EP1671912B1 - Elevator system with braking unit and method to keep the elevator stopped - Google Patents

Elevator system with braking unit and method to keep the elevator stopped Download PDF

Info

Publication number
EP1671912B1
EP1671912B1 EP05111993A EP05111993A EP1671912B1 EP 1671912 B1 EP1671912 B1 EP 1671912B1 EP 05111993 A EP05111993 A EP 05111993A EP 05111993 A EP05111993 A EP 05111993A EP 1671912 B1 EP1671912 B1 EP 1671912B1
Authority
EP
European Patent Office
Prior art keywords
brake
braking
unit
brake unit
lift installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05111993A
Other languages
German (de)
French (fr)
Other versions
EP1671912A1 (en
Inventor
Nicolas Gremaud
Steffen Dr. Grundmann
Hans Kocher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to PL05111993T priority Critical patent/PL1671912T3/en
Priority to EP05111993A priority patent/EP1671912B1/en
Publication of EP1671912A1 publication Critical patent/EP1671912A1/en
Application granted granted Critical
Publication of EP1671912B1 publication Critical patent/EP1671912B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • B66B5/18Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces

Definitions

  • the present invention relates to an elevator installation with a braking device and a method for braking and holding an elevator installation according to the definition of the independent claims.
  • An elevator installation includes an elevator cage which moves in the vertical direction within guideways or guide rails.
  • the elevator car is braked in case of need by a braking device or held at a standstill.
  • a braking force is required.
  • the braking device used for this purpose usually at least two brake units which press in the request case at least one brake pad against a counter surface. This pressing takes place by means of a normal force.
  • the braking force of a brake pad is determined by the normal force together with the coefficient of friction defined by the brake lining, the mating surface and any intermediate layers.
  • the counter surface is usually defined by an area of the guideway or the guide rail.
  • DE 3934492 shows a braking device for an elevator car which engages in the brake case on the guide rail, wherein the braking force is controlled by means of an acceleration sensor.
  • the braking force is applied by a spring, with a controllable magnet, the braking force can be reduced at a too high delay value or can be amplified at too low a delay.
  • a disadvantage of this device is that the braking device is not designed to hold an elevator car in a stop position, such as a regular stop on a floor.
  • the braking device is on set a fixed predetermined by the spring value, which is approached either as quickly as possible in the case of work, which thus can lead to a significant transient process, or which is slowly approached in case of work, controlled by the opposing force of the solenoid, resulting in the speed at a full loaded cabin unfavorably increased.
  • the variable magnet is expensive and heavy, it also takes on a high performance and monitoring the operational readiness of the device is difficult to carry out.
  • the power requirement is high because the maximum possible braking force to be applied by the braking device is aligned with a freely falling, fully loaded car. As a rule, however, for example during braking from overspeed, an unladen or only to a small extent loaded cabin is braked. Here, only small braking forces are required.
  • the weight of a corresponding stroke / shock magnet is up to 50 kg, or for two magnets up to 100kg.
  • US5323878 discloses another braking device with two brake units.
  • the brake units are arranged in the region of a drive machine.
  • the braking forces are transmitted via support members of the prime mover to the cabin.
  • the braking force of each brake unit is set by a brake control unit in consideration of the car speed or car load.
  • the braking force is generated by means of a spring, wherein a hydraulic piston force counteracts this spring.
  • This design corresponds to today's conventional, safer design, as in a failure of the hydraulic brake the springs with their maximum possible force.
  • the required hydraulic piston force of each brake is calculated and hydraulically controlled by a brake control unit taking into account the car speed or cabin load.
  • the hydraulic piston force must be determined taking into account brake-specific properties, such as piston diameter, spring force or mounting geometry of each brake unit.
  • a disadvantage of this device is that relevant influencing factors which influence the braking force are not recognized and not taken into account.
  • a failure of a spring, wear of a brake lining or jamming of brake levers can lead to a relevant influence on the braking force, which is not recognized.
  • the brake control unit must take into account brake-specific properties, such as piston diameter, spring force or mounting geometry, of each brake unit, since the brake control unit specifies the hydraulic piston force for each individual brake unit.
  • the object of the present invention is accordingly to provide a controllable braking device and a method for braking and holding an elevator installation, which allows a delay or hold corresponding to the operating state of the elevator installation and which responds quickly and gently.
  • the braking device must also meet high safety requirements and they should be able to operate with low power and have little additional weight.
  • the error rate of the braking device should also be low.
  • each brake unit includes a normal force control which regulates an effective normal force corresponding to a target normal force value determined by a brake control unit and / or each brake unit includes a locking device which can lock the brake unit in a set braking position corresponding to a set effective normal force.
  • each brake unit has its own normal force control, which regulates an effective normal force corresponding to a desired normal force, so that each brake unit can be assigned its own nominal normal force.
  • the brake unit itself can thus set a normal force quickly and accurately and it can thus correct deviations in the areas of the brake unit, such as geometric deviations (for example, wear of a brake plate or different dimensions of brake rails) by a control process automatically.
  • An error rate of the entire braking device is significantly reduced.
  • a replacement of a brake unit is easily possible because the brake-specific properties, such as piston diameter, spring force, mounting geometry or other design-related data, the brake unit in the brake unit itself are taken into account and thus complex and error-prone inputs of these brake-specific properties account for the brake control unit.
  • the braking force requirement results from a Operating state of the elevator system such as a payload, a vehicle speed, a location in the elevator shaft, an acceleration value or other state variables of the elevator car, or the elevator installation. This allows a particularly gentle braking of the elevator system.
  • a set braking position can be locked. In this case, a set effective normal force is locked. This allows holding or braking the elevator car without additional power.
  • An elevator installation 1 consists at least of an elevator car 2 and an elevator drive 10 Fig. 1 requires an exemplary elevator installation 1 in the further support means 11 and a counterweight 12 wherein the elevator drive 10, the support means 11 drives and thus the elevator car 2 and the counterweight 12 moves against the same.
  • the elevator system 1 requires at least one braking device 13.
  • the braking device 13 holds a stationary elevator car 2 - for example, during the loading time in a floor 6 - fixed, or they brake the elevator car 2 in an emergency situation - for example, in an unexpected opening of a floor access - from, or they catch a too fast elevator car 2 - for example, in case of failure of the support means 11 - on.
  • These different load cases require different braking or holding forces F B.
  • Fig. 2 shows a variant of a braking device 13, which consists of a brake control unit 15 with power supply 43 and - in the example shown - from four functionally identical brake units 14.
  • Functionally identical means that the brake units have the same functional structure, but may well be different according to their geometric dimensions.
  • Each brake unit 14 has a brake force measurement 36, 37.
  • the power supply 43 supplies the brake control unit 15 and the brake units 14 with a safe voltage U B. Elevator control 5 and measuring sensors 20,21,22,23 provide the brake control unit 15 required elevator signals.
  • the brake control unit 15 supplies the individual brake units 14 with individual desired specifications S B1... I. 1 to i is in Fig. 2 for the individual brake units 14.
  • a target specifications S Bi is, for example, a desired normal force F N-soll or a desired air gap 30. These target values S Bi are transferred to the associated brake unit.
  • the brake unit 14 processes this setpoint in its own control blocks 16, 28 F N , S N , which work with known control technologies.
  • the brake units 14 in turn deliver effective state variables Z B1... I to the brake control unit 15.
  • Effective state variables Z B1 ... i can again be an effective normal force F is N-eff or a real air gap 30.
  • each brake unit 14 has a brake force measurement 36, 37, which determines an effective braking force F B1... I and transmits this value to the brake control unit 15.
  • the brake control unit 15 further has a safety module 44 in the illustrated example .
  • the inventive braking device 13 is provided for the previously mentioned different load cases.
  • the braking device 13 is as in Fig. 1 and Fig. 2 represented by at least two brake units 14 and each brake unit 14 includes a normal force control 16, this normal force control 16 an effective normal force F N-eff in the brake unit 14 according to a target specification S Bi , the target normal force F N-soll controls, which of a brake control unit 15 is given.
  • This normal force control 16 is that the brake unit itself can quickly and accurately set a desired normal force, and deviations in the areas of the brake unit 14, such as wear or dimensional differences on the brake unit or a brake rail 9, quickly and directly, that is within the brake unit itself, can be corrected.
  • the susceptibility to failure of the braking device is significantly reduced, since dimensional influences such as rail thickness, Bremsplattenverschleiss or other Abnweilungen directly, be compensated within the brake unit.
  • a replacement is simply possible because the brake unit specific properties of the brake force contained in the normal force control directly, ie within the brake unit itself, detected and corrected.
  • the brake control unit 15 knows the current state of the elevator installation 1 on the basis of the messages from an elevator control 5 and / or a corresponding monitoring unit and / or its own measuring sensors 20, such as acceleration measuring sensor 21, speed measuring sensor 22 or distance measurement 23, and can on the basis of this knowledge suitable target specification S Bi , the normal force F N-soll for the individual brake units 14 make.
  • the brake control unit increases the target specification S Bi of the normal force F N-soll near the shaft end, at most shortened shaft ends to enable.
  • the brake control unit is advantageously as in Fig. 1 represented on the cab, possibly in combination with other control or safety modules arranged. Measuring and monitoring systems, such as in WO03 / 004397 described, are advantageously integrated in such a security module. This makes it possible to provide a braking device 13 which, depending on the load case, can hold or brake with a corresponding braking force F B , which is dependent on the effective normal force F N-eff . Taking into account the current state of the elevator installation 1, the brake control unit 15 determines the optimum, user-friendly and most economical brake application.
  • a brake starting value can be calculated on the basis of the state variables determined by the measuring sensors 20, 21, 22, 23, as a result of which a setpoint value S Bi can be preset.
  • the advantage of this braking device 13 according to the invention can be seen in the fact that a secure on-demand braking or holding of the elevator car 2 is made possible with minimal expenditure of energy.
  • the brake unit 14 has, as in Fig. 4 and 5 illustrated, via a locking device 17, which can lock the brake unit 14 in a set braking position, corresponding to an acting normal force F N-eff .
  • a movable brake plate 27 is delivered.
  • the housing of the brake unit 14 is expanded in the elastic range.
  • the housing of the brake unit 14 may be provided with special elastic means - for example with springs - (not shown) which support this expansion.
  • the locking device 17 now locks this tensioned braking position, for example, with a locking pin 18, 18 a as in the Fig. 4 or 5 shown. This lock allows to ensure a sufficient holding or braking force F B over a long service life with minimal or no energy consumption.
  • a brake unit 14 is the fact that a safe braking or holding the elevator car is possible with minimal energy consumption and that by means of the locking device 17 not only a certain braking force position can be locked, but essentially every set braking position and thus braking force level can be secured.
  • this locking device 17 is designed such that a set braking position is maintained at an interrupted power supply.
  • the locking pin 18 is brought, for example by means of a control magnet 19 in its locking position or in its open position.
  • This embodiment is advantageous, since thereby the brake unit 14 is held in a secure holding position even with a long lasting power interruption.
  • a long-lasting interruption of energy can either unintentionally, as a result of a supply error, arise, or it can be deliberately brought about, for example, if a sub occupancy of buildings individual lifts are shut down.
  • the illustrated embodiment has the advantage that it can be unlocked again only by means of an energy source, which increases the security against incorrect manipulation.
  • the locking takes place, as in the Fig. 5 shown in the event of power failure independently, the last current braking or holding position is secured. This is done in the example shown by the locking pin 18 is brought by spring force into its locked position and held by a control magnet 19 in the open position.
  • Another security concept provides that, as in Fig. 4 can be seen, the self-locking locking pin 18 a held open by a spring and locked by means of a control magnet 19.
  • This solution is advantageously designed such that the self-locking locking bolt 18a is locked in the engaged state by the Bremsussi Kunststoff and accordingly can be brought by the spring only in the open position when a Bremszustellmoment is present and the self-locking pin 18a accordingly has no locking force to wear.
  • the illustrated alternatives allow a selection of the suitable design, which is tailored to the overall safety concept.
  • the effective normal force F N-eff is measured by means of a measurement of the mechanical stress of the housing of the brake unit 14, for example by means of strain gauges (DMS) 25 as in FIG Fig. 4 and 5 represented, or with a load cell 24, as in Fig. 3 represented or detected by detecting a clamping path of the movable brake plate 27 of the brake unit 14 or one of the delivery energy corresponding energy value, such as a current value or a pressure value.
  • DMS strain gauges
  • the pressure in the brake cylinder is a parameter for determining the normal force F N-eff .
  • a favorable method for determining the effective normal force F N-eff can be used.
  • the brake control unit 15 takes into account an operating state of the elevator installation 1, such as the acceleration, the speed, the loading and distribution in the elevator car 2, the direction of travel or the location of the elevator car 2, and / or a state of the brake unit 14, such as wear of brake plates 26, 27 - and / or the braking device 13 - such as energy reserves or deviations from measured variables - for determining the target specification S Bi of the target normal force F N-soll .
  • an operating state of the elevator installation 1 such as the acceleration, the speed, the loading and distribution in the elevator car 2, the direction of travel or the location of the elevator car 2, and / or a state of the brake unit 14, such as wear of brake plates 26, 27 - and / or the braking device 13 - such as energy reserves or deviations from measured variables - for determining the target specification S Bi of the target normal force F N-soll .
  • the nominal normal force F N-soll for a particular brake unit 14 can be increased or reduced. If only a small braking force F B is required, the braking
  • An embodiment of the braking device 13 provides that the brake unit 14, as in Fig. 2 to 5 can be seen a delivery 28 contains.
  • the delivery control for example, sets a desired air gap 30 on the basis of a target specification S Bi of the brake control unit 13.
  • the brake unit 14 includes a feed control, by means of which a Bremsplattenverschleiss and / or deviations from a normal behavior of the brake unit 14 can be determined.
  • This design allows the brake unit 14 can set a sufficiently large clearance 30, which inaccuracies in the guideway 9 of the elevator car 2 are compensated - scraping the brake plate 26, 27 omitted with the guideways 9 -, before an expected brake application, the brake unit 14 the Reduce air gap 30 targeted - which allows a quick response of the brake unit 14 - and by a determination of the normal force increase, the exact brake application point can be determined - which allows a determination of the Bremsplattenverschleisses.
  • the brake unit 14 reports the determined state variables Z Bi , infeed path and normal force increase to the brake control unit 15 and / or a corresponding safety module 44 which can thereby determine the correct function or which can possibly define suitable correction specifications S Bi .
  • the safety and availability of the braking device 13 is improved.
  • a brake unit 14 provides that a movable brake plate 27 of the brake unit 14 is delivered by means of a feed control 28 and the movable brake plate, as in Fig. 4 is withdrawn by means of a retraction system according to a delivery position defined by the delivery 28.
  • This is realized, for example, by a spring mechanism 31 retracting the brake plate, that is to say pulling into an open position, and a feed drive 29 actuated by the feed control 28 delivers the movable brake plate 27.
  • This design allows a simple safe construction, since the feed drive 29 is always loaded on pressure. The force to be applied by the spring mechanism 31 is small, since it only has to overcome internal frictional forces of the feed drive 29 and the brake plate guide.
  • the movable brake plate 27 of the brake unit 14, as in Fig. 5 shown biased by means of brake pressure springs 39.
  • the feed drive 29 keeps the brake open against the given by the brake pressure springs 39 feed force.
  • F N normal force
  • F B braking force
  • the feed drive 29 moves the movable brake plate 27 directly perpendicular to the braking surface, as in FIGS Fig. 3 to 7 seen.
  • the force application takes place directly what a cost-effective design of a brake unit 14 allows.
  • the feed drive 29 moves the brake plate 27 indirectly via a wedge to the braking surface (not shown), wherein the wedge angle ( ⁇ ) used by the wedge is greater than the "friction angle tan ( ⁇ )".
  • the use of a wedge increases the normal force which can be applied by the feed drive 29. Since the wedge angle used by the wedge is greater than the friction angle of the feed drive 29 is always loaded in one direction and a tearing of the brake plate 26 is prevented. In a particular embodiment, the wedge angle changes over the feed path. This design allows in particular a fast delivery of the brake plate.
  • the feed drive is an electromechanical spindle drive 32.
  • a spindle drive 32 allows by selecting the spindle shape and the spindle pitch optimum power gain, and for applying the required operating force, an electric motor 33 can be used.
  • the electric motor 33 is preferably via a gear stage 34, for example via a planetary gear, like in the 3 and 4 visible, connected to the spindle.
  • This embodiment is particularly reliable and robust, since proven functional elements are used and the drive torques on the motor 33 are kept low.
  • a spur gear is used as gear 34. This allows in particular the use of a very inexpensive motor 33.
  • the locking device 17 can be achieved particularly advantageous in the use of a spindle drive 32, as by means of a locking of the spindle drive 32 and a spindle nut, the delivery position is particularly easy locked.
  • a middle brake unit designed in this way has a weight of approximately 15 kg and the achievable normal force F N is approximately 25 kN.
  • the average power required to operate a brake unit is less than 0.2kW.
  • a force measuring device 36,37 measures the braking force or holding force F B generated by the brake unit 14.
  • the measurement takes place for example by means of a load cell 36 or a force-measuring ring which is integrated into the attachment of the brake unit to the car 2 or the attachment is provided at a suitable location with a Dehn-measuring device 37. The appropriate location is determined based on the force flow.
  • the brake unit 14 is fixed by means of a sliding pin 38 to the car 2, said slide pin 38 at the same time has integrated measuring cells 37 which measure the braking or holding force F B.
  • the slide pin 38 also allows the brake unit 14 is laterally aligned.
  • the advantage of measuring the braking force or holding force F B is that deviations from the expected behavior can be detected and the appropriate measures can be taken. For example, can be under note the braking force F B and the effective normal force F N-eff determine a current coefficient of friction. A deviation of the coefficient of friction in a plurality of brake units 14 can be expected that a change has been made to the brake rail 9 (pollution, oiling, etc), which initializes a corresponding Kontrollmann, or cleaning. A deviation of the coefficient of friction in a single brake unit 14 indicates that there is contamination or wear of a single brake pad 26, 27.
  • the deceleration or the acceleration of the elevator car 2 is detected by an acceleration measuring sensor 21.
  • this makes it possible to establish an abnormal operating situation and, moreover, enables user-friendly, comfortable braking in case of need.
  • the measurement of the acceleration or deceleration of the elevator car together with the measurements of the brake force measuring cell 35 and / or of the normal force measurement 24, 25 enables a plausibility check of the determined data, which further improves the reliability of the brake device.
  • the braking device 13 is usually as in Fig.1 can be seen, arranged on the elevator car 2, wherein the brake units 14 are mounted below and / or laterally and / or above a cabin body.
  • the location of the cultivation is determined taking into account the structural design of the car 2 and the number of required braking units 14.
  • the brake units 14 act on the guideway 9 or a brake track or a brake cable.
  • the element 41 is set such that in the ready position of the brake unit 14, a desired horizontal air gap 30 is formed.
  • the illustrated embodiment allows that with little effort, a contact of the brake plates 26, 27 can be prevented on the guideways 9.
  • a contact of the brake plates 26, 27 can be prevented on the guideways 9.
  • the brake unit 14 by means of at least one horizontal guide member 42 which is arranged in the vicinity of the brake plate 26, 27, guided such that a small air gap 30 can be adjusted, wherein the guide member 42 is a horizontal displacement of the brake unit 14 relative to the console 40 causes and this displacement is made possible by the elastic or a freely movable element 42 and the horizontal guide member 42, is designed either rigid or elastic.
  • This embodiment allows a brake unit 14 which operates with minimal air paths 30.
  • the brake unit 14 can react faster because only small delivery distances are required for braking, at the same time the feed drive 29 can be made simpler, since smaller delivery routes are required.
  • the brake unit 14 is cheaper and the safety is increased. A faster response of the brake unit allows a shortening of the stopping distance of the elevator car, which is particularly helpful when using shortened shaft ends.
  • the brake control unit 13 depending on the operating state, controls all brake units 14 together or only groups of brake units 14, wherein the allocation of a brake unit to a group is changeable.
  • This design makes it possible for individual brake units 14 to be heavily loaded even with a low braking force requirement, and thus an active functional verification takes place, as a result of which the functional reliability of the brake device 13 is increased. Furthermore, this control is energy-conscious, since only the required number of braking units 14 are actuated.
  • Another advantage of this solution is that the load cycles of the individual brake units 14 and in particular of the locking device 17 are reduced, which extends the service life or the maintenance intervals of the entire braking device 13 accordingly.
  • the energy supply 43 of the braking device 13 consists of at least two separate energy stores and / or energy networks (redundant) and the energy storage and / or energy networks form together with groups of braking units 14, a multi-circuit brake system.
  • the energy stores may be provided in the form of accumulators or supercapacitors, and the power networks may be provided by the local grid or by local power generators, such as backup generators, powered generators.
  • the illustrated alternative allows independently functioning brake units 14 to be arranged.
  • the energy sources are interconnected to a secure power grid, which supplies all brake units 14 together.
  • the solutions enable the selection of the most cost-effective and adapted to the local energy situation braking device 13 which is safe and reliable.
  • the braking device includes a safety module 44, which safety module 44 monitors the correct function and / or the state of each brake unit 14 and / or the brake control unit 13 and / or the measuring sensors 20,21,22,23 and / or the power supply 43, wherein the Security module 44 is part of the brake control unit 15 or a separate component.
  • the security module 44 ensures the operational readiness of the braking device 13 as well as efficient maintenance and fault diagnostics. The safety of the braking device 13 is increased.
  • the braking device 13 allows further optimization of an elevator installation.
  • a function test program can be significantly simplified.
  • the function test program can be simplified.
  • the brake device 13 can calculate a required normal force F N and the brake device 13 can check by means of the normal force measurement 24, 25 whether the maximum load is allowed the required normal force F N can be achieved with sufficient safety. This allows a simplification of the test procedure.
  • the braking force measurement can be used to determine the payload in the stop, a drive torque required for starting can be easily determined, or the braking force measurement can be used to determine the Wegfahrzeitfounds.
  • a gear stage 34 for driving the spindle may be a worm gear.
  • the braking device 13 can also be used to protect a counterweight or it can be arranged as a drive brake when driving, for example on the traction sheave.
  • the elevator system is usually arranged vertically.
  • the braking device according to the invention can also be mounted on other types of transport devices, such as, for example, rail transport systems, horizontal transport systems, such as cable cars or conveyor belts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)

Description

Die vorliegende Erfindung bezieht sich auf eine Aufzugsanlage mit einer Bremseinrichtung und einem Verfahren zum Bremsen und Halten einer Aufzugsanlage gemäss der Definition der unabhängigen Patentansprüche.The present invention relates to an elevator installation with a braking device and a method for braking and holding an elevator installation according to the definition of the independent claims.

Eine Aufzugsanlage beinhaltet eine Aufzugskabine welche sich in vertikaler Richtung innerhalb von Führungsbahnen oder Führungsschienen bewegt. Die Aufzugskabine wird im Bedarfsfalle von einer Bremseinrichtung gebremst oder im Stillstand gehalten.
Zum Halten oder Bremsen der Aufzugskabine ist eine Bremskraft erforderlich. Die Bremseinrichtung benutzt dazu in der Regel mindestens zwei Bremseinheiten welche im Anforderungsfalle mindestens einen Bremsbelag gegen eine Gegenfläche pressen. Dieses Pressen erfolgt mittels einer Normalkraft. Die Bremskraft eines Bremsbelags wird von der Normalkraft zusammen mit dem durch den Bremsbelag, die Gegenfläche und allfälliger Zwischenschichten definierten Reibwert bestimmt. Die Gegenfläche wird in der Regel durch eine Fläche der Führungsbahn, bzw. der Führungsschiene definiert.
An elevator installation includes an elevator cage which moves in the vertical direction within guideways or guide rails. The elevator car is braked in case of need by a braking device or held at a standstill.
To hold or brake the elevator car, a braking force is required. The braking device used for this purpose usually at least two brake units which press in the request case at least one brake pad against a counter surface. This pressing takes place by means of a normal force. The braking force of a brake pad is determined by the normal force together with the coefficient of friction defined by the brake lining, the mating surface and any intermediate layers. The counter surface is usually defined by an area of the guideway or the guide rail.

DE 3934492 zeigt eine Bremseinrichtung für eine Aufzugskabine welche im Bremsfalle an der Führungsschiene eingreift, wobei die Bremskraft mittels eines Beschleunigungssensors geregelt wird. Die Bremskraft wird dabei von einer Feder aufgebracht, wobei mit einem regelbaren Magneten die Bremskraft bei einem zu hohen Verzögerungswert reduziert oder bei zu geringer Verzögerung verstärkt werden kann. DE 3934492 shows a braking device for an elevator car which engages in the brake case on the guide rail, wherein the braking force is controlled by means of an acceleration sensor. The braking force is applied by a spring, with a controllable magnet, the braking force can be reduced at a too high delay value or can be amplified at too low a delay.

Ein Nachteil dieser Einrichtung liegt darin, dass die Bremseinrichtung nicht zum Halten einer Aufzugskabine in einer Stoppposition ausgelegt ist, wie beispielsweise bei einem regulären Halt auf einer Etage. Zudem ist die Bremseinrichtung auf einen festen durch die Feder vorgegebenen Wert eingestellt, welcher im Arbeitsfalle entweder möglichst schnell angefahren wird, was somit zu einem deutlichen Einschwingvorgang führen kann, oder welcher im Arbeitsfalle, gesteuert durch die Gegenkraft des Hubmagneten, langsam angefahren wird, wodurch sich die Geschwindigkeit bei einer voll beladenen Kabine ungünstig erhöht. Ausserdem ist der regelbare Magnet teuer und schwer, er nimmt zudem eine hohe Leistung auf und eine Überwachung der Betriebsbereitschaft der Einrichtung ist schwierig ausführbar. Der Leistungsbedarf ist deshalb hoch, weil die durch die Bremseinrichtung aufzubringende, maximal mögliche Bremskraft auf eine frei fallende, voll beladene Kabine ausgerichtet ist. In der Regel jedoch, beispielsweise bei einer Bremsung aus Übergeschwindigkeit wird eine un- oder nur zu einem geringen Teil beladene Kabine abgebremst. Hierbei sind nur geringe Bremskräfte erforderlich.A disadvantage of this device is that the braking device is not designed to hold an elevator car in a stop position, such as a regular stop on a floor. In addition, the braking device is on set a fixed predetermined by the spring value, which is approached either as quickly as possible in the case of work, which thus can lead to a significant transient process, or which is slowly approached in case of work, controlled by the opposing force of the solenoid, resulting in the speed at a full loaded cabin unfavorably increased. In addition, the variable magnet is expensive and heavy, it also takes on a high performance and monitoring the operational readiness of the device is difficult to carry out. The power requirement is high because the maximum possible braking force to be applied by the braking device is aligned with a freely falling, fully loaded car. As a rule, however, for example during braking from overspeed, an unladen or only to a small extent loaded cabin is braked. Here, only small braking forces are required.

Beispiel:Example:

Ein typischer Hubmagnet erbringt bei einem Leistungsbedarf (PM) von bis zu 4000W eine Hub- / Stosskraft (FM) von etwa 1500N. Unter der Annahme einer Hebelübersetzung (i) von 3 und eines Reibwertes (µ) von 0.2 ergibt sich gemäss FBR = FM x i x μ x 2

Figure imgb0001

ein Bremskraft-Regelbereich (FBR) von +/-1800N pro Bremsgehäuse, bzw. bei 2 Bremsgehäusen ergibt sich ein Regelbereich (FBR2) von +/- 3600 N.
Das Gewicht eines entsprechenden Hub / Stossmagneten beträgt bis zu 50 kg, bzw. für zwei Magnete bis zu 100kg. Unter Berücksichtigung einer zusätzlichen Feder pro Bremsgehäuse, welche eine Bremskraft von je 5000N erbringt, ergibt sich bei zwei Bremsgehäusen somit eine Gesamtbremskraft von 10'000N mit einem Bremskraft-Regelbereich von +/- 3600N. Eine Bremsanlage mit derart geringen Bremskräften genügt lediglich um eine Kabine mit einem Gesamtgewicht von etwa 1000 kg (Nutzlast 480kg und Kabinenmasse 520kg) aufzufangen. Das Gewicht dieser Aufzugskabine wird dabei um ca. 10% erhöht und die benötigte elektrische Regelleistung beträgt bis zu 2x 4kW.A typical solenoid provides power (PM) of up to 4000W with a stroke / impact force (FM) of about 1500N. Assuming a leverage (i) of 3 and a coefficient of friction (μ) of 0.2, the result is FBR = FM xix μ x 2
Figure imgb0001

a braking force control range (FBR) of +/- 1800N per brake housing, or with 2 brake housings results in a control range (FBR2) of +/- 3600 N.
The weight of a corresponding stroke / shock magnet is up to 50 kg, or for two magnets up to 100kg. Taking into account an additional spring per brake housing, which provides a braking force of 5000N, resulting in two brake housings thus a total braking force of 10'000N with a braking force control range of +/- 3600N. A brake system with such low braking forces is sufficient only to a cabin with a total weight of about 1000 kg (payload 480kg and cabin mass 520kg) to catch. The weight of this elevator car is increased by about 10% and the required electrical control power is up to 2x 4kW.

US5323878 offenbart eine weitere Bremseinrichtung mit zwei Bremseinheiten. Die Bremseinheiten sind im Bereiche einer Antriebsmaschine angeordnet. Die Bremskräfte werden über Tragorgane von der Antriebsmaschine zur Kabine übertragen. Die Bremskraft jeder Bremseinheit wird von einer Bremssteuereinheit unter Berücksichtigung der Kabinengeschwindigkeit oder Kabinenlast festgelegt. Im ausgeführten Beispiel wird die Bremskraft mittels einer Feder erzeugt, wobei eine hydraulische Kolbenkraft dieser Feder entgegenwirkt. Diese Ausführung entspricht heute üblicher, sicherer Bauart, da bei einem Versagen der Hydraulik die Federn mit Ihrer maximal möglichen Kraft bremsen. Die erforderliche hydraulische Kolbenkraft jeder Bremse wird von einer Bremssteuereinheit unter Berücksichtigung der Kabinengeschwindigkeit oder Kabinenlast errechnet und hydraulisch gesteuert. Die hydraulische Kolbenkraft muss dabei unter Berücksichtigung bremsspezifischer Eigenschaften, wie Kolbendurchmesser, Federkraft oder Anbaugeometrie jeder Bremseinheit festgelegt werden. US5323878 discloses another braking device with two brake units. The brake units are arranged in the region of a drive machine. The braking forces are transmitted via support members of the prime mover to the cabin. The braking force of each brake unit is set by a brake control unit in consideration of the car speed or car load. In the example shown, the braking force is generated by means of a spring, wherein a hydraulic piston force counteracts this spring. This design corresponds to today's conventional, safer design, as in a failure of the hydraulic brake the springs with their maximum possible force. The required hydraulic piston force of each brake is calculated and hydraulically controlled by a brake control unit taking into account the car speed or cabin load. The hydraulic piston force must be determined taking into account brake-specific properties, such as piston diameter, spring force or mounting geometry of each brake unit.

Ein Nachteil dieser Einrichtung liegt darin, dass relevante Einflussfaktoren, welche die Bremskraft beeinflussen nicht erkannt und nicht berücksichtigt werden. Ein Defekt einer Feder, Verschleiss eines Bremsbelages oder ein Verklemmen von Bremshebeln kann zu einer relevanten Beeinflussung der Bremskraft führen, welche nicht erkannt wird.
Im Weiteren muss die Bremssteuereinheit bremsspezifische Eigenschaften, wie Kolbendurchmesser, Federkraft oder Anbaugeometrie, jeder Bremseinheit berücksichtigen, da die Bremssteuereinheit die hydraulische Kolbenkraft für jede einzelne Bremseinheit vorgibt.
Diese Nachteile erhöhen die Fehleranfälligkeit bei Installation und bei Ersatz sowie im Betrieb erheblich, da der Bremsteuereinheit die bremsspezifischen Eigenschaften jeder Bremseinheit eingegeben werden müssen.
A disadvantage of this device is that relevant influencing factors which influence the braking force are not recognized and not taken into account. A failure of a spring, wear of a brake lining or jamming of brake levers can lead to a relevant influence on the braking force, which is not recognized.
Furthermore, the brake control unit must take into account brake-specific properties, such as piston diameter, spring force or mounting geometry, of each brake unit, since the brake control unit specifies the hydraulic piston force for each individual brake unit.
These disadvantages increase the susceptibility to error during installation and replacement as well as in operation considerably, since the brake control unit, the brake-specific properties of each brake unit must be entered.

Aufgabe der vorliegenden Erfindung ist es dementsprechend eine regelbare Bremseinrichtung und ein Verfahren zum Bremsen und Halten einer Aufzugsanlage zur Verfügung zu stellen, welche ein dem Betriebszustand der Aufzugsanlage entsprechendes Verzögern oder Halten ermöglicht und schnell und schonend anspricht. Die Bremseinrichtung muss zudem hohen Sicherheitsanforderungen gerecht werden und sie soll mit geringer Leistung betrieben werden können und wenig Zusatzgewicht aufweisen. Die Fehleranfälligkeit der Bremseinrichtung soll zudem gering sein.The object of the present invention is accordingly to provide a controllable braking device and a method for braking and holding an elevator installation, which allows a delay or hold corresponding to the operating state of the elevator installation and which responds quickly and gently. The braking device must also meet high safety requirements and they should be able to operate with low power and have little additional weight. The error rate of the braking device should also be low.

Diese Aufgabe wird durch die Erfindung, wie sie in den unabhängigen Ansprüchen dargestellt ist, gelöst.This object is solved by the invention as set out in the independent claims.

Erfindungsgemäss enthält jede Bremseinheit eine Normalkraftregelung welche eine effektive Normalkraft entsprechend einem von einer Bremssteuereinheit bestimmten Soll-Normalkraftwert regelt und / oder jede Bremseinheit enthält eine Arretiereinrichtung, welche die Bremseinheit in einer eingestellten Bremsposition, entsprechend einer eingestellten effektiven Normalkraft, arretieren kann.According to the invention, each brake unit includes a normal force control which regulates an effective normal force corresponding to a target normal force value determined by a brake control unit and / or each brake unit includes a locking device which can lock the brake unit in a set braking position corresponding to a set effective normal force.

Die erfindungsgemässe Lösung hat die vorteilhafte Wirkung, dass jede Bremseinheit eine eigene Normalkraftregelung hat, welche eine effektive Normalkraft entsprechend einer Soll-Normalkraft regelt, so dass jeder Bremseinheit eine eigene Soll-Normalkraft zugeordnet werden kann. Die Bremseinheit selber kann so eine Normalkraft schnell und genau einstellen und sie kann so Abweichungen im Bereiche der Bremseinheit, wie geometrische Abweichungen (z.B. Verschleiss einer Bremsplatte oder unterschiedliche Abmessungen von Bremsschienen), durch einen Regelvorgang selbstständig korrigieren. Eine Fehleranfälligkeit der gesamten Bremseinrichtung ist dadurch deutlich reduziert. Ein Ersatz einer Bremseinheit ist einfach möglich, da die bremsspezifischen Eigenschaften, wie Kolbendurchmesser, Federkraft, Anbaugeometrie oder weitere konstruktionsbestimmte Daten, der Bremseinheit in der Bremseinheit selbst berücksichtigt sind und somit aufwändige und fehleranfällige Eingaben dieser bremsspezifischen Eigenschaften an der Bremssteuereinheit entfallen.The solution according to the invention has the advantageous effect that each brake unit has its own normal force control, which regulates an effective normal force corresponding to a desired normal force, so that each brake unit can be assigned its own nominal normal force. The brake unit itself can thus set a normal force quickly and accurately and it can thus correct deviations in the areas of the brake unit, such as geometric deviations (for example, wear of a brake plate or different dimensions of brake rails) by a control process automatically. An error rate of the entire braking device is significantly reduced. A replacement of a brake unit is easily possible because the brake-specific properties, such as piston diameter, spring force, mounting geometry or other design-related data, the brake unit in the brake unit itself are taken into account and thus complex and error-prone inputs of these brake-specific properties account for the brake control unit.

Abhängig vom Bremskraftbedarf wird von der Bremssteuereinheit eine energiesparende und sichere Normalkraftverteilung, bzw. eine Vorgabe der Soll-Normalkraft pro Bremseinheit, gewählt. Der Bremskraftbedarf ergibt sich aus einem Betriebszustand der Aufzugsanlage wie beispielsweise einer Zuladung, einer Fahrgeschwindigkeit, einem Standort im Aufzugsschacht, einem Beschleunigungswert oder anderen Zustandsgrössen der Aufzugskabine, bzw. der Aufzugsanlage. Dies erlaubt ein besonders schonendes Bremsen der Aufzugsanlage.Depending on the braking force required by the brake control unit an energy-saving and safe normal force distribution, or a specification of the target normal force per brake unit selected. The braking force requirement results from a Operating state of the elevator system such as a payload, a vehicle speed, a location in the elevator shaft, an acceleration value or other state variables of the elevator car, or the elevator installation. This allows a particularly gentle braking of the elevator system.

Beim Halten oder Bremsen kann erfindungsgemäss eine eingestellte Bremsposition arretiert werden. Dabei wird eine eingestellte effektive Normalkraft arretiert. Dies ermöglicht ein Halten oder Bremsen der Aufzugskabine ohne weitere Energiezufuhr.When holding or braking according to the invention a set braking position can be locked. In this case, a set effective normal force is locked. This allows holding or braking the elevator car without additional power.

Die aufgezeigten Lösungen ermöglichen ein dem Betriebszustand der Aufzugsanlage entsprechendes Bremsen oder Halten der Aufzugskabine und die Einrichtung kann schnell und trotzdem schonend zum Eingriff gelangen. Die Lösungen erfüllen hohe Sicherheitsanforderungen und sie benötigen wenig Leistung. Die Fehleranfälligkeit der Bremseinrichtung ist gering.
Weitere Ausgestaltungen und Vorteile der Erfindung folgen aus den abhängigen Unteransprüchen.
The solutions shown allow the operating state of the elevator system corresponding braking or holding the elevator car and the device can quickly and yet gently engage. The solutions meet high security requirements and they require little power. The susceptibility to failure of the braking device is low.
Further embodiments and advantages of the invention follow from the dependent subclaims.

In den folgenden Figuren sind beispielhafte Ausführungen einer erfindungsgemässen Bremseinrichtung dargestellt.

Fig. 1
eine Aufzugsanlage mit Bremseinrichtung.
Fig. 2
eine schematische Darstellung der Bremseinrichtung.
Fig. 3
eine Bremseinheit mit Normalkraftregelung.
Fig. 4
eine Bremseinheit mit Arretiereinrichtung.
Fig. 5
eine Bremseinheit mit anderen Arretiereinrichtung.
Fig. 6
eine Bremseinheit mittels Gleitbolzen und Konsole befestigt.
Fig. 7
eine Bremseinheit mittels elastischem Element und Konsole befestigt.
In the following figures, exemplary embodiments of a brake device according to the invention are shown.
Fig. 1
an elevator system with braking device.
Fig. 2
a schematic representation of the braking device.
Fig. 3
a brake unit with normal force control.
Fig. 4
a brake unit with locking device.
Fig. 5
a brake unit with other locking device.
Fig. 6
a brake unit by sliding bolt and console attached.
Fig. 7
a brake unit by means of elastic element and console attached.

Eine Aufzugsanlage 1 besteht zumindest aus einer Aufzugskabine 2 und einem Aufzugsantrieb 10. Wie in Fig. 1 dargestellt benötigt eine beispielhafte Aufzugsanlage 1 im weiteren Tragmittel 11 und ein Gegengewicht 12 wobei der Aufzugsantrieb 10 die Tragmittel 11 treibt und damit die Aufzugskabine 2 und das Gegengewicht 12 gegengleich bewegt. Die Aufzugsanlage 1 benötigt mindestens eine Bremseinrichtung 13. Die Bremseinrichtung 13 hält eine stillstehende Aufzugskabine 2 - beispielsweise während der Beladungszeit in einer Etage 6 - fest, oder sie bremsen die Aufzugskabine 2 in einer Notsituation - beispielsweise bei einer unerwarteten Öffnung eines Etagenzuganges - ab, oder sie fangen eine zu schnelle Aufzugskabine 2 - beispielsweise bei einem Versagen der Tragmittel 11 - auf. Diese verschiedenen Lastfälle erfordern unterschiedliche Brems- oder Haltekräfte FB.An elevator installation 1 consists at least of an elevator car 2 and an elevator drive 10 Fig. 1 requires an exemplary elevator installation 1 in the further support means 11 and a counterweight 12 wherein the elevator drive 10, the support means 11 drives and thus the elevator car 2 and the counterweight 12 moves against the same. The elevator system 1 requires at least one braking device 13. The braking device 13 holds a stationary elevator car 2 - for example, during the loading time in a floor 6 - fixed, or they brake the elevator car 2 in an emergency situation - for example, in an unexpected opening of a floor access - from, or they catch a too fast elevator car 2 - for example, in case of failure of the support means 11 - on. These different load cases require different braking or holding forces F B.

Fig. 2 zeigt eine Variante einer Bremseinrichtung 13, welche aus einer Bremssteuereinheit 15 mit Energieversorgung 43 und - im gezeigten Beispiel - aus vier funktionell identischen Bremseinheiten 14 besteht. Funktionell identisch bedeutet, dass die Bremseinheiten gleiche Funktionsstruktur aufweisen, jedoch durchaus entsprechend ihrer geometrischen Abmessungen unterschiedlich sein können. Jede Bremseinheit 14 verfügt über eine Bremskraftmessung 36,37. Die Energieversorgung 43 versorgt die Bremssteuereinheit 15 und die Bremseinheiten 14 mit einer sicheren Spannung UB. Aufzugssteuerung 5 und Messsensoren 20,21,22,23 liefern der Bremssteuereinheit 15 erforderliche Aufzugssignale. Die Bremssteuereinheit 15 versorgt die einzelnen Bremseinheiten 14 mit individuellen Sollvorgaben SB1...i. 1 bis i steht in Fig. 2 für die einzelnen Bremseinheiten 14. Eine Sollvorgaben SBi ist beispielsweise eine Soll-Normalkraft FN-soll oder ein Soll-Lüftspalt 30. Diese Sollvorgaben SBi werden an die zugehörige Bremseinheit übergeben. Die Bremseinheit 14 verarbeitet diese Sollvorgabe in eigenen Regelblöcken 16, 28 FN, SN, welche mit bekannten Regeltechnologien arbeiten. Die Bremseinheiten 14 liefern wiederum effektive Zustandsgrössen ZB1...i an die Bremssteuereinheit 15 zurück. Effektive Zustandsgrössen ZB1...i können wiederum eine Effektive-Normalkraft FN-eff oder ein wirklicher Lüftspalt 30 sein. Im gezeigten Beispiel verfügt jede Bremseinheit 14 über eine Bremskraftmessung 36,37, welche eine Effektive-Bremskraft FB1...i feststellt und diesen Wert an die Bremsteuereinheit 15 übermittelt. Die Bremssteuereinheit 15 verfügt im dargestellten Beispiel weiter über ein Sicherheitsmodul 44. Fig. 2 shows a variant of a braking device 13, which consists of a brake control unit 15 with power supply 43 and - in the example shown - from four functionally identical brake units 14. Functionally identical means that the brake units have the same functional structure, but may well be different according to their geometric dimensions. Each brake unit 14 has a brake force measurement 36, 37. The power supply 43 supplies the brake control unit 15 and the brake units 14 with a safe voltage U B. Elevator control 5 and measuring sensors 20,21,22,23 provide the brake control unit 15 required elevator signals. The brake control unit 15 supplies the individual brake units 14 with individual desired specifications S B1... I. 1 to i is in Fig. 2 for the individual brake units 14. A target specifications S Bi is, for example, a desired normal force F N-soll or a desired air gap 30. These target values S Bi are transferred to the associated brake unit. The brake unit 14 processes this setpoint in its own control blocks 16, 28 F N , S N , which work with known control technologies. The brake units 14 in turn deliver effective state variables Z B1... I to the brake control unit 15. Effective state variables Z B1 ... i can again be an effective normal force F is N-eff or a real air gap 30. In the example shown, each brake unit 14 has a brake force measurement 36, 37, which determines an effective braking force F B1... I and transmits this value to the brake control unit 15. The brake control unit 15 further has a safety module 44 in the illustrated example .

Die erfindungsgemässe Bremseinrichtung 13 ist für die vorgängig erwähnten unterschiedlichen Lastfälle vorgesehen. Die Bremseinrichtung 13 besteht wie in Fig. 1 und Fig. 2 dargestellt aus mindestens zwei Bremseinheiten 14 und jede Bremseinheit 14 beinhaltet eine Normalkraftregelung 16, wobei diese Normalkraftregelung 16 eine effektive Normalkraft FN-eff in der Bremseinheit 14 entsprechend einer Sollvorgabe SBi, der Soll-Normalkraft FN-soll regelt, welche von einer Bremssteuereinheit 15 vorgegeben wird.
Der Vorteil dieser Normalkraftregelung 16 ist, dass die Bremseinheit selbst schnell und genau eine gewünschte Normalkraft einstellen kann, und Abweichungen im Bereiche der Bremseinheit 14, wie beispielsweise Verschleiss oder Abmessungsunterschiede an der Bremseinheit oder einer Bremsschiene 9, schnell und direkt, das heisst innerhalb der Bremseinheit selbst, korrigiert werden können. Die Fehleranfälligkeit der Bremseinrichtung ist deutlich reduziert, da Abmessungseinflüsse wie Schienendicke, Bremsplattenverschleiss oder andere Abnützungen direkt, innerhalb der Bremseinheit kompensiert werden. Zudem ist im Falle einer Reparatur ein Ersatz einfach möglich, da die bremseinheitsspezifischen Eigenschaften von der in der Bremseinheit beinhalteten Normalkraftregelung direkt, das heisst innerhalb der Bremseinheit selbst, erfasst und korrigiert werden.
Die Bremssteuereinheit 15 kennt den aktuellen Zustand der Aufzugsanlage 1 aufgrund der Meldungen von einer Aufzugssteuerung 5 und / oder einer entsprechenden Überwachungseinheit und / oder von eigenen Messsensoren 20, wie beispielsweise Beschleunigungsmesssensor 21, Geschwindigkeitsmesssensor 22 oder Wegmessung 23, und kann auf der Basis dieser Kenntnisse eine geeignete Sollvorgabe SBi, der Normalkraft FN-soll für die einzelnen Bremseinheiten 14 vornehmen. So erhöht beispielsweise die Bremssteuereinheit die Sollvorgabe SBi der Normalkraft FN-soll nahe des Schachtendes, um allenfalls verkürzte Schachtenden zu ermöglichen. Die Bremssteuereinheit ist vorteilhafterweise, wie in Fig. 1 dargestellt, auf der Kabine, allenfalls in Kombination mit weiteren Steuerungs- oder Sicherheitsmodulen angeordnet. Mess- und Überwachungssysteme, wie beispielsweise in WO03/004397 beschrieben, sind vorteilhafterweise in einem derartigen Sicherheitsmodul integriert.
Dies ermöglicht die Bereitstellung einer Bremseinrichtung 13, welche lastfallabhängig mit einer entsprechenden Bremskraft FB - welche abhängig von der effektiven Normalkraft FN-eff ist - halten oder bremsen kann. Die Bremssteuereinheit 15 bestimmt unter Berücksichtigung des aktuellen Zustandes der Aufzugsanlage 1 den optimalen, benutzergerechtesten und sparsamsten Bremseinsatz. So kann ein Bremsstartwert aufgrund der von den Messsensoren 20,21,22,23 festgestellten Zustandsgrössen errechnet werden, wodurch ein Sollwert SBi vorgegeben werden kann.
Der Vorteil dieser erfindungsgemässen Bremseinrichtung 13 ist darin zu sehen, dass ein sicheres bedarfsgerechtes Bremsen oder Halten der Aufzugskabine 2 mit minimalem Energieaufwand ermöglicht ist.
The inventive braking device 13 is provided for the previously mentioned different load cases. The braking device 13 is as in Fig. 1 and Fig. 2 represented by at least two brake units 14 and each brake unit 14 includes a normal force control 16, this normal force control 16 an effective normal force F N-eff in the brake unit 14 according to a target specification S Bi , the target normal force F N-soll controls, which of a brake control unit 15 is given.
The advantage of this normal force control 16 is that the brake unit itself can quickly and accurately set a desired normal force, and deviations in the areas of the brake unit 14, such as wear or dimensional differences on the brake unit or a brake rail 9, quickly and directly, that is within the brake unit itself, can be corrected. The susceptibility to failure of the braking device is significantly reduced, since dimensional influences such as rail thickness, Bremsplattenverschleiss or other Abnützungen directly, be compensated within the brake unit. In addition, in the case of a repair a replacement is simply possible because the brake unit specific properties of the brake force contained in the normal force control directly, ie within the brake unit itself, detected and corrected.
The brake control unit 15 knows the current state of the elevator installation 1 on the basis of the messages from an elevator control 5 and / or a corresponding monitoring unit and / or its own measuring sensors 20, such as acceleration measuring sensor 21, speed measuring sensor 22 or distance measurement 23, and can on the basis of this knowledge suitable target specification S Bi , the normal force F N-soll for the individual brake units 14 make. For example, the brake control unit increases the target specification S Bi of the normal force F N-soll near the shaft end, at most shortened shaft ends to enable. The brake control unit is advantageously as in Fig. 1 represented on the cab, possibly in combination with other control or safety modules arranged. Measuring and monitoring systems, such as in WO03 / 004397 described, are advantageously integrated in such a security module.
This makes it possible to provide a braking device 13 which, depending on the load case, can hold or brake with a corresponding braking force F B , which is dependent on the effective normal force F N-eff . Taking into account the current state of the elevator installation 1, the brake control unit 15 determines the optimum, user-friendly and most economical brake application. Thus, a brake starting value can be calculated on the basis of the state variables determined by the measuring sensors 20, 21, 22, 23, as a result of which a setpoint value S Bi can be preset.
The advantage of this braking device 13 according to the invention can be seen in the fact that a secure on-demand braking or holding of the elevator car 2 is made possible with minimal expenditure of energy.

Erfindungsgemäss verfügt die Bremseinheit 14, wie in Fig. 4 und 5 dargestellt, über eine Arretiereinrichtung 17, welche die Bremseinheit 14 in einer eingestellten Bremsposition, entsprechend einer wirkenden Normalkraft FN-eff arretieren kann. Beim Aufbringen der Normalkraft wird eine bewegliche Bremsplatte 27 zugestellt. Dabei wird das Gehäuse der Bremseinheit 14 im elastischen Bereich aufgeweitet. Im Bedarfsfalle kann das Gehäuse der Bremseinheit 14 mit speziellen elastischen Einrichtungen - beispielsweise mit Federn - versehen sein (nicht dargestellt), welche dieses Aufweiten unterstützen. Die Arretiereinrichtung 17 arretiert nun diese gespannte Bremsposition, beispielsweise mit einem Arretierbolzen 18, 18a wie in den Fig. 4 oder 5 dargestellt. Diese Arretierung ermöglicht die Sicherstellung einer genügenden Halte- oder Bremskraft FB über eine lange Standzeit mit geringstem oder ohne Energieaufwand.
Der Vorteil dieser alternativen oder ergänzenden Ausführung einer Bremseinheit 14 ist darin zu sehen, dass ein sicheres Bremsen oder Halten der Aufzugskabine mit minimalem Energieaufwand ermöglicht ist und, dass mittels der Arretiereinrichtung 17 nicht nur eine bestimmte Bremskraftstellung arretiert werden kann, sondern im wesentlichen jede eingestellte Bremsposition und damit Bremskraftniveau gesichert werden kann.
According to the invention, the brake unit 14 has, as in Fig. 4 and 5 illustrated, via a locking device 17, which can lock the brake unit 14 in a set braking position, corresponding to an acting normal force F N-eff . When applying the normal force, a movable brake plate 27 is delivered. In this case, the housing of the brake unit 14 is expanded in the elastic range. If necessary, the housing of the brake unit 14 may be provided with special elastic means - for example with springs - (not shown) which support this expansion. The locking device 17 now locks this tensioned braking position, for example, with a locking pin 18, 18 a as in the Fig. 4 or 5 shown. This lock allows to ensure a sufficient holding or braking force F B over a long service life with minimal or no energy consumption.
The advantage of this alternative or additional embodiment of a brake unit 14 is the fact that a safe braking or holding the elevator car is possible with minimal energy consumption and that by means of the locking device 17 not only a certain braking force position can be locked, but essentially every set braking position and thus braking force level can be secured.

In einer vorzugsweisen Ausführung der Arretiereinrichtung 17 der Bremseinheit 14 ist diese Arretiereinrichtung 17 derart ausgeführt, dass eine eingestellte Bremsposition bei unterbrochener Energiezufuhr beibehalten ist. Der Arretierbolzen 18 wird beispielsweise mittels eines Steuermagneten 19 in seine Arretierposition oder in seine Offenstellung gebracht.
Diese Ausführung ist vorteilhaft, da dadurch die Bremseinheit 14 auch bei einem lang andauernden Energieunterbruch in einer sicheren Halteposition gehalten ist. Ein lang andauernder Energieunterbruch kann sowohl ungewollt, als Folge eines Versorgungsfehlers, entstehen, oder er kann gewollt herbeigeführt werden, wenn beispielsweise bei einer Unterbelegung von Gebäuden einzelne Aufzüge stillgelegt werden. Die dargestellte Ausführung hat dabei den Vorteil, dass sie nur mittels einer Energiequelle wieder entriegelt werden kann, was die Sicherheit gegen Fehlmanipulation erhöht.
Abhängig vom gewählten Sicherheitskonzept erfolgt die Arretierung, wie in der Fig. 5 dargestellt im Falle eines Energieausfalles selbstständig, wobei die letzte aktuelle Brems- oder Halteposition gesichert wird. Dies erfolgt im dargestellten Beispiel, indem der Arretierbolzen 18 mittels Federkraft in seine Arretierstellung gebracht und mittels eines Steuermagneten 19 in der Offenstellung gehalten wird. Ein anderes Sicherheitskonzept sieht vor, dass, wie in Fig. 4 ersichtlich, der selbstsichernde Arretierbolzen 18a mittels einer Feder offen gehalten und mittels einem Steuermagneten 19 arretiert wird. Diese Lösung ist vorteilhafterweise derart gestaltet, dass der selbstsichernde Arretierbolzen 18a in eingerücktem Zustand durch den Bremsgegendruck verriegelt wird und dementsprechend von der Feder nur in die Offenstellung gebracht werden kann wenn ein Bremszustellmoment vorhanden ist und der selbstsichernde Arretierbolzen 18a dementsprechend keine Arretierkraft zu tragen hat.
Die dargestellten Alternativen erlauben eine auf das Gesamtsicherheitskonzept abgestimmte Auswahl der geeigneten Ausführung.
In a preferred embodiment of the locking device 17 of the brake unit 14, this locking device 17 is designed such that a set braking position is maintained at an interrupted power supply. The locking pin 18 is brought, for example by means of a control magnet 19 in its locking position or in its open position.
This embodiment is advantageous, since thereby the brake unit 14 is held in a secure holding position even with a long lasting power interruption. A long-lasting interruption of energy can either unintentionally, as a result of a supply error, arise, or it can be deliberately brought about, for example, if a sub occupancy of buildings individual lifts are shut down. The illustrated embodiment has the advantage that it can be unlocked again only by means of an energy source, which increases the security against incorrect manipulation.
Depending on the selected security concept, the locking takes place, as in the Fig. 5 shown in the event of power failure independently, the last current braking or holding position is secured. This is done in the example shown by the locking pin 18 is brought by spring force into its locked position and held by a control magnet 19 in the open position. Another security concept provides that, as in Fig. 4 can be seen, the self-locking locking pin 18 a held open by a spring and locked by means of a control magnet 19. This solution is advantageously designed such that the self-locking locking bolt 18a is locked in the engaged state by the Bremsgegendruck and accordingly can be brought by the spring only in the open position when a Bremszustellmoment is present and the self-locking pin 18a accordingly has no locking force to wear.
The illustrated alternatives allow a selection of the suitable design, which is tailored to the overall safety concept.

In einer weiteren Ausführungsform ist die effektive Normalkraft FN-eff mittels einer Messung der mechanischen Spannung des Gehäuses der Bremseinheit 14, beispielsweise mittels Dehnmessstreifen (DMS) 25 wie in Fig. 4 und 5 dargestellt, oder mit einer Kraftmessdose 24, wie in Fig. 3 dargestellt oder mittels Feststellung eines Spannweges der beweglichen Bremsplatte 27 der Bremseinheit 14 oder eines der Zustellenergie entsprechenden Energiewertes, wie eines Stromwertes oder eines Druckwertes, festgestellt. Die Wahl der geeigneten Normalkraftmessung FN-eff richtet sich unter anderem nach der Ausführungsart der Bremseinheit 14. Bei der Wahl einer elektromechanischen Bremseinheit 14 kann aus der Messung der elektrischen Zustellgrössen wie Spannung und Strom die Normalkraft FN ermittelt werden oder bei Verwendung einer Hydraulischen Bremseinheit 14 ist der Druck im Bremszylinder eine Messgrösse zur Bestimmung der Normalkraft FN-eff. Konstruktionsabhängig kann eine günstige Methode zur Bestimmung der effektiven Normalkraft FN-eff verwendet werden.In a further embodiment, the effective normal force F N-eff is measured by means of a measurement of the mechanical stress of the housing of the brake unit 14, for example by means of strain gauges (DMS) 25 as in FIG Fig. 4 and 5 represented, or with a load cell 24, as in Fig. 3 represented or detected by detecting a clamping path of the movable brake plate 27 of the brake unit 14 or one of the delivery energy corresponding energy value, such as a current value or a pressure value. The choice of suitable normal force measurement F N-eff depends inter alia on the embodiment of the brake unit 14. When choosing an electromechanical brake unit 14 can be determined from the measurement of the electrical Zustellgrössen such as voltage and current, the normal force F N or when using a hydraulic brake unit 14, the pressure in the brake cylinder is a parameter for determining the normal force F N-eff . Depending on the design, a favorable method for determining the effective normal force F N-eff can be used.

Vorteilhafterweise berücksichtigt die Bremssteuereinheit 15 einen Betriebszustand der Aufzugsanlage 1 - wie beispielsweise die Beschleunigung, die Geschwindigkeit, die Beladung und Beladungsverteilung in der Aufzugskabine 2, die Fahrtrichtung oder den Ort der Aufzugkabine 2 - und / oder einen Zustand der Bremseinheit 14 - wie beispielsweise einen Verschleiss von Bremsplatten 26, 27 - und / oder der Bremseinrichtung 13 - wie beispielsweise Energiereserven oder Abweichungen von Messgrössen - zur Bestimmung der Sollvorgabe SBi der Soll-Normalkraft FN-soll. So kann beispielsweise bei einer stark exzentrisch beladenen Aufzugskabine 2 die Soll-Normalkraft FN-soll für eine bestimmte Bremseinheit 14 erhöht oder verringert werden. Ist lediglich eine geringe Bremskraft FB erforderlich, kann die Bremsung von einer Bremseinheit 14, oder einer Gruppe von Bremseinheiten 14, übernommen werden.
Besonders vorteilhaft ist dabei, dass einerseits eine Bremsung bedarfsgerecht und effizient durchgeführt werden kann und dass andererseits durch gezielte Verteilung der erforderlichen Bremskräfte maximale Bremssituationen, bezogen auf einzelne Bremseinheiten 14, erreicht werden können. Dies erhöht die Gesamtsicherheit der Aufzugsanlage 1, da die Funktionsfähigkeit einer Bremseinheit 14 im laufenden Betrieb aktiv kontrolliert werden kann. Das Risiko von Stillstandschäden wird dadurch deutlich reduziert.
Advantageously, the brake control unit 15 takes into account an operating state of the elevator installation 1, such as the acceleration, the speed, the loading and distribution in the elevator car 2, the direction of travel or the location of the elevator car 2, and / or a state of the brake unit 14, such as wear of brake plates 26, 27 - and / or the braking device 13 - such as energy reserves or deviations from measured variables - for determining the target specification S Bi of the target normal force F N-soll . Thus, for example, in a heavily eccentrically loaded elevator car 2, the nominal normal force F N-soll for a particular brake unit 14 can be increased or reduced. If only a small braking force F B is required, the braking can be taken over by a brake unit 14, or a group of brake units 14.
It is particularly advantageous that on the one hand braking can be carried out as needed and efficiently and that on the other hand by targeted distribution of the required braking forces maximum braking situations, based on individual brake units 14, can be achieved. This increases the overall security the elevator installation 1, since the functionality of a brake unit 14 during operation can be actively controlled. This significantly reduces the risk of downtime damage.

Eine Ausführung der Bremseinrichtung 13 sieht vor, dass die Bremseinheit 14, wie in Fig. 2 bis 5 ersichtlich eine Zustellregelung 28 enthält. Die Zustellregelung stellt beispielsweise einen gewünschten Lüftspalt 30 aufgrund einer Sollvorgabe SBi der Bremssteuereinheit 13 ein. Im Weiteren enthält die Bremseinheit 14 eine Zustellkontrolle, mittels welcher ein Bremsplattenverschleiss und / oder Abweichungen von einem Normalverhalten der Bremseinheit 14 ermittelt werden kann. Diese Ausführung ermöglicht, dass die Bremseinheit 14 ein genügend grosses Lüftspiel 30 einstellen kann, womit Ungenauigkeiten in der Führungsbahn 9 der Aufzugskabine 2 ausgeglichen werden - Streifgeräusche der Bremsplatte 26, 27 mit den Führungsbahnen 9 entfallen -, vor einem erwarteten Bremseinsatz kann die Bremseinheit 14 den Lüftspalt 30 gezielt verkleinern - was ein schnelles Ansprechen der Bremseinheit 14 ermöglicht - und durch eine Feststellung des Normalkraftanstieges kann der genaue Bremseinsatzpunkt bestimmt werden - was eine Feststellung des Bremsplattenverschleisses ermöglicht. Die Bremseinheit 14 meldet die festgestellten Zustandsgrössen ZBi, Zustellweg und Normalkraftanstieg an die Bremssteuereinheit 15 und /oder ein entsprechendes Sicherheitsmodul 44 welche dadurch die korrekte Funktion feststellen können oder welche allenfalls geeignete Korrekturvorgaben SBi definieren können.
Die Sicherheit und Verfügbarkeit der Bremseinrichtung 13 wird verbessert.
An embodiment of the braking device 13 provides that the brake unit 14, as in Fig. 2 to 5 can be seen a delivery 28 contains. The delivery control, for example, sets a desired air gap 30 on the basis of a target specification S Bi of the brake control unit 13. In addition, the brake unit 14 includes a feed control, by means of which a Bremsplattenverschleiss and / or deviations from a normal behavior of the brake unit 14 can be determined. This design allows the brake unit 14 can set a sufficiently large clearance 30, which inaccuracies in the guideway 9 of the elevator car 2 are compensated - scraping the brake plate 26, 27 omitted with the guideways 9 -, before an expected brake application, the brake unit 14 the Reduce air gap 30 targeted - which allows a quick response of the brake unit 14 - and by a determination of the normal force increase, the exact brake application point can be determined - which allows a determination of the Bremsplattenverschleisses. The brake unit 14 reports the determined state variables Z Bi , infeed path and normal force increase to the brake control unit 15 and / or a corresponding safety module 44 which can thereby determine the correct function or which can possibly define suitable correction specifications S Bi .
The safety and availability of the braking device 13 is improved.

Eine weitere Ausführung einer Bremseinheit 14 sieht vor, dass eine bewegliche Bremsplatte 27 der Bremseinheit 14 mittels einer Zustellregelung 28 zugestellt wird und die bewegliche Bremsplatte, wie in Fig. 4 dargestellt, mittels eines Rückzugsystems entsprechend einer von der Zustellregelung 28 definierten Zustellposition zurückgezogen wird. Dies ist beispielsweise realisiert, indem eine Federmechanik 31 die Bremsplatte zurückzieht, das heisst in eine Offenstellung zieht, und ein von der Zustellregelung 28 betätigter Zustellantrieb 29 die bewegliche Bremsplatte 27 zustellt. Diese Ausführung erlaubt eine einfache sichere Konstruktion, da der Zustellantrieb 29 stets auf Druck belastet ist. Die von der Federmechanik 31 aufzubringende Kraft ist dabei gering, da sie lediglich innere Reibkräfte des Zustellantriebes 29 und der Bremsplattenführung überwinden muss.
Alternativ ist die bewegliche Bremsplatte 27 der Bremseinheit 14, wie in Fig. 5 dargestellt, mittels Bremsdruckfedern 39 vorbelastet. Beim normalen Fahrbetrieb der Aufzugskabine 2 hält der Zustellantrieb 29 die Bremse entgegen der durch die Bremsdruckfedern 39 gegebenen Zustellkraft offen. Beim Schliessen erhöht sich die Normalkraft (FN) entsprechend der Kraft der Bremsdruckfeder 39. Dies ermöglicht eine Erhöhung der Bremskraft (FB) einer Bremseinheit 14 ohne die Notwendigkeit eines stärkeren Zustellantriebs 29. Abhängig von der konstruktiven Ausführung des Zustellantriebes wird auch die Ausführung der Messung der effektiven und wirklichen Normalkraft (FN-eff) gewählt.
Another embodiment of a brake unit 14 provides that a movable brake plate 27 of the brake unit 14 is delivered by means of a feed control 28 and the movable brake plate, as in Fig. 4 is withdrawn by means of a retraction system according to a delivery position defined by the delivery 28. This is realized, for example, by a spring mechanism 31 retracting the brake plate, that is to say pulling into an open position, and a feed drive 29 actuated by the feed control 28 delivers the movable brake plate 27. This design allows a simple safe construction, since the feed drive 29 is always loaded on pressure. The force to be applied by the spring mechanism 31 is small, since it only has to overcome internal frictional forces of the feed drive 29 and the brake plate guide.
Alternatively, the movable brake plate 27 of the brake unit 14, as in Fig. 5 shown biased by means of brake pressure springs 39. During normal driving operation of the elevator car 2, the feed drive 29 keeps the brake open against the given by the brake pressure springs 39 feed force. When closing the normal force (F N ) increases according to the force of the brake pressure spring 39. This allows an increase in the braking force (F B ) of a brake unit 14 without the need for a stronger Zustellantriebs 29. Depending on the structural design of the Zustellantriebes and the execution of Measurement of the effective and real normal force (F N-eff ) selected.

Vorteilhafterweise bewegt der Zustellantrieb 29 die bewegliche Bremsplatte 27 direkt senkrecht zur Bremsfläche, wie in den Fig. 3 bis 7 ersichtlich. Die Kraftaufbringung erfolgt dabei direkt was eine kostengünstige Ausführung einer Bremseinheit 14 ermöglicht.
Alternativ bewegt der Zustellantrieb 29 die Bremsplatte 27 indirekt über einen Keil zur Bremsfläche (nicht dargestellt), wobei der vom Keil verwendete Keilwinkel (α) grösser als der "Reibwinkel tan(µ)" ist. Die Verwendung eines Keiles erhöht die Normalkraft, welche durch den Zustellantrieb 29 aufgebracht werden kann. Da der vom Keil verwendete Keilwinkel grösser als der Reibwinkel ist wird der Zustellantrieb 29 stets in eine Richtung belastet und einem Hineinreissen der Bremsplatte 26 wird vorgebeugt. In einer besonderen Ausführungsform ändert der Keilwinkel über den Zustellweg. Diese Ausführung ermöglicht im Besonderen eine schnelle Zustellung der Bremsplatte.
Advantageously, the feed drive 29 moves the movable brake plate 27 directly perpendicular to the braking surface, as in FIGS Fig. 3 to 7 seen. The force application takes place directly what a cost-effective design of a brake unit 14 allows.
Alternatively, the feed drive 29 moves the brake plate 27 indirectly via a wedge to the braking surface (not shown), wherein the wedge angle (α) used by the wedge is greater than the "friction angle tan (μ)". The use of a wedge increases the normal force which can be applied by the feed drive 29. Since the wedge angle used by the wedge is greater than the friction angle of the feed drive 29 is always loaded in one direction and a tearing of the brake plate 26 is prevented. In a particular embodiment, the wedge angle changes over the feed path. This design allows in particular a fast delivery of the brake plate.

Vorzugsweise ist der Zustellantrieb ein elektromechanischer Spindelantrieb 32. Ein Spindelantrieb 32 ermöglicht durch die Wahl der Spindelform und der Spindelsteigung eine optimale Kraftverstärkung, und zur Aufbringung der erforderlichen Betätigungskraft kann ein Elektromotor 33 verwendet werden. Der Elektromotor 33 ist vorzugsweise über eine Getriebestufe 34, beispielsweise über ein Planetengetriebe, wie in den Fig. 3 und 4 ersichtlich, zur Spindel verbunden. Diese Ausführungsform ist besonders zuverlässig und robust, da bewährte Funktionselemente verwendet werden und die Antriebsmomente am Motor 33 gering gehalten werden. In einem anderen, in Fig. 5 dargestellten, Beispiel ist ein Stirnradgetriebe als Getriebestufe 34 verwendet. Dies ermöglicht im Besonderen die Verwendung eines sehr kostengünstigen Motors 33.
Die Arretiereinrichtung 17 kann bei der Verwendung eines Spindelantriebes 32 besonders vorteilhaft gelöst werden, da mittels einer Arretierung des Spindelantriebes 32 bzw. einer Spindelmutter die Zustellposition besonders einfach arretiert wird.
Preferably, the feed drive is an electromechanical spindle drive 32. A spindle drive 32 allows by selecting the spindle shape and the spindle pitch optimum power gain, and for applying the required operating force, an electric motor 33 can be used. The electric motor 33 is preferably via a gear stage 34, for example via a planetary gear, like in the 3 and 4 visible, connected to the spindle. This embodiment is particularly reliable and robust, since proven functional elements are used and the drive torques on the motor 33 are kept low. In another, in Fig. 5 shown, example, a spur gear is used as gear 34. This allows in particular the use of a very inexpensive motor 33.
The locking device 17 can be achieved particularly advantageous in the use of a spindle drive 32, as by means of a locking of the spindle drive 32 and a spindle nut, the delivery position is particularly easy locked.

Eine mittlere derartig ausgeführte Bremseinheit weist ein Gewicht von ca. 15 kg auf und die erreichbare Normalkraft FN beträgt etwa 25kN. Die benötigte mittlere Leistung zur Betätigung einer Bremseinheit beträgt dabei weniger als 0.2kW. Der Vorteil der Leistungs- und Gewichteinsparung gegenüber dem Stand der Technik ist offensichtlich, obwohl unvergleichbar höhere Normalkräfte und daraus resultierend höhere Bremskräfte erzielt werden können.A middle brake unit designed in this way has a weight of approximately 15 kg and the achievable normal force F N is approximately 25 kN. The average power required to operate a brake unit is less than 0.2kW. The advantage of the power and weight saving over the prior art is obvious, although incomparably higher normal forces and resulting higher braking forces can be achieved.

Eine weitere Ausführungsvariante sieht vor, wie in den Fig. 6 und 7 vereinfacht dargestellt ist, dass eine Kraftmesseinrichtung 36,37 die von der Bremseinheit 14 erzeugte Bremskraft oder Haltekraft FB misst. Die Messung erfolgt beispielsweise mittels einer Kraftmessdose 36 oder einem Kraftmessring der in die Befestigung der Bremseinheit zur Kabine 2 integriert ist oder die Befestigung wird an geeigneter Stelle mit einer Dehn-Mess-Einrichtung 37 versehen. Die geeignete Stelle wird aufgrund des Kraftflusses bestimmt. Bei einer bevorzugten Lösung, wie in Fig. 6 dargestellt, ist die Bremseinheit 14 mittels eines Gleitbolzen 38 zur Kabine 2 befestigt, wobei dieser Gleitbolzen 38 zugleich integrierte Messzellen 37 aufweist welche die Brems- oder Haltekraft FB messen. Der Gleitbolzen 38 ermöglicht zudem, dass die Bremseinheit 14 seitlich ausrichtbar ist.
Der Vorteil der Messung der Bremskraft oder Haltekraft FB liegt darin, dass sich Abweichungen vom erwarteten Verhalten erkennen lassen und die geeigneten Massnahmen ergriffen werden können. Beispielsweise lässt sich unter Kenntnis der Bremskraft FB und der effektiven Normalkraft FN-eff ein aktueller Reibwert ermitteln. Eine Abweichung des Reibwertes bei mehreren Bremseinheiten 14 lässt erwarten, dass eine Veränderung an der Bremsschiene 9 erfolgt ist (Verschmutzung, Verölung, etc), was eine entsprechende Kontrolltätigkeit, bzw. Reinigung, initialisiert. Eine Abweichung des Reibwertes bei einer einzelnen Bremseinheit 14 deutet darauf hin, dass eine Verschmutzung oder Abnützung eines einzelnen Bremsbelages 26, 27 vorliegt. Wird zu diesen Auswertungen ein Wert der Zustellregelung 28 mitberücksichtigt, ergibt sich ein sehr genaues Bild eines Zustandes der Bremseinheit 14, was die Wartungsmöglichkeiten verbessert und die Sicherheit erhöht. Da diese Auswertungen bei jedem Bremseinsatz erfolgt, kann ein Fehler früh erkannt werden, was wiederum die Sicherheit des Gesamtsystems für einen Notfall erhöht. Im Weiteren ermöglicht die Messung der Brems- / Haltekraft (FB) in einem Halt, allenfalls unter Berücksichtigung des Standortes der Aufzugskabine 2 im Schacht 4, eine Ermittlung der Zuladung der Aufzugskabine.
Another embodiment provides, as in the 6 and 7 is shown simplified, that a force measuring device 36,37 measures the braking force or holding force F B generated by the brake unit 14. The measurement takes place for example by means of a load cell 36 or a force-measuring ring which is integrated into the attachment of the brake unit to the car 2 or the attachment is provided at a suitable location with a Dehn-measuring device 37. The appropriate location is determined based on the force flow. In a preferred solution, as in Fig. 6 illustrated, the brake unit 14 is fixed by means of a sliding pin 38 to the car 2, said slide pin 38 at the same time has integrated measuring cells 37 which measure the braking or holding force F B. The slide pin 38 also allows the brake unit 14 is laterally aligned.
The advantage of measuring the braking force or holding force F B is that deviations from the expected behavior can be detected and the appropriate measures can be taken. For example, can be under note the braking force F B and the effective normal force F N-eff determine a current coefficient of friction. A deviation of the coefficient of friction in a plurality of brake units 14 can be expected that a change has been made to the brake rail 9 (pollution, oiling, etc), which initializes a corresponding Kontrolltätigkeit, or cleaning. A deviation of the coefficient of friction in a single brake unit 14 indicates that there is contamination or wear of a single brake pad 26, 27. If a value of the delivery control 28 is taken into account for these evaluations, a very accurate picture of a state of the brake unit 14 results, which improves the maintenance options and increases safety. Since these evaluations are carried out at each brake application, an error can be detected early, which in turn increases the safety of the entire system for an emergency. In addition, the measurement of the braking / holding force (F B ) in a stop, possibly taking into account the location of the elevator car 2 in the shaft 4, allows a determination of the payload of the elevator car.

In einer vorteilhaften Weiterführung der Erfindung wird die Verzögerung oder die Beschleunigung der Aufzugskabine 2 durch einen Beschleunigungsmesssensor 21 festgestellt. Dies ermöglicht einerseits eine Feststellung einer abnormalen Betriebssituation und ermöglicht im Weiteren eine benutzergerechte, komfortable Abbremsung im Bedarfsfalle.
Im Weiteren ermöglicht die Messung der Beschleunigung oder Verzögerung der Aufzugskabine zusammen mit den Messungen der Bremskraftmesszelle 35 und /oder der der Normalkraftmessung 24, 25 eine Plausibilitätsprüfung der ermittelten Daten, was die Zuverlässigkeit der Bremseinrichtung weiter verbessert.
In an advantageous development of the invention, the deceleration or the acceleration of the elevator car 2 is detected by an acceleration measuring sensor 21. On the one hand, this makes it possible to establish an abnormal operating situation and, moreover, enables user-friendly, comfortable braking in case of need.
Furthermore, the measurement of the acceleration or deceleration of the elevator car together with the measurements of the brake force measuring cell 35 and / or of the normal force measurement 24, 25 enables a plausibility check of the determined data, which further improves the reliability of the brake device.

Die Bremseinrichtung 13 ist in der Regel, wie in Fig.1 ersichtlich, an der Aufzugskabine 2 angeordnet, wobei die Bremseinheiten 14 unterhalb und / oder seitlich und / oder oberhalb eines Kabinenkörpers angebaut sind. Der Ort des Anbaues ist unter Berücksichtigung der konstruktiven Ausführung der Kabine 2 sowie der Anzahl benötigter Bremseinheiten 14 bestimmt. Die Bremseinheiten 14 wirken auf die Führungsbahn 9 oder eine Bremsbahn oder ein Bremsseil. Vorteilhafterweise ist die Bremseinheit 14, wie in den Fig. 6 und 7 dargestellt, mittels einer Konsole 40 an der Kabine 2 angebaut, wobei die Konsole 40 eine Verteilung des Lüftspaltes 30 auf die Bremsflächen ermöglicht und die Verbindung von der Konsole 40 zu der Bremseinheit 14 mittels einem in Richtung des Lüftspaltes 30 elastischen oder frei beweglichen Element 41 und in Richtung der Bremskraft im wesentlichen starr erfolgt. Das Element 41 ist derart eingestellt, dass in der Bereitschaftsstellung der Bremseinheit 14 ein gewünschter horizontaler Lüftspalt 30 entsteht.
Bei Aufzugsanlagen 1 ist gewünscht, dass die Aufzugskabine 2 mit einem Spiel zu Ihren Führungsbahnen 9 fährt. Dies ermöglicht ein Auffangen von Stössen oder Unebenheiten der Führungsbahnen 9. Die dargestellte Ausführung ermöglicht, dass mit geringem Aufwand ein Berühren der Bremsplatten 26, 27 an den Führungsbahnen 9 verhindert werden kann.
In einer in Fig. 7 dargestellten, alternativen oder ergänzenden Ausführung ist die Bremseinheit 14 mittels mindestens einem horizontalen Führungselement 42, welches in der Nähe der Bremsplatte 26, 27 angeordnet ist, derart geführt, dass ein geringer Lüftspalt 30 eingestellt werden kann, wobei das Führungselement 42 eine horizontale Verschiebung der Bremseinheit 14 gegenüber der Konsole 40 bewirkt und diese Verschiebung durch das elastische oder ein frei bewegliche Element 42 ermöglicht wird und das horizontale Führungselement 42, entweder starr oder elastisch ausgeführt ist. Diese Ausführung erlaubt eine Bremseinheit 14 welche mit minimalen Lüftwegen 30 arbeitet. Die Bremseinheit 14 kann dadurch schneller reagieren, da zum Bremsen nur kleine Zustellwege erforderlich sind, gleichzeitig kann der Zustellantrieb 29 einfacher ausgeführt werden, da kleinere Zustellwege erforderlich werden. Die Bremseinheit 14 wird kostengünstiger und die Sicherheit wird erhöht. Eine schnellere Reaktion der Bremseinheit ermöglicht eine Verkürzung des Anhalteweges der Aufzugskabine, was im Besonderen bei der Verwendung verkürzter Schachtenden hilfreich ist.
The braking device 13 is usually as in Fig.1 can be seen, arranged on the elevator car 2, wherein the brake units 14 are mounted below and / or laterally and / or above a cabin body. The location of the cultivation is determined taking into account the structural design of the car 2 and the number of required braking units 14. The brake units 14 act on the guideway 9 or a brake track or a brake cable. Advantageously, the brake unit 14, as in the 6 and 7 shown, mounted by means of a console 40 to the car 2, wherein the console 40 allows a distribution of the air gap 30 on the braking surfaces and the connection from the console 40 to the brake unit 14 by means of an elastic in the direction of the air gap 30 or freely movable element 41 and essentially rigid in the direction of the braking force. The element 41 is set such that in the ready position of the brake unit 14, a desired horizontal air gap 30 is formed.
In the case of elevator systems 1, it is desired for the elevator car 2 to travel to your guide tracks 9 with a clearance. This allows a collection of bumps or unevenness of the guideways 9. The illustrated embodiment allows that with little effort, a contact of the brake plates 26, 27 can be prevented on the guideways 9.
In an in Fig. 7 illustrated, alternative or complementary embodiment, the brake unit 14 by means of at least one horizontal guide member 42 which is arranged in the vicinity of the brake plate 26, 27, guided such that a small air gap 30 can be adjusted, wherein the guide member 42 is a horizontal displacement of the brake unit 14 relative to the console 40 causes and this displacement is made possible by the elastic or a freely movable element 42 and the horizontal guide member 42, is designed either rigid or elastic. This embodiment allows a brake unit 14 which operates with minimal air paths 30. The brake unit 14 can react faster because only small delivery distances are required for braking, at the same time the feed drive 29 can be made simpler, since smaller delivery routes are required. The brake unit 14 is cheaper and the safety is increased. A faster response of the brake unit allows a shortening of the stopping distance of the elevator car, which is particularly helpful when using shortened shaft ends.

In einer wahlweisen Ausführung steuert die Bremssteuereinheit 13, abhängig vom Betriebszustand, alle Bremseinheiten 14 zusammen oder lediglich Gruppen von Bremseinheiten 14 an, wobei die Zuteilung einer Bremseinheit zu einer Gruppe veränderbar ist. Diese Ausführung ermöglicht, dass auch bei geringem Bremskraftbedarf einzelne Bremseinheiten 14 stark belastet werden und damit ein aktiver Funktionsnachweis erfolgt, wodurch die Funktionssicherheit der Bremseinrichtung 13 erhöht wird. Im Weiteren ist diese Ansteuerung energiebewusst, da nur die erforderliche Anzahl Bremseinheiten 14 betätigt werden. Ein weiterer Vorteil dieser Lösung ist, dass die Lastzyklen der einzelnen Bremseinheiten 14 und im Besonderen der Arretiereinrichtung 17 reduziert werden, was die Lebensdauer oder die Wartungsintervalle der gesamten Bremseinrichtung 13 entsprechend verlängert.In an alternative embodiment, the brake control unit 13, depending on the operating state, controls all brake units 14 together or only groups of brake units 14, wherein the allocation of a brake unit to a group is changeable. This design makes it possible for individual brake units 14 to be heavily loaded even with a low braking force requirement, and thus an active functional verification takes place, as a result of which the functional reliability of the brake device 13 is increased. Furthermore, this control is energy-conscious, since only the required number of braking units 14 are actuated. Another advantage of this solution is that the load cycles of the individual brake units 14 and in particular of the locking device 17 are reduced, which extends the service life or the maintenance intervals of the entire braking device 13 accordingly.

In einer ergänzenden Alternative besteht die Energieversorgung 43 der Bremseinrichtung 13 aus mindestens zwei getrennten Energiespeichern und / oder Energienetzen (redundant) und die Energiespeicher und / oder Energienetze bilden zusammen mit Gruppen von Bremseinheiten 14 ein Mehrkreisbremssystem.
Die Energiespeicher können beispielsweise in der Form von Akkumulatoren oder Superkondensatoren bereitgestellt werden und die Energienetze können vom Ortsnetz oder von lokalen Energieerzeugern, wie Notstromgeräten, getriebener Generator bereitgestellt werden. Die dargestellte Alternative ermöglicht unabhängig funktionierende Bremseinheiten 14 anzuordnen. Alternativ sind die Energiequellen zu einem sicheren Energienetz zusammengeschalten, welches alle Bremseinheiten 14 gemeinsam versorgt. Die Lösungen ermöglichen die Auswahl der kostengünstigsten und auf die lokale Energiesituation abgestimmten Bremseinrichtung 13 welche sicher und zuverlässig ist.
In a supplementary alternative, the energy supply 43 of the braking device 13 consists of at least two separate energy stores and / or energy networks (redundant) and the energy storage and / or energy networks form together with groups of braking units 14, a multi-circuit brake system.
For example, the energy stores may be provided in the form of accumulators or supercapacitors, and the power networks may be provided by the local grid or by local power generators, such as backup generators, powered generators. The illustrated alternative allows independently functioning brake units 14 to be arranged. Alternatively, the energy sources are interconnected to a secure power grid, which supplies all brake units 14 together. The solutions enable the selection of the most cost-effective and adapted to the local energy situation braking device 13 which is safe and reliable.

Vorteilhafterweise beinhaltet die Bremseinrichtung ein Sicherheitsmodul 44, welches Sicherheitsmodul 44 die korrekte Funktion und / oder den Zustand jeder Bremseinheit 14 und / oder der Bremssteuereinheit 13 und / oder der Messsensoren 20,21,22,23 und / oder der Energieversorgung 43 überwacht, wobei das Sicherheitsmodul 44 ein Bestandteil der Bremssteuereinheit 15 oder ein eigenes Bauteil ist. Das Sicherheitsmodul 44 gewährleistet die Funktionsbereitschaft der Bremseinrichtung 13 sowie eine effiziente Wartung und Fehlerdiagnostik. Die Sicherheit der Bremseinrichtung 13 wird erhöht.Advantageously, the braking device includes a safety module 44, which safety module 44 monitors the correct function and / or the state of each brake unit 14 and / or the brake control unit 13 and / or the measuring sensors 20,21,22,23 and / or the power supply 43, wherein the Security module 44 is part of the brake control unit 15 or a separate component. The security module 44 ensures the operational readiness of the braking device 13 as well as efficient maintenance and fault diagnostics. The safety of the braking device 13 is increased.

Die Bremseinrichtung 13 ermöglicht weitergehende Optimierungen einer Aufzugsanlage. So kann beispielsweise unter Verwendung dieser Bremseinrichtung 13 ein Funktionstestprogramm wesentlich vereinfacht werden. Heute ist es üblich ein Bremssystem mit voll beladener oder überladener Kabine 2 zu testen. Dies ist aufwändig und belastet die Aufzugsanlage 1 über das Normale hinaus. Mit der erfindungsgemässen Einrichtung kann das Funktionstestprogramm vereinfacht werden. Die Bremseinrichtung 13 erlaubt beispielsweise die Feststellung eines effektiv vorhandenen Reibwertes auf der Basis weniger Tests mit leerer Kabine 2. Unter Kenntnis der maximal erlaubten Zuladung kann die Bremseinrichtung 13 eine erforderliche Normalkraft FN errechnen und die Bremseinrichtung 13 kann mittels der Normalkraftmessung 24,25 prüfen ob die erforderliche Normalkraft FN mit genügender Sicherheit erreicht werden kann.
Dies ermöglicht eine Vereinfachung des Testablaufes.
The braking device 13 allows further optimization of an elevator installation. Thus, for example, using this braking device 13, a function test program can be significantly simplified. Today it is common practice to test a braking system with fully loaded or overloaded cab 2. This is expensive and loads the elevator installation 1 beyond the normal. With the device according to the invention, the function test program can be simplified. By way of example, the brake device 13 can calculate a required normal force F N and the brake device 13 can check by means of the normal force measurement 24, 25 whether the maximum load is allowed the required normal force F N can be achieved with sufficient safety.
This allows a simplification of the test procedure.

Weitere Ausgestaltungen der Erfindung sind möglich. So kann die Bremskraftmessung zur Bestimmung der Zuladung im Halt verwendet werden, ein zum Anfahren erforderliches Antriebsmoment kann dadurch einfach ermittelt werden, oder die Bremskraftmessung kann zur Bestimmung des Wegfahrzeitpunktes benutzt werden. Im Weiteren kann beispielsweise eine Getriebestufe 34 zum Antreiben der Spindel ein Schneckengetriebe sein.
Selbstverständlich kann im Bedarfsfalle die Bremseinrichtung 13 auch zum Schutze eines Gegengewichtes verwendet werden oder sie kann als Antriebsbremse beim Antrieb, beispielsweise an der Treibscheibe, angeordnet werden. Die Aufzugsanlage ist im Regelfall vertikal angeordnet. Die erfindungsgemässe Bremseinrichtung kann jedoch auch an andersartige Transporteinrichtungen, wie beispielsweise Schienentransportsysteme, Horizontaltransportsysteme wie Seilbahnen oder Transportbänder, angebaut sein.
Further embodiments of the invention are possible. Thus, the braking force measurement can be used to determine the payload in the stop, a drive torque required for starting can be easily determined, or the braking force measurement can be used to determine the Wegfahrzeitpunktes. In addition, for example, a gear stage 34 for driving the spindle may be a worm gear.
Of course, in case of need, the braking device 13 can also be used to protect a counterweight or it can be arranged as a drive brake when driving, for example on the traction sheave. The elevator system is usually arranged vertically. However, the braking device according to the invention can also be mounted on other types of transport devices, such as, for example, rail transport systems, horizontal transport systems, such as cable cars or conveyor belts.

Claims (17)

  1. Lift installation (1) with a braking equipment (13), the lift installation (1) comprises a lift cage (2) which moves in vertical direction within guide tracks (9), the lift cage (2) in the case of need is braked by the braking equipment (13) or held at standstill, wherein the braking equipment (13) is arranged at the lift cage (2) and consists of at least two brake units (14), characterised in that each brake unit (14) comprises a normal force regulation (16), which regulates an effective normal force FN-eff in correspondence with a target normal force FN-soll determined by a brake control unit (15), and/or that the brake unit (14) comprises a locking device (17), which in correspondence with an effective normal force FN-eff can lock the brake unit (14) in a set braking position and which can preferably maintain a set braking position in the case of interrupted supply of energy.
  2. Lift installation (1) according to claim 1, characterised in that the normal force regulation establishes the normal force FN-eff by means of a measurement of the mechanical stress of the housing of the brake unit (14), or a brake measuring cell (24) or a clamping travel of a brake plate of the brake unit (14) or an energy value, such as a current value or a pressure value, corresponding with the adjusting energy.
  3. Lift installation (1) according to any one of the preceding claims, characterised in that the brake control unit (15) takes into consideration an operational state of the lift installation (1) and/or a state of the brake unit (14) and/or of the braking equipment (13) for determination of the target normal force FN-soll and/or for actuation of the locking device (17).
  4. Lift installation (1) according to any one of the preceding claims, characterised in that the brake unit (14) consists of electromagnetic components and comprises an adjusting regulation (28), by means of which an air gap (30) predetermined by the brake control unit (15) can be set, and the electromagnetic brake unit (14) comprises an adjusting check, by means of which brake plate wear and/or departures from a normal behaviour of the brake unit (14) can be ascertained.
  5. Lift installation (1) according to any one of the preceding claims, characterised in that the brake unit (14) comprises at least one movable brake plate (27), which is adjusted by means of an adjusting regulation (28), and the brake unit (14) comprises a retraction system (31), which in correspondence with the adjusting position defined by the adjusting regulation (28) retracts the brake plate (27).
  6. Lift installation (1) according to any one of the preceding claims, characterised in that the movement of the movable brake plate (27) is effected by an adjusting drive (29), which is regulated by means of the adjusting regulation (28), and the adjusting drive (29) moves the brake plate (27) directly perpendicularly to the brake surface or the adjusting drive (29) moves the brake plate (27) indirectly by way of a wedge relative to the brake surface, wherein the wedge angle (α) used by the wedge is greater than the 'friction angle tan (µ)' and/or that the wedge angle (α) changes over the adjustment path.
  7. Lift installation (1) according to any one of the preceding claims, characterised in that the adjusting drive (29) is an electromagnetic spindle drive (32), wherein the spindle if required is actuated by way of a gear stage (34).
  8. Lift installation (1) according to any one of the preceding claims, characterised in that the locking device (17) consists of a locking pin (18, 18a), which can be brought by means of a control magnet (19) and/or a spring into a locking position or into an open setting, wherein the locking pin (18, 18a) in the locking position locks a stressed braking position of the braking unit.
  9. Lift installation (1) according to any one of the preceding claims, characterised in that the locking pin (18, 18a) is a self-securing locking pin (18a), which is locked in the locking position by a brake counter-pressure and the locking pin (18a) can be brought into the open setting only when a brake adjusting force is present.
  10. Lift installation (1) according to any one of the preceding claims, characterised in that a force measuring device measures the braking force or holding force (FB) produced by the brake unit (14) and/or an acceleration measuring device (21) establishes the deceleration or acceleration of the lift cage (2).
  11. Lift installation (1) according to any one of the preceding claims, characterised in that the braking equipment (13) is arranged at the lift cage (2) and the brake units (14) are installed below and/or laterally and/or above a cage body and the brake units (14) act on the guide track (9) or a brake track or a brake cable.
  12. Lift installation (1) according to any one of the preceding claims, characterised in that the brake unit (14) is installed at the cage (3) by means of a bracket (40) and the bracket (40) enables distribution of the air gap (30) to the brake surfaces, wherein the connection from the bracket (40) to the brake unit (14) is effected by means of a resilient or freely movable element (41) and the element (41) is set in such a manner that a desired horizontal air gap (30) arises in the readiness setting of the brake unit (14).
  13. Lift installation (1) according to any one of the preceding claims, characterised in that the brake unit (14) is guided by means of at least one horizontal guide element (22), which is arranged in the immediate vicinity of the brake plate (26, 27) in such a manner that a smaller air gap (30) can be set, wherein the guide element (42) produces a horizontal displacement of the brake unit (14) relative to the bracket (40) and this displacement is made possible by the resilient or freely movable element (41) and the horizontal guide element (42) is constructed to be either substantially rigid or resilient.
  14. Lift installation (1) according to any one of the preceding claims, characterised in that the brake control unit (15) depending on the operational state controls in drive all brake units (14) together or controls in drive groups of brake units (14), wherein the allocation of a brake unit (14) to a group is variable.
  15. Lift installation (1) according to any one of the preceding claims, characterised in that the energy supply (43) of the braking equipment (13) consists of at least two separate energy stores and/or energy mains (redundant) and the energy store and/or energy mains together with groups of brake units (14) forms or form a multi-circuit braking system or the energy sources are connected together to form a secure energy mains which supplies all brake units (14) in common.
  16. Lift installation (1) according to any one of the preceding claims, characterised in that the braking equipment (13) comprises a safety module (44), which safety module (44) monitors the correct function and/or the state of each brake unit (14) and/or the brake control unit (15) and/or the measuring sensors (20, 21, 22, 23) and/or the energy supply (43), wherein the safety module is a constituent of the brake control unit (14) or an own component.
  17. Method of braking and holding a lift installation (1) with braking equipment (13), the lift installation (1) comprises a lift cage (2) which is moved in vertical direction within guide tracks (9), the lift cage (2) is, if required, braked by the braking equipment (13) or held at standstill, wherein the braking equipment (13) is arranged at the lift cage (2) and consists of at least two brake units (14), characterised in that each brake unit (14) comprises a normal force regulation (16), wherein an effective normal force (FN-eff) is set in correspondence with a target normal force value (FN-soll) determined by a brake control unit (15), and/or that the brake unit (14) comprises a locking device (17), wherein the brake unit (14) is locked in a set braking position corresponding with a set effective normal force (FN-eff).
EP05111993A 2004-12-17 2005-12-12 Elevator system with braking unit and method to keep the elevator stopped Not-in-force EP1671912B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL05111993T PL1671912T3 (en) 2004-12-17 2005-12-12 Elevator system with braking unit and method to keep the elevator stopped
EP05111993A EP1671912B1 (en) 2004-12-17 2005-12-12 Elevator system with braking unit and method to keep the elevator stopped

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04029922 2004-12-17
EP05111993A EP1671912B1 (en) 2004-12-17 2005-12-12 Elevator system with braking unit and method to keep the elevator stopped

Publications (2)

Publication Number Publication Date
EP1671912A1 EP1671912A1 (en) 2006-06-21
EP1671912B1 true EP1671912B1 (en) 2011-02-09

Family

ID=36353852

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05111993A Not-in-force EP1671912B1 (en) 2004-12-17 2005-12-12 Elevator system with braking unit and method to keep the elevator stopped

Country Status (2)

Country Link
EP (1) EP1671912B1 (en)
PL (1) PL1671912T3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012106056A1 (en) * 2012-07-05 2014-01-09 Rg Mechatronics Gmbh Regulating device for controlling the acceleration of a transport device moved in the vertical direction
KR101573552B1 (en) 2007-11-14 2015-12-11 인벤티오 아게 Lift drive and method for driving and detaining a lift car, a corresponding method and a braking device, and method for decelerating and detaining a lift car, and an associated method
DE102014213404A1 (en) * 2014-07-10 2016-01-14 Thyssenkrupp Ag Elevator installation with braking device on the car and method for operating the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY151628A (en) * 2006-05-29 2014-06-30 Inventio Ag Lift facility with a braking device and method for braking a lift facility
EP1886957A1 (en) 2006-08-11 2008-02-13 Inventio Ag Lift belt for a lift system and method for manufacturing such a lift belt
DE202008001786U1 (en) 2007-03-12 2008-12-24 Inventio Ag Elevator installation, suspension element for an elevator installation and device for producing a suspension element
AU2008323024B2 (en) * 2007-11-14 2015-06-04 Inventio Ag Lift drive and method for driving and detaining a lift car, a corresponding method and a braking device, and method for decelerating and detaining a lift car, and an associated method
EP2135832B1 (en) 2008-06-19 2012-01-11 Inventio AG Elevator brake and elevator assembly with an elevator brake
DE102011000720A1 (en) * 2011-02-14 2012-08-16 Klaus-Peter Kapp Friction brake for lifts with improved damping properties
DE202011051664U1 (en) 2011-10-18 2012-01-13 Slc Sautter Lift Components Gmbh & Co. Kg Braking device for an elevator
DE102014206461A1 (en) 2014-04-03 2015-10-08 Thyssen Krupp Elevator Ag Elevator with a braking device
ES2682749T3 (en) 2014-09-24 2018-09-21 Inventio Ag Elevator brake
PL3197812T3 (en) * 2014-09-24 2019-01-31 Inventio Ag Elevator brake
US9988240B2 (en) * 2015-03-24 2018-06-05 Thyssenkrupp Elevator Ag Elevator with master controller
WO2017050697A1 (en) 2015-09-23 2017-03-30 Inventio Ag Assembly for an elevator system comprising a safety brake
EP3388380B1 (en) * 2017-04-12 2020-10-07 KONE Corporation Method and elevator
CN111741915B (en) 2018-03-28 2022-02-22 因温特奥股份公司 Caliper brake for an elevator installation, in particular as a parking and safety brake
EP3822212A1 (en) * 2019-11-12 2021-05-19 KONE Corporation An elevator parking brake, a method for operating an elevator system and an elevator system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1515120A (en) * 1975-10-28 1978-06-21 Coal Ind Brake equipment
JPH0729746B2 (en) * 1984-01-11 1995-04-05 株式会社日立製作所 Elevator emergency stop control device
FI884745A (en) * 1988-10-14 1990-04-15 Kone Oy FOERFARANDE FOER STYRNING AV EN HISS 'NOEDBROMS SAMT EN NOEDBROMS.
JPH0543150A (en) * 1991-08-20 1993-02-23 Hitachi Ltd Elevator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101573552B1 (en) 2007-11-14 2015-12-11 인벤티오 아게 Lift drive and method for driving and detaining a lift car, a corresponding method and a braking device, and method for decelerating and detaining a lift car, and an associated method
DE102012106056A1 (en) * 2012-07-05 2014-01-09 Rg Mechatronics Gmbh Regulating device for controlling the acceleration of a transport device moved in the vertical direction
DE102014213404A1 (en) * 2014-07-10 2016-01-14 Thyssenkrupp Ag Elevator installation with braking device on the car and method for operating the same

Also Published As

Publication number Publication date
EP1671912A1 (en) 2006-06-21
PL1671912T3 (en) 2011-07-29

Similar Documents

Publication Publication Date Title
EP1671912B1 (en) Elevator system with braking unit and method to keep the elevator stopped
EP2925655B1 (en) Device for catching a cabin in a lift assembly
EP2651809B1 (en) Actuation of an intercepting apparatus
EP2986867B1 (en) Method for actuating an electrically actuated friction brake
EP1507987B1 (en) Fail-safe concept for a servo-assisted electromechanical brake
DE102008015873A1 (en) Vehicle, in particular rail vehicle, with a device for monitoring the braking effect
EP2675688B1 (en) Method for operating a rail vehicle
EP2887535A1 (en) Drive and control system for raising gates
WO2021084012A1 (en) Brake device for an elevator cab, comprising an integrated load measuring device, use thereof in an elevator system, and method
DE102012109969B4 (en) Brake device for an elevator
EP2316776B1 (en) Method for placing into operation an elevator system
WO2019201685A1 (en) Brake device and method for operating a car of a lift system
EP3006389B1 (en) Stacker crane and method for controlling a stacker crane
EP3215449B1 (en) Elevator with a brake device
EP2219984B1 (en) Lift drive and method for driving and detaining a lift car, a corresponding method and a braking device, and method for decelerating and detaining a lift car, and an associated method
DE10106377C2 (en) Electromechanical brake application device
DE10106374C2 (en) Method for reducing the operating temperature of electromechanical brake application devices of a vehicle brake
EP4132873A1 (en) Method for checking a present functional state of a brake of an elevator installation, and correspondingly configured elevator installation
EP3412926A1 (en) Planetary gearing transmission assembly, in particular for an electromechanical service brake or an electromechanical parking brake for a motor vehicle
DE19635245C2 (en) Safety braking device for rope conveyors
DE10164718B4 (en) Method for reducing the operating temperature of electro-mechanical brake application devices of a vehicle brake
DE102017204123A1 (en) Method for braking a machine and a machine
EP4069619B1 (en) Device for guiding and braking a vehicle body of a lift system to be displaced along a guide rail
EP3468908A1 (en) Catch device for a lifting mechanism
WO2008052857A1 (en) Machine tool, production machine and/or maintenance machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061220

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1093055

Country of ref document: HK

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005010950

Country of ref document: DE

Date of ref document: 20110324

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005010950

Country of ref document: DE

Effective date: 20110324

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2361021

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110613

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1093055

Country of ref document: HK

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110609

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110510

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110509

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20111228

Year of fee payment: 7

Ref country code: ES

Payment date: 20111227

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005010950

Country of ref document: DE

Effective date: 20111110

BERE Be: lapsed

Owner name: INVENTIO A.G.

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111212

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 497924

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121212

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121213

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20171218

Year of fee payment: 13

Ref country code: EE

Payment date: 20171222

Year of fee payment: 13

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E005278

Country of ref document: EE

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191230

Year of fee payment: 15

Ref country code: PL

Payment date: 20191209

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211227

Year of fee payment: 17

Ref country code: GB

Payment date: 20211221

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20211222

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211228

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005010950

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221212

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231