aspect of the invention is the use of a compound according to formula I, for the manufacture of a medicament for the inhibition of transient lower esophageal sphincter relaxations, for the treatment or prevention of GERD, for the prevention of reflux, for the treatment or prevention of regurgitation, treatment or prevention of asthma, treatment or prevention of laryngitis, treatment or prevention of lung disease and for the management of failure to thrive.
  • a further aspect of the invention is the use of a compound according to formula I for the manufacture of a medicament for the treatment or prevention of functional gastrointestinal disorders, such as functional dyspepsia (FD).
  • FD functional dyspepsia
  • Yet another aspect of the invention is the use of a compound according to formula I for the manufacture of a medicament for the treatment or prevention of irritable bowel syndrome (IBS), such as constipation predominant IBS, diarrhea predominant IBS or alternating bowel movement predominant IBS.
  • IBS irritable bowel syndrome
  • Still a further aspect of the invention is a method for the treatment of any one of the conditions mentioned above, whereby a pharmaceutically effective amount of a compound according to formula I above, is administered to a subject suffering from said condition(s).
  • the compounds of formula I are useful for the treatment and/or prevention of acute and chronic neurological and psychiatric disorders, anxiety and chronic and acute pain disorders.
  • said compounds are useful for the prevention and/or treatment of pain related to migraine, inflammatory pain, neuropathic pain disorders such as diabetic neuropathies, arthritis and rheumatoid diseases, low back pain, post-operative pain and pain associated with various conditions including cancer, angina, renal or billiary colic, menstruation, migraine and gout.
  • isomers is herein defined as compounds of formula I, which differ by the position of their functional groups and/or orientation.
  • orientation is meant stereoisomers, diastereoisomers, regioisomers and enantiomers.
  • isoforms as used herein is defined as compounds of formula I which differ by their crystal lattice, such as crystalline compounds and amorphous compounds.
  • TLESR transient lower esophageal sphincter relaxations
  • the wording "reflux” is defined herein as fluid from the stomach being able to pass into the esophagus, since the mechanical barrier is temporarily lost at such times.
  • the wording "GERD”, gastro-esophageal reflux disease, is defined herein in accordance with van Heerwarden, M.A., Smout A.J.P.M., 2000; Diagnosis of reflux disease. Bailliere 's Clin. Gastroenterol 14, pp. 759-774.
  • the mesylate of the primary alcohol is isolated and characterised, while that of the secondary alcohols are made in situ. Finally, the respective mesylate is reacted with the alcohol. This can either be done by adding the alcohol and a base such as triethyl amine to the mesylate in a solvent such as DCM or by pre-reacting the alcohol with a base such as sodium hydride in a solvent such as THF and subsequently adding the mesylate to this solution to generate product (I) (Scheme 1).
  • a base such as triethyl amine
  • the product (I) is formed by an alternative route (scheme 2): first the aryl bromide A is coupled with ethynyl(trimethyl)silane F via Sonogashira coupling at 60 °C in triethyl amine to give product G. Deprotection of G at room temperature with potassium carbonate in methanol/DCM gives terminal alkyne H, which is deprotonated with lithium bis(trimethylsily ⁇ )amide in THF at - 78 °C.
  • the mesylate J is formed in situ with methanesulfonyl chloride and triethyl amine, either at room temperature or with cooling.
  • the reaction of the alcohol with this mesylate is either performed by adding the alcohol and a base such as triethyl amine to the mesylate in a solvent such as DCM or by pre-reacting the alcohol with a base such as sodium hydride in a solvent such as THF and subsequently adding the mesylate to this solution to form product (I).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , Y 1 , Y 2 and Y 3 are defined as for the compounds of formula I above.
  • DCM is dried over 3A molecular sieves.
  • THF was distilled from Na benzophenone just prior to use. All reactions are run under a nitrogen atmosphere. All glassware is dried in at 150 °C for at least two hours prior to its use. Phase separators from International Sorbent Technology (1ST) are used. Purification by chromatography is done either on silica gel 60 (0.040-0.063 mm), or by reverse phase chromatography with a C8 column. All NMR spectra are measured in 5-chloroform.
  • 2-bromo-6-methylpyridine is commercially available from Aldrich, (PPh3) 2 PdCl 2 from Avacado, Pd (OAc) 2 from Aldrich and Cul from Fluka. If not stated otherwise, the chemicals used are commercially available and are used as such without further purification.
  • the compounds of formula I are in accordance with the present invention suitably formulated into pharmaceutical formulations for oral administration. Also rectal, parenteral or any other route of administration may be contemplated to the skilled man in the art of formulations.
  • the compounds of formula I are formulated with at least one pharmaceutically and pharmacologically acceptable carrier or adjuvant.
  • the carrier may be in the form of a solid, semi-solid or liquid diluent.
  • the compound of formula I to be formulated is mixed with solid, powdered ingredients such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose derivatives, gelatin, or another suitable ingredient, as well as with disintegrating agents and lubricating agents such as magnesium stearate, calcium stearate, sodium stearyl fumarate and polyethylene glycol waxes.
  • solid, powdered ingredients such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose derivatives, gelatin, or another suitable ingredient, as well as with disintegrating agents and lubricating agents such as magnesium stearate, calcium stearate, sodium stearyl fumarate and polyethylene glycol waxes.
  • disintegrating agents and lubricating agents such as magnesium stearate, calcium stearate, sodium stearyl fumarate and polyethylene glycol waxes.
  • Soft gelatine capsules may be prepared with capsules containing a mixture of the active compound or compounds of the invention, vegetable oil, fat, or other suitable vehicle for soft gelatine capsules.
  • Hard gelatine capsules may contain the active compound in combination with solid powdered ingredients such as lactose, saccharose, sorbitol, mannitol, potato starch, corn starch, amylopectin, cellulose derivatives or gelatine.
  • Dosage units for rectal administration may be prepared (i) in the form of suppositories which contain the active substance(s) mixed with a neutral fat base; (ii) in the form of a gelatine rectal capsule which contains the active substance in a mixture with a vegetable oil, paraffin oil, or other suitable vehicle for gelatine rectal capsules; (iii) in the form of a ready-made micro enema; or (iv) in the form of a dry micro enema formulation to be reconstituted in a suitable solvent just prior to administration.
  • Liquid preparations for oral administration may be prepared in the form of syrups or suspensions, e.g.
  • liquid preparations containing the active compound and the remainder of the formulation consisting of sugar or sugar alcohols, and a mixture of ethanol, water, glycerol, propylene glycol and polyethylene glycol.
  • liquid preparations may contain colouring agents, flavouring agents, saccharine and carboxymethyl cellulose or other thickening agent.
  • Liquid preparations for oral administration may also be prepared in the form of a dry powder to be reconstituted with a suitable solvent prior to use.
  • Solutions for parenteral administration may be prepared as a solution of a compound of the invention in a pharmaceutically acceptable solvent. These solutions may also contain stabilizing ingredients and/or buffering ingredients and are dispensed into unit doses in the form of ampoules or vials. Solutions for parenteral administration may also be prepared as a dry preparation to be reconstituted with a suitable solvent extemporaneously before use.
  • the compounds of formula I may be administered once or twice daily, depending on the severity of the patient's condition.
  • a typical daily dose of the compounds of formula I is from 0.1 - 10 mg per kg body weight of the subject to be treated, but this will depend on various factors such as the route of administration, the age and weight of the patient as well as of severity of the patient's condition.
  • the compound was prepared according to method A using methanesulfonic acid 1-methyl- 3-(6-methyl-pyridin-2-yl)-prop-2-ynyl ester and 3-chlorophenol.
  • Phosphate buffer (10 mL, 0.2 M, pH 7) was added and the water phase was extracted with
  • reaction mixture was added to water (10 mL) and the pH was adjusted to 6-7 with
  • the properties of the compounds of the invention can be analyzed using standard assays for pharmacological activity.
  • glutamate receptor assays are well known in the art as described in for example Aramori et al, Neuron 8:151 (1992), Tanabe et al., Neuron ⁇ :169 (1992), Miller et al, J Neuroscience 15: 6103 (1995), Balazs, et al, J.
  • the compounds of the invention can be studied by means of an assay (FLIPR) that measures the mobilization of intracellular calcium, [Ca 2+ ]j in cells expressing mGluR5 or another assay (IP3) that measures inositol phosphate turnover.
  • FLIPR assay
  • IP3 another assay
  • a 40 ⁇ l addition from the antagonist plate was followed by a 50 ⁇ L addition from the agonist plate.
  • a 90 second interval separates the antagonist and agonist additions.
  • the fluorescence signal is sampled 50 times at 1 second intervals followed by 3 samples at 5 second intervals immediately after each of the two additions. Responses are measured as the difference between the peak height of the response to agonist, less the background fluorescence within the sample period.
  • IC5 0 determinations are made using a linear least squares fitting program.
  • mGluR5d An additional functional assay for mGluR5d is described in WO97/05252 and is based on phosphatidylinositol turnover. Receptor activation stimulates phospholipase C activity and leads to increased formation of inositol l,4,5,triphosphate (IP3).
  • IP3 inositol l,4,5,triphosphate
  • GHEK stably expressing the human mGluR5d are seeded onto 24 well poly-L-lysine coated plates at 40 x 10 4 cells /well in media containing 1 ⁇ Ci/well [3H] myo-inositol.
  • HEPES buffered saline 146 mM NaCl, 4.2 mM KC1, 0.5 mM MgCl 2 , 0.1% glucose, 20 mM HEPES, pH 7.4
  • HEPES buffered saline 146 mM NaCl, 4.2 mM KC1, 0.5 mM MgCl 2 , 0.1% glucose, 20 mM HEPES, pH 7.4
  • 1 unit ml glutamate pyruvate transaminase and 2 mM pyruvate were washed once in HEPES buffered saline and pre-incubated for 10 min in HEPES buffered saline containing 10 mM LiCl.
  • Inositol phosphate separation was done by first eluting glycero phosphatidyl inositol with ⁇ ml 30 mM ammonium formate. Next, total inositol phosphates is eluted with ⁇ ml 700 mM ammonium formate / 100 mM formic acid and collected in scintillation vials. This eluate is then mixed with ⁇ ml of scintillant and [3H] inositol incorporation is determined by scintillation counting. The dpm counts from the duplicate samples are plotted and IC 50 determinations are generated using a linear least squares fitting program.
  • the compounds are active in the assay above with IC 50 values less than 10 000 nM.
  • the IC 5 o value is less than 1 ⁇ M.
  • the IC 50 value is less than 100 nM.
  • a multilumen sleeve/sidehole assembly (Dentsleeve, Sydney, South Australia) is introduced through the esophagostomy to measure gastric, lower esophageal sphincter (LES) and esophageal pressures.
  • the assembly is perfused with water using a low-compliance manometric perfusion pump (Dentsleeve, Sydney, South Australia).
  • An air-perfused tube is passed in the oral direction to measure swallows, and an antimony electrode monitored pH, 3 cm above the LES. All signals are amplified and acquired on a personal computer at 10 Hz.
  • placebo (0.9% NaCl) or test compound is administered intravenously (i.v., 0.5 ml/kg) in a foreleg vein.
  • a nutrient meal (10% peptone, 5% D-glucose, 5% Intralipid, pH 3.0) is infused into the stomach through the central lumen of the assembly at 100 ml/min to a final volume of 30 ml/kg.
  • the infusion of the nutrient meal is followed by air infusion at a rate of 500 ml/min until an intragastric pressure of 10+1 mmHg is obtained.
  • the pressure is then maintained at this level throughout the experiment using the infusion pump for further air infusion or for venting air from the stomach.
  • the experimental time from start of nutrient infusion to end of air insufflation is 45 min. The procedure has been validated as a reliable means of triggering TLESRs.
  • TLESRs is defined as a decrease in lower esophageal sphincter pressure (with reference to intragastric pressure) at a rate of >1 mmHg/s.
  • the relaxation should not be preceded by a pharyngeal signal 2s before its onset in which case the relaxation is classified as swallow- induced.
  • the pressure difference between the LES and the stomach should be less than 2 mmHg, and the duration of the complete relaxation longer than 1 s.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Pulmonology (AREA)
  • Pain & Pain Management (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Otolaryngology (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pyridine Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La présente invention se rapporte à de nouveaux composés représentés par la formule (I), à un procédé permettant de les préparer, à leur utilisation thérapeutique et à des compositions pharmaceutiques contenant lesdits nouveaux composés. Les nouveaux composés selon l'invention ont une utilité thérapeutique, et permettent notamment de traiter le reflux gastro-oesophagien pathologique (GERD).
EP04795637A 2003-10-31 2004-10-20 Alcynes iii Withdrawn EP1677788A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56075403P 2003-10-31 2003-10-31
PCT/US2004/034501 WO2005044265A1 (fr) 2003-10-31 2004-10-20 Alcynes iii

Publications (1)

Publication Number Publication Date
EP1677788A1 true EP1677788A1 (fr) 2006-07-12

Family

ID=34573078

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04795637A Withdrawn EP1677788A1 (fr) 2003-10-31 2004-10-20 Alcynes iii

Country Status (5)

Country Link
EP (1) EP1677788A1 (fr)
JP (1) JP2007509934A (fr)
CN (1) CN1871001A (fr)
CA (1) CA2549965A1 (fr)
WO (1) WO2005044265A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0413605D0 (en) * 2004-06-17 2004-07-21 Addex Pharmaceuticals Sa Novel compounds
KR20090061041A (ko) 2006-09-11 2009-06-15 노파르티스 아게 대사성 글루타메이트 수용체의 조절제로서의 니코틴산 유도체
AR065792A1 (es) * 2007-03-21 2009-07-01 Speedel Experimenta Ag Proceso para preparar (r o s) -5- (1 -azido-3-(6-metoxi-5-(3-metoxi-propoxi) -piridin-3-ilmetil) -4-metil- pentil) -3-alquil-dihidro-furan-2-ona
WO2010000763A2 (fr) 2008-06-30 2010-01-07 Novartis Ag Produits de combinaison
CN102573842A (zh) 2009-07-23 2012-07-11 诺瓦提斯公司 氮杂双环烷基衍生物或吡咯烷-2-酮衍生物的用途
TWI558398B (zh) 2009-09-22 2016-11-21 諾華公司 菸鹼乙醯膽鹼受體α7活化劑之用途
WO2011048150A1 (fr) 2009-10-20 2011-04-28 Novartis Ag Utilisation de 1h-quinazoline-2,4-diones
BR112012033290A2 (pt) 2010-06-24 2016-11-22 Novartis Ag uso de 1h-quinazolina-2,4-dionas
US20140171448A1 (en) 2011-01-27 2014-06-19 Novartis Ag Use of nicotinic acetylcholine receptor alpha 7 activators
MX2014002693A (es) 2011-09-07 2014-06-04 Novartis Ag Uso de 1h-quinazolina-2,4-dionas para usarse en la prevencion o el tratamiento de epilepsia fotosensible.
BR112015016992A8 (pt) 2013-01-15 2018-01-23 Novartis Ag uso de agonistas do receptor alfa 7 nicotínico de acetilcolina
EP2945626B1 (fr) 2013-01-15 2018-09-12 Novartis AG Utilisation d'agonistes du récepteur nicotinique alpha 7 pour le traitement de la narcolepsie

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW544448B (en) * 1997-07-11 2003-08-01 Novartis Ag Pyridine derivatives
JP4815083B2 (ja) * 1999-08-31 2011-11-16 メルク・シャープ・エンド・ドーム・コーポレイション 複素環化合物およびそれの使用方法
AU2002218200B2 (en) * 2000-10-03 2004-08-05 Syngenta Participations Ag Phenylpropynyloxypyridine herbicides
GB0103045D0 (en) * 2001-02-07 2001-03-21 Novartis Ag Organic Compounds
AR035087A1 (es) * 2001-08-09 2004-04-14 Syngenta Participations Ag Piridil-alquinos y piridil-n-oxido-alquinos herbicidas activos, procedimiento para su preparacion, composicion herbicida y para inhibir el crecimiento de plantas, metodo para el control del crecimiento de plantas indeseables , y metodo para la inhibicion del crecimiento de plantas
US20040116462A1 (en) * 2002-12-12 2004-06-17 Mitsunori Ono Indolizine compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005044265A1 *

Also Published As

Publication number Publication date
WO2005044265A1 (fr) 2005-05-19
CN1871001A (zh) 2006-11-29
JP2007509934A (ja) 2007-04-19
CA2549965A1 (fr) 2005-05-19

Similar Documents

Publication Publication Date Title
TWI453197B (zh) 可用作抗菌劑之氟吡啶酮衍生物
EP1677788A1 (fr) Alcynes iii
CN110049984B (zh) 苯基丙酸衍生物及其用途
US20110319449A1 (en) Pyridone analogs useful as melanin concentrating hormone receptor-1 antagonists
EP1677789A1 (fr) Alkynes i
US8575352B2 (en) Benzyl sulfonamide derivatives useful as MOGAT-2 inhibitors
TW201249826A (en) Crystalline(R)-(E)-2-(4-(2-(5-(1-(3,5-dichloropyridin-4-yl)ethoxy)-1H-indazol-3-yl)vinyl)-1H-pyrazol-1-yl)ethanol
JP2007525513A (ja) 糖尿病の処置に有用なヘテロアリールアミノピラゾール誘導体
WO2005044267A1 (fr) Alkynes ii
WO2008025526A1 (fr) Dérivés d'indole, fabrication de ceux-ci et utilisation comme agents pharmaceutiques
EP1713791B1 (fr) 5-fluoro- et chloro-pyridin-1-yl-tetrazoles utilises en tant que ligands du recepteur metabotropique du glutamate de type 5
KR100849352B1 (ko) Ppar 활성화제로서 벤조-융합된 화합물
Chicca et al. Biological evaluation of pyridone alkaloids on the endocannabinoid system
EP0757988A1 (fr) Derive d'imidazole et procede de production de ce derive
US8703829B2 (en) Therapeutic compounds
WO2005082884A2 (fr) Composes
JP2650786B2 (ja) 認識力強化剤としてのジ置換多環式化合物
US20150175545A1 (en) Preparation Method of Fluoro-Substituted Deuterated Diphenylurea
Al-Sanea et al. Design, synthesis and in-vitro screening of new 1H-pyrazole and 1, 2-isoxazole derivatives as potential inhibitors for ROS and MAPK14 kinases
US7179812B2 (en) Diazine derivatives
TWI828783B (zh) 聯芳基衍生物及其用途
US7030145B2 (en) Pyridinyl derivatives for the treatment of depression
US9550753B2 (en) Mono quaternary ammonium salts and methods for modulating neuronal nicotinic acetylcholine receptors
JP2008500299A (ja) 2−スチリル−4−オキサゾール−メタノール−エーテル及びチロシンキナーゼ阻害剤としてのその使用
CZ2001993A3 (cs) 2,3-Disubstituovaný pyridinový derivát, způsob jeho přípravy, farmaceutický prostředek který jej obsahuje a jeho meziprodukt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1092719

Country of ref document: HK

17Q First examination report despatched

Effective date: 20070314

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070725

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1092719

Country of ref document: HK