EP1670647B1 - Element de securite diffractant comportant une image en demi-teinte - Google Patents

Element de securite diffractant comportant une image en demi-teinte Download PDF

Info

Publication number
EP1670647B1
EP1670647B1 EP04797524A EP04797524A EP1670647B1 EP 1670647 B1 EP1670647 B1 EP 1670647B1 EP 04797524 A EP04797524 A EP 04797524A EP 04797524 A EP04797524 A EP 04797524A EP 1670647 B1 EP1670647 B1 EP 1670647B1
Authority
EP
European Patent Office
Prior art keywords
image
pattern
security element
structures
diffractive security
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04797524A
Other languages
German (de)
English (en)
Other versions
EP1670647A1 (fr
Inventor
Andreas Schilling
Wayne Robert Tompkin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OVD Kinegram AG
Original Assignee
OVD Kinegram AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OVD Kinegram AG filed Critical OVD Kinegram AG
Priority to PL04797524T priority Critical patent/PL1670647T3/pl
Publication of EP1670647A1 publication Critical patent/EP1670647A1/fr
Application granted granted Critical
Publication of EP1670647B1 publication Critical patent/EP1670647B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • B42D15/0066Timetables, lists or forms for shooter enlistment, e.g. for use at competitions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/23Identity cards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes

Definitions

  • the invention relates to a diffractive security element with a halftone image according to the preamble of claim 1.
  • Such security elements are used for the authentication of documents, banknotes, ID cards, valuable items of all kinds, etc., since they are difficult to duplicate, though easily verifiable.
  • the security element is usually glued to the object to be certified.
  • EP-A-0,330,738 describes security patterns that have diffractive surface portions smaller than 0.3 mm, arranged singly or in a row in the structure of the security pattern.
  • the surface parts form lettering with a height of less than 0.3 mm in height.
  • the shape of the surface parts or the letters can only be recognized by means of a good magnifying glass.
  • EP-A-0 375 833 It is also known from EP-A-0 375 833 to house in a security element a plurality of diffractive security patterns composed of pixels, wherein each of the security patterns is visible to the naked eye under a predetermined orientation in the normal reading distance.
  • Each security pattern is divided into pixels of the grid given by the security element.
  • the grid of the security element is subdivided into diffractive field shares according to the number of security patterns.
  • the pixels of the save patterns associated with the grid occupy their predetermined field portion.
  • DE-OS 1 957 475 and CH 653 782 disclose a further family of diffraction-optically active, microscopically fine relief structures under the name Kinoform. The relief structure of the kinoform deflects light into a predetermined solid angle.
  • the Kinoform scatters white light or Daylight in the solid angle predefined by the kinoform, but outside the solid angle, the kinoform surface appears dark gray.
  • the diffractive security patterns are enclosed in a composite layer of plastics, which is designed for attachment to an object.
  • US Pat. No. 4,856,857 describes various embodiments of the layer composite and lists the suitable materials.
  • the invention has for its object to provide a diffractive security element that shows a halftone image and is difficult to imitate or copy.
  • the idea of the invention is to produce a diffractive security element having at least two distinct recognizable patterns, one pattern being a halftone image visually recognizable at a viewing distance of 30 cm to 1 m, composed of a plurality of pixel patterns.
  • the picture element patterns are arranged on a background and cover locally, eg in a pixel, a portion of the background predetermined by the local area brightness in the halftone image.
  • Both the background areas and the areas of the pixel patterns are optically active elements such as holograms, diffraction gratings, matte structures, specular surfaces, etc., with the optically effective elements differing in the areas of the pixel patterns and the background in the diffractive behavior.
  • the pixel patterns in the halftone image are only for viewing at a reading distance less than 30 cm with or without aids, eg magnifying glass, recognizable.
  • pattern strips extending over the area of the halftone image as further patterns extend to 25 ⁇ m wide.
  • the straight and / or curved pattern strips form a background pattern, such as guilloches, pictograms, etc.
  • line elements are arranged on the background.
  • the area fraction of the line elements per unit length of the pattern strip is determined by the local area brightness in the picture element pattern through which the pattern strip extends.
  • the areas of the line elements differ by their optically effective elements from the areas of the background and / or the pixel pattern.
  • the pixel patterns and line patterns are composed of characters, lines, tissue and frieze patterns, letters, and so on.
  • the security element can be combined with those mentioned in the aforementioned diffractive security patterns of EP-A 0 105 099 and EP-A 0 330 738.
  • 1 denotes a diffractive security element
  • 2 a halftone image of pattern elements
  • 3 a greatly enlarged detail of the security element 1
  • 4 picture elements picture elements
  • 5 background fields and 6 picture element patterns The pattern elements of the halftone image 2 are the pixel-like picture elements 4, which are tessellated from surface parts put together.
  • Microscopically fine surface structures in the surface parts of the picture elements 4 modify light incident on the security element 1 as a function of the direction of illumination and observation.
  • the surface parts with the light-modifying surface structures comprise at least the background fields 5 and the pixel patterns 6.
  • the surface structures may be equipped with a reflection layer for enhancing the light-modifying effect.
  • the surface of the security element 1 is aligned to a coordinate system with the coordinate axes x and y for ease of description. Further, the surfaces of the background fields 5 and the pixel pattern 6 are held in white or unpatriated white for illustrative reasons in the drawings, the background fields 5 and the pixel pattern 6, unlike in halftone prints produced without indication of the lighting and observation direction no evidence of their Allow surface brightness.
  • the surface of the security element 1 is divided into a plurality of the picture elements 4, which are smaller than 1 mm in at least one dimension, e.g.
  • the pixels 4 have the shape of a square, a rectangle, a polygon or are a conformal image of one of these surfaces. Boundaries between the picture elements 4 are entered only for illustrative reasons in the drawings.
  • the surface of each picture element 4 has at least the background field 5 and the picture element pattern 6 arranged on the background field 5, wherein the picture element pattern 6 is a contiguous surface part or also consists of a group of surface parts.
  • the areal brightness of the halftone image 2 at the location P which corresponds to the picture element 4 having the coordinates (x P ; y P ) is determined, preferably taking into account the areal brightness of the locations in the halftone image 2 corresponding to the adjacent picture elements 4 and / or the gradient the area brightness of the location P, the area ratio of the pixel pattern 6 in the area of the pixel 4 having the coordinates (x P ; y P ).
  • the area ratio of the image element pattern 6 in the image element 4 with the coordinates (x P, y P) is all the greater, the greater is the area of brightness at the location P of a master image of the halftone image. 2
  • all pixel patterns 6 must have the same light-modifying effect under a predetermined one Have lighting and observation direction, while the background fields 5 deflect as little light in this direction of observation.
  • the area ratio of the pixel patterns 6 in the pixel 4 may be in the range between 0% and 100% if the shape of the pixel pattern 6 is similar to the shape of the pixel 4.
  • similar shape is meant shapes which are the same at the appropriate angles but of different dimensions. If the edge shape of the picture element pattern 6, which is e.g. is in the form of a star, depending on the shape of the picture element 4, the area of the surface portions of the picture element patterns 6 in the picture elements 4 is limited at the upper end, i. in the picture element 4, a portion of the background field 5 is still present.
  • the pixel pattern 6 is preferably recognizable in each pixel 4, albeit in different sizes or in a narrow band in the edge shape of the pixel pattern 6 corresponding to the area fraction, in order to obtain the necessary area fraction of the pixel pattern 6 in the pixel 4.
  • the representation of the halftone image 2 is based on a scale with predetermined levels of the surface portions of the pixel pattern 6 in the pixel 4, wherein the surface brightness of the image original is converted by means of this scale into the halftone image 2.
  • the image original of the halftone image 2 on a base 7 has a folded band 8 and an arrow 9 which is arranged in the middle of the band 8.
  • the area of the halftone image 2 is divided into the picture elements 4.
  • the pattern elements, eg base 7, band 8, arrow 9, etc. the surface brightnesses of the image template are assigned to the picture elements 4.
  • the base area 7, the arrow 9 and the visible areas of the band 8 held in different grids differ from each other in their surface brightness, as in the image template.
  • the observer recognizes on the security element 1 at least the halftone image 2 of the image original in different surface brightness gradations.
  • the security element 1 is to be viewed from a minimum viewing distance of about 0.3 m or more in order to recognize the halftone image 2 well. From a reading distance of less than 30 cm, the predetermined pixel pattern 6 for the observer can still be seen by the naked eye or with a simple magnifying glass. For example, in the drawing of Fig. 1, the pixel pattern 6 is a star. In other embodiments of the security element 1, the adjacent pixel patterns 6 differ from the Reading distance ⁇ 30 cm, the coarse grid of the pixel pattern 6 disturbs the recognition of the halftone image 2.
  • the pixel patterns 6 in all pixels 4 are similar.
  • the star-shaped picture element pattern 6 in the picture elements 4 in areas with low surface brightness, here for the base area 7, are shown in small detail in the detail 3.
  • the area proportions of the pixel patterns 6 are correspondingly larger in the picture elements 4, if e.g. represent the parts of the band 8 with the different from the base 7, stepped higher surface brightness.
  • Both the surfaces of the background fields 5 and the pixel patterns 6 have, for example, general, diffractive surface structures with a reflection layer.
  • the background fields 5 differ from the pixel patterns 6 in at least one structural parameter of the surface structure, e.g.
  • the areas of the background fields 5 or the pixel pattern 6 are transparent, e.g. due to a local removal of the reflective layer, or covered by a colored layer (e.g., white or black).
  • the surfaces of the Hiritergrundfelder 5 thus differ from the surfaces of the pixel pattern 6 by the light-modifying effect of their surface structures.
  • the surface structures in the areas of the background fields 5 and / or the pixel pattern 6 have additional structural parameters dependent on the coordinates (x; y).
  • representations e.g., portraits
  • representations e.g., portraits
  • the pixel patterns 6 it is advantageous for the pixel patterns 6 to be related to the depicted personality, e.g. Letters of a continuous personality-written text and / or a composed melody in musical notation.
  • the picture elements 4 each contain a picture element pattern 6 in the form of a single letter on the background of the background field 5.
  • the picture elements 4 are arranged in such a manner that the letters in the picture element patterns 6 have the sequence corresponding to the text.
  • the area ratios of the letters in the field of the picture element 4 predetermined by the halftone image 2 are changed by changing the thickness and / or the font size of the letters.
  • the thickness changes continuously or in steps within a letter if this results in a better resolution of the halftone image 2. In the drawing of Figure 2, this is shown in the letters S and E, U.
  • the dimensions of the picture elements 4 with letters are kept correspondingly small, so that the letters can be read from close, ie viewed in the normal reading distance, but no longer from the above viewing distance.
  • the picture elements 4 are microscopically small, wherein the letters or notation can only be seen through a microscope.
  • a text recognizable only at an at least 20-fold magnification is hereinafter called "nanotext".
  • the illustration in FIG. 2 is a simplification and does not show the dimension of the picture elements 4 adapted to the letters, for example in the case of letters of a proportional font or the nanotext in the picture element 4 with an oblong rectangular shape with continuous, eg handwritten texts.
  • FIG. 3 shows a typical cross section through the security element 1.
  • the security element 1 is a section of a layer composite 10 containing the halftone image 2 (FIG. 1).
  • the layer composite 10 comprises at least one embossing layer 11 and a protective lacquer layer 12. Both layers 11 and 12 consist made of plastic and include a reflective layer 13 between them.
  • a scratch-resistant, tough and transparent protective layer 14 made of polycarbonate, polyethylene terephthalate, etc. also covers the entire side of the embossing layer 11 facing away from the reflective layer 13.
  • At least the embossing layer 11 and the protective layer 14 that may be present are at least partially transparent to incident light 15
  • the protective lacquer layer 12 itself or an optional adhesive layer 16 arranged on the side of the protective lacquer layer 12 facing away from the reflection layer 13 is designed to connect the security element 1 to a substrate 17.
  • the substrate 17 is a valuable object to be authenticated with the security element 1, a document, a banknote, etc. Further embodiments of the layer composite 10 are described, for example, in the aforementioned US Pat. No. 4,856,857. In this document, the materials suitable for the construction of the laminate 10 and those for the reflective layer 13 are assembled.
  • the reflection layer 13 is implemented as a thin layer of a metal from the group consisting of aluminum, silver, gold, chromium, copper, nickel, tellurium, etc., or is characterized by a thin layer of an inorganic dielectric, such as MgF 2 , ZnS, ZnSe, TiO 2 , SiO 2 , etc., formed.
  • the reflection layer 13 can also be several layers of different inorganic dielectrics or a combination of metallic and dielectric layers.
  • the layer thickness of the reflection layer 13 and the choice of the material of the reflection layer 13 depend on whether the security element 1 is purely reflective, as mentioned above, only in area parts transparent, ie partially transparent, or transparent with a predetermined degree of transparency.
  • reflective layers 13 of tellurium are suitable for individualizing the individual security element 1, since the reflective tellurium layer becomes transparent when exposed to a fine laser beam through the plastic layers of the layer composite 10 at the location of the irradiation and a window 46 is formed without the layer composite 10 being damaged.
  • the thus introduced transparent windows 46 form, for example, an individual code.
  • the reflection layer 13 in the areas of the background fields 5 and the pixel pattern 6 is removed if an individual halftone image 2 is to be produced.
  • the reflection layer 13 in the region of the halftone image 2 has the microscopically fine surface structures diffracting the incident light 15.
  • the surfaces of the background fields 5 are covered with a first structure 18 and in the surfaces of the pixel pattern 6, a second structure 19 is molded.
  • the diffractive surface structures are used which consists of diffraction gratings, holograms, matt structures, kinoforms , Moth-eye structures and specular surfaces are selected.
  • the reflecting surfaces comprise plane, achromatically reflecting mirror surfaces and diffraction gratings acting like a colored mirror.
  • These color-reflecting diffraction gratings have the shape of a linear grating or cross lattice and have spatial frequencies f of more than 2300 lines / mm and reflect depending on their optically effective structure depth T selectively color components of the incident light according to the law of reflection. If the optically effective structure depth T falls below a value of about 50 nm, the incident light is reflected practically achromatically.
  • the Kinoforms are described in the aforementioned documents DE-OS 1957 475 and CH 653 782.
  • one of the above-mentioned surface structures extends as a background field 5 over the entire area provided for the halftone image 2.
  • the areas of the pixel patterns 6 are subsequently covered with the predetermined color.
  • the inking 45 is carried out on the surfaces of the pixel patterns 6 by ink jet printing or gravure printing, e.g.
  • the paint application 45 is located in the areas of the background fields 5 or the pixel pattern 6 directly between the embossing layer 11 and the reflection layer 13.
  • the paint application 45 extends over the entire area of the background field 5 or
  • the windows 46 formed by the above-mentioned removal of the reflection layer 13 have the whole area of the background field 5 and the pixel pattern 6, respectively.
  • the reflection layer 13 in the background fields 5 has, as the first structure 18, a reflecting surface which is embodied either as a plane mirror surface or as a diffraction grating acting as a colored mirror.
  • the incident light 15 impinges on the layer composite 10 at an angle of incidence ⁇ , the angle of incidence ⁇ between the direction of the incident light 15 and a normal 20 to the surface of the layer composite 10 being measured.
  • Light 21 reflected by the first structure 18 leaves the composite layer 10 at a normalized angle of precipitation ⁇ , which is equal to the angle of incidence ⁇ according to the law of reflection.
  • the background fields 5 Only when the observer looks directly into the reflected light 21 at a narrow solid angle do the background fields 5 together make a bright impression, with the plane mirrors reflecting daylight unaltered (ie achromatic), while the diffraction gratings having a spatial frequency f greater than 2300 lines / mm reflect a typical mixed color. In the other directions of the half-space above the laminate 10, the background fields 5 are practically black.
  • a relief absorbing the incident light 15 which is known by the term "moth-eye structure" and whose regularly arranged, pin-shaped relief structure elements protrude from about 200 nm to 500 nm high above a base of the relief.
  • the relief structure elements are 400 nm or less apart.
  • the surfaces with such moth-eye structures reflect less than 2% of the incident light 15 from any direction and are black to the observer.
  • the second structure 19 is formed, which deflects the incident light 15 substantially outside the direction of the reflected light 21.
  • the microscopically fine reliefs of the linear diffraction gratings with a spatial frequency f in the range from 100 lines / mm to 2300 lines / mm fulfill this condition.
  • the orientation of the grating vector k (FIG.
  • the incident light 15 is diffracted and deflected as light waves 22, 23 in the minus first diffraction order and as light waves 24, 25 in the plus first diffraction order according to its wavelength from the direction of the reflected light 21, the blue-violet light waves 23 , 24 are bent away from the direction of the reflected light 21 by the minimum diffraction angle ⁇ ⁇ .
  • the light waves 22, 25 with larger wavelengths are deflected by correspondingly larger diffraction angles.
  • the incident light 15 and the normal 20 determine an observation plane which, in the representation of FIG. 3, coincides with the plane of the drawing and is parallel to the coordinate axis y.
  • the viewing direction of the observer lies in the observation plane and the eye of the observer receives the reflected light 21 of the specular background fields 5 when the viewing direction and the normal 20 include the angle of reflection ⁇ .
  • the diffraction gratings function optimally if their grating vector k is aligned parallel to the observation plane, which in this case is identical to the diffraction plane.
  • the diffracted light beams 21 to 24 are in the observation plane and generate, according to the viewing direction, a predetermined color impression in the eye of the observer. If the grating vector k is not in the observation plane, ie, not within an observation angle of about ⁇ 10 ° to the observation plane, or the light rays 21 to 24 are not in the viewing direction, the observer occupies the surface of the diffraction grating or the pixel pattern 6 because of the few , at the second structure 19 scattered light as a dark gray area true.
  • one of the diffraction gratings can also be used as the first structures 18 of the background fields 5.
  • an overlay of the diffraction grating with one of the matt structures described below causes an enlargement of the viewing angle of the picture element pattern 6.
  • the profile of the second structure 19 is exemplified with a symmetrical sawtooth profile of a periodic grating.
  • the structures 18, 19 in particular also one of the other known profiles, such as. asymmetrical sawtooth profiles, rectangular profiles, sinusoidal and sinusoidal profiles, etc., which form a periodic lattice with straight, meandering or otherwise curved or circular furrows.
  • the optically active structure depth T is n times the shaped geometric structure depth.
  • the optically effective structure depth T of the periodic gratings used for the structures 18, 19 is in the range of 80 nm to 10 ⁇ m, wherein for technical reasons the relief structure having a large structure depth T has a low value of the spatial frequency f.
  • a matt structure eg a kinoform, an isotropic or an anisotropic matt structure, is advantageously suitable.
  • the pixel patterns 6 are from all viewing directions visible as a bright surface within the solid angle determined by the matt structure.
  • the relief structure elements of these microscopically fine reliefs are not regularly arranged as in the diffraction grating.
  • the description of the matt structure is made with statistical parameters, such as average roughness R a , correlation length I c , etc.
  • the microscopically fine relief structure elements of the matt structures suitable for security element 1 have values for the average roughness value R a ranging from 20 nm to 2,500 nm. Preferred values are between 50 nm and 1000 nm. In at least one direction, the correlation length I c has values in the range of 200 nm to 50,000 nm, preferably between 1,000 nm and 10,000 nm.
  • the matt structure is isotropic when microscopic fine relief features have no azimuthal preferred direction, which is why the scattered light with an intensity that is greater than a predetermined threshold, for example, by the visual detectability is uniformly distributed in a predetermined by the scattering power of the matte structure solid angle in all azimuthal directions.
  • the solid angle is a cone whose tip is on the illuminated by the incident light 15 part of the laminate 10 and whose axis coincides with the direction of the reflected light 21. Highly scattered matt structures distribute the scattered light into a larger solid angle than a weakly scattering matt structure. If, on the other hand, the microscopically fine relief structure elements have a preferred direction in the azimuth, an anisotropic matt structure is present which anisotropically scatters the incident light 15, the solid angle predetermined by the scattering power of the anisotropic matt structure having an elliptical cross-section as its cross-section, whose major axis is perpendicular to the preferred direction the relief structure elements is aligned.
  • the matt structures scatter the incident light 15 achromatically, ie independently of its wavelength, so that the color of the scattered light essentially corresponds to that of the light 15 incident on the matt structures.
  • the area of the matt structure has a large surface brightness in daylight and, like a sheet of white paper, is visible practically independent of the azimuthal orientation of the matt structure.
  • FIG. 4 shows an exemplary cross section through one of the matt structures, which is enclosed as a second structure 19 between the embossing layer 11 and the protective lacquer layer 12.
  • the profile of the matt structure has the average roughness value R a , but the greatest differences in height H occur between the microscopically fine relief structure elements of the matt structure up to approximately 10 times the average roughness value R a .
  • the height differences H of the matt structure which are important for the molding, thus correspond to the structure depth T in the case of the periodic diffraction gratings.
  • the values of the height differences H of the matt structures are in the above-mentioned range of the structure depth T.
  • a special design of the matt structure is superimposed with a "weakly acting diffraction grating".
  • the weakly acting diffraction grating has a low diffraction efficiency because of the low structure depth T between 60 nm and 70 nm.
  • a spatial frequency in the range of f 800 lines / mm to 1000 nm lines / mm is preferred for this application.
  • Circular diffraction gratings with a period of 0.5 ⁇ m to 3 ⁇ m and with spiral or circular grooves can also be used for the pixel pattern 6.
  • the diffractive structures which increase the viewing angle are summarized below under the term “diffractive scatterers”.
  • the term "diffractive spreader” is thus to be understood as meaning a structure from the group of isotropic and anisotropic matt structures, kinoforms, the diffraction grating with circular grooves at a furrow spacing of 0.5 ⁇ m to 3 ⁇ m and the matt structures superimposed with a weakly acting diffraction grating
  • the halftone image 2 ( Figure 1) is static, that is, in a wide range of spatial orientation under a common viewing condition at said viewing distance and when illuminated with white incident light 15, the halftone image 2 does not change , Only upon closer inspection does the observer notice that the halftone image is divided into the picture elements 4 ( Figure 1) and the picture element patterns 6 have predetermined shapes.
  • the first structure 18 in the background field 5 reflects or absorbs the incident light 15.
  • the second structure 19 of the pixel patterns 6 is one of the diffractive scatterers. The second structure 19 scatters or diffracts the incident light 15 such that the pixel pattern 6 is visible in a large solid angle predetermined by the diffractive spreader.
  • the security element 1 When the security element 1 is illuminated with white light 15, the observer sees the halftone image 2 arranged in said viewing distance in a gray scale, since the observer sees the image elements 4 with a large surface portion of the pixel pattern 6 in a large surface brightness and the image elements 4 with a smaller area fraction of the pixel pattern 6 perceives in a lower surface brightness.
  • the visibility of the halftone image 2 behaves much like a halftone image printed on paper in black and white. However, the halftone image 2 is poor or not recognizable, or contrast reversal of the halftone image may occur if the viewing direction is outside the solid angle of the scattered or diffracted light.
  • the contrast also reverses.
  • the bright picture elements 4 before the tilting of the security element 1 are now darker than the previously dark picture elements 4, which are now much brighter in the reflected light 21, and vice versa.
  • the tilting of the security element 1 takes place about an axis perpendicular to the observation plane and parallel to the plane of the security element. 1
  • the structures 18, 19 are selected such that the contrast in the halftone image 2 changes when the security element 1 is rotated or tilted about an axis parallel to the normal 20 by a rotation angle in its plane.
  • the contrast envelope is therefore easier to observe compared to the first embodiment of the security element 1.
  • the pixel patterns 6 are occupied by one of the diffractive scatterers.
  • the observer rotates the security element 1 around the normal 20 and sees the halftone image 2 arranged in the viewing distance of 50 cm or more in the gray scale, except when the grating vector k of the first structure 18 is aligned substantially parallel to the observation plane and the viewing direction of the observer in the direction one of the light beams 21 to 25 is directed.
  • the halftone image 2 in contrast reversal changes its color corresponding to the deflected in the eye of the observer diffracted light beam 22 to 25.
  • the halftone image 2 is again recognizable in the gray scale.
  • the contrast disappears in the halftone image 2 to form again at the rotation angle ⁇ of 90 ° or 270 °, since the lattice vectors k first structure 18 are aligned in the background fields 5 parallel to the observation plane and therefore the background fields 5 now light up.
  • the halftone image 2 is visible to the observer in inverted contrast and in the same color. If, in addition, the spatial frequencies f of the first and second structures 18, 19 differ, for example, by 15 to 25%, not only the contrast but also the color in the halftone image 2 changes during rotation. At viewing angles outside the diffracted light beams 22, 23 and 24, 25 the diffraction orders, the halftone image 2 is not recognizable for lack of contrast.
  • the halftone image 2 shows a colored image which, for example, corresponds to the colors of the image template at a predetermined tilt angle.
  • the first structures 18 (FIG. 3) of the background fields 5 have different directions of the grating vectors k, ie have azimuths ⁇ in the range of -80 ° ⁇ ⁇ ⁇ 80 °, so that the rotation of the composite layer 10 in this azimuth region in the dark contrastless image of the security element 1, the surfaces of those structures 18 light up in color whose grid vector k are just parallel to the observation plane.
  • the linear diffraction gratings are shaped in the background fields 5 in such a way that the diffraction gratings with parallel grating vectors k are arranged in rows of the picture elements 4.
  • the azimuths ⁇ of the lattice vectors k of one row differ from the azimuths ⁇ of the lattice vectors k of the background fields 5 in the two adjacent rows of the lattice vectors k Picture elements 4.
  • three rows A, B, C are arranged with predetermined azimuth values.
  • No grid vectors k of the background fields 5 are aligned parallel to the coordinate axis y, as in the case of the grid vectors k of the pixel patterns 6.
  • the observer therefore sees the halftone image 2 in the correct contrast when the coordinate axis y of the halftone image 2 is in the observation plane.
  • the pixel patterns 6 are bright and the background fields 5 are dark.
  • the security element 1 changes its appearance when the laminate 10 ( Figure 3) is viewed under the same lighting and observation conditions as in Figure 1.
  • the halftone image 2 becomes the dark contrastless image, wherein in the rows A, B, C, the background areas 5 light up in color whose grid vector k is just parallel to the observation plane.
  • FIG. 5 shows the detail 3 from FIG. 1 after a rotation about the angle of rotation ⁇ .
  • the halftone image 2 (Fig. 1) appears as a dark, contrasting surface on which are arranged brightly illuminated stripes formed by the A rows 26 of the picture elements 4 (Fig. 1) with the background fields 5 Grid vectors k (Fig. 1) are aligned at the rotation angle ⁇ parallel to the track 27 of the observation plane at the level of the layer composite 10.
  • FIG. 6 shows that at the angle of rotation ⁇ 1, however, the background fields 5 of B rows 28 light up as soon as the grid vectors k (FIG. 1) of the background fields 5 in the B rows 28 are aligned parallel to the track 27.
  • the background fields 5 of the A rows 26 now form part of the non-contrast dark area of the security element 1 (FIG. 1), since the grid vectors k of the A rows 26 are rotated out of the observation plane.
  • the background fields 5 of C rows 29 are bright at the angle of rotation ⁇ 2 and those of the other rows 26, 28 are dark.
  • the rows 26, 28, 29 in the order ABC ..., ABC ... etc. arranged cyclically repetitively on the security element 1 (Fig.
  • the halftone image 2 is visible substantially independently of the angle of rotation ⁇ , whereby the colored stripes of the rows 26, 28, 29 appear to wander over the halftone image 2 when the security element 1 is rotated.
  • the halftone pattern 2 has a flag-like division, in which a band 8 bordered by borderlines 30 is arranged on the base surface 7.
  • the picture elements 4 visible in the enlarged section 3 have a greater areal proportion of the picture element patterns 6 for the band 8 than for the base area 7.
  • the areas of the pixel patterns 6 are covered with one of the diffractive scatterers and the areas of the background fields 5 with one of the diffraction structures.
  • the background fields 5, the first. Structures 18 (FIG. 3) have the same spatial frequency f.sub.s, the grating vectors k (FIG. 1) which are aligned parallel to one another, ie have the same azimuth .theta..sub.90 or 270.degree. (FIG.
  • the small images 31 to 35 represent circular ring segments.
  • the small images 31 to 35 are represented by the values of the spatial frequency f and the azimuth ⁇ (FIG. 1) of the grating vectors k (FIG. 1) used for the first structures 18 of the background fields 5.
  • the background fields 5 that are not used for the small images 31 to 35 have, for example, a reflective surface or a moth eye structure.
  • the observer sees the halftone image 2 in shades of gray independently of the angle of rotation ⁇ (FIG. 5).
  • the observer recognizes those small images 31, 32, 33, 34, 35 whose lattice vectors coincidentally lie in the observation plane when the security element 1 is rotated, the color of the visible small images 31 to 35 being determined by the Spatialfrequenz f and by the tilt angle of the security element 1 is determined.
  • the security element 1 when the security element 1 is rotated around the normal 20 ( Figure 3) in a predetermined order, one or more of the small images 31-35 illuminate and produce a kinematic impression, ie when rotated about the normal 20 ( Figure 3) the locations travel When tilting about the coordinate axis x, the color of the currently visible small images 31 to 35 change.
  • a plurality of these small images 31 to 35 are arranged so that some, here provided with the reference numeral 31 and 32, from them at a determined by the rotation angle ⁇ and the tilt angle orientation of the security element 1 form a predetermined sign, ie the small images 31 to 35 are used advantageously to establish a predetermined orientation of the security element 1 in space.
  • the small images 31 to 35 are not limited to simple characters only, but in one embodiment are pixelized images, such as images. a greatly reduced image of the halftone image 2 or a graphical representation of line and / or surface elements.
  • the small image 31 is only visible to the observer if he looks directly into the reflected light 21 (FIG. 3) and recognizes the small image 31 in the mixed color characteristic of these high-frequency diffraction gratings, or if, in view of the large diffraction angles ⁇ (FIG. 3) viewed the small image 31 at the corresponding tilt angle and the small image 31 in bright, blue-green color on the dark field of the security element 1 sees.
  • a diffractive spreader is molded in the pixel pattern 6, molded.
  • the background fields 5 as the first structure 18, the asymmetric diffraction grating with the azimuth ⁇ 0 °, whose grooves are aligned parallel to the coordinate axis y.
  • Table 2 lists the combinations of diffractive structures for the background fields 5 and the pixel patterns 6 in which a contrast inversion or contrast loss with color effects occurs at predetermined rotational angle values ⁇ .
  • FIG. 9 shows a further embodiment of the picture elements 4.
  • the picture element pattern 6 is band-shaped and has the outline of a pattern, here in the form of a star.
  • the background field 5 splits into at least two surface parts when the band-shaped picture element pattern 6 is self-contained.
  • the width of the pixel pattern 6 determines the area fraction of the pixel pattern 6 in the pixel 4. So that the halftone image 2 (FIG. 8) does not exhibit any unwanted modulation of the brightness due to a too regular arrangement of the pixels 4 or the background fields 5, the pixel patterns 6 of FIGS adjacent picture elements 4 eg by their orientation with respect to the coordinate system x, y. In the observation distance, the observer sees the halftone image 2, which dissolves into the pixel pattern 6 arranged in the picture elements 4 only in the reading distance.
  • pattern strips 36 are arranged in the area of the halftone image, which extend at least over part of the area of the halftone image 2.
  • the pattern strips 36 have a width B in the range 15 microns to 300 microns.
  • the pattern strips 36 are drawn parallel to one another in FIG. 9 and contain a line pattern consisting of a surface strip 40 (FIG. 10), for example a Greek frieze, as can be seen in the section 3.
  • the line pattern in the pattern strip 36 is formed as a nanotext whose letters have a letter height which is less than the width B of the pattern strips 36.
  • line pattern examples include simple straight or meandering lines, sequences of pictograms, etc. Also forming an array of simple, straight or curved line elements the line pattern alone or in combination with the frieze and / or the nano-text and / or the pictograms.
  • the areas of the line patterns are covered with a diffractive pattern structure 37 and have a line width of 5 ⁇ m to 50 ⁇ m.
  • the line pattern only partially covers the background fields 5 and / or the pixel patterns 6 within the area of the pattern strip 36, so that the halftone image 2 (FIG. 1) generated by the first and second structures 18 (FIG. 3), 19 (FIG. not noticeably disturbed.
  • the pattern structure 37 differs from both the first and the second structures 18, 19 in at least one structural parameter.
  • the diffraction gratings which split the incident light 15 (FIG. 3) into colors with the spatial frequencies f of 800 lines / mm to 2000 lines / mm are preferably suitable. If the first and / or the second structures 18, 19 are not covered with a diffractive spreader, the diffractive spreader is also suitable for the pattern structure 37.
  • the pattern strips 36 at least the structural parameters spatial frequency f and / or the azimuthal orientation of the grating vector of the pattern structures 37 are selected location-dependent, ie the said structure parameters are functions of the coordinates (x, y).
  • FIG. 10 shows the picture element 4 with the pattern strips 36 in detail.
  • the pattern strips 36 extend over the background field 5 and the picture element pattern 6.
  • the picture element pattern 6 has, for the sake of simplicity, the illustrated U-shape with the legs 38, 39 connected to a connecting piece.
  • the area brightness within the picture element pattern 6 is controlled.
  • the areal brightness of the pixel pattern 6 in the left leg 38 is broadened as compared to that of the connector the surface strip 40 is reduced.
  • the width of the surface strips 40 is reduced. Since the diffraction grating, in order to be effective, must include at least 3 to 5 grooves in the surface strip 40, the line width of the surface strips 40 must not be less than a minimum value depending on the spatial frequency f and the direction of the grating vector k (FIG. 1).
  • a further increase in the brightness of the pixel pattern 6 causes a resolution of the surface strips 40 in small spots 41, so that the larger area for increased brightness of the pixel pattern 6 contributes. The same applies to the modulation of the background fields 5, for example in a line region 42.
  • the line width of the surface strips 40 in the background fields 5 is the same on the whole area of the halftone picture 2, while the area brightness of the picture element patterns 6 corresponding to the picture template for the halftone picture 2 by means of the line width of the area strips 40 in FIG the pattern strip 36 is controlled. Because the small dimensions of the surface strips 40 ( Figure 10) and the patch 41 ( Figure 10) are not obscured by the observer's eye, e.g. Magnifying glass, microscope, etc., the area brightness of the pixel pattern 6 is proportional to the remaining area with the second structure 19 ( Figure 3).
  • the control of the surface brightness can be achieved, for example, by enlarging and reducing the thickness of the letters or by increasing the letter spacing.
  • the eye of the observer recognizes the pattern strips 36 as simple, bright lines even at a normal reading distance of less than 30 cm and under suitable observation conditions, since the pattern in the pattern strip 36 is first detected with the aid of the magnifying glass or of the microscope is to be resolved.
  • the pattern strips 36 for the observer change their color and / or light up or go out again.
  • the halftone image 2 (FIG. 1) illuminated by daylight and arranged at the mentioned viewing distance has colored bands 43 produced when tilting or rotating a plurality of the pattern strips 36 (FIG ) in the colors of the rainbow, which change in color and / or seem to move over the surface of the security element 1.
  • the halftone image 2 is part of a mosaic of surface elements 44 which are covered with diffraction gratings independent of the halftone image 2 and which exhibit an optical effect according to the above-mentioned EP-A 0 105 099.
  • the pattern strips 36 are portions of the mosaic of surface elements 44 that extend across the halftone image 2.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Credit Cards Or The Like (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Burglar Alarm Systems (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Cleaning In Electrography (AREA)

Claims (17)

  1. Élément de sécurité diffraction (1) avec une image en demi-teinte (2) composée de composants de surface recouverts de structures superficielles (18 ; 19; 37) microscopiquement fines et inclus dans un composé de couches (10), qui comprend au moins une couche à gaufrer transparente (11), une couche de vernis de protection (12) et une couche de réflexion (13) insérée entre la couche à gaufrer transparente (11) et la couche de vernis de protection (12) avec les structures superficielles (18; 19 ; 37), les composants de surface avec les premières structures superficielles (18) formant des champs de fond (5) et les composants de surface avec la structure superficielle (19) se distinguant des premières structures superficielles (18) dans au moins un paramètre de structure formant des motifs d'éléments d'image (6) et la surface de l'image en demi-teinte (2) étant divisée en une pluralité d'éléments d'image (4) composés des composants de surface du motif d'élément d'image (6) et du champ de fond (5), lesquels éléments sont au moins d'une dimension inférieure à 1 mm,
    caractérisé en ce que les motifs d'éléments d'image (6) dans les éléments d'image (4) sont de même taille, en ce que des bandes de motifs (36) avec un motif en ligne d'une largeur (B) de 15 µm à 300 µm s'étendent au moins sur une partie de la surface de l'image en demi-teinte (2) et recouvrent partiellement les champs de fond (5) et les motifs d'éléments d'image (6), en ce que le motif en ligne est formé par des bandes de surface (40) avec des structures de motif (37) et des largeurs de ligne allant de 5 µm à 50 µm, les motifs en ligne comprenant des lettres, des textes, des éléments en ligne et des pictogrammes et les structures de motif (37) se distinguant des premières et deuxième structures superficielles (18 ; 19) dans au moins un paramètre de structure [13], en ce que la largeur de ligne des bandes de surface (40) est constante dan les champs de fond (5) et en ce que la luminosité de surface des éléments d'image (4) est dirigée de telle sorte sur le motif d'élément d'image (6) à l'aide de la largeur de ligne des bandes de surface (40) que la part de surface du motif d'élément d'image(6) non recouvert par le motif en ligne est déterminée selon la luminosité de surface du modèle de l'image en demi-teinte (2) à l'endroit de l'élément d'image (4) et en tenant compte de la luminosité de surface des éléments d'image voisins (4).
  2. Élément de sécurité diffraction (1) selon la revendication 1, caractérisé en ce que les premières et deuxième structures superficielles (18 ; 19) sont des réseaux de diffraction linéaires avec des fréquences spatiales de la plage 150 lignes/mm à 2000 lignes/mm.
  3. Élément de sécurité diffraction (1) selon la revendication 1 ou 2, caractérisé en ce que les structures superficielles (18 ; 19) sont des réseaux de diffraction avec vecteurs de réseau (k), en ce que les vecteurs de réseau (k) des deuxièmes structures superficielles (19) sont parallèles dans les motifs d'éléments d'image (6) et en ce que le vecteur de réseau (k) des motifs d'éléments d'image (6) se distingue des vecteurs de réseau (k) des premières structures superficielles (18) dans les champs de fond (5) par l'angle azimutal (θ).
  4. Élément de sécurité diffraction (1) selon la revendication 3, caractérisé en ce que les éléments d'image (4), dont les premières structures superficielles (18) dans les champs de fond (5) présentent le même angle azimutal (θ) des vecteurs de réseau (k), sont disposés en séries (26 ; 28 ; 29) sur l'image en demi-teinte (2) selon leur angle azimutal (θ) du vecteur de réseau (k).
  5. Élément de sécurité diffraction (1) selon la revendication 4, caractérisé en ce que sur sa surface, les séries voisines ((26 ; 28 ; 29), qui se distinguent par l'angle azimutal (θ) des vecteurs de réseau (k), sont disposées de façon répétitive et cyclique dans l'ordre ABC, ABC.
  6. Élément de sécurité diffraction (1) selon la revendication 1, caractérisé en ce que les premières structures superficielles (18) et les deuxièmes structures superficielles (19) sont des réseaux de diffraction décrivant des méandres, dont les fréquences spatiales sont choisies dans la plage de 150 lignes/mm à 2000 lignes/mm, et en ce que les réseaux de diffraction décrivant des méandres des champs de fond (5) et des motifs d'éléments d'image (6) se distinguent au moins par l'angle azimutal (θ) des vecteurs de réseau (k).
  7. Élément de sécurité diffraction (1) selon la revendication 1 ou 2, caractérisé en ce que les premières structures superficielles (18) et les deuxièmes structures superficielles (19) sont des réseaux de diffraction asymétriques, les vecteurs de réseau (k) des réseaux de diffraction asymétriques des premières structures superficielles (18) étant orientés en direction opposée aux vecteurs de réseau (k) des deuxièmes structures superficielles (19).
  8. Élément de sécurité diffraction (1) selon la revendication 1, caractérisé en ce que la deuxième structure superficielle (19) dans les surfaces des motifs d'éléments d'image (6) est un diffuseur de diffraction choisi à partir du groupe des structures mates isotropes et anisotropes, des éléments kinoform, des réseaux de diffraction avec des sillons circulaires à intervalle de sillon de 1 à 3 µm et des structures mates superposées avec un réseau de diffraction.
  9. Élément de sécurité diffraction (1) selon la revendication 8, caractérisé en ce que les champs de fond (5) faisant office de première structure superficielle (18) présentent une structure à partir du groupe qui comprend des miroirs plats, des réseaux en croix avec des fréquences spatiales supérieures à 2300 lignes/mm et des structures en oeil de mite.
  10. Élément de sécurité diffraction (1) selon la revendication 8, caractérisé en ce que les champs de fond (5) faisant office de première structure superficielle (18) présentent un réseau de diffraction linéaire avec une fréquence spatiale de la plage 150 lignes/mm à 2000 lignes/mm et des vecteurs de réseau (k) orientés parallèlement les uns aux autres.
  11. Élément de sécurité diffraction (1) selon la revendication 1 ou 2, caractérisé en ce que les premières structures superficielles (18) et la deuxième structure superficielle (19) sont des réseaux de diffraction linéaires ou décrivant des méandres, qui se distinguent par la fréquence spatiale (f).
  12. Élément de sécurité diffraction (1) selon l'une quelconque des revendications 1 à 11, caractérisé en ce que la fréquence spatiale (f) des réseaux de diffraction linéaires dans les structures de motif (37) est choisie dans la plage 800 lignes/mm à 2000 lignes/mm.
  13. Élément de sécurité diffraction (1) selon la revendication 12, caractérisé en ce que la fréquence spatiale (f) des réseaux de diffraction linéaires dans les structures de motif (37) dépend de l'endroit sur l'image en demi-teinte (2).
  14. Élément de sécurité diffraction (1) selon la revendication 12 ou 13, caractérisé en ce que l'orientation azimutale du vecteur de réseau des réseaux de diffraction linéaires dans les structures de motif (37) dépend de l'endroit sur l'image en demi-teinte (2).
  15. Élément de sécurité diffraction (1) selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la structure de motif (37) est un des diffuseurs de diffraction.
  16. Élément de sécurité diffraction (1) selon la revendication 1, caractérisé en ce que l'image en demi-teinte (2) fait partie d'une mosaïque composée de composants de surface (44) recouverts de structures superficielles indépendantes de l'image en demi-teinte (2).
  17. Élément de sécurité diffraction (1) selon la revendication 1, caractérisé en ce que le composé de couches (10) est aménagé pour être collé sur un substrat (17).
EP04797524A 2003-11-03 2004-11-02 Element de securite diffractant comportant une image en demi-teinte Active EP1670647B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04797524T PL1670647T3 (pl) 2003-11-03 2004-11-02 Dyfrakcyjny element zabezpieczający z obrazem półtonalnym

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10351129A DE10351129B4 (de) 2003-11-03 2003-11-03 Diffraktives Sicherheitselement mit einem Halbtonbild
PCT/EP2004/012378 WO2005042268A1 (fr) 2003-11-03 2004-11-02 Element de securite diffractant comportant une image en demi-teinte

Publications (2)

Publication Number Publication Date
EP1670647A1 EP1670647A1 (fr) 2006-06-21
EP1670647B1 true EP1670647B1 (fr) 2007-04-04

Family

ID=34530024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04797524A Active EP1670647B1 (fr) 2003-11-03 2004-11-02 Element de securite diffractant comportant une image en demi-teinte

Country Status (14)

Country Link
US (1) US7719733B2 (fr)
EP (1) EP1670647B1 (fr)
JP (1) JP2007510178A (fr)
KR (1) KR101150567B1 (fr)
CN (1) CN100534807C (fr)
AT (1) ATE358598T1 (fr)
AU (1) AU2004285697B2 (fr)
BR (1) BRPI0416158B1 (fr)
CA (1) CA2542497C (fr)
DE (2) DE10351129B4 (fr)
ES (1) ES2285541T3 (fr)
PL (1) PL1670647T3 (fr)
RU (1) RU2326007C2 (fr)
WO (1) WO2005042268A1 (fr)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8867134B2 (en) * 2003-11-21 2014-10-21 Visual Physics, Llc Optical system demonstrating improved resistance to optically degrading external effects
JP2005352334A (ja) * 2004-06-14 2005-12-22 Dainippon Printing Co Ltd 光回折構造転写シート及びその製造方法
DE102004042136B4 (de) 2004-08-30 2006-11-09 Ovd Kinegram Ag Metallisiertes Sicherheitselement
DE102005027380B4 (de) 2005-06-14 2009-04-30 Ovd Kinegram Ag Sicherheitsdokument
DE102005032997A1 (de) * 2005-07-14 2007-01-18 Giesecke & Devrient Gmbh Gitterbild und Verfahren zu seiner Herstellung
AT503714A2 (de) * 2005-12-13 2007-12-15 Hueck Folien Ges Mbh Sicherheitselemente und sicherheitsmerkmale mit metallisch erscheinenden farbeffekten
DE102005063701B4 (de) 2005-12-21 2024-07-25 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement und Verfahren zu seiner Herstellung
DE102005063700B4 (de) 2005-12-21 2024-07-25 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement und Verfahren zu seiner Herstellung
DE102006016139A1 (de) * 2006-04-06 2007-10-18 Ovd Kinegram Ag Mehrschichtkörper mit Volumen-Hologramm
KR101394716B1 (ko) * 2006-04-12 2014-05-15 도요세이칸 그룹 홀딩스 가부시키가이샤 구조체, 구조체의 형성방법, 구조체 형성장치, 구조색 및/또는 회절광 판독방법 및 진위 판정방법
DE102006061220A1 (de) * 2006-12-20 2008-06-26 Bundesdruckerei Gmbh Holographisches Sicherheitselement mit einfarbigen Pixeln
EP1990661B1 (fr) * 2007-05-07 2018-08-15 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Filtre diffractif à ordre zéro isotrope
GB0711434D0 (en) 2007-06-13 2007-07-25 Rue De Int Ltd Holographic security device
DE102007034716A1 (de) * 2007-07-23 2009-01-29 Giesecke & Devrient Gmbh Sicherheitselement
US8739711B2 (en) * 2007-08-01 2014-06-03 Crane Security Technology, Inc. Micro-optic security device
DE102007039591A1 (de) * 2007-08-22 2009-02-26 Giesecke & Devrient Gmbh Gitterbild
JP5272438B2 (ja) * 2008-02-19 2013-08-28 凸版印刷株式会社 表示体及びラベル付き物品
EP2100747B1 (fr) * 2008-03-10 2015-02-25 Maurer Electronics Gmbh Procédé destiné à l'application d'une image dotée d'une information supplémentaire incorporée sur un support de données
JP5360461B2 (ja) * 2008-03-17 2013-12-04 大日本印刷株式会社 複写防止媒体
US9253416B2 (en) * 2008-06-19 2016-02-02 Motorola Solutions, Inc. Modulation of background substitution based on camera attitude and motion
JP5338177B2 (ja) * 2008-07-31 2013-11-13 凸版印刷株式会社 表示体及びラベル付き物品
JP5470794B2 (ja) * 2008-09-30 2014-04-16 凸版印刷株式会社 表示体、粘着ラベル、転写箔及びラベル付き物品
BRPI1009990B1 (pt) 2009-03-30 2019-09-03 Boegli Gravures Sa "método e dispositivo para estruturação da superfície de um corpo sólido revestido de material rígido por meio de um laser"
PT2414131E (pt) * 2009-03-30 2015-09-04 Boegli Gravures Sa Método e dispositivo para a estruturação de uma superfície de um corpo sólido com um revestimento duro com o auxílio de um laser utilizando máscara e diafragma
EA200900975A1 (ru) * 2009-06-25 2010-04-30 Открытое Акционерное Общество «Научно-Производственное Объединение "Криптен"» Оптический защитный элемент, способ его изготовления и способ верификации аутентичности объекта с указанным защитным элементом
DE102009056934A1 (de) 2009-12-04 2011-06-09 Giesecke & Devrient Gmbh Sicherheitselement, Wertdokument mit einem solchen Sicherheitselement sowie Herstellungsverfahren eines Sicherheitselementes
DE102010047250A1 (de) * 2009-12-04 2011-06-09 Giesecke & Devrient Gmbh Sicherheitselement, Wertdokument mit einem solchen Sicherheitselement sowie Herstellungsverfahren eines Sicherheitselementes
FR2953965B1 (fr) 2009-12-14 2011-11-25 Arjowiggins Security Element de securite comportant une structure optique
GB201008955D0 (en) * 2010-05-28 2010-07-14 Optaglio Sro Holographic matrix, system of holographic personalization of ID cards and synthesis of holograms of desired visual properties and method of production thereof
US8593733B2 (en) * 2010-06-04 2013-11-26 Alan Kathman Diffractive optical elements and applications thereof
DE102010050105A1 (de) * 2010-10-29 2012-05-03 Giesecke & Devrient Gmbh Gitterbild mit aneinandergrenzenden Gitterfeldern
DE102010050031A1 (de) * 2010-11-02 2012-05-03 Ovd Kinegram Ag Sicherheitselement und Verfahren zur Herstellung eines Sicherheitselements
US8755121B2 (en) 2011-01-28 2014-06-17 Crane & Co., Inc. Laser marked device
DE102011014114B3 (de) * 2011-03-15 2012-05-10 Ovd Kinegram Ag Mehrschichtkörper und Verfahren zur Herstellung eines Mehrschichtkörpers
JP2012198481A (ja) * 2011-03-23 2012-10-18 Toppan Printing Co Ltd 画像表現体
DE102011108242A1 (de) 2011-07-21 2013-01-24 Giesecke & Devrient Gmbh Optisch variables Element, insbesondere Sicherheitselement
US10890692B2 (en) 2011-08-19 2021-01-12 Visual Physics, Llc Optionally transferable optical system with a reduced thickness
AU2011101684B4 (en) * 2011-12-22 2012-08-16 Innovia Security Pty Ltd Optical Security Device with Nanoparticle Ink
EA020989B1 (ru) * 2012-02-16 2015-03-31 Общество С Ограниченной Ответственностью "Центр Компьютерной Голографии" Микрооптическая система для формирования изображений в проходящем и отраженном свете
GB201203183D0 (en) 2012-02-24 2012-04-11 Qinetiq Ltd Optical multilayer
DE102012105571B4 (de) * 2012-06-26 2017-03-09 Ovd Kinegram Ag Dekorelement sowie Sicherheitsdokument mit einem Dekorelement
AU2012387659A1 (en) 2012-08-17 2015-02-26 Visual Physics, Llc A process for transferring microstructures to a final substrate
JP2013033263A (ja) * 2012-09-13 2013-02-14 Dainippon Printing Co Ltd 偽造防止材及びこれを備えた印刷基材
AU2013354288B2 (en) * 2012-12-04 2017-06-29 Sectago Gmbh Security device
KR102191322B1 (ko) 2013-03-15 2020-12-16 비쥬얼 피직스 엘엘씨 광학적 보안 장치
CN103325302B (zh) * 2013-06-11 2016-08-10 业成光电(深圳)有限公司 徽标结构及使用该徽标结构的电子装置
US9873281B2 (en) 2013-06-13 2018-01-23 Visual Physics, Llc Single layer image projection film
US10207531B2 (en) 2013-12-02 2019-02-19 SECTAG GmbH Security device
GB2536769B (en) * 2014-01-20 2017-03-01 De La Rue Int Ltd Security elements and methods of their manufacture
GB201400910D0 (en) * 2014-01-20 2014-03-05 Rue De Int Ltd Security elements and methods of their manufacture
TWI576540B (zh) * 2014-02-17 2017-04-01 Lighting device
EP4235637A3 (fr) 2014-03-27 2023-12-06 Visual Physics, LLC Dispositif optique qui produit des effets optiques de type scintillement
US10766292B2 (en) 2014-03-27 2020-09-08 Crane & Co., Inc. Optical device that provides flicker-like optical effects
EP3287295A1 (fr) 2014-07-17 2018-02-28 Visual Physics, LLC Matériau en feuille polymère amélioré destiné à être utilisé dans la fabrication de documents de sécurité polymères tels que des billets de banque
US10195890B2 (en) 2014-09-16 2019-02-05 Crane Security Technologies, Inc. Secure lens layer
DE102014118366A1 (de) * 2014-12-10 2016-06-16 Ovd Kinegram Ag Mehrschichtkörper und Verfahren zu dessen Herstellung
JP6947358B2 (ja) 2015-02-11 2021-10-13 クレイン アンド カンパニー、 インコーポレイテッド 基板へのセキュリティデバイスの表面貼付の方法
EP3306362B1 (fr) * 2015-06-02 2021-11-03 Toppan Printing Co., Ltd. Stratifié et son procédé de fabrication
EA031834B1 (ru) * 2015-07-01 2019-02-28 Дмитрий Маринкин Способ идентификации подлинности изделия, содержащего защитную маркировку на своей поверхности
CN107850708B (zh) * 2015-07-15 2022-03-22 凸版印刷株式会社 显示体
US10866502B2 (en) 2016-04-29 2020-12-15 Duan-Jun Chen Glass-free 3D display system using dual image projection and tri-colors grating multiplexing panels
CN110582412B (zh) 2017-02-10 2022-08-30 克瑞尼股份有限公司 机器可读光学安全器件
DE102017003281A1 (de) 2017-04-04 2018-10-04 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Reliefstruktur und Herstellungsverfahren hierfür
US10350935B1 (en) 2018-01-10 2019-07-16 Assa Abloy Ab Secure document having image established with metal complex ink
US10821765B2 (en) 2018-01-10 2020-11-03 Assa Abloy Ab Secure documents and methods of manufacturing the same
US20190210397A1 (en) * 2018-01-10 2019-07-11 Assa Abloy Ab Laser treatment of secure documents
GB2576218B (en) * 2018-08-10 2021-09-15 De La Rue Int Ltd Security devices and methods of authentication thereof
WO2020054216A1 (fr) * 2018-09-10 2020-03-19 凸版印刷株式会社 Corps d'affichage, feuille de transfert, étiquette adhésive et produits étiquetés
JP6915648B2 (ja) * 2019-07-01 2021-08-04 凸版印刷株式会社 転写箔の製造方法
US11979536B2 (en) 2020-01-30 2024-05-07 Hewlett-Packard Development Company, L.P. Halftone screens encoding signatures
GB2603886B (en) * 2020-11-06 2023-06-14 De La Rue Int Ltd Optical devices and methods of manufacture thereof
DE102021110607A1 (de) * 2021-04-26 2022-10-27 Semikron Elektronik Gmbh & Co. Kg Gerät mit Funktionskomponente und Kunststoffgehäuseelement und Verfahren zur Überprüfung der Echtheit eines solches Geräts
CN113363368B (zh) * 2021-05-19 2022-05-10 厦门镌纹科技有限公司 二维周期非对称光栅光学器件及电子设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3606515A (en) 1968-11-25 1971-09-20 Ibm Method of manufacturing wave shaping objects
CH653782A5 (de) 1981-10-15 1986-01-15 Landis & Gyr Ag Kinoform.
CH659433A5 (de) 1982-10-04 1987-01-30 Landis & Gyr Ag Dokument mit einem beugungsoptischen sicherheitselement.
DE3650027T2 (de) 1985-05-07 1995-01-26 Dainippon Printing Co Ltd Artikel mit transparentem Hologramm.
DE3634939A1 (de) * 1986-10-14 1988-04-28 Du Pont Deutschland Verfahren zum aufzeichnen von quasihalbtonbildern
EP0330738B1 (fr) 1988-03-03 1991-11-13 Landis & Gyr Betriebs AG Document
EP0375833B1 (fr) 1988-12-12 1993-02-10 Landis & Gyr Technology Innovation AG Modèle horizontal optiquement variable
US6198545B1 (en) * 1994-03-30 2001-03-06 Victor Ostromoukhov Method and apparatus for generating halftone images by evolutionary screen dot contours
DE4432062C1 (de) * 1994-09-09 1995-11-30 Kurz Leonhard Fa Visuell identifizierbares optisches Element
DE4446368A1 (de) * 1994-12-23 1996-06-27 Giesecke & Devrient Gmbh Datenträger mit einem optisch variablen Element
CH693517A5 (de) 1997-06-06 2003-09-15 Ovd Kinegram Ag Flächenmuster.
DE19739193B4 (de) * 1997-09-08 2006-08-03 Giesecke & Devrient Gmbh Verfahren zur Herstellung von Sicherheitsfolien für Wertpapiere
CH693427A5 (de) 1998-01-27 2003-07-31 Ovd Kinegram Ag Flächenmuster.
US6782115B2 (en) * 1998-04-16 2004-08-24 Digimarc Corporation Watermark holograms
DE10127979C1 (de) 2001-06-08 2002-11-07 Ovd Kinegram Ag Zug Diffraktives Sicherheitselement
CN100427323C (zh) 2001-12-22 2008-10-22 Ovd基尼格拉姆股份公司 衍射防伪单元

Also Published As

Publication number Publication date
AU2004285697A1 (en) 2005-05-12
ATE358598T1 (de) 2007-04-15
WO2005042268A1 (fr) 2005-05-12
RU2326007C2 (ru) 2008-06-10
CN100534807C (zh) 2009-09-02
DE502004003423D1 (de) 2007-05-16
BRPI0416158A (pt) 2007-01-09
KR20060093718A (ko) 2006-08-25
AU2004285697B2 (en) 2009-08-27
KR101150567B1 (ko) 2012-06-01
PL1670647T3 (pl) 2007-08-31
RU2006119473A (ru) 2007-12-27
JP2007510178A (ja) 2007-04-19
ES2285541T3 (es) 2007-11-16
US7719733B2 (en) 2010-05-18
US20070183045A1 (en) 2007-08-09
EP1670647A1 (fr) 2006-06-21
DE10351129A1 (de) 2005-06-16
CA2542497C (fr) 2011-01-04
BRPI0416158B1 (pt) 2020-08-11
CN1874901A (zh) 2006-12-06
CA2542497A1 (fr) 2005-05-12
DE10351129B4 (de) 2008-12-24

Similar Documents

Publication Publication Date Title
EP1670647B1 (fr) Element de securite diffractant comportant une image en demi-teinte
EP3294566B1 (fr) Élément de sécurité optiquement variable
EP1275084B1 (fr) Motif de surface
EP2040934B1 (fr) Élément de sécurité
EP1397259B1 (fr) Motif de surface modifiable d'un point de vue optique
EP1966769B1 (fr) Elément de sécurité à variation d'aspect et son procédé de fabrication
EP3291997B1 (fr) Élément de sécurité optiquement variable
EP2853411B1 (fr) Élément de sécurité avec image lenticulaire
EP1392521B1 (fr) Element de securite a diffraction
CH693517A5 (de) Flächenmuster.
DE10216562C1 (de) Sicherheitselement mit Mikro- und Makrostrukturen
EP2934904B1 (fr) Élément de sécurité avec une image lenticulaire
DE102005027380A1 (de) Sicherheitsdokument
WO2003055691A1 (fr) Element de securite a diffraction
DE102008046128A1 (de) Optisch variables Sicherheitselement mit Mattbereich
EP0779863B1 (fr) Element optique visuellement identifiable
DE102016007784A1 (de) Optisch variables Sicherheitselement
EP1051647A1 (fr) Motif de surface
EP1392520B1 (fr) Element de securite a diffraction
EP1492677A2 (fr) Element de securite servant de protection contre la photocopie
DE102020007013A1 (de) Optisch variables Sicherheitselement mit reflektivem/transmissivem Merkmalsbereich
EP3648983B1 (fr) Système de sécurité optiquement variable
DE102019003518A1 (de) Sicherheitselement mit optisch variablem Flächenmuster
DE102005063701B4 (de) Optisch variables Sicherheitselement und Verfahren zu seiner Herstellung
DE102005063700B4 (de) Optisch variables Sicherheitselement und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

DAX Request for extension of the european patent (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004003423

Country of ref document: DE

Date of ref document: 20070516

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FIAMMENGHI-FIAMMENGHI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070620

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070804

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070904

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2285541

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

26N No opposition filed

Effective date: 20080107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071005

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20190910

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20191125

Year of fee payment: 16

Ref country code: NL

Payment date: 20191121

Year of fee payment: 16

Ref country code: IE

Payment date: 20191120

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20191121

Year of fee payment: 16

Ref country code: ES

Payment date: 20191216

Year of fee payment: 16

Ref country code: IT

Payment date: 20191120

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20191125

Year of fee payment: 16

Ref country code: AT

Payment date: 20191119

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191126

Year of fee payment: 16

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 358598

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201102

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201102

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221118

Year of fee payment: 19

Ref country code: DE

Payment date: 20221026

Year of fee payment: 19

Ref country code: CZ

Payment date: 20221024

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004003423

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231102