EP1658395B1 - Method for producing moulded bodies exhibiting thermoregulation properties - Google Patents

Method for producing moulded bodies exhibiting thermoregulation properties Download PDF

Info

Publication number
EP1658395B1
EP1658395B1 EP04786178A EP04786178A EP1658395B1 EP 1658395 B1 EP1658395 B1 EP 1658395B1 EP 04786178 A EP04786178 A EP 04786178A EP 04786178 A EP04786178 A EP 04786178A EP 1658395 B1 EP1658395 B1 EP 1658395B1
Authority
EP
European Patent Office
Prior art keywords
phase change
fibers
change material
polysaccharides
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04786178A
Other languages
German (de)
French (fr)
Other versions
EP1658395A1 (en
Inventor
Detlev Gersching
Frank Meister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thueringisches Institut fuer Textil und Kunststoff Forschung eV
Original Assignee
Thueringisches Institut fuer Textil und Kunststoff Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34202272&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1658395(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Thueringisches Institut fuer Textil und Kunststoff Forschung eV filed Critical Thueringisches Institut fuer Textil und Kunststoff Forschung eV
Priority to PL04786178T priority Critical patent/PL1658395T3/en
Publication of EP1658395A1 publication Critical patent/EP1658395A1/en
Application granted granted Critical
Publication of EP1658395B1 publication Critical patent/EP1658395B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • D01F4/04Monocomponent artificial filaments or the like of proteins; Manufacture thereof from casein

Definitions

  • the invention relates to a process for the production of moldings, consisting of native network-forming polymers and phase change materials incorporated therein, which as. Fibers can be processed into fabrics with improved thermoregulatory properties and give textiles made from them a better comfort and have in other applications a high degree of functionality in terms of heat storage and delivery.
  • phase change materials can absorb or release relatively large amounts of heat when their phase state or conformation changes at a constant temperature.
  • an increased heat capacity is found, which finds its physically measurable expression in the enthalpy of fusion and allows the storage or release of larger amounts of heat than correspond to the normal heat capacity of the material outside the temperature range of the phase transition or the conformational change would.
  • phase change material paraffins or salts or solutions of suitable salts can be used.
  • the temperature range of the phase transition from the solid to the molten state can be adjusted in a targeted manner to the respective required temperature at which the heat is to be released or stored by varying the chain length.
  • Salts or their solutions can be selected specifically according to the desired temperature range of the conformational change.
  • the microencapsulated form is particularly suitable.
  • phase change material is enclosed in ceramic or polymer spheres with diameters in the micron range and thus brought into a manageable form that allows inclusion in crosslinked polymeric matrix materials, the amount of the thermoregulatory potential on the type and amount of enclosed PCM material is dependent.
  • Suitable matrix materials include both synthetic polymers and native network-forming polymers.
  • US 5,885,475 describes apparel composed of fibers consisting of a polymer blend additionally containing phase change material.
  • the fiber-forming substances are made selected from the group of synthetic melt-spinnable thermoplastic polymers.
  • Multicomponent fibers with increased, reversible thermal properties and textile fabrics produced therefrom are described in WO 03027365, US 200212079 and US 200129648.
  • the fiber bodies consisting of a multiplicity of elongated components, contain at least in one of these stretched components a temperature-regulating material distributed therein.
  • This may be a phase change material and optionally the classes of hydrocarbons, hydrated salts, waxes, oils, water, fatty acids, fatty acid esters, 2-basic acids and esters, halides, clusters and semiclusters, gas clusters, stearin anhydrite, ethylene carbonate, higher alcohols, polymers and metals and their mixtures belong.
  • the arrangement of the various components of the fiber can optionally take place in a core-sheath structure, polysetational, bundled or strip-shaped at different shaped cross-section.
  • the matrix material of the multicomponent fiber described can consist of different, linear chain molecules.
  • a disadvantage of these fibers and textile fabrics made therefrom is that only a portion of the fibers formed therefrom contain phase change material as a result of the described arrangement of the individual components and the proportion of temperature-regulating material in the overall fiber is naturally limited. Due to the presence of multicomponent structures of a plurality of elongated constituents, the proportion of phase change material that can be introduced into the polymer structure is limited to a proportion of at most 50 percent by mass, based on the respective matrix material.
  • WO 02095314 and CH 0200245 likewise describe processes in which the temperature-regulating properties are to be achieved by printing on a textile fabric with microencapsulated phase change material.
  • the temperature-regulating effect is thus achieved by applying a coating containing phase change material.
  • such a method has the disadvantage that only comparatively small amounts of phase change material can be fixed on the surface of the structures, in particular if only a part of the surface is printed with a suspension of microencapsulated phase change materials and thus the temperature regulating effect, based on the Amount of material, comparatively localized.
  • the printing of a textile surface with a suspension of microencapsulated phase materials applied in a comparatively large layer thickness has an adverse effect on the flexibility of textile products made therefrom and thus also on the wearing properties.
  • suspensions of microencapsulated phase change materials applied to textile surfaces have only limited mechanical resistance and are washable.
  • PCM fibers described so far are made on the basis of synthetic melt-spun polymer fibers.
  • network-forming structures can be prepared, for example, from cellulosic forming and spinning compositions by dissolving cellulose in tertiary amine oxides, preferably N-methylmorpholine-N-oxide, and a non-solvent, preferably water.
  • a spinning solution of cellulose in N-methylmorpholine-N-oxide and water is deformed by a dry-wet spinning process, coagulated in, for example, an aqueous spinning bath, the solvent completely removed by washing several times and the solidified shaped bodies dried.
  • the resulting shaped articles then have a network structure characterized by hydrogen bonds.
  • the globular proteins have, as the name implies, a spherical tertiary structure and occur in nature in relatively frequent numbers. Examples are the casein (milk protein), the zein (maize protein) and the ardenin (peanut protein).
  • the invention has for its object to develop a process for the preparation of thermoregulatory moldings, in particular fibers and their fabrics, from native network-forming polymers with trapped in the network Phasen prial, one, compared to generated on a synthetic basis PCM fibers, increased proportion of introduced phase change material contain and thus, while avoiding the disadvantages of the prior art, have an increased thermoregulatory potential.
  • the object is achieved by introducing phase change materials up to a content of 200% by mass into network-forming polymers, wherein the network is formed by the chemical coupling of functional groups, hydrogen bonds or helically interconnected polymeric or oligomeric structures.
  • a suitable network-forming polymeric matrix material is native cellulose. This forms bonds which on the one hand cause crosslinking of the polymer structure and on the other hand through the formation of hydrogen bonding the formation of a superstructure. By this structure formation, the embedding of larger amounts of microencapsulated phase change materials is possible.
  • the microencapsulation causes the demarcation between the phase change material and the polymer matrix.
  • a phase change material find, for example Paraffins of different chain length application, wherein the temperature of the phase transition depends on the chain length of the molecules and can be adjusted by changing the chain lengths the required temperature range of the phase transition. But also inorganic hydrated salts are applicable, which can be selected depending on the desired temperature range of the conformational change. Due to their higher density compared to paraffins, it is possible in particular to introduce far more than 50% by mass of phase change material into the polymer matrix.
  • a secondary structure in the form of folds of the amino acid chain based on hydrogen bonding results in a spatially cross-linked tertiary structure that is stabilized, for example, by disulfide bridges, hydrogen bonds, or ionic or hydrophobic interactions.
  • precrosslinked globular proteins are likewise soluble in tertiary amine oxides and can be shaped by a dry-wet process.
  • the solution of the precrosslinked globular protein can be added as a further constituent of a polysaccharide such as cellulose. This gives the possibility of being able to influence the properties of the moldings in a targeted manner.
  • a cellulose solution in a water-containing tertiary amine oxide phase change materials up to a content of 200 Percent by weight, based on the mass of the cellulose containing added and this solution over an air gap and then the cellulose precipitated with the phase change material enclosed in a precipitation bath, for example, water or a water / alcohol mixture, precipitated to form physical networks.
  • a precipitation bath for example, water or a water / alcohol mixture
  • phase change material associated with an optimal heat transfer to the phase change material or away from it.
  • precrosslinked globular proteins in N-methylmorpholine N-oxide are admixed with microencapsulated phase change material, optionally with the addition of polysaccharides such as e.g. Cellulose, transferred into a spinning solution and spun by known methods into filaments.
  • polysaccharides such as e.g. Cellulose
  • the native polymer-based PCM fibers produced according to the invention have a wide range of uses, for example for fabrics for the production of textiles, for nonwovens, in textiles for the automotive industry, in yarns and blended yarns.
  • phase-change heat characterizing the thermoregulatory properties of the native PCM fibers of the present invention has a value up to a factor of 8 compared to the synthetic polymer-based PCM fibers.
  • microencapsulated phase change material of a phase change temperature of 28 ° C (Thermasorb ® TY 83 from Outlast Technologies Inc.) with the addition of 6.8 g of propyl gallate in a dissolving vessel with agitator of 37 1 volume introduced.
  • the microencapsulated phase change material was previously screened to a grain size of 50 microns maximum.
  • the dissolving vessel is evacuated to 20 mbar and heated in the course of 6 hours from 20 ° C to 94 ° C at a stirrer speed of 18 min -1 and the evaporating water condensed in a connected condenser.
  • the spinning solution obtained has a viscosity of 1560 Pas and a refractive index of 1.484.
  • the spinning solution is extruded at 80 ° C through a spinneret with a number of holes of 150 and a hole diameter of 200 microns via an air gap in a precipitation bath of water.
  • the take-off speed is 25 m / min, which results in a distortion in the air gap of 3.75.
  • the spun fibers have a denier of about 14 dtex and are washed in subsequent rinse baths and then cut into stacks.
  • the phase change heat of the obtained fibers is 30 J / g.
  • the cellulose fibers without introduced phase change material have a heat capacity of 6 J / g.
  • the fineness-related tear strengths of the resulting fibers are about 15 cN / tex.
  • the modified fibers After being carded on a carding machine, the modified fibers could be processed into a needle-punched nonwoven having a basis weight of 300 g / m 2 .
  • casein 100 g of casein are dispersed in 250 ml of water and crosslinked by the addition of 2 g of glutaraldehyde and 0.1 g of MgCl 2 at 25 ° C. After pressing to a moisture content of 50%, the casein is suspended in 430 g of 60% NMMNO. As a stabilizer, 0.5 g of propyl gallate is added.
  • phase change material such as Lurapret TX PMC 28 ® from BASF AG
  • the suspension is transferred in a jacketed kneading apparatus under a vacuum of 30 mbar and a temperature of 90 ° C by distilling off 130 g of water in a spinning solution.
  • the homogeneity of the spinning solution is checked by light microscopy and is usually reached 15 minutes after the end of the distillation.
  • the solution is extruded through a spinneret with 150 holes of 90 microns in diameter as filaments through an air gap at 80 ° C spinning temperature in an aqueous precipitation bath and then washed with distilled water residue and cut to a staple length of 40 mm.
  • the fibers are dried at 60 ° C in a convection oven.
  • the strength of the spun fibers is 15 cN / tex at an elongation of 10% and a titer of about 15 dtex.
  • the Heat-absorbing capacity of the resulting fibers is 60 J / g versus 8 J / g for unmodified fibers.
  • casein 50 g of casein are dispersed in 250 ml of water and crosslinked by addition of 1 g of glutaraldehyde and 0.1 g of MgCl 2 at 25 ° C. After pressing to a moisture content of 50%, the casein is suspended in 430 g of 60% NMMNO. In addition, 25 g of dry ground sulphite be (DP 760) and 100 g microencapsulated phase change material such as Lurapret TX PMC 28 ® from BASF AG, was added. This corresponds to a content of 133% PCM based on cellulose. 0.5 g of propyl gallate are added for stabilization.
  • This suspension is transferred in a jacketed kneading apparatus under a vacuum of 30 mbar at a temperature of 90 ° C by distilling off 140 g of water in a spinning solution. Homogenization of the solution was achieved 15 minutes after the end of the distillation and was checked by light microscopy.
  • the spinning solution obtained was extruded through an air hole into an aqueous precipitation bath through a spinneret of 150 holes, each 90 ⁇ m in diameter, and the resulting fiber strand was washed without residue in distilled water and cut to a staple length of 40 mm.
  • the fibers were dried in a convection oven at 60 ° C.
  • the fibers have a strength of 30 cN / tex.
  • the titer is about 20 dtex.
  • the heat capacity of the modified fibers is 70 J / g versus 7 J / g for unmodified fibers.
  • 7607 g of a 60% solution of N-methylmorpholine-N-oxide are introduced together with 784 g of pulp of average polymerization degree 500 with the addition of 4.6 g of propyl gallate in a 37 l stirred volume dissolving vessel.
  • the dissolving vessel is evacuated to 20 mbar and heated in the course of 6 hours from 20 ° C to 94 ° C at a stirrer speed of 18 min -1 and condenses the evaporating water in a condenser. A total of 2361 g of water are evaporated.
  • the spinning solution obtained has a viscosity of 8072 Pas, the refractive index of the spinning solution was 1.487.
  • a stock solution of 1500 g of an 80% solution of N-methylmorpholine-N-oxide and 750 g of a microencapsulated phase change material such as Lurapret ® TX PMC 28 from BASF AG, and 45 g of xanthan gum is prepared. Both solutions are extruded after intimate mixing in a dynamic mixer at 80 ° C through a spinneret with a number of holes of 150 and a hole diameter of 200 microns, warped over an air gap, regenerated in an aqueous precipitation bath and washed solvent-free with distilled water. The adjustment of the mixing ratio is such that the extruded fibers have a concentration of microencapsulated phase change material of 60% based on cellulose.
  • the spun fibers have a fineness of about 10 dtex and are cut into stacks after washing.
  • the phase change heat of the obtained fibers is 80 J / g.
  • the cellulose fibers without introduced phase change material have a heat capacity of 6 J / g in the corresponding temperature range.
  • the fineness-related tear strengths of the resulting fibers are about 15 cN / tex.

Abstract

Molded body comprises polymers which form a network produced from the chemical coupling of functional groups, hydrogen bridges or polymeric or oligomeric structures helically combined with each other. Up to 200 wt.% of a phase change material are embedded in the polymeric matrix. An independent claim is also included for a process for the production of the molded body.

Description

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Formkörpern, bestehend aus nativen netzwerkbildenden Polymeren und darin eingelagerten Phasenwechselmaterialien, die als. Fasern zu textilen Flächengebilden mit verbesserten thermoregulativen Eigenschaften verarbeitet werden können und daraus gefertigten Textilien einen besseren Tragekomfort verleihen, sowie in anderen Anwendungen einen hohen Funktionalitätsgrad in Bezug auf Wärmespeicherung und -abgabe haben.The invention relates to a process for the production of moldings, consisting of native network-forming polymers and phase change materials incorporated therein, which as. Fibers can be processed into fabrics with improved thermoregulatory properties and give textiles made from them a better comfort and have in other applications a high degree of functionality in terms of heat storage and delivery.

[Stand der Technik][State of the art]

Thermoregulative Eigenschaften von Polymerfasern werden durch das Ein- oder Aufbringen von Phasenwechselmaterialien in oder auf die Polymermatrix erzeugt. Phasenwechselmaterialien können bei Änderung ihres Phassenzustandes oder ihrer Konformation bei konstanter Temperatur relativ große Wärmemengen aufnehmen bzw. abgeben. Im Moment des Phasenüberganges oder der Konformationsänderung ist eine erhöhte Wärmekapazität festzustellen, die in der auftretenden Schmelzenthalpie ihren physikalisch messbaren Ausdruck findet und die Speicherung oder Abgabe von größeren Wärmemengen erlaubt, als es der normalen Wärmekapazität des Materials außerhalb des Temperatur bereiches des Phasenüberganges oder der Konformationsänderung entsprechen würde. Die Aufnahme von Wärme bei der Änderung des Phasenzustandes oder der Konformation ist einerseits mit der Aufnahme von Wärmeenergie bei Wärmezufuhr von außen verbunden, was subjektiv als Kühlwirkung empfunden wird, und liefert in umgekehrter Richtung bei Abkühlung reversibel die gleiche Wärmemenge wieder zurück, was als wärmend empfunden wird. Als Phasenwechselmaterial können Paraffine oder Salze bzw. Lösungen geeigneter Salze eingesetzt werden. Bei Paraffinen kann durch die Variation der Kettenlänge der Temperaturbereich des Phasenüberganges vom festen in den schmelzflüssigem Zustand gezielt an die jeweils geforderte Temperatur, bei der die Wärme abgegeben oder gespeichert werden soll, angepasst werden. Salze oder deren Lösungen können gezielt nach dem gewünschten Temperaturbereich der Konformationsänderung ausgewählt werden. Für die Anwendung in der Textiltechnik bietet sich insbesondere die mikrogekapselte Form an. Dabei wird das Phasenwechselmaterial in Keramik- bzw. Polymerkugeln mit Durchmessern im µm-Bereich eingeschlossen und somit in eine handhabbare Form gebracht, die den Einschluss in vernetzte polymere Matrixmaterialien erlaubt, wobei die Höhe des thermoregulativen Potenzials von der Art und Menge des eingeschlossenen PCM-Materials abhängig ist.Thermoregulatory properties of polymer fibers are produced by incorporation or application of phase change materials into or onto the polymer matrix. Phase change materials can absorb or release relatively large amounts of heat when their phase state or conformation changes at a constant temperature. At the moment of the phase transition or the conformational change, an increased heat capacity is found, which finds its physically measurable expression in the enthalpy of fusion and allows the storage or release of larger amounts of heat than correspond to the normal heat capacity of the material outside the temperature range of the phase transition or the conformational change would. The absorption of heat when changing the phase state or the Conformation is on the one hand with the absorption of heat energy with heat connected from the outside, which is perceived subjectively as a cooling effect, and supplies reversibly the same amount of heat in the reverse direction when cooled, which is perceived as warming. As phase change material, paraffins or salts or solutions of suitable salts can be used. In the case of paraffins, the temperature range of the phase transition from the solid to the molten state can be adjusted in a targeted manner to the respective required temperature at which the heat is to be released or stored by varying the chain length. Salts or their solutions can be selected specifically according to the desired temperature range of the conformational change. For application in textile technology, the microencapsulated form is particularly suitable. In this case, the phase change material is enclosed in ceramic or polymer spheres with diameters in the micron range and thus brought into a manageable form that allows inclusion in crosslinked polymeric matrix materials, the amount of the thermoregulatory potential on the type and amount of enclosed PCM material is dependent.

Als Matrixmaterialien kommen sowohl synthetische Polymere als auch native netzwerkbildende Polymere in Frage.Suitable matrix materials include both synthetic polymers and native network-forming polymers.

Fasern mit thermoregulativen Eigenschaften und daraus gefertigte Flächengebilde sind an sich bereits bekannt. So lehrt EP 0306202 und US 4756958, dass man synthetischen Fasern aus schmelzspinnbaren Polymeren durch Einbindungvon temperaturregulierenden Materialien temperaturstabilisierendes Verhalten verleihen kann. Nachteilig dabei sind die nur geringen Mengen an temperaturregelnden Materialien, die in die Fasern eingebracht werden können.Fibers with thermoregulatory properties and fabrics made therefrom are already known per se. Thus, EP 0306202 and US 4756958 teach that it is possible to impart temperature-stabilizing behavior to synthetic fibers of melt-spinnable polymers by incorporating temperature-regulating materials. The disadvantage here are the only small amounts of temperature-regulating materials that can be incorporated into the fibers.

Ferner wird in US 5885475 Bekleidung beschrieben, die sich aus Fasern zusammensetzt, welche aus einer Polymermischung bestehen, die zusätzlich Phasenwechselmaterial enthält. Auch hier werden die faserbildenden Substanzen aus der Gruppe der synthetischen schmelzspinnbaren, thermoplastischen Polymere ausgesucht.Further, US 5,885,475 describes apparel composed of fibers consisting of a polymer blend additionally containing phase change material. Again, the fiber-forming substances are made selected from the group of synthetic melt-spinnable thermoplastic polymers.

Mehrkomponentenfasern mit erhöhten, reversiblen thermischen Eigenschaften und daraus gefertgte textile Flächengebilde werden in WO 03027365, US 200212079 und US 200129648 beschrieben. Die Faserkörper, bestehend aus einer Vielzahl gestreckter Komponenten, enthalten wenigstens in einer dieser gestreckten Komponenten ein darin verteiltes temperaturregelndes Material. Dieses kann ein Phasenwechselmaterial sein und optional den Klassen der Kohlenwasserstoffe, hydratisierten Salze, Wachse, Öle, Wasser, Fettsäuren, Fettsäureester, 2-basige Säuren und Ester, Halogenide, Cluster und Semicluster, Gascluster, Stearinanhydrit, Ethylencarbonat, höherwertigen Alkohole, Polymere und Metalle und deren Mischungen angehören.Multicomponent fibers with increased, reversible thermal properties and textile fabrics produced therefrom are described in WO 03027365, US 200212079 and US 200129648. The fiber bodies, consisting of a multiplicity of elongated components, contain at least in one of these stretched components a temperature-regulating material distributed therein. This may be a phase change material and optionally the classes of hydrocarbons, hydrated salts, waxes, oils, water, fatty acids, fatty acid esters, 2-basic acids and esters, halides, clusters and semiclusters, gas clusters, stearin anhydrite, ethylene carbonate, higher alcohols, polymers and metals and their mixtures belong.

Die Anordnung der verschiedenen Komponenten der Faser kann wahlweise in einer Kern-Mantel-Struktur, polysektional, gebündelt oder streifenförmig bei unterschiedlich geformtem Querschnitt erfolgen. Das Matrixmaterial der beschriebenen Mehrkomponentenfaser kann aus verschiedenen, linearen Kettenmolekülen bestehen.The arrangement of the various components of the fiber can optionally take place in a core-sheath structure, polysektional, bundled or strip-shaped at different shaped cross-section. The matrix material of the multicomponent fiber described can consist of different, linear chain molecules.

Nachteilig bei diesen Fasern und daraus gefertigten textilen Flächengebilden ist, dass durch die beschriebene Anordnung der Einzelkomponenten nur ein Teil der daraus gebildeten Fasern Phasenwechselmaterial enthält und der Anteil an temperaturregulierendem Material in der Gesamtfaser naturgemäß beschränkt ist. Aufgrund des Vorhandenseins von Mehrkomponentenstrukturen aus einer Vielzahl gestreckter Bestandteile ist der Anteil von in die Polymerstruktur einbringbarem Phasenwechselmaterial auf einen Anteil von maximal 50 Masseprozent, bezogen auf das jeweilige Matrixmaterial, beschränkt.A disadvantage of these fibers and textile fabrics made therefrom is that only a portion of the fibers formed therefrom contain phase change material as a result of the described arrangement of the individual components and the proportion of temperature-regulating material in the overall fiber is naturally limited. Due to the presence of multicomponent structures of a plurality of elongated constituents, the proportion of phase change material that can be introduced into the polymer structure is limited to a proportion of at most 50 percent by mass, based on the respective matrix material.

In WO 02095314 und CH 0200245 werden ebenfalls Verfahren beschrieben, bei denen die temperaturregulierenden Eigenschaften durch Bedrucken eines textilen Flächengebildes mit mikrogekapseltem Phasenwechselmaterial erreicht werden soll. Die temperaturregulierende Wirkung wird also durch das Aufbringen einer Phasenwechselmaterial enthaltenden Beschichtung erreicht. Ein solches Verfahren ist jedoch mit dem Nachteil behaftet, dass auf der Oberfläche der Strukturen nur vergleichsweise geringe Mengen Phasenwechselmaterial fixiert werden können, insbesondere wenn nur ein Teil der Oberfläche mit einer Suspension mikrogekapselter Phasenwechselmaterialien bedruckt wird und somit der die Temperatur regelnde Effekt, bezogen auf die Menge an Material, vergleichsweise lokal begrenzt ist. Zudem wirkt sich das Bedrucken einer textilen Oberfläche mit einer in vergleichsweise großer Schichtdicke aufgebrachten Suspension mikrogekapselter Phasenmaterialien nachteilig auf die Flexibilität daraus gefertigter textiler Erzeugnisse und damit auch auf die Trageeigenschaften aus. Weiterhin sind auf textile Oberflächen aufgebrachte Suspensionen mikrogekapselter Phasenwechselmaterialien nur eingeschränkt mechanisch beständig und waschfest.WO 02095314 and CH 0200245 likewise describe processes in which the temperature-regulating properties are to be achieved by printing on a textile fabric with microencapsulated phase change material. The temperature-regulating effect is thus achieved by applying a coating containing phase change material. However, such a method has the disadvantage that only comparatively small amounts of phase change material can be fixed on the surface of the structures, in particular if only a part of the surface is printed with a suspension of microencapsulated phase change materials and thus the temperature regulating effect, based on the Amount of material, comparatively localized. In addition, the printing of a textile surface with a suspension of microencapsulated phase materials applied in a comparatively large layer thickness has an adverse effect on the flexibility of textile products made therefrom and thus also on the wearing properties. Furthermore, suspensions of microencapsulated phase change materials applied to textile surfaces have only limited mechanical resistance and are washable.

In US 2003124278 und US 2003124318 ist eine schichtförmige Anordnung textiler Materialien beschrieben, die temperaturregulierende Eigenschaften dadurch erhalten, dass zwischen ihnen mikrogekapselte Phasenwechselmaterialien eingeschlossen sind. Ein derartiger Schichtaufbau hat den Nachteil, dass der Wärmeaustausch durch die äußeren Schichten behindert wird und somit die Wärmekapazität des eingeschlossenen mikrogekapselten Phasenwechselmaterials nur eingeschränkt nutzbar ist. Infolge des Fehlens einer Anbindung des mikrogekapselten Phasenwechselmaterials an das Material der Grundstruktur ist sowohl die Menge an einbringbarem Phasenwechselmaterial als auch die Fähigkeit einer effektiven Wärmeübertragung an das Phasenwechselmaterial beschränkt.In US 2003124278 and US 2003124318 a layered arrangement of textile materials is described which obtain temperature regulating properties by including microencapsulated phase change materials between them. Such a layer structure has the disadvantage that the heat exchange is hindered by the outer layers and thus the heat capacity of the enclosed micro-encapsulated phase change material is only limited use. Due to the lack of attachment of the microencapsulated phase change material to the material of the basic structure, both the amount of einbringbarem phase change material and the ability of an effective heat transfer to the phase change material is limited.

Eine ähnliche Anordnung wird in US 6217993 und US 6077597' offenbart.A similar arrangement is disclosed in US 6217993 and US 6077597 '.

Fast alle bisher beschriebenen PCM-Fasern sind auf der Basis synthetischer schmelzspinnbarer Polymerfasern hergestellt. Die Verwendung in der Natur vorkommender und auf einfache Weise gewinnbarer netzwerkbildender Matrixmaterialien wie Cellulose und/oder globuläre Proteine ist bisher nicht erwähnt und es sind daraus auch keine beispielhaften PCM-Fasern hergestellt worden.Almost all PCM fibers described so far are made on the basis of synthetic melt-spun polymer fibers. The use of naturally occurring and readily recoverable network-forming matrix materials, such as cellulose and / or globular proteins, has not previously been mentioned and no exemplary PCM fibers have been produced therefrom.

Es ist bekannt, dass netzwerkbildende Strukturen beispielsweise aus cellulosischen Form- und Spinnmassen durch Lösen von Cellulose in tertiären Aminoxiden, vorzugsweise N-Methylmorpholin-N-Oxid, und einem Nichtlösungsmittel, vorzugsweise Wasser, hergestellt werden können. Dabei wird eine Spinnlösung von Cellulose in N-Methylmorpholin-N-Oxid und Wasser nach einem Trocken-Nass-Spinn-Prozess verformt, in einem beispielsweise wässrigen Spinnbad koaguliert, das Lösungsmittel durch mehrmaliges Waschen vollständig entfernt und die verfestigten Formkörper getrocknet. Die so erhaltenen Formkörper bebesitzen danach eine durch Wasserstoffbrückenbindungen gekennzeichnete Netzwerkstruktur. (Vgl. Berger, W.: Möglichkeiten und Grenzen alternativer Celluloseauflösung; Lenziger Berichte 74 [1994] 9, S. 11-18)It is known that network-forming structures can be prepared, for example, from cellulosic forming and spinning compositions by dissolving cellulose in tertiary amine oxides, preferably N-methylmorpholine-N-oxide, and a non-solvent, preferably water. In this case, a spinning solution of cellulose in N-methylmorpholine-N-oxide and water is deformed by a dry-wet spinning process, coagulated in, for example, an aqueous spinning bath, the solvent completely removed by washing several times and the solidified shaped bodies dried. The resulting shaped articles then have a network structure characterized by hydrogen bonds. (See Berger, W .: Possibilities and Limitations of Alternative Cellulose Dissolution, Lenziger Berichte 74 [1994] 9, pp. 11-18)

DE 10059111 lehrt die Vernetzung von Proteinen über die vorhandenen funktionellen Gruppen, was zu mechanisch stabilen Formkörpern führt.DE 10059111 teaches the crosslinking of proteins via the functional groups present, resulting in mechanically stable moldings leads.

Die globulären Proteine weisen, wie schon der Name sagt, eine kugelförmige Tertiärstruktur auf und kommen in der Natur in relativ häufiger Zahl vor. Beispiele hierfür sind das Casein (Milchprotein), das Zein (Maisprotein) und das Ardenin (Erdnussprotein).The globular proteins have, as the name implies, a spherical tertiary structure and occur in nature in relatively frequent numbers. Examples are the casein (milk protein), the zein (maize protein) and the ardenin (peanut protein).

[Aufgabe der Erfindung]OBJECT OF THE INVENTION

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von thermoregulativen Formkörpern, insbesondere Fasern und deren Flächengebilde, aus nativen netzwerkbildenden Polymeren mit im Netzwerk eingeschlossenem Phasenwechselatsrial zu entwickeln, die einen, gegenüber auf synthetischer Basis erzeugten PCM-Fasern, erhöhten Anteil an eingebrachtem Phasenwechselmaterial enthalten und damit, unter Vermeidung der genannten Nachteile des Standes der Technik, ein erhöhtes thermoregulatives Potenzial aufweisen.The invention has for its object to develop a process for the preparation of thermoregulatory moldings, in particular fibers and their fabrics, from native network-forming polymers with trapped in the network Phasenwechselsprial, one, compared to generated on a synthetic basis PCM fibers, increased proportion of introduced phase change material contain and thus, while avoiding the disadvantages of the prior art, have an increased thermoregulatory potential.

Ferner sollen das Augenmerk auf die Verwendung natürlich vorkommender Ausgangsstoffe gelegt und unter Ausnutzung natürlicher Ressourcen umweltfreundlich in möglichst wenig Verfahrensschritten Fasern mit den beschriebenen Eigenschaften hergestellt werden.Furthermore, attention should be paid to the use of naturally occurring raw materials and, by using natural resources in an environmentally friendly manner, fibers with the described properties should be produced in as few process steps as possible.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass Phasenwechselmaterialien bis zu einem Gehalt von 200 Masseprozent in netzwerkbildende Polymere eingebracht werden, wobei das Netzwerk durch die chemische Kopplung funktioneller Gruppen, Wasserstoffbrücken oder helical miteinander verbundene polymere bzw. oligomere Strukturen gebildet wird.According to the invention, the object is achieved by introducing phase change materials up to a content of 200% by mass into network-forming polymers, wherein the network is formed by the chemical coupling of functional groups, hydrogen bonds or helically interconnected polymeric or oligomeric structures.

Ein geeignetes netzwerkbildendes polymeres Matrixmatrial ist native Cellulose. Diese bildet Bindungen aus, die einerseits eine Vernetzung der Polymerstruktur bewirken und andererseits durch die Bildung von Wasserstoffbrückenbindung die Herausbildung einer Überstruktur bedingen. Durch diese Strukturbildung ist die Einbettung auch größerer Mengen mikrogekapselter Phasenwechselmaterialien möglich. Die Mikrokapselung bewirkt die Abgrenzung zwischen dem Phasenwechselmaterial und der Polymermatrix. Als Phasenwechselmaterial finden beispielsweise Paraffine unterschiedlicher Kettenlänge Anwendung, wobei die Temperatur des Phasenüberganges von der Kettenlänge der Moleküle abhängig ist und durch Veränderung der Kettenlängen dem erforderlichen Temperaturbereich des Phasenüberganges angepasst werden kann. Aber auch anorganische hydratisierte Salze sind anwendbar, die je nach gewünschtem Temperaturbereich der Konformationsänderung gewählt werden können. Durch ihre höhere Dichte gegenüber Paraffinen ist es insbesondere möglich, weit mehr als 50 Masseprozent an Phasenwechselmaterial in die Polymermatrix einzubringen.A suitable network-forming polymeric matrix material is native cellulose. This forms bonds which on the one hand cause crosslinking of the polymer structure and on the other hand through the formation of hydrogen bonding the formation of a superstructure. By this structure formation, the embedding of larger amounts of microencapsulated phase change materials is possible. The microencapsulation causes the demarcation between the phase change material and the polymer matrix. As a phase change material find, for example Paraffins of different chain length application, wherein the temperature of the phase transition depends on the chain length of the molecules and can be adjusted by changing the chain lengths the required temperature range of the phase transition. But also inorganic hydrated salts are applicable, which can be selected depending on the desired temperature range of the conformational change. Due to their higher density compared to paraffins, it is possible in particular to introduce far more than 50% by mass of phase change material into the polymer matrix.

Weitere, für die Lösung der erfindungsgemäß gestellten Aufgabe geeignete netzwerkbildende polymere Materialien sind die in der Natur zahlreich vorkommenden und auf einfache Weise gewinnbaren globulären Proteine.Further network-forming polymeric materials suitable for the solution of the problem set according to the invention are the globular proteins, which are numerous in nature and easily obtainable.

Bei ihnen entsteht, ausgehend von einer auf Peptidbindungen beruhenden Primärstruktur, über eine Sekundärstruktur in Form von Faltungen der Aminosäurekette, die auf Wasserstoffbrückenbindung basiert, eine räumlich vernetzte Tertiärstruktur, die beispielsweise über Disulfidbrücken, Wasserstoffbrücken oder durch Ionen- oder hydrophobe Wechselwirkungen stabilisiert wird. Überraschenderweise wurde in DE 10059111 gefunden, dass vorvernetzte globuläre Proteine gleichfalls in tertiären Aminoxiden löslich sind und nach einem Trocken-Nass-Verfahren verformt werden können. Weiterhin kann der Lösung des vorvernetzten globulären Proteins als weiterer Bestandteil ein Polysaccharid wie beispielsweise Cellulose zugefügt werden. Damit erhält man die Möglichkeit, die Eigenschaften der Formkörper gezielt beeinflussen zu können.Starting from a primary structure based on peptide bonds, a secondary structure in the form of folds of the amino acid chain based on hydrogen bonding results in a spatially cross-linked tertiary structure that is stabilized, for example, by disulfide bridges, hydrogen bonds, or ionic or hydrophobic interactions. Surprisingly, it has been found in DE 10059111 that precrosslinked globular proteins are likewise soluble in tertiary amine oxides and can be shaped by a dry-wet process. Furthermore, the solution of the precrosslinked globular protein can be added as a further constituent of a polysaccharide such as cellulose. This gives the possibility of being able to influence the properties of the moldings in a targeted manner.

In einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Lösung werden beispielsweise einer Celluloselösung in einem wasserhaltigen tertiären Aminoxid Phasenwechselmaterialien bis zu einem Gehalt von 200 Masseprozent, bezogen auf die Masse der enthaltenden Cellulose, zugesetzt und diese Lösung über einen Luftspalt verzogen und anschließend die Cellulose mit dem darin eingeschlossenen Phasenwechselmaterial in einem Fällbad beispielsweise aus Wasser oder einem Wasser/Alkohol-Gemisch, unter Bildung physikalischer Netzwerke ausgefällt.In a particularly preferred embodiment of the solution according to the invention, for example, a cellulose solution in a water-containing tertiary amine oxide phase change materials up to a content of 200 Percent by weight, based on the mass of the cellulose containing added and this solution over an air gap and then the cellulose precipitated with the phase change material enclosed in a precipitation bath, for example, water or a water / alcohol mixture, precipitated to form physical networks.

Durch den sich nach erschöpfender Extraktion des Lösungsmittels anschließenden Trocknungsprozess kommt es zur Ausbildung von Wasserstoffbrückenbindungen, welche trotz der vergleichsweise hohen Gehalte an Phasenwechwechselmaterial eine für die Anwendung der Formkörper, beispielweise in Bekleidungstextilien, ausreichend hohe textilphysikalische Festigkeit ermöglichen. Die Vernetzung der polymeren Matrix bewirkt einen vollständigen und mechanisch stabilen Einschluß der mikrogekapselten. Phasenwechselmaterialien verbunden mit einer optimalen Wärmeübertragung an das Phasenwechselmaterial bzw. von ihm weg.The subsequent drying process after exhaustive extraction of the solvent leads to the formation of hydrogen bonds, which, despite the comparatively high contents of phase change material, allow a sufficiently high textile-physical strength for the use of the shaped bodies, for example in clothing textiles. Crosslinking of the polymeric matrix results in complete and mechanically stable entrapment of the microencapsulated ones. Phase change materials associated with an optimal heat transfer to the phase change material or away from it.

In einer anderen Ausführungsform der erfindungsgemäßen Lösung werden vorvernetzte globuläre Proteine in N-Methylmorpholin-N-Oxid mit mikrogekapseltem Phasenwechselmaterial versetzt, gegebenfalls unter Zugabe von Polysacchariden wie z.B. Cellulose, in eine Spinnlösung überführt und nach bekannten Verfahren zu Filamenten versponnen.In another embodiment of the solution according to the invention precrosslinked globular proteins in N-methylmorpholine N-oxide are admixed with microencapsulated phase change material, optionally with the addition of polysaccharides such as e.g. Cellulose, transferred into a spinning solution and spun by known methods into filaments.

Die erfindungsgemäß hergestellten PCM-Fasern auf nativer Polymerbasis haben ein breites Anwendungsspektrum, wie zum Beispiel für Stoffe zur Herstellung von Textilien, für vliese, in Textilien für die Automobilindustrie, in Garnen und Mischgarnen.The native polymer-based PCM fibers produced according to the invention have a wide range of uses, for example for fabrics for the production of textiles, for nonwovens, in textiles for the automotive industry, in yarns and blended yarns.

Die die thermoregulativen Eigenschaften charakterisierende Phasenumwandlumgswärme der erfindungsgemäßen nativen PCM-Fasern weist im Vergleich zu den PCM-Fasern auf synthetischer Polymerbasis einen bis zum Faktor 8 höheren Wert auf.The phase-change heat characterizing the thermoregulatory properties of the native PCM fibers of the present invention has a value up to a factor of 8 compared to the synthetic polymer-based PCM fibers.

Im folgenden soll die Erfindung anhand von Ausführungsbeispielen näher erläutert werden.In the following, the invention will be explained in more detail with reference to embodiments.

[Beispiele][Examples] Beispiel 1:Example 1:

15779 g einer 60%-igen Lösung von N-Methylmorpholin-N-Oxid werden zusammen mit 1160 g Zellstoff von einem Durchschnittspolymerisationsgrad 500 sowie 464 g (= 40% bezogen auf die eingesetzte Cellulosemenge) mikrogekapseltem Phasenwechselmaterial einer Phasenwechseltemperatur von 28° C (Thermasorb® TY 83 der Firma Outlast Technologies Inc.) unter Zusatz von 6,8 g Propylgallat in ein Lösegefäß mit Rührwerk von 37 1 Volumen eingebracht. Das mikrogekapselte Phasenwechselmaterial wurde zuvor auf eine Korngröße von maximal 50 µm abgesiebt. Das Lösegefäß wird bis auf 20 mbar evakuiert und im Verlauf von 6 Stunden von 20° C auf 94° C bei einer Rührerdrehzahl von 18 min-1 erwärmt und das verdampfende Wasser in einem angeschlossenen Kühler kondensiert. Die erhaltene Spinnlösung weist eine Viskosität von 1560 Pas und einen Brechungsindex von 1,484 auf. Bei einer Spinnpumpendrehzahl von 25 min-1 wird die Spinnlösung bei 80° C durch eine Spinndüse mit einer Lochzahl von 150 und einem Lochdurchmesser von 200 µm über einen Luftspalt in ein Fällbad aus Wasser extrudiert. Die Abzugsgeschwindigkeit beträgt 25 m/min, wodurch sich ein Verzug im Luftspalt von 3,75 ergibt. Die ersponnenen Fasern weisen einen Titer von etwa 14 dtex auf und werden in nachfolgenden Spülbädern gewaschen und anschließend auf Stapel geschnitten. Die Phasenumwandlungswärme der erhaltenen Fasern beträgt 30 J/g.15779 g of a 60% solution of N-methylmorpholine N-oxide together with 1160 g of pulp of an average degree of polymerization 500 and 464 g (= 40% based on the amount of cellulose used) microencapsulated phase change material of a phase change temperature of 28 ° C (Thermasorb ® TY 83 from Outlast Technologies Inc.) with the addition of 6.8 g of propyl gallate in a dissolving vessel with agitator of 37 1 volume introduced. The microencapsulated phase change material was previously screened to a grain size of 50 microns maximum. The dissolving vessel is evacuated to 20 mbar and heated in the course of 6 hours from 20 ° C to 94 ° C at a stirrer speed of 18 min -1 and the evaporating water condensed in a connected condenser. The spinning solution obtained has a viscosity of 1560 Pas and a refractive index of 1.484. At a spinning pump speed of 25 min -1 , the spinning solution is extruded at 80 ° C through a spinneret with a number of holes of 150 and a hole diameter of 200 microns via an air gap in a precipitation bath of water. The take-off speed is 25 m / min, which results in a distortion in the air gap of 3.75. The spun fibers have a denier of about 14 dtex and are washed in subsequent rinse baths and then cut into stacks. The phase change heat of the obtained fibers is 30 J / g.

Im Vergleich dazu weisen die Cellulosefasern ohne eingebrachtes Phasenwechselmaterial eine Wärmekapazität 6 J/g auf. Die feinheitsbezogenen Reißfestigkeiten der erhaltenen Fasern liegen bei etwa 15 cN/tex. Die modifizierten Fasern ließen sich nach Kardierung auf einer Krempelmaschine zu einem Nadelvlies mit einer Flächenmasse von 300 g/m2 verarbeiten.In comparison, the cellulose fibers without introduced phase change material have a heat capacity of 6 J / g. The fineness-related tear strengths of the resulting fibers are about 15 cN / tex. After being carded on a carding machine, the modified fibers could be processed into a needle-punched nonwoven having a basis weight of 300 g / m 2 .

Beispiel 2:Example 2:

100 g Casein werden in 250 ml Wasser dispergiert und durch Zusatz von 2 g Glutaraldehyd und 0,1 g MgCl2 bei 25 °C vernetzt. Nach Abpressen auf einen Feuchtegehalt von 50% wird das Casein in 430 g 60 %-igem NMMNO suspendiert. Als Stabilisator werden 0,5g Propylgallat zugesetzt. Der Suspension werden 100 g eines mikrogekapselten Phasenwechselmaterials, wie z.B Lurapret® TX PMC 28 der Firma BASF AG, zugefügt, was einem Gehalt von 100 Masseprozent an Phasenwechselmaterial, bezogen auf Protein in der Lösung entspricht. Die Suspension wird in einem mantelbeheizten Knetapparat unter einem Vakuum von 30 mbar und einer Temperatur von 90 °C durch Abdestillieren von 130 g Wasser in eine Spinnlösung überführt. Die Homogenität der Spinnlösung wird lichtmikroskopisch geprüft und ist in der Regel 15 Minuten nach Destillationsende erreicht. Die Lösung wird durch eine Spinndüse mit 150 Loch von je 90 µm Durchmesser als Filamente über einen Luftspalt bei 80 °C Spinntemperatur in ein wässriges Fällbad extrudiert und im Anschluss daran mit destilliertem Wasser rückstandsfrei gewaschen und auf eine Stapellänge von 40 mm geschnitten. Die Trocknung der Fasern erfolgt bei 60 °C in einem Umlufttrockenschrank. Die Festigkeit der ersponnenen Fasern liegt bei15 cN/tex bei einer Dehnung von 10% und einem Titer von etwa 15 dtex. Das Wärmeaufnahmevermögen der erhaltenen Fasern liegt bei 60 J/g gegenüber 8 J/g für unmodifizierte Fasern.100 g of casein are dispersed in 250 ml of water and crosslinked by the addition of 2 g of glutaraldehyde and 0.1 g of MgCl 2 at 25 ° C. After pressing to a moisture content of 50%, the casein is suspended in 430 g of 60% NMMNO. As a stabilizer, 0.5 g of propyl gallate is added. The suspension 100 g of a micro-encapsulated phase change material, such as Lurapret TX PMC 28 ® from BASF AG, added, corresponding to a content of 100 percent by mass of phase change material, based on the protein in the solution. The suspension is transferred in a jacketed kneading apparatus under a vacuum of 30 mbar and a temperature of 90 ° C by distilling off 130 g of water in a spinning solution. The homogeneity of the spinning solution is checked by light microscopy and is usually reached 15 minutes after the end of the distillation. The solution is extruded through a spinneret with 150 holes of 90 microns in diameter as filaments through an air gap at 80 ° C spinning temperature in an aqueous precipitation bath and then washed with distilled water residue and cut to a staple length of 40 mm. The fibers are dried at 60 ° C in a convection oven. The strength of the spun fibers is 15 cN / tex at an elongation of 10% and a titer of about 15 dtex. The Heat-absorbing capacity of the resulting fibers is 60 J / g versus 8 J / g for unmodified fibers.

Beispiel 3:Example 3:

50 g Casein werden in 250 ml Wasser dispergiert und durch Zusatz von 1 g Glutaraldehyd und 0,1 g MgCl2 bei 25 °C vernetzt. Nach Abpressen auf einen Feuchtegehalt von 50 % wird das Casein in 430 g 60 %-igem NMMNO suspendiert. Zusätzlich werden 25 g trockener gemahlener Sulfitzellstoff (DP 760) sowie 100 g mikrogekapseltes Phasenwechselmaterial wie z.B. Lurapret® TX PMC 28 der Firma BASF AG, zugesetzt. Das entspricht einem Gehalt von 133 % PCM bezogen auf Cellulose. 0,5 g Propylgallat werden zur Stabilisierung zugesetzt. Diese Suspension wird in einem mantelbeheizten Knetapparat unter einem Vakuum von 30 mbar bei einer Temperatur von 90 °C durch Abdestillieren von 140 g Wasser in eine Spinnlösung überführt. Die Homogenisierung der Lösung war 15 Minuten nach Destillationsende erreicht und wurde lichtmikroskopisch geprüft. Die erhaltene Spinnlösung wurde durch eine Spinndüse von 150 Loch mit je 90 µm Durchmesser über einen Luftspalt in ein wässriges Fällbad extrudiert und der gebildete Faserstrang in destilliertem Wasser rückstandsfrei gewaschen und auf eine Stapellänge von 40 mm geschnitten. Die Trocknung der Fasern erfolgte in einem Umlufttrockenschrank bei 60 °C. Die Fasern weisen bei einer Dehnung von 8 % eine Festigkeit von 30 cN/tex auf. Der Titer beträgt etwa 20 dtex. Das Wärmeaufnahmevermögen der modifizierten Fasern beträgt 70 J/g gegenüber 7 J/g bei unmodifizierten Fasern.50 g of casein are dispersed in 250 ml of water and crosslinked by addition of 1 g of glutaraldehyde and 0.1 g of MgCl 2 at 25 ° C. After pressing to a moisture content of 50%, the casein is suspended in 430 g of 60% NMMNO. In addition, 25 g of dry ground sulphite be (DP 760) and 100 g microencapsulated phase change material such as Lurapret TX PMC 28 ® from BASF AG, was added. This corresponds to a content of 133% PCM based on cellulose. 0.5 g of propyl gallate are added for stabilization. This suspension is transferred in a jacketed kneading apparatus under a vacuum of 30 mbar at a temperature of 90 ° C by distilling off 140 g of water in a spinning solution. Homogenization of the solution was achieved 15 minutes after the end of the distillation and was checked by light microscopy. The spinning solution obtained was extruded through an air hole into an aqueous precipitation bath through a spinneret of 150 holes, each 90 μm in diameter, and the resulting fiber strand was washed without residue in distilled water and cut to a staple length of 40 mm. The fibers were dried in a convection oven at 60 ° C. At an elongation of 8%, the fibers have a strength of 30 cN / tex. The titer is about 20 dtex. The heat capacity of the modified fibers is 70 J / g versus 7 J / g for unmodified fibers.

Beispiel 4:Example 4:

7607 g einer 60 %-igen Lösung von N-Methylmorpholin-N-Oxid werden zusammen mit 784 g Zellstoff von einen Durchschnittspolymerisationgrad 500 unter Zusatz von 4,6 g Propylgallat in ein Lösegefäß mit Rührwerk von 37 l Volumen eingebracht. Das Lösegefäß wird bis auf 20 mbar evakuiert und im Verlauf von 6 Stunden von 20 °C auf 94 °C bei einer Rührerdrehzahl von 18 min-1 erwärmt und das verdampfende Wasser in einem Kühler kondensiert. Dabei werden insgesamt 2361 g Wasser verdampft. Die erhaltene Spinnlösung weist eine Viskosität von 8072 Pas auf, der Brechungsindex der Spinnlösung lag bei 1,487.7607 g of a 60% solution of N-methylmorpholine-N-oxide are introduced together with 784 g of pulp of average polymerization degree 500 with the addition of 4.6 g of propyl gallate in a 37 l stirred volume dissolving vessel. The dissolving vessel is evacuated to 20 mbar and heated in the course of 6 hours from 20 ° C to 94 ° C at a stirrer speed of 18 min -1 and condenses the evaporating water in a condenser. A total of 2361 g of water are evaporated. The spinning solution obtained has a viscosity of 8072 Pas, the refractive index of the spinning solution was 1.487.

Weiterhin wird eine Stammlösung aus 1500 g einer 80 %-igen Lösung von N-Methylmorpholin-N-Oxid und 750 g eines mikrogekapselten Phasenwechselmaterials wie z.B. Lurapret® TX PMC 28 der BASF AG, und 45 g Xanthan hergestellt. Beide Lösungen werden nach inniger Vermischung in einem dynamischen Mischer bei 80 °c durch eine Spinndüse mit einer Lochzahl von 150 und einem Lochdurchmesser von 200 µm extrudiert, über einem Luftspalt verzogen, in einem wässrigen Fällbad regeneriert und mit destilliertem Wasser lösungsmittelfrei gewaschen. Die Einstellung des Mischverhältnisses erfolgt derart, dass die extrudierten Fasern eine Konzentration an mikrogekapseltem Phasenwechselmaterial von 60% bezogen auf Cellulose aufweisen. Die ersponnenen Fasern besitzen eine Feinheit von etwa 10 dtex und werden nach dem Waschen auf Stapel geschnitten. Die Phasenumwandlungswärme der erhaltenen Fasern beträgt 80 J/g. Im Vergleich dazu weisen die Cellulosefasern ohne eingebrachtes Phasenwechselmaterial im entsprechenden Temperaturbereich eine Wärmekapazität von 6 J/g auf. Die feinheitsbezogenen Reißfestigkeiten der erhaltenen Fasern liegen bei etwa 15 cN/tex.Furthermore, a stock solution of 1500 g of an 80% solution of N-methylmorpholine-N-oxide and 750 g of a microencapsulated phase change material such as Lurapret ® TX PMC 28 from BASF AG, and 45 g of xanthan gum is prepared. Both solutions are extruded after intimate mixing in a dynamic mixer at 80 ° C through a spinneret with a number of holes of 150 and a hole diameter of 200 microns, warped over an air gap, regenerated in an aqueous precipitation bath and washed solvent-free with distilled water. The adjustment of the mixing ratio is such that the extruded fibers have a concentration of microencapsulated phase change material of 60% based on cellulose. The spun fibers have a fineness of about 10 dtex and are cut into stacks after washing. The phase change heat of the obtained fibers is 80 J / g. By comparison, the cellulose fibers without introduced phase change material have a heat capacity of 6 J / g in the corresponding temperature range. The fineness-related tear strengths of the resulting fibers are about 15 cN / tex.

Claims (8)

  1. Method for producing molded bodies, in particular fibers and textile fabrics thereof, with thermo-regulation properties on the basis of network forming polymeric matrix materials dissolved in aqueous amino oxides, preferably in n-methylmorpholin-n-oxides, characterized in that
    up to 200 weightpercent of a micro-encapsulated phase change material, related to the network forming polymer, are inserted into a matrix network setup of polysaccharides and/or globular proteins in such a way that either
    a) the micro-encapsulated phase change material is given as a component directly into the suspension consisting of the polymer, the aqueous n-methylmorpholin-n-oxide solution and propylgallate as a stabilizer into a dissolving vessel with stirrer,
    or
    b) in the case of the globular protein, used as polymer, after the pre-interlinking of the former the micro-encapsulated phase change material is given together with the aqueous n-methylmorpholin-n-oxide solution and the propylgallate as a stabilizer, and, if necessary, with a further network forming polymer such as, for example, cellulose, into a jacket heated kneading machine, then the dissolving vessel and the kneading machine, respectively are evacuated, the suspension is heated, stirred, the water is evaporated and fibers are molded from the respectively achieved highly viscous spinning solution after a dry/wet-extrusion process
    or
    c) the micro-encapsulated phase change material is mixed together with an aqueous n-methylmorpholin-n-oxide solution to a stock solution, and the latter is given to an already completed spinning solution consisting of an aqueous n-methylmorpholin-n-oxide solution, polymer and propylgallate as stabilizer and, by intimately mixing both, the solutions are given into a mixer, and from the high viscous spinning solution achieved in this manner also fibers are molded after passing a dry/wet extrusion process.
  2. Method as claimed in claim 1,
    characterized in that polysaccharides and/or polysaccharide derivatives are employed as network forming polymers, which are formed from hexoses with glycosidic 1,4-bonds and 1,6-bonds or at least partially from uronic acids.
  3. Method as claimed in claims 1 and 2,
    characterized in that as the network forming polysaccharides are cellulose and/or cellulose compounds.
  4. Method as claimed in claims 1 and 2,
    characterized in that a water-soluble homopolysaccharide or a heteropolysaccharide or the derivates thereof are inserted as polysaccharides.
  5. Method as claimed in claim 1,
    characterized in that the network forming polysaccharides are native globular proteins.
  6. Method as claimed in claims 1 and 5,
    characterized in that natural globular proteins are, by aid of aldehydes such as, for example, glutaraldehyde, pre-interlinked via aminogroups and/or amide groups and/or imino-groups of the peptide bonds and/or oxy-groups of the serine and/or cysteine components.
  7. Method as claimed in claims 1 to 6,
    characterized in that up to 99.5 weightpercent of polysaccharides and 0.5 to 100 weightpercent, preferably 60 to 90 weightpercent of globular proteins are inserted, related to the entire mass of the solved compounds.
  8. Method as claimed in claims 1 to 7,
    characterized in that micro-encapsulated paraffin waxes are employed as phase change materials.
EP04786178A 2003-08-30 2004-08-25 Method for producing moulded bodies exhibiting thermoregulation properties Not-in-force EP1658395B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04786178T PL1658395T3 (en) 2003-08-30 2004-08-25 Method for producing moulded bodies exhibiting thermoregulation properties

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10340110 2003-08-30
PCT/DE2004/001893 WO2005024102A1 (en) 2003-08-30 2004-08-25 Moulded bodies, in particular fibres and the structures thereof exhibiting thermoregulation properties

Publications (2)

Publication Number Publication Date
EP1658395A1 EP1658395A1 (en) 2006-05-24
EP1658395B1 true EP1658395B1 (en) 2006-11-08

Family

ID=34202272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04786178A Not-in-force EP1658395B1 (en) 2003-08-30 2004-08-25 Method for producing moulded bodies exhibiting thermoregulation properties

Country Status (6)

Country Link
US (1) US20060279017A1 (en)
EP (1) EP1658395B1 (en)
AT (1) ATE344844T1 (en)
DE (3) DE102004041684A1 (en)
PL (1) PL1658395T3 (en)
WO (1) WO2005024102A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244497B2 (en) * 2001-09-21 2007-07-17 Outlast Technologies, Inc. Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof
US7579078B2 (en) 2001-09-21 2009-08-25 Outlast Technologies, Inc. Temperature regulating cellulosic fibers and applications thereof
US9434869B2 (en) 2001-09-21 2016-09-06 Outlast Technologies, LLC Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof
AT501252B1 (en) * 2004-12-23 2008-02-15 Chemiefaser Lenzing Ag CELLULOSIC FORM BODY AND METHOD FOR THE PRODUCTION THEREOF
TWI287996B (en) * 2005-10-19 2007-10-11 Taiwan Textile Res Inst Temperature regulating gel and article comprising the same
US20090051068A1 (en) * 2006-01-12 2009-02-26 Thüringisches Institute Für Textil-Und Kunststoff-Forschung E.V. Method for Producing Molded Bodies from Proteins
FR2911153B1 (en) * 2007-01-10 2009-04-10 Lainiere De Picardie Bc Soc Pa TEXTILE SUBSTRATE INCORPORATING A THERMAL REGULATION COMPOSITION SURROUNDING TRANSFER ISLANDS.
DE102007054702B4 (en) 2007-11-14 2018-10-18 Smartpolymer Gmbh Process for the preparation of cellulosic shaped bodies, cellulosic shaped bodies and their use
AT509289B1 (en) 2009-12-28 2014-06-15 Chemiefaser Lenzing Ag FUNCTIONALIZED CELLULOSIC FORM BODY AND METHOD FOR THE PRODUCTION THEREOF
DE102010054661A1 (en) * 2010-12-15 2012-06-28 Anke Domaske Process for the preparation of milk protein fibers and milk protein fiber products derived therefrom
JP6722680B2 (en) 2014-10-03 2020-07-15 エリー フーズ インターナショナル、インコーポレイテッドErie Foods International,Inc. High protein food
DE102018100140B3 (en) 2017-12-14 2019-03-28 Institut Für Luft- Und Kältetechnik Gemeinnützige Gmbh Ventilation system with heat storage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908238A (en) * 1984-07-02 1990-03-13 The United States Of America As Represented By The Secretary Of Agriculture Temperature adaptable textile fibers and method of preparing same
US4756958A (en) * 1987-08-31 1988-07-12 Triangle Research And Development Corporation Fiber with reversible enhanced thermal storage properties and fabrics made therefrom
US5354524A (en) * 1993-05-24 1994-10-11 Alan Sellars Monitoring concentration of dope in product manufacture
US5885475A (en) * 1995-06-06 1999-03-23 The University Of Dayton Phase change materials incorporated throughout the structure of polymer fibers
GB9617043D0 (en) * 1996-08-14 1996-09-25 Courtaulds Plc Manufacture ofd extruded articles
US6077597A (en) * 1997-11-14 2000-06-20 Outlast Technologies, Inc. Interactive thermal insulating system having a layer treated with a coating of energy absorbing phase change material adjacent a layer of fibers containing energy absorbing phase change material
US6855422B2 (en) * 2000-09-21 2005-02-15 Monte C. Magill Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof
US20030124318A1 (en) * 2002-01-02 2003-07-03 Magill Monte C. Thermal barriers with reversible enhanced thermal properties
US20030124278A1 (en) * 2002-01-02 2003-07-03 Clark Dustin L. Thermal barriers with solid/solid phase change materials

Also Published As

Publication number Publication date
EP1658395A1 (en) 2006-05-24
DE502004001972D1 (en) 2006-12-21
PL1658395T3 (en) 2007-04-30
ATE344844T1 (en) 2006-11-15
DE102004041684A1 (en) 2005-03-17
US20060279017A1 (en) 2006-12-14
WO2005024102A1 (en) 2005-03-17
DE112004002148D2 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
DE112011100474B4 (en) Highly functional spunbond made of particle-containing fibers as well as a method of production
EP2225410B1 (en) Process for producing cellulosic shaped articles, cellulosic shaped articles and the use thereof
EP2171136B1 (en) Method for producing nanofibres and mesofibres by electrospinning colloidal dispersions containing at least one essentially water-insoluble polymer
DE4136694C2 (en) Starch fiber or starch-modified fiber, process for its production and its use
AT505904B1 (en) CELLULOSE SUSPENSION AND METHOD FOR THE PRODUCTION THEREOF
DE60024472T2 (en) Flexible structure with starch fibers
EP1658395B1 (en) Method for producing moulded bodies exhibiting thermoregulation properties
EP3645771A1 (en) Hydrogel-forming multicomponent fiber
DE1446615A1 (en) Process for the manufacture of paper products
DE19542666A1 (en) Process for recycling multi-component mixed plastic waste
DE60125964T2 (en) RIBBED FIBERS AND METHOD FOR THE PRODUCTION THEREOF
DE10137171A1 (en) Preparation of celluosic shaped bodies having superabsorber properties useful for production of disposable diapers, tampons, bandages, incontinence articles, moisture absorbers, clothing, filters, and packaging materials
EP2089468B1 (en) Method for the production of functional molded cellulose articles
WO2006066291A1 (en) Cellulose moulded bodies and method for the production thereof
WO2001011123A1 (en) High-strength polyester threads and method for producing the same
WO2013068596A1 (en) Method for producing milk protein fibres
DE2951803A1 (en) FINE-TITRED SYNTHESIS FIBERS AND FEATHERS AND DRY SPIDER PROCESSES FOR THEIR PRODUCTION
WO2015049040A1 (en) Method for producing moulded bodies
EP2844788B1 (en) Thermoplastic fibres with reduced surface tension
WO2023274884A1 (en) Electrically conductive yarn
DE19937728A1 (en) HMLS threads made of polyester and spin stretching process for their production
JPH08127919A (en) Water-soluble and thermally contact bonding polyvinyl alcohol binder fiber
DE1669488A1 (en) Process for making improved bicomponent self-curling threads
DE1494574A1 (en) Process for the production of hollow threads from tetrafluoroethylene polymers
JP2007077563A (en) Powder comprising ultrafine fiber and method for producing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR PRODUCING MOULDED BODIES EXHIBITING THERMOREGULATION PROPERTIES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004001972

Country of ref document: DE

Date of ref document: 20061221

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070208

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070208

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070208

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RIEDERER HASLER & PARTNER PATENTANWAELTE AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070409

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: OUTLAST EUROPE GMBH

Effective date: 20070808

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: THURINGISCHES INSTITUT FUR TEXTIL- UND KUNSTSTOFF

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20090319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100824

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100901

Year of fee payment: 7

Ref country code: IT

Payment date: 20100823

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20100802

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20111201 AND 20111207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004001972

Country of ref document: DE

Representative=s name: PLATE SCHWEITZER ZOUNEK PATENTANWAELTE, DE

Effective date: 20120112

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004001972

Country of ref document: DE

Owner name: OSTTHUERINGISCHE MATERIALPRUEFGESELLSCHAFT FUE, DE

Free format text: FORMER OWNER: THUERINGISCHES INSTITUT FUER TEXTIL- UND KUNSTSTOFF-FORSCHUNG E.V., 07407 RUDOLSTADT, DE

Effective date: 20120112

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004001972

Country of ref document: DE

Owner name: SMARTPOLYMER GMBH, DE

Free format text: FORMER OWNER: THUERINGISCHES INSTITUT FUER TEXTIL- UND KUNSTSTOFF-FORSCHUNG E.V., 07407 RUDOLSTADT, DE

Effective date: 20120112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120821

Year of fee payment: 9

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120813

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 344844

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130825

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004001972

Country of ref document: DE

Representative=s name: PLATE SCHWEITZER ZOUNEK PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004001972

Country of ref document: DE

Representative=s name: PLATE SCHWEITZER ZOUNEK PATENTANWAELTE, DE

Effective date: 20150223

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004001972

Country of ref document: DE

Owner name: SMARTPOLYMER GMBH, DE

Free format text: FORMER OWNER: OSTTHUERINGISCHE MATERIALPRUEFGESELLSCHAFT FUER TEXTIL UND KUNSTSTOFFE MBH, 07407 RUDOLSTADT, DE

Effective date: 20150223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170822

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004001972

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301