EP1644554A1 - Method for deposition of titanium oxide by a plasma source - Google Patents

Method for deposition of titanium oxide by a plasma source

Info

Publication number
EP1644554A1
EP1644554A1 EP04767517A EP04767517A EP1644554A1 EP 1644554 A1 EP1644554 A1 EP 1644554A1 EP 04767517 A EP04767517 A EP 04767517A EP 04767517 A EP04767517 A EP 04767517A EP 1644554 A1 EP1644554 A1 EP 1644554A1
Authority
EP
European Patent Office
Prior art keywords
coating
oxide
substrate
photocatalytic
substrate according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04767517A
Other languages
German (de)
French (fr)
Inventor
Anne Durandeau
Maxime Duran
Corinne Victor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP1644554A1 publication Critical patent/EP1644554A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a process for depositing a coating based on titanium oxide with photocatalytic properties on a substrate, in particular transparent. It also targets the substrate thus obtained.
  • Glass-based, ceramic or glass-ceramic substrates are known, more particularly glass, in particular transparent, which are provided with coatings with photocatalytic properties, with a view to manufacturing glazing of various applications, such as utility glazing, glazing for vehicles. or for buildings.
  • the photocatalytic properties imparted to the substrate due to the coating based on titanium oxide give the latter an anti-fouling function.
  • the substrate retains appearance and surface properties over time, which in particular make it possible to space cleaning times and / or to improve visibility, by succeeding in eliminating progressively the soiling gradually deposited at the surface of the substrate, in particular soiling of organic origin such as fingerprints or volatile organic products present in the atmosphere, or even soiling of the fogging type.
  • this cleaning results from the fact that certain semiconductor materials, based on metal oxide, such as for example titanium oxide, are capable, under the effect of radiation of adequate wavelength (in the visible and / or in the ultraviolet), to initiate radical reactions causing the oxidation of organic products: we generally speak of "photocatalytic" or even "photo-reactive" materials.
  • pyrolysis techniques liquid pyrolysis, powder pyrolysis, pyrolysis in value phase called CVD (Chemical Vapor Deposition), techniques associated with sol-gel: soaking or dipping, cell-coating, etc.
  • CVD Chemical Vapor Deposition
  • sol-gel soaking or dipping, cell-coating, etc.
  • a vacuum technique reactive or non-reactive sputtering
  • the decomposition of the precursors takes place directly at the level of the float line, and any modification as to the nature of the substrate (composition, property) on which the coating is deposited necessarily requires a slow adaptation of the loading conditions for raw material. float.
  • a certain difficulty as regards the control of the surface temperatures and the temperatures of the means of injection of the precursors (nozzle), the high temperatures being one of the most important parameters. more fundamental to obtaining a titanium oxide coating having optimal photocatalytic properties.
  • the deposition can only be carried out on substrates that are not very sensitive to temperature (for example plastic).
  • the second technique mentioned above called vacuum deposition (using a magnetron line for example), necessarily requires a heat treatment phase of the titanium oxide coating previously deposited under vacuum in order to allow obtaining 'an adequate crystallographic phase. This heating is difficult to implement directly within the magnetron which is under vacuum and it is then necessary to carry out a recovery operation outside the deposit enclosure. Indeed, for the latter to have photocatalytic properties, the titanium oxide should be in an anatase crystallized form, in rutile form or in the form of a mixture of anatase, rutile, brookite with a rate crystallization of at least 25%, especially around 30 to 80%, especially near the surface, (the property being rather a surface property).
  • the crystallization rate includes the amount by weight of T O2 crystallized relative to the total weight amount of TIO2 in the coating).
  • the object of the invention is therefore to develop a process for depositing photo-catalytic coatings on the substrate, which have a marked “anti-fouling” effect on the substrate and which can be manufactured from industrially, which does not have the drawbacks of the previously mentioned techniques.
  • the inventors have discovered that it is possible to use the so-called PECVD technique for (Plasma Enhanced Chemical Vapor Deposition) to deposit a photocatalytic coating on a glass substrate or not.
  • This particular technique is known for depositing titanium oxide for waveguide applications (US5295220), or for fission product trapping applications (FR2695507).
  • the subject of the invention is therefore a method of depositing on a substrate a coating based on semiconductor materials based on metal oxides, in particular titanium oxide, which are capable, under the effect of radiation of adequate wavelength, to initiate radical reactions causing the oxidation of organic products so as to confer photocatalytic properties on said coating which is characterized in that the coating with photocatalytic property is deposited by chemical deposition in the gas phase , in particular from a gas mixture comprising at least one organometallic precursor and / or a metal halide of said metal oxide, the deposition being assisted by a plasma source.
  • a photocatalytic coating which does not necessarily require heat treatment at high temperature (beyond 300-350 ° C) to reveal the desired properties, during or after deposition and which is also very flexible, the optimal deposition conditions no longer being dependent on the presence of a nearby heat source ( float).
  • at least one carrier gas or a mixture of carrier gases chosen from air, nitrogen, helium, argon.
  • An oxidizing agent or a mixture of oxidizing agents is incorporated into the gas mixture.
  • a reducing agent or a mixture of reducing agents is incorporated into the gas mixture.
  • the reaction and deposition phase is carried out at reduced pressure.
  • the reaction and deposition phase is carried out at atmospheric pressure.
  • At least one sublayer is deposited prior to the coating with photocatalylic property, making it possible to provide another functionality to said coating with photocatalytic property and / or to reinforce said properties of said coating.
  • At least one other type of mineral material is incorporated into the gas mixture comprising at least the organometallic precursor and / or a metal halide of said metal oxide, in particular in the form of an amorphous or partially crystallized oxide, for example a silicon oxide ( or mixture of oxides), titanium, tin, zirconium, vanadium, antimony, zinc, tungsten, cobalt, nickel, aluminum, these oxides can be mixed or doped.
  • the photocatalytic coating is deposited on the substrate within the plasma discharge.
  • the photocatalytic coating is deposited on the substrate outside the plasma discharge. According to another aspect of the invention, it also relates to a substrate obtained according to the previously mentioned method, as well as its variants.
  • This glass-based, ceramic or vitro-ceramic, or plastic substrate provided on at least part of at least one of its faces with a coating with photo-catalytic property comprising at least partially crystallized titanium oxide is characterized in that the crystallized titanium oxide is in anatase form, in rutile form, in brookite or in the form of a mixture of anatase, rutile, brookite.
  • the crystallized titanium oxide is in the form of crystallites of average size between 0 , 5 and 60 nm, preferably 1 to 50.
  • the coating also comprises an inorganic material, in particular in the form of an oxide or mixture of amorphous or partially crystallized oxides of the silicon oxide, titanium oxide, tin oxide type , zirconium oxide, aluminum oxide, vanadium, antimony, zinc, tungsten, cobalt, nickel oxide, these oxides can be mixed or doped.
  • the coating comprises additives capable of extending the photocatalytic phenomenon due to titanium oxide, in particular by increasing the absorption band of the coating and / or by increasing the number of charge carriers by doping the crystal lattice of the oxide or by surface doping of the coating and / or by increasing the yield and kinetics of the photocatalytic reactions by covering at least part of the coating with a catalyst.
  • the crystal lattice of the titanium oxide is doped, in particular by at least one of the metallic or non-metallic elements, - the thickness of the coating is between 5 nm and 1 micron, preferably from 5 to 100 nm the photocatalytic activity of the coating is at least 5.10 - 3 cm - 1 min ⁇ 1 measured using the TAS test, the RMS roughness of the photocatalytic coating is between 2 and 20 nm, in particular between 5 and 20 nm. the light reflection of the photocatalytic coating is less than 30%, preferably less than or equal to 20%, with a neutral color.
  • the absorption of the photocatalytic coating is less than 10%, preferably less than 5%, it is arranged under the coating with photocatalytic property at least one thin layer with anti-static, thermal, optical function, or acting as a barrier to the migration of alkalis originating from of the substrate.
  • the thin layer with anti-static function, optionally with controlled polarization, and / or thermal and / or optical is based on conductive material of the metal type or of the doped metal oxide type such as ITO, SnO: F, SnO 2 : Sb, ZnO: ln, ZnO: F, ZnO: AI, ZnO: Sn or metallic oxide sub-stoichiometric in oxygen as Sn ⁇ 2- ⁇ ⁇ u Zn ⁇ 2-x with x ⁇ 2.
  • the thin layer with optical function is based on an oxide or of a mixture of oxides whose refractive index is intermediate between that of the coating and that of the substrate, in particular chosen from the following oxides: AI2O3, Sn ⁇ 2, ln2 ⁇ 3, or based on oxycarbide or oxynitride of silicon, or possibly based on a mixture of a high refractive index material with a low refractive index material (AI2O3 / TiO 2 , AI 2 ⁇ 3 / SiO 2 , AI2O3 / SnO, SnO 2 / TiO .).
  • the thin or multilayer layer with barrier function to alkali is for example based on oxide, nitride, oxynitride or oxycarbide of silicon, of AbO ⁇ : F or Sn ⁇ 2: F of aluminum nitride, of silicon nitride.
  • the substrate is transparent, flat or curved, the substrate is a glass substrate.
  • the substrate is based on a polymer-based substrate, in particular PMMA, polycarbonate, PEN.
  • the latter relates to a glazing “anti-fouling and / or anti-fogging”, monolithic, multiple of the double type.
  • the orientation of the growing T O2 crystals on the substrate had an influence on the photo-catalytic performances of the oxide: there is a preferred orientation (1, 1, 0) which clearly promotes photocatalysis.
  • the coating is produced in such a way that the crystallized titanium oxide which it contains is in the form of “crystallites”, at least near the surface, that is to say of single crystals, having a size average between 0.5 and 100 nm, preferably 1 to 50 nm. It is indeed in this dimension range that titanium oxide seems to have an optimal photocatalytic effect, probably because the crystallites of this size develop a large active surface.
  • the coating may also comprise, in addition to crystallized titanium oxide, at least one other type of mineral material, in particular in the form of an amorphous or partially crystallized oxide, for example a silicon oxide (or mixture of oxides), titanium, tin, zirconium or aluminum.
  • This mineral material can also participate in the photocatalytic effect of crystallized titanium oxide, by itself presenting a certain photocatalytic effect, even weak compared to that of crystallized Ti ⁇ 2, which is the case of tin or amorphous titanium oxide.
  • a “mixed” oxide layer thus combining at least partially crystallized titanium oxide with at least one other oxide may be advantageous from the optical point of view, especially if the other or the other oxides are chosen with a lower index.
  • the coating by lowering the refractive index " overall ”of the coating, one can play on the light reflection of the substrate provided with the coating, in particular lower this reflection.
  • a layer of T.O2 / AI2O3 is chosen, one method of obtaining which is described in patent EP-0 465 309, or in Ti ⁇ 2 / Si ⁇ 2.
  • the coating however contains a content of TIO2 sufficient to maintain a notable photocatalytic activity and that T O2 remains crystallized. It is thus considered that it is preferable for the coating to contain at least 40% by weight, in particular at least 50% by weight of TiO 2 relative to the total weight of oxide (s) in the coating.
  • the coating according to the invention it is possible first of all to increase the absorption band of the coating, by incorporating into the coating other elements, in particular metallic and based on cadmium, tin, tungsten, zinc, cerium, or zirconium, possibly doped as well as non-metallic elements.
  • the coating actually has not one property but two, as soon as it is exposed to adequate radiation as in the visible range and / or ultraviolet, such as solar radiation: by the presence of photocatalytic titanium oxide, as already seen, it promotes the gradual disappearance, as and when they accumulate, of dirt of organic origin, in causing their degradation by a radical oxidation process.
  • the coating of the invention which is permanently self-cleaning, also preferably has an outer surface with a pronounced hydrophilic and / or oleophilic character, which induces three very advantageous effects: • a hydrophilic nature allows perfect wetting of the water which can be deposited on the coating. When a phenomenon of water condensation occurs, instead of a deposit of water droplets in the form of a mist which impairs visibility, there is in fact a thin continuous film of water which forms on the surface of the coating. and which is completely transparent. This “anti-fog” effect is demonstrated in particular by measuring a contact angle with water of less than 5 ° after exposure to light, and,
  • the coating can also have an oleophilic character, allowing the "wetting" of organic dirt which, as for water, then tends to be deposited on the coating in the form of a continuous film less visible than well localized “spots".
  • an “organic anti-fouling” effect which takes place in two stages: as soon as it is deposited on the coating, the soiling is already hardly visible. Then, gradually, it disappears by radical degradation initiated by photo-catalysis.
  • the coating can be chosen to have a more or less smooth surface. A certain roughness can be sought: • it makes it possible to develop a larger active photocatalytic surface and therefore it induces greater photocatalytic activity, • it has a direct influence on the wetting.
  • the roughness indeed enhances the wetting properties.
  • a smooth hydrophilic surface will be even more hydrophilic when roughened.
  • the term “roughness” is understood here to mean both the surface roughness and the roughness induced by a porosity of the layer or of the sublayer in at least part of its thickness. The above effects will be all the more marked when the coating is porous and rough, hence a superhydrophilic effect of the rough photoreactive surfaces. However, too pronounced, the roughness can be penalizing by favoring the incrustation, the accumulation of dirt and / or by making appear a level of blurring optically unacceptable.
  • the coating if it consists only of TIO2, it preferably has a porosity of the order of 65 to 99%, in particular from 70 to 90%, the porosity being defined here indirectly by the percentage of the density theoretical T102, which is about 3.8.
  • the thickness of the coating according to the invention is variable, it is preferably between 5 nm and 1 micron, preferably between 5 and 100 nm, in particular between 10 and 80 nm, or between 15 and 50 nm. In fact, the choice of thickness may depend on different parameters, in particular on the envisaged application of the glazing type substrate, or on the size of the UO2 crystallites in the coating or on the presence of alkalies in high proportion in the substrate.
  • the coating according to the invention constituting the last layer of the stack.
  • the coating has a relatively low refractive index, which is the case when it consists of a mixed oxide of titanium and silicon.
  • the layer with an anti-static and or thermal function can in particular be chosen based on a conductive material of the metal type, such as l silver, or of the metal oxide type doped like indium oxide doped with tin ITO, tin oxide doped with a halogen of the fluorine type Sn ⁇ 2: F, or with antimony Sn ⁇ 2: Sb, or zinc oxide doped with indium ZnO: ln, fluorine ZnO: F, aluminum ZnO: AI or tin ZnO: Sn.
  • a conductive material of the metal type such as l silver
  • the metal oxide type doped like indium oxide doped with tin ITO, tin oxide doped with a halogen of the fluorine type Sn ⁇ 2: F, or with antimony Sn ⁇ 2: Sb or zinc oxide doped with indium ZnO: ln, fluorine ZnO: F, aluminum ZnO: AI or tin ZnO: Sn.
  • the layer with anti-static function preferably has a square resistance value of 20 to 1000 ohms / square. Provision may be made to provide it with current leads in order to polarize it (supply voltages for example between 5 and 100V). This controlled polarization makes it possible in particular to combat the deposit of dust of size on the order of a millimeter capable of being deposited on the coating, in particular dry adherent dust only by electro-static effect: by brutally reversing the polarization of the layer, "Ejects" this dust.
  • the thin layer with an optical function can be chosen in order to reduce the light reflection and / or make the color in reflection of the substrate more neutral.
  • it preferably has an intermediate refractive index between that of the coating and that of the substrate and an appropriate optical thickness, and may consist of an oxide or a mixture of oxides of the aluminum oxide type.
  • AI2O3, tin oxide SnO 2) indium oxide ln2 ⁇ 3, oxycarbide or silicon oxynitride it is preferable that this thin layer has an index of refraction close to the square root of the product of the squares of the indices of refraction of the two materials which surround it, that is to say say the substrate and the coating according to the invention.
  • the thin layer with an alkali barrier function may in particular be chosen based on silicon oxide, nitride, oxynitride or oxycarbide, in aluminum oxide containing fluorine A OsiF, or in aluminum nitride or based on SnO 2 .
  • silicon oxide, nitride, oxynitride or oxycarbide in aluminum oxide containing fluorine A OsiF, or in aluminum nitride or based on SnO 2 .
  • the nature of the substrate or of the sub-layer is also of additional interest: it can promote the crystallization of the photocatalytic layer which is deposited, in particular in the case of CVD deposition assisted by a plasma source, preferably at reduced pressure. , or even more preferably at atmospheric pressure (called in English APPECVD (Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition) All these optional thin layers can, in known manner, be deposited by vacuum techniques of the sputtering type or by other techniques of the thermal decomposition type such as pyrolysis in the solid, liquid or gas phase, each of the aforementioned layers can combine several functions, but they can also be superimposed.
  • the invention also relates to "anti-fouling" glazing
  • the invention therefore relates to the manufacture of glass, ceramic or vitro-ceramic products, and very particularly the manufacture of "self-cleaning" glazing.
  • These can advantageously be building glazing, such as double glazing (it is then possible to arrange the coating “outside side” and / or “inside side”, that is to say on face 1 and / or on face 4). This is particularly advantageous for glazing that is difficult to access for cleaning and / or that needs to be cleaned very frequently, such as roof glazing, airport glazing, etc.
  • This coating can thus be placed on windshields, lateral or rear windows of the car, in particular on the face of the glazing facing towards the interior of the passenger compartment. This coating can then prevent the formation of fogging, and / or remove traces of soiling of the fingerprint type, nicotine or organic material of the volatile plasticizer type "released" by the plastic coating the interior of the passenger compartment, in particular that of the dashboard (release sometimes known under the English term "fogging").
  • Other vehicles such as planes or trains may also find advantage in using glazing provided with the coating of the invention.
  • All these glazings being generally made up of p the plurality of transparent substrates between which the “active” elements are arranged, it is then advantageously possible to arrange the coating on the external face of at least one of these substrates.
  • electrochromic glazing when the latter is in the colored state, its absorption leads to a certain heating on the surface, which, in fact, is capable of accelerating the photocatalytic decomposition of the carbonaceous substances depositing on the coating according to the invention.
  • the coating according to the invention can preferably be arranged in side 1.
  • This metal oxide coating is therefore produced using the so-called APPECVD technique which consists of chemical deposition in the gas phase, in particular from a mixture of gases comprising at least one organometallic precursor. and / or a metal halide of said metal oxide (titanium oxide for example in our case), the deposition being assisted by a plasma source.
  • the photocatalytic semiconductor material chosen is titanium oxide. There are others that can be used. Reference may be made to the applicant's patent (FR2738813).
  • the semiconductor material can be doped (N, F, Pt, Pd, Metals ...) to improve its photocatalytic performance or adapt the optical gap and thus be adapted to different wavelengths of the solar spectrum (UV, visible) .
  • the gas mixture used incorporates an organometallic precursor and / or a metal halide.
  • an organometallic precursor for titanium oxide, mention may be made of TiCI, TiPT, Ti ethoxide (butoxide, etc.), Ti diisopropoxide (acetylacetonate), Titanium (III) tris (2,2,6,6-tetramethyl-3 , 5-heptanedionate.
  • This gaseous mixture can also incorporate at least one oxidant or a mixture of oxidants (air, O 2 , CO 2 , N2O, organic: alcohol, ester, etc.) or at least one reducing agent or a mixture reducing agent (H2, hydrocarbons, etc.) and the carrier gas used is air, nitrogen, helium or argon or a mixture of these gases. Preferably, it will mainly consist of helium and / or nitrogen and / or argon.
  • the same ranges of precursors organometallic / halides
  • metals for dopants or mixed deposits, the same ranges of precursors (organometallic / halides) can be used for metals.
  • fluorine trifluoroacetic acid is used for example ( TFA), HF, NF3 ...
  • NH3 or amines primary, secondary or tertiary
  • precursors containing both titanium and dopant for example: Tétrakisdiethylamino titane, Tétrakisdimethylamino titane or tetrachlorodiamminotitanium .
  • the reaction gas mixture is then dissociated, by a plasma source, either directly within the plasma, or remotely, blown out (indirectly).
  • the metal oxide with photocatalytic property is deposited continuously and uniformly in at least part of at least one of the faces of the substrate.
  • the substrate and the deposition zone incorporating the plasma source having a relative displacement.
  • the coating may also be advantageous to deposit the coating not at once, but by at least two successive stages, which seems to favor the crystallization of titanium oxide over the entire thickness of the coating when it is chooses relatively thick.
  • the treatment temperature chosen can also allow better control of the crystallization rate and the crystalline, anatase and / or rutile nature of the oxide.
  • the deposition process which is the subject of the invention is advantageous because the plasma source can be sufficient to provide thermal energy (without having to heat the substrate) sufficient to obtain the desired crystallographic properties at the level of the metal oxide.
  • a barrier layer will be interposed between the substrate and the photocatalytic property layer.
  • a barrier layer between the substrate, if it is standard glass, and the coating, or the choice of a glass substrate of suitable composition, or the choice of a soda-lime glass whose surface is dealkalized, eliminating this risk.
  • the coating comprises additives capable of extending the photocatalytic phenomenon due to titanium oxide, by avoiding the recombination of charge carriers in the material.
  • a transparent, clear silica-soda-lime glass substrate 4 mm thick is used. It goes without saying that the invention is not limited to this specific type of glass. The glass may also not be flat, but curved.
  • a layer of Ti ⁇ 2 from TiCI4 is deposited by homogeneous discharge operating at atmospheric pressure. The thin layer of TiO2 was deposited on a clean glass substrate heated to a temperature of 260 ° C.
  • the gas mixture which is introduced consists of helium (He) and oxygen (O 2 ).
  • the respective flow rates of these gases are 14 slpm and 1 sccm.
  • the organometallic precursor titanium tetrachloride (TiCU)
  • TiCU titanium tetrachloride
  • This bubbler is heated to 10 ° C and a gas vector (He) is injected into the bubbler with a flow rate of 140 sccm to transport the organometallic vapors.
  • He gas vector
  • the total pressure in the reactor is maintained at 1013 mbar ⁇ 50 mbar.
  • the electrodes, covered with a dielectric barrier of alumina 0.5 mm ⁇ 0.1 mm
  • they are 5 mm apart and they are supplied with a sinusoidal alternating voltage of 1.1 Volt rms at a frequency of 25 kHz.
  • the thin layer of TiO 2 was deposited on a clean glass substrate heated to a temperature of 235 ° C.
  • the gas mixture which is introduced consists of helium (He) and oxygen (O2).
  • the respective flow rates of these gases are 11 slpm and 20 sccm.
  • the organometallic precursor, TipT titanium tetraisopropoxide
  • This bubbler is heated to 50 ° C. and a carrier gas (He) is injected into the bubbler with a flow rate of 500 sccm for transport organometallic vapors.
  • He carrier gas
  • the total pressure in the reactor is maintained at 1013 mbar ⁇ 50 mbar.
  • the electrodes covered with an alumina dielectric barrier (0.5 mm ⁇ 0.1 mm), are 6 mm apart and they are supplied with a sinusoidal alternating voltage of 1.1 Volt rms at a frequency of 10 kHz. Under these conditions, a homogeneous deposit of Ti ⁇ 2 is obtained.
  • the thin layer thus deposited of ⁇ O2 has a thickness of 260 nm and has a photo-catalytic activity.
  • a RAMAN analysis shows that TiO 2 is crystallized in rutile form.
  • a layer of TiO 2 from TiCI4 is deposited by homogeneous discharge operating at atmospheric pressure. The deposition conditions are identical to those of the first example, the duration is reduced so as to obtain a greater layer thickness.
  • This thin layer of ⁇ O2 54 nm thick and deposited under the conditions of Example 1 has a photo-catalytic activity.
  • the layer of Ti couche2 was deposited on a clean glass substrate heated to a temperature of 260 ° C.
  • the gas mixture which is introduced consists of nitrogen (N2) and oxygen (O2).
  • the nitrogen flow is 10 slpm with 150 ppm of O2.
  • the organometallic precursor, titanium tetrachloride (TiCU) is poured into a 0.5 I bubbler. This bubbler is heated to 10 ° C. and a carrier gas (He) is injected into the bubbler with a flow rate of 140 sccm for transport organometallic vapors.
  • the total pressure in the reactor is maintained at 1013 mbar ⁇ 50 mbar.
  • the electrodes covered with an alumina dielectric barrier (0.5 mm ⁇ 0J mm), are 5 mm apart and they are supplied with a sinusoidal alternating voltage of 1.1 Volt rms at a frequency of 5 kHz. Under these conditions have obtained a homogeneous deposit of Ti ⁇ 2. Crystallized in anatase form and having a photocatalytic activity of 11.10 -3 cm-1.min-1, the thickness of the layer being approximately 150 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The invention relates to a method for deposition of a coating of titanium oxide on a substrate, characterised in that the coating, with photochemical properties, is deposited chemically in the gas phase, in particular, from a gas mixture comprising at least one organometallic precursor and/or a metallic halide of said metallic oxide, the deposition being assisted by a plasma source.

Description

PROCEDE DE DEPOT D'OXYDE DE TITANE PAR SOURCE PLASMA La présente invention est relative à un procédé de dépôt d'un revêtement à base d'oxyde de titane à propriétés photocatalytiques sur un substrat, notamment transparent. Elle vise également le substrat ainsi obtenu. On connaît des substrats à base verrière, céramique ou vitrocéramique, plus particulièrement en verre, notamment transparents, que l'on munit de revêtements à propriétés photocatalytiques, en vue de fabriquer des vitrages d'applications diverses, comme les vitrages utilitaires, vitrages pour véhicules ou pour bâtiments. Les propriétés photocatalytiques conférées au substrat en raison du revêtement à base d'oxyde de titane confèrent à ce dernier une fonction d'anti- salissures. Plus particulièrement, le substrat conserve dans le temps des propriétés d'aspect et de surface, qui permettent notamment d'espacer les nettoyages et/ou d'améliorer la visibilité, en parvenant à éliminer au fur et à mesure les salissures se déposant progressivement à la surface du substrat, notamment les salissures d'origine organique comme les traces de doigts ou des produits organiques volatils présents dans l'atmosphère, ou même des salissures du type buée. On rappellera que ce nettoyage résulte du fait que certains matériaux semiconducteurs, à base d'oxyde métallique, comme par exemple l'oxyde de titane, sont aptes, sous l'effet d'un rayonnement de longueur d'onde adéquate (dans le visible et/ou dans l'ultraviolet), à initier des réactions radicalaires provoquant l'oxydation de produits organiques : on parle en général de matériaux « photocatalytiques » ou encore « photo-réactifs ». Parmi les procédés couramment utilisés pour déposer un tel revêtement on connaît de nombreuses techniques : • par décomposition de précurseurs d'oxydes métalliques comme par exemple du titane (techniques de pyrolyse : pyrolyse liquide, pyrolyse de poudre, pyrolyse en phase valeur dite CVD (Chemical Vapor Déposition), techniques associées au sol-gel : trempé ou dipping, cell- coating, ...), • par une technique sous vide (pulvérisation cathodique réactive ou non). La première technique de décomposition par pyrolyse, qui est économique, offre des résultats satisfaisants mais souffre d'un manque de flexibilité. En effet, la décomposition des précurseurs à lieu directement au niveau de la ligne du float, et toute modification quant à la nature du substrat (composition, propriété) sur lequel est déposé le revêtement impose nécessairement une adaptation lente des conditions de chargement en matière première du float. Par ailleurs, on peut noter au titre des inconvénients de cette technique de dépôt, une certaine difficulté quant au contrôle des températures de surface et des températures des moyens d'injection des précurseurs (buse), les hautes températures étant l'un des paramètres les plus fondamental à l'obtention d'un revêtement d'oxyde de titane possédant des propriétés photocatalytiques optimales. De plus, en raison du traitement thermique, le dépôt ne peut être effectué que sur des substrats peu sensibles à la température (par exemple en matière plastique). La seconde technique évoquée précédemment, dite de dépôt sous vide (à l'aide d'une ligne magnétron par exemple), nécessite obligatoirement une phase de traitement thermique du revêtement d'oxyde de titane préalablement déposé sous vide afin de permettre l'obtention d'une phase cristallographique adéquate. Cette chauffe est difficile à mettre en œuvre directement au sein du magnétron qui est sous vide et il convient alors d'effectuer une opération de reprise en dehors de l'enceinte de dépôt. En effet, pour que ce dernier possède des propriétés photocatalytiques, il convient que l'oxyde de titane se présente sous une forme cristallisée anatase, sous forme rutile ou sous forme d'un mélange d'anatase, de rutile, de brookite avec un taux de cristallisation d'au moins 25%, notamment d'environ 30 à 80%, notamment près de la surface, (la propriété étant plutôt une propriété de surface). (On comprend par taux de cristallisation la quantité en poids de T O2 cristallisé par rapport à la quantité en poids totale de TIO2 dans le revêtement). L'invention a alors pour but la mise au point d'un procédé de dépôt de revêtements photo-catalytiques sur substrat, qui présentent un effet « anti- salissures » marqué vis-à-vis du substrat et que l'on puisse fabriquer de manière industrielle, qui ne possède pas les inconvénients des techniques précédemment mentionnées. De manière toute à fait surprenante les inventeurs ont découvert qu'il était possible d'utiliser la technique dite du PECVD pour (Plasma Enhanced Chemical Vapor Déposition) pour déposer un revêtement photocatalytique sur un substrat verrier ou non. Cette technique particulière est connue pour déposer de l'oxyde de titane pour des applications de guide d'onde (US5295220), ou pour des applications de piégeage de produit de fission (FR2695507). L'invention a pour donc pour objet un procédé de dépôt sur un substrat d'un revêtement à base de matériaux semi-conducteurs à base d'oxydes métalliques, notamment d'oxyde de titane, qui sont aptes, sous l'effet d'un rayonnement de longueur d'onde adéquate, à initier des réactions radicalaires provoquant l'oxydation de produits organiques de manière à conférer des propriétés photocatalytiques audit revêtement qui se caractérise en ce qu'on dépose le revêtement à propriété photocatalytique par dépôt chimique en phase gazeuse, notamment à partir d'un mélange de gaz comprenant au moins un précurseur organométallique et/ou un halogénure métallique dudit oxyde métallique, le dépôt étant assisté par une source plasma. Grâce à ces dispositions et notamment à l'utilisation d'une source de plasma pour dissocier le précurseur d'oxyde métallique, il est possible d'obtenir un revêtement photocatalytique qui n'impose pas nécessairement de traitement thermique à haute température (au delà de 300- 350°C) pour révéler les propriétés recherchées, pendant ou ultérieurement au dépôt et qui en outre est d'une grande flexibilité, les conditions de dépôt optimales n'étant plus tributaires de la présence d'une source de chaleur à proximité (float). Dans des . modes de réalisation préférés de l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes : on injecte, parallèlement au mélange contenant le précurseur, au moins un gaz vecteur ou un mélange de gaz vecteurs choisi parmi l'air, l'azote, l'hélium, l'argon. On incorpore au mélange de gaz un agent oxydant ou un mélange d'agents oxydants On incorpore au mélange de gaz un agent réducteur ou un mélange d'agents réducteurs la phase de réaction et de dépôt s'effectue à pression réduite. la phase de réaction et de dépôt s'effectue à pression atmosphérique. On dépose préalablement au revêtement à propriété photocatalylique au moins une sous couche permettant d'apporter une autre fonctionnalité audit revêtement à propriété photocatalytique et/ou de renforcer lesdites propriétés dudit revêtement. - On incorpore au mélange gazeux comprenant au moins le précurseur organométallique et/ou un halogénure métallique dudit oxyde métallique, au moins un autre type de matériau minéral, notamment sous forme d'un oxyde amorphe ou partiellement cristallisé, par exemple un oxyde de silicium (ou mélange d'oxydes), de titane, d'étain, de zirconium, vanadium, antimoine, zinc, tungstène, cobalt, nickel, d'aluminium, ces oxydes pouvant être mixtes ou dopés. On réalise le dépôt du revêtement à propriété photocatalytique sur le substrat au sein même de la décharge de plasma. On réalise le dépôt du revêtement à propriété photocatalytique sur le substrat hors de la décharge de plasma. Selon un autre aspect de l'invention, celle-ci vise également un substrat obtenu selon le procédé précédemment mentionné, ainsi que ses variantes. Ce substrat à base verrière, céramique ou vitro-céramique, ou plastique muni sur au moins une partie d'au moins une de ses faces d'un revêtement à propriété photo-catalytique comportant de l'oxyde de titane au moins partiellement cristallisé, se caractérise en ce que l'oxyde de titane cristallisé est sous forme anatase, sous forme rutile , de brookite ou sous forme d'un mélange d'anatase, de rutile, de brookite. Dans des modes de réalisation préférés de l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes : l'oxyde de titane cristallisé est sous forme de cristallites de taille moyenne comprise entre 0,5 et 60 nm, de préférence 1 à 50. le revêtement comporte également un matériau minéral, notamment sous forme d'un oxyde ou mélange d'oxydes amorphe ou partiellement cristallisé du type oxyde de silicium, oxyde de titane, oxyde d'étain, oxyde de zirconium, oxyde d'aluminium, oxyde de vanadium, d'antimoine, de zinc, de tungstène, de cobalt, de nickel, ces oxydes pouvant être mixtes ou dopés. le revêtement comprend des additifs aptes à étendre le phénomène photocatalytique dû à l'oxyde de titane, notamment en augmentant la bande d'absorption du revêtement et/ou en augmentant le nombre de porteurs de charges par dopage du réseau cristallin de l'oxyde ou par dopage de surface du revêtement et/ou en augmentant rendement et cinétique des réactions photocatalytiques en recouvrant au moins une partie du revêtement par un catalyseur. le réseau cristallin de l'oxyde de titane est dopé, notamment par au moins un des éléments métalliques ou non métalliques, - l'épaisseur du revêtement est compris entre 5 nm et 1 micron, de préférence de 5 à 100 nm l'activité photocatalytique du revêtement est d'au moins 5.10-3 cm-1 min ~1 mesurée à l'aide du test TAS la rugosité RMS du revêtement photocatalytique est comprise entre 2 et 20 nm, notamment entre 5 et 20 nm. la réflexion lumineuse du revêtement photocatalytique est inférieure à 30 %, de préférence inférieure ou égale à 20 %, avec une couleur neutre. l'absorption du revêtement photocatalytique est inférieure à 10 % de préférence inférieure à 5 % il est disposé sous le revêtement à propriété photocatalytique au moins une couche mince à fonction anti-statique, thermique, optique, ou faisant barrière à la migration des alcalins provenant du substrat . la couche mince à fonction anti-statique, éventuellement à polarisation contrôlée, et/ou thermique et/ou optique est à base de matériau conducteur du type métal ou du type oxyde métallique dopé tel que ITO, SnO :F, SnO2 :Sb, ZnO:ln, ZnO:F, ZnO:AI, ZnO:Sn ou oxyde métallique sous-stoechiométrique en oxygène comme Snθ2-χ θu Znθ2-x avec x < 2. - la couche mince à fonction optique est à base d'un oxyde ou d'un mélange d'oxydes dont l'indice de réfraction est intermédiaire entre celui du revêtement et celui du substrat, notamment choisi(s) parmi les oxydes suivants : AI2Û3, Snθ2, ln2θ3, ou à base d'oxycarbure ou oxynitrure de silicium, ou éventuellement à base d'un mélange d'un matériau à haut indice de réfraction avec un matériau à bas indice de réfraction (AI2O3/ TiO2, AI2θ3/SiO2, AI2O3 /SnO , SnO2/ TiO ....) la couche mince ou multicouche à fonction de barrière aux alcalins est par exemple à base d'oxyde, de nitrure, d'oxynitrure ou d'oxycarbure de silicium, d'AbOβ :F ou Snθ2 :F de nitrure d'aluminium, de nitrure de silicium. le substrat est transparent, plat ou bombé, le substrat est un substrat verrier. le substrat est à un substrat à base de polymère, notamment PMMA, de polycarbonate, de PEN Selon un autre aspect de l'invention, celle-ci vise un vitrage « antisalissures et/ou anti-buée », monolithique, multiple du type double-vitrage ou feuilleté incorporant le substrat tel que précédemment décrit en vue de la fabrication « d'un vitrage auto-nettoyant», anti-buée et/ou anti-salissures, du type salissures organiques et/ou minérales, notamment des vitrages pour le bâtiment du type double-vitrage, des vitrages pour véhicules du type pare- brise, lunette arrière ou latéraux d'automobile, trains, avions, ou vitrages utilitaires comme des verres d'aquarium, de vitrines, de serre, d'ameublement intérieur, de mobilier urbain, ou des miroirs, écrans de télévision, vitrages à absorption variable commandée électriquement... D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description suivante d'une de ses formes de réalisation, donnée à titre d'exemple non limitatif. Selon un mode préféré de réalisation, on se propose de déposer sur un substrat transparent à base verrière, céramique ou vitrocéramique, notamment en verre, ou un substrat à base de polymère, muni sur au moins une partie d'au moins une de ses faces d'un revêtement à propriété photo- catalytique comportant par exemple de l'oxyde de titane au moins partiellement cristallisé. L'oxyde de titane est cristallisé de préférence « in situ », lors de la formation du revêtement sur le substrat. Selon l'invention, on dispose en outre sous ce revêtement au moins une couche mince faisant barrière à la migration des alcalins provenant du substrat. L'oxyde de titane fait en effet partie des semi- conducteurs qui, sous l'action de la lumière dans le domaine visible ou des ultraviolets, dégradent des produits organiques qui se déposent à leur surface. Choisir l'oxyde de titane pour fabriquer un vitrage à effet « anti-salissures » est donc particulièrement indiqué, et ce d'autant plus que cet oxyde présente une bonne résistance mécanique et chimique : pour être efficace longtemps, il est évidemment important que le revêtement conserve son intégrité, alors même qu'il se trouve directement exposé à de nombreuses agressions, notamment lors du montage du vitrage sur chantier (bâtiment) ou sur ligne de production (véhicule), ce qui implique des manipulations répétées par des moyens de préhension mécaniques ou pneumatiques, et également une fois le vitrage en place, avec des risques d'abrasion (essuie-glace, chiffon abrasif) et de contact avec des produits chimiques agressifs (polluants atmosphériques du type SO2, produit d'entretien, ...). On a également pu observer, notamment dans le cas d'une cristallisation sous forme anatase, que l'orientation des cristaux de T O2 croissant sur le substrat avait une influence sur les performances photo-catalytiques de l'oxyde : il existe une orientation privilégiée (1 ,1 ,0) qui favorise nettement la photocatalyse. La fabrication du revêtement est opérée de manière à ce que l'oxyde de titane cristallisé qu'il contient se trouve sous forme de « cristallites », au moins près de la surface, c'est-à-dire de monocristaux, ayant une taille moyenne comprise entre 0,5 et 100 nm, de préférence 1 à 50 nm. C'est en effet dans cette gamme de dimension que l'oxyde de titane semble avoir un effet photocatalytique optimal, vraisemblablement parce que les cristallites de cette taille développent une surface active importante. Le revêtement peut comporter également, outre l'oxyde de titane cristallisé, au moins un autre type de matériau minéral, notamment sous forme d'un oxyde amorphe ou partiellement cristallisé, par exemple un oxyde de silicium (ou mélange d'oxydes), de titane, d'étain, de zirconium ou d'aluminium. Ce matériau minéral peut aussi participer à l'effet photocatalytique de l'oxyde de titane cristallisé, en présentant lui-même un certain effet photocatalytique, même faible par rapport à celui du Tiθ2 cristallisé, ce qui est le cas de l'oxyde d'étain ou de l'oxyde de titane amorphe. Une couche d'oxyde « mixte » combinant ainsi de l'oxyde de titane au moins partiellement cristallisé à au moins un autre oxyde peut être intéressante sur le plan optique, tout particulièrement si l'autre ou les autres oxydes sont choisis d'indice inférieur à celui du TiO2 : en abaissant l'indice de réfraction « global » du revêtement, on peut jouer sur la réflexion lumineuse du substrat muni du revêtement, notamment abaisser cette réflexion. C'est le cas si, par exemple, on choisit une couche en T.O2/AI2O3, dont un mode d'obtention est décrit dans le brevet EP-0 465 309, ou en Tiθ2/Siθ2. Il est nécessaire, bien sûr, que le revêtement contienne cependant une teneur en TIO2 suffisante pour conserver une activité photocatalytique notable et que T O2 reste cristallisé. On considère, ainsi, qu'il est préférable que le revêtement contienne au moins 40% en poids, notamment au moins 50% en poids de TÏO2 par rapport au poids total d'oxyde(s) dans le revêtement. Pour amplifier l'effet photocatalytique de l'oxyde de titane du revêtement selon l'invention, on peut tout d'abord augmenter la bande d'absorption du revêtement, en incorporant au revêtement d'autres éléments notamment métalliques et à base de cadmium, d'étain, de tungstène, de zinc, de cérium, ou de zirconium, éventuellement dopés ainsi que des éléments non métalliques. On peut aussi augmenter le nombre de porteurs de charge par dopage du réseau cristallin de l'oxyde de titane, en y insérant au moins un des éléments métalliques suivants : niobium, tantale, fer, bismuth, cobalt, nickel, cuivre, ruthénium, cérium, molybdène., ou des éléments non métalliques (azote, carbone fluor) De manière tout à fait surprenante, le revêtement présente en fait non pas une propriété mais deux, dès qu'il est exposé à un rayonnement adéquat comme dans le domaine du visible et/ou les ultraviolets, tel qu'un rayonnement solaire : par la présence d'oxyde de titane photocatalytique, comme déjà vu, il favorise la disparition progressive, au fur et à mesure de leur accumulation, de salissures d'origine organique, en provoquant leur dégradation par un processus d'oxydation radicalaire. Les salissures minérales ne sont, elles, pas dégradées par ce processus : elles restent donc sur la surface, et, à part certaines cristallisations, elles sont en partie facilement évacuées puisqu'elles n'ont plus de raison d'adhérer à la surface, les agents organiques collants étant dégradés par photocatalyse. Mais le revêtement de l'invention, s'auto-nettoyant en permanence, présente également de préférence une surface extérieure à caractère hydrophile et/ou oléophile prononcé, ce qui induit trois effets très avantageux : • un caractère hydrophile permet un mouillage parfait de l'eau qui peut se déposer sur le revêtement. Quand un phénomène de condensation de l'eau se produit, au lieu d'un dépôt de gouttelettes d'eau sous forme de buée gênant la visibilité, on a en fait un mince film continu d'eau qui se forme à la surface du revêtement et qui est tout à fait transparent. Cet effet « anti-buée » est notamment démontré par la mesure d'un angle de contact à l'eau inférieur à 5°après exposition à la lumière, et,The present invention relates to a process for depositing a coating based on titanium oxide with photocatalytic properties on a substrate, in particular transparent. It also targets the substrate thus obtained. Glass-based, ceramic or glass-ceramic substrates are known, more particularly glass, in particular transparent, which are provided with coatings with photocatalytic properties, with a view to manufacturing glazing of various applications, such as utility glazing, glazing for vehicles. or for buildings. The photocatalytic properties imparted to the substrate due to the coating based on titanium oxide give the latter an anti-fouling function. More particularly, the substrate retains appearance and surface properties over time, which in particular make it possible to space cleaning times and / or to improve visibility, by succeeding in eliminating progressively the soiling gradually deposited at the surface of the substrate, in particular soiling of organic origin such as fingerprints or volatile organic products present in the atmosphere, or even soiling of the fogging type. It will be recalled that this cleaning results from the fact that certain semiconductor materials, based on metal oxide, such as for example titanium oxide, are capable, under the effect of radiation of adequate wavelength (in the visible and / or in the ultraviolet), to initiate radical reactions causing the oxidation of organic products: we generally speak of "photocatalytic" or even "photo-reactive" materials. Among the processes commonly used to deposit such a coating, numerous techniques are known: • by decomposition of metal oxide precursors such as for example titanium (pyrolysis techniques: liquid pyrolysis, powder pyrolysis, pyrolysis in value phase called CVD (Chemical Vapor Deposition), techniques associated with sol-gel: soaking or dipping, cell-coating, etc.), • by a vacuum technique (reactive or non-reactive sputtering). The first pyrolysis decomposition technique, which is economical, offers satisfactory results but suffers from a lack of flexibility. Indeed, the decomposition of the precursors takes place directly at the level of the float line, and any modification as to the nature of the substrate (composition, property) on which the coating is deposited necessarily requires a slow adaptation of the loading conditions for raw material. float. Furthermore, it may be noted under the drawbacks of this deposition technique, a certain difficulty as regards the control of the surface temperatures and the temperatures of the means of injection of the precursors (nozzle), the high temperatures being one of the most important parameters. more fundamental to obtaining a titanium oxide coating having optimal photocatalytic properties. In addition, due to the heat treatment, the deposition can only be carried out on substrates that are not very sensitive to temperature (for example plastic). The second technique mentioned above, called vacuum deposition (using a magnetron line for example), necessarily requires a heat treatment phase of the titanium oxide coating previously deposited under vacuum in order to allow obtaining 'an adequate crystallographic phase. This heating is difficult to implement directly within the magnetron which is under vacuum and it is then necessary to carry out a recovery operation outside the deposit enclosure. Indeed, for the latter to have photocatalytic properties, the titanium oxide should be in an anatase crystallized form, in rutile form or in the form of a mixture of anatase, rutile, brookite with a rate crystallization of at least 25%, especially around 30 to 80%, especially near the surface, (the property being rather a surface property). (The crystallization rate includes the amount by weight of T O2 crystallized relative to the total weight amount of TIO2 in the coating). The object of the invention is therefore to develop a process for depositing photo-catalytic coatings on the substrate, which have a marked “anti-fouling” effect on the substrate and which can be manufactured from industrially, which does not have the drawbacks of the previously mentioned techniques. Quite surprisingly, the inventors have discovered that it is possible to use the so-called PECVD technique for (Plasma Enhanced Chemical Vapor Deposition) to deposit a photocatalytic coating on a glass substrate or not. This particular technique is known for depositing titanium oxide for waveguide applications (US5295220), or for fission product trapping applications (FR2695507). The subject of the invention is therefore a method of depositing on a substrate a coating based on semiconductor materials based on metal oxides, in particular titanium oxide, which are capable, under the effect of radiation of adequate wavelength, to initiate radical reactions causing the oxidation of organic products so as to confer photocatalytic properties on said coating which is characterized in that the coating with photocatalytic property is deposited by chemical deposition in the gas phase , in particular from a gas mixture comprising at least one organometallic precursor and / or a metal halide of said metal oxide, the deposition being assisted by a plasma source. Thanks to these provisions and in particular to the use of a plasma source to dissociate the metal oxide precursor, it is possible to obtain a photocatalytic coating which does not necessarily require heat treatment at high temperature (beyond 300-350 ° C) to reveal the desired properties, during or after deposition and which is also very flexible, the optimal deposition conditions no longer being dependent on the presence of a nearby heat source ( float). In . preferred embodiments of the invention, it is optionally possible to have recourse in addition to one and / or the other of the following arrangements: at least one carrier gas or a mixture of carrier gases chosen from air, nitrogen, helium, argon. An oxidizing agent or a mixture of oxidizing agents is incorporated into the gas mixture. A reducing agent or a mixture of reducing agents is incorporated into the gas mixture. The reaction and deposition phase is carried out at reduced pressure. the reaction and deposition phase is carried out at atmospheric pressure. At least one sublayer is deposited prior to the coating with photocatalylic property, making it possible to provide another functionality to said coating with photocatalytic property and / or to reinforce said properties of said coating. - At least one other type of mineral material is incorporated into the gas mixture comprising at least the organometallic precursor and / or a metal halide of said metal oxide, in particular in the form of an amorphous or partially crystallized oxide, for example a silicon oxide ( or mixture of oxides), titanium, tin, zirconium, vanadium, antimony, zinc, tungsten, cobalt, nickel, aluminum, these oxides can be mixed or doped. The photocatalytic coating is deposited on the substrate within the plasma discharge. The photocatalytic coating is deposited on the substrate outside the plasma discharge. According to another aspect of the invention, it also relates to a substrate obtained according to the previously mentioned method, as well as its variants. This glass-based, ceramic or vitro-ceramic, or plastic substrate provided on at least part of at least one of its faces with a coating with photo-catalytic property comprising at least partially crystallized titanium oxide, is characterized in that the crystallized titanium oxide is in anatase form, in rutile form, in brookite or in the form of a mixture of anatase, rutile, brookite. In preferred embodiments of the invention, it is optionally possible to have recourse to one and / or the other of the following arrangements: the crystallized titanium oxide is in the form of crystallites of average size between 0 , 5 and 60 nm, preferably 1 to 50. the coating also comprises an inorganic material, in particular in the form of an oxide or mixture of amorphous or partially crystallized oxides of the silicon oxide, titanium oxide, tin oxide type , zirconium oxide, aluminum oxide, vanadium, antimony, zinc, tungsten, cobalt, nickel oxide, these oxides can be mixed or doped. the coating comprises additives capable of extending the photocatalytic phenomenon due to titanium oxide, in particular by increasing the absorption band of the coating and / or by increasing the number of charge carriers by doping the crystal lattice of the oxide or by surface doping of the coating and / or by increasing the yield and kinetics of the photocatalytic reactions by covering at least part of the coating with a catalyst. the crystal lattice of the titanium oxide is doped, in particular by at least one of the metallic or non-metallic elements, - the thickness of the coating is between 5 nm and 1 micron, preferably from 5 to 100 nm the photocatalytic activity of the coating is at least 5.10 - 3 cm - 1 min ~ 1 measured using the TAS test, the RMS roughness of the photocatalytic coating is between 2 and 20 nm, in particular between 5 and 20 nm. the light reflection of the photocatalytic coating is less than 30%, preferably less than or equal to 20%, with a neutral color. the absorption of the photocatalytic coating is less than 10%, preferably less than 5%, it is arranged under the coating with photocatalytic property at least one thin layer with anti-static, thermal, optical function, or acting as a barrier to the migration of alkalis originating from of the substrate. the thin layer with anti-static function, optionally with controlled polarization, and / or thermal and / or optical is based on conductive material of the metal type or of the doped metal oxide type such as ITO, SnO: F, SnO 2 : Sb, ZnO: ln, ZnO: F, ZnO: AI, ZnO: Sn or metallic oxide sub-stoichiometric in oxygen as Snθ2-χ θu Znθ2-x with x <2. - the thin layer with optical function is based on an oxide or of a mixture of oxides whose refractive index is intermediate between that of the coating and that of the substrate, in particular chosen from the following oxides: AI2O3, Snθ2, ln2θ3, or based on oxycarbide or oxynitride of silicon, or possibly based on a mixture of a high refractive index material with a low refractive index material (AI2O3 / TiO 2 , AI 2 θ3 / SiO 2 , AI2O3 / SnO, SnO 2 / TiO ....) the thin or multilayer layer with barrier function to alkali is for example based on oxide, nitride, oxynitride or oxycarbide of silicon, of AbOβ: F or Snθ2: F of aluminum nitride, of silicon nitride. the substrate is transparent, flat or curved, the substrate is a glass substrate. the substrate is based on a polymer-based substrate, in particular PMMA, polycarbonate, PEN. According to another aspect of the invention, the latter relates to a glazing “anti-fouling and / or anti-fogging”, monolithic, multiple of the double type. -glazing or laminated incorporating the substrate as previously described for the production of "self-cleaning glazing", anti-fog and / or anti-fouling, of the organic and / or mineral soiling type, in particular glazing for the building of the double-glazing type, glazing for vehicles of the windshield type, rear or side window of automobiles, trains, airplanes, or utility glazing such as aquarium glasses, display cases, greenhouse, interior furnishings, street furniture, or mirrors, television screens, electrically controlled variable absorption glazing, etc. Other characteristics and advantages of the invention will appear during the following description of one of its embodiments, given e by way of nonlimiting example. According to a preferred embodiment, it is proposed to deposit on a transparent substrate based on glass, ceramic or glass-ceramic, in particular glass, or a polymer-based substrate, provided on at least part of at least one of its faces a coating with photocatalytic property comprising for example titanium oxide at least partially crystallized. Titanium oxide is preferably crystallized "in situ" during the formation of the coating on the substrate. According to the invention, there is further provided under this coating at least one thin layer forming a barrier to the migration of alkalis from the substrate. Titanium oxide is in fact part of the semiconductors which, under the action of light in the visible range or ultraviolet, degrade products organic matter that settle on their surface. Choosing titanium oxide to make a glazing with an “anti-fouling” effect is therefore particularly recommended, and all the more so since this oxide has good mechanical and chemical resistance: to be effective for a long time, it is obviously important that the coating retains its integrity, even when it is directly exposed to numerous attacks, in particular when mounting glazing on site (building) or on production line (vehicle), which involves repeated handling by gripping means mechanical or pneumatic, and also once the glazing is in place, with risks of abrasion (windscreen wiper, abrasive cloth) and contact with aggressive chemicals (atmospheric pollutants of SO2 type, cleaning product, ... ). It has also been observed, in particular in the case of crystallization in anatase form, that the orientation of the growing T O2 crystals on the substrate had an influence on the photo-catalytic performances of the oxide: there is a preferred orientation (1, 1, 0) which clearly promotes photocatalysis. The coating is produced in such a way that the crystallized titanium oxide which it contains is in the form of “crystallites”, at least near the surface, that is to say of single crystals, having a size average between 0.5 and 100 nm, preferably 1 to 50 nm. It is indeed in this dimension range that titanium oxide seems to have an optimal photocatalytic effect, probably because the crystallites of this size develop a large active surface. The coating may also comprise, in addition to crystallized titanium oxide, at least one other type of mineral material, in particular in the form of an amorphous or partially crystallized oxide, for example a silicon oxide (or mixture of oxides), titanium, tin, zirconium or aluminum. This mineral material can also participate in the photocatalytic effect of crystallized titanium oxide, by itself presenting a certain photocatalytic effect, even weak compared to that of crystallized Tiθ2, which is the case of tin or amorphous titanium oxide. A “mixed” oxide layer thus combining at least partially crystallized titanium oxide with at least one other oxide may be advantageous from the optical point of view, especially if the other or the other oxides are chosen with a lower index. to that of TiO 2 : by lowering the refractive index " overall ”of the coating, one can play on the light reflection of the substrate provided with the coating, in particular lower this reflection. This is the case if, for example, a layer of T.O2 / AI2O3 is chosen, one method of obtaining which is described in patent EP-0 465 309, or in Tiθ2 / Siθ2. It is necessary, of course, that the coating however contains a content of TIO2 sufficient to maintain a notable photocatalytic activity and that T O2 remains crystallized. It is thus considered that it is preferable for the coating to contain at least 40% by weight, in particular at least 50% by weight of TiO 2 relative to the total weight of oxide (s) in the coating. To amplify the photocatalytic effect of the titanium oxide of the coating according to the invention, it is possible first of all to increase the absorption band of the coating, by incorporating into the coating other elements, in particular metallic and based on cadmium, tin, tungsten, zinc, cerium, or zirconium, possibly doped as well as non-metallic elements. It is also possible to increase the number of charge carriers by doping the crystal lattice of the titanium oxide, by inserting therein at least one of the following metallic elements: niobium, tantalum, iron, bismuth, cobalt, nickel, copper, ruthenium, cerium , molybdenum, or non-metallic elements (nitrogen, carbon fluorine) Surprisingly, the coating actually has not one property but two, as soon as it is exposed to adequate radiation as in the visible range and / or ultraviolet, such as solar radiation: by the presence of photocatalytic titanium oxide, as already seen, it promotes the gradual disappearance, as and when they accumulate, of dirt of organic origin, in causing their degradation by a radical oxidation process. Mineral soils are not degraded by this process: they therefore remain on the surface, and, apart from certain crystallizations, they are partly easily removed since they no longer have reason to adhere to the surface, the sticky organic agents being degraded by photocatalysis. However, the coating of the invention, which is permanently self-cleaning, also preferably has an outer surface with a pronounced hydrophilic and / or oleophilic character, which induces three very advantageous effects: • a hydrophilic nature allows perfect wetting of the water which can be deposited on the coating. When a phenomenon of water condensation occurs, instead of a deposit of water droplets in the form of a mist which impairs visibility, there is in fact a thin continuous film of water which forms on the surface of the coating. and which is completely transparent. This “anti-fog” effect is demonstrated in particular by measuring a contact angle with water of less than 5 ° after exposure to light, and,
• après ruissellement d'eau, de pluie notamment, sur une surface non traitée par une couche photocatalytique, de nombreuses gouttes d'eau de pluie restent accrochées sur la surface et laissent, une fois évaporées, des traces inesthétiques et gênantes, d'origine principalement minérale. En effet, une surface exposée à l'air ambiant se recouvre rapidement d'une couche de salissure qui limite son mouillage par l'eau. Ces salissures viennent s'ajouter aux autres salissures, notamment minérales (cristallisations, ...) apportées par l'atmosphère dans laquelle baigne le vitrage. Dans le cas d'une surface photoréactive, ces salissures minérales ne sont pas directement dégradées par photocatalyse. En fait, elles sont en très grande partie éliminées grâce au caractère hydrophile induit par l'activité photocatalytique. Ce caractère hydrophile provoque en effet un étalement parfait des gouttes de pluie. Les traces d'évaporation ne sont donc plus présentes. De plus, les autres salissures minérales présentes sur la surface sont lavées, ou redissoutes dans le cas de cristallisation, par le film d'eau et donc en grande partie évacuées. On obtient un effet « anti-salissure minérale » notamment induit par la pluie,• after runoff of water, rain in particular, on a surface not treated with a photocatalytic layer, many drops of rain water remain attached to the surface and leave, once evaporated, unsightly and annoying traces of origin mainly mineral. Indeed, a surface exposed to the ambient air quickly becomes covered with a layer of dirt which limits its wetting by water. These soils are added to the other soils, in particular mineral ones (crystallizations, ...) brought by the atmosphere in which the glazing bathes. In the case of a photoreactive surface, these mineral soils are not directly degraded by photocatalysis. In fact, they are largely eliminated thanks to the hydrophilic nature induced by the photocatalytic activity. This hydrophilic nature indeed causes perfect spreading of the raindrops. Evidence of evaporation is therefore no longer present. In addition, the other mineral soils present on the surface are washed, or redissolved in the case of crystallization, by the film of water and therefore largely removed. We obtain an "mineral anti-fouling" effect, in particular induced by rain,
• conjointement à un caractère hydrophile, le revêtement peut aussi présenter un caractère oléophile, permettant le « mouillage » des salissures organiques qui, comme pour l'eau, tendent alors à se déposer sur le revêtement sous forme d'un film continu moins visible que des « taches » bien localisées. On obtient ainsi un effet « antisalissures organiques » qui s'opère en deux temps : dès qu'elle se dépose sur le revêtement, la salissure est déjà peu visible. Ensuite, progressivement, elle disparaît par dégradation radicalaire amorcée par photo-catalyse. Le revêtement peut être choisi de surface plus ou moins lisse. Une certaine rugosité peut être recherchée : • elle permet de développer une surface photocatalytique active plus grande et donc elle induit une plus grande activité photocatalytique, • elle a une influence directe sur le mouillage. La rugosité exalte en effet les propriétés de mouillage. Une surface lisse hydrophile sera encore plus hydrophile une fois rendue rugueuse. On comprend par «rugosité» ici, aussi bien la rugosité de surface, que la rugosité induite par une porosité de la couche ou de la sous couche dans au moins une partie de son épaisseur. Les effets précédents seront d'autant plus marqués que le revêtement est poreux et rugueux, d'où un effet superhydrophile des surfaces photoréactives rugueuses. Cependant, trop prononcée, la rugosité peut être pénalisante en favorisant l'incrustation, l'accumulation des salissures et/ou en faisant apparaître un niveau de flou inacceptable optiquement. Il s'est ainsi avéré intéressant d'adapter le mode de dépôt des revêtements à base de T.O2 de manière à ce qu'ils présentent une rugosité d'environ 2 à 20 nm, de préférence de 5 à 15 nm, cette rugosité étant évaluée par microscopie à force atomique, par mesure de la valeur de l'écart quadratique moyen (dit Root Mean Square ou RMS en anglais) sur une surface de 1 micromètre carré. Avec de telles rugosités, les revêtements présentent un caractère hydrophile se traduisant par un angle de contact à l'eau pouvant être inférieur à 1 °. On a également constaté qu'il était avantageux de favoriser une certaine porosité dans l'épaisseur du revêtement. Ainsi, si le revêtement n'est constitué que de TIO2, il présente de préférence une porosité de l'ordre de 65 à 99%, notamment de 70 à 90%, la porosité étant définie ici de manière indirecte par le pourcentage de la densité théorique du TÏO2, qui est d'environ 3,8. L'épaisseur du revêtement selon l'invention est variable, elle est de préférence comprise entre 5 nm et 1 micron, de préférence entre 5 et 100 nm, notamment entre 10 et 80 nm, ou entre 15 et 50 nm. En fait, le choix de l'épaisseur peut dépendre de différents paramètres, notamment de l'application envisagée du substrat du type vitrage, ou encore de la taille des cristallites de UO2 dans le revêtement ou de la présence d'alcalins en forte proportion dans le substrat. On peut aussi envisager un empilement de couches « anti-reflets » alternant des couches minces à haut et bas indices, le revêtement selon l'invention constituant la dernière couche de l'empilement. Dans ce cas, il est préférable que le revêtement soit d'indice de réfraction relativement peu élevé, ce qui est le cas quand il est constitué d'un oxyde mixte de titane et de silicium. La couche à fonction anti-statique et ou thermique (chauffante en la munissant d'amenées de courant, bas-émissive, anti-solaire, ...) peut notamment être choisie à base d'un matériau conducteur du type métal, comme l'argent, ou du type oxyde métallique dopé comme l'oxyde d'indium dopé à l'étain ITO, l'oxyde d'étain dopé avec un halogène du type fluor Snθ2:F, ou avec de l'antimoine Snθ2:Sb, ou de l'oxyde de zinc dopé à l'indium ZnO:ln, au fluor ZnO:F, à l'aluminium ZnO:AI ou à l'étain ZnO:Sn. Il peut aussi s'agir d'oxydes métalliques sous-stoechiométriques en oxygène, comme Snθ2-x ou ZnO∑x avec x < 2. La couche à fonction anti- statique a de préférence une valeur de résistance carrée de 20 à 1000 ohms/carré. On peut prévoir dé la munir d'amenées de courant afin de la polariser (tensions d'alimentation par exemple comprises entre 5 et 100V). Cette polarisation contrôlée permet notamment de lutter contre le dépôt de poussières de taille de l'ordre du millimètre susceptibles de se déposer sur le revêtement, notamment des poussières sèches adhérentes que par effet électro-statique : en inversant brutalement la polarisation de la couche, on « éjecte » ces poussières. La couche mince à fonction optique peut être choisie afin de diminuer la réflexion lumineuse et/ou rendre plus neutre la couleur en réflexion du substrat. Elle présente dans ce cas, de préférence, un indice de réfraction intermédiaire entre celui du revêtement et celui du substrat et une épaisseur optique appropriée, et peut être constituée d'un oxyde ou d'un mélange d'oxydes du type oxyde d'aluminium AI2O3, oxyde d'étain SnO2) oxyde d'indium ln2θ3, oxycarbure ou oxynitrure de silicium. Pour obtenir une atténuation maximale de la couleur en réflexion, il est préférable que cette couche mince présente un indice de réfraction proche de la racine carrée du produit des carrés des indices de réfraction des deux matériaux qui l'encadrent, c'est-à-dire le substrat et le revêtement selon l'invention. Parallèlement, il est avantageux de choisir son épaisseur optique (c'est-à-dire le produit de son épaisseur géométrique et de son indice de réfraction) voisine de lambda/4, lambda étant approximativement la longueur d'onde moyenne dans le visible, notamment d'environ 500 à 550 nm. La couche mince à fonction de barrière aux alcalins peut être notamment choisie à base d'oxyde, de nitrure, d'oxynitrure ou d'oxycarbure de silicium, en oxyde d'aluminium contenant du fluor A OsiF, ou encore en nitrure d'aluminium ou encore à base de SnO2. En fait, elle s'est avérée utile quand le substrat est en verre, car la migration d'ions sodium dans le revêtement selon l'invention peut, dans certaines conditions, en altérer les propriétés photocatalytiques. La nature du substrat ou de la sous-couche a en outre un intérêt supplémentaire : elle peut favoriser la cristallisation de la couche photocatalytique que l'on dépose, notamment dans le cas du dépôt CVD assisté par une source plasma, de préférence à pression réduite, voire de manière encore plus préférentielle à pression atmosphérique (appelée en anglais APPECVD (Atmospheric Pressure Plasma Enhanced Chemical Vapor Déposition) Toutes ces couches minces optionnelles peuvent, de manière connue, être déposées par des techniques sous vide du type pulvérisation cathodique ou par d'autres techniques du type décomposition thermique telles que les pyrolyses en phase solide, liquide ou gazeuse. Chacune des couches prémentionnées peut cumuler plusieurs fonctions, mais on peut aussi les superposer. L'invention a également pour objet les vitrages « anti-salissures »• together with a hydrophilic character, the coating can also have an oleophilic character, allowing the "wetting" of organic dirt which, as for water, then tends to be deposited on the coating in the form of a continuous film less visible than well localized "spots". There is thus obtained an “organic anti-fouling” effect which takes place in two stages: as soon as it is deposited on the coating, the soiling is already hardly visible. Then, gradually, it disappears by radical degradation initiated by photo-catalysis. The coating can be chosen to have a more or less smooth surface. A certain roughness can be sought: • it makes it possible to develop a larger active photocatalytic surface and therefore it induces greater photocatalytic activity, • it has a direct influence on the wetting. The roughness indeed enhances the wetting properties. A smooth hydrophilic surface will be even more hydrophilic when roughened. The term “roughness” is understood here to mean both the surface roughness and the roughness induced by a porosity of the layer or of the sublayer in at least part of its thickness. The above effects will be all the more marked when the coating is porous and rough, hence a superhydrophilic effect of the rough photoreactive surfaces. However, too pronounced, the roughness can be penalizing by favoring the incrustation, the accumulation of dirt and / or by making appear a level of blurring optically unacceptable. It has thus been found to be advantageous to adapt the method of depositing coatings based on T.O2 so that they have a roughness of approximately 2 to 20 nm, preferably 5 to 15 nm, this roughness being evaluated by atomic force microscopy, by measuring the value of the mean square deviation (known as Root Mean Square or RMS in English) over a surface of 1 square micrometer. With such roughness, the coatings have a hydrophilic nature resulting in a contact angle with water which can be less than 1 °. It has also been found that it is advantageous to promote a certain porosity in the thickness of the coating. Thus, if the coating consists only of TIO2, it preferably has a porosity of the order of 65 to 99%, in particular from 70 to 90%, the porosity being defined here indirectly by the percentage of the density theoretical T102, which is about 3.8. The thickness of the coating according to the invention is variable, it is preferably between 5 nm and 1 micron, preferably between 5 and 100 nm, in particular between 10 and 80 nm, or between 15 and 50 nm. In fact, the choice of thickness may depend on different parameters, in particular on the envisaged application of the glazing type substrate, or on the size of the UO2 crystallites in the coating or on the presence of alkalies in high proportion in the substrate. It is also possible to envisage a stack of “anti-reflection” layers alternating thin layers with high and low indices, the coating according to the invention constituting the last layer of the stack. In this case, it is preferable that the coating has a relatively low refractive index, which is the case when it consists of a mixed oxide of titanium and silicon. The layer with an anti-static and or thermal function (heating by providing it with current leads, low-emissivity, anti-sun, etc.) can in particular be chosen based on a conductive material of the metal type, such as l silver, or of the metal oxide type doped like indium oxide doped with tin ITO, tin oxide doped with a halogen of the fluorine type Snθ2: F, or with antimony Snθ2: Sb, or zinc oxide doped with indium ZnO: ln, fluorine ZnO: F, aluminum ZnO: AI or tin ZnO: Sn. It can also be metallic oxides substoichiometric in oxygen, such as Snθ2-x or ZnO∑x with x <2. The layer with anti-static function preferably has a square resistance value of 20 to 1000 ohms / square. Provision may be made to provide it with current leads in order to polarize it (supply voltages for example between 5 and 100V). This controlled polarization makes it possible in particular to combat the deposit of dust of size on the order of a millimeter capable of being deposited on the coating, in particular dry adherent dust only by electro-static effect: by brutally reversing the polarization of the layer, "Ejects" this dust. The thin layer with an optical function can be chosen in order to reduce the light reflection and / or make the color in reflection of the substrate more neutral. In this case, it preferably has an intermediate refractive index between that of the coating and that of the substrate and an appropriate optical thickness, and may consist of an oxide or a mixture of oxides of the aluminum oxide type. AI2O3, tin oxide SnO 2) indium oxide ln2θ3, oxycarbide or silicon oxynitride. To obtain maximum attenuation of the color in reflection, it is preferable that this thin layer has an index of refraction close to the square root of the product of the squares of the indices of refraction of the two materials which surround it, that is to say say the substrate and the coating according to the invention. At the same time, it is advantageous to choose its optical thickness (that is to say the product of its geometric thickness and its index of refraction) close to lambda / 4, lambda being approximately the average wavelength in the visible range, in particular approximately 500 to 550 nm. The thin layer with an alkali barrier function may in particular be chosen based on silicon oxide, nitride, oxynitride or oxycarbide, in aluminum oxide containing fluorine A OsiF, or in aluminum nitride or based on SnO 2 . In fact, it has proved useful when the substrate is made of glass, since the migration of sodium ions into the coating according to the invention can, under certain conditions, alter its photocatalytic properties. The nature of the substrate or of the sub-layer is also of additional interest: it can promote the crystallization of the photocatalytic layer which is deposited, in particular in the case of CVD deposition assisted by a plasma source, preferably at reduced pressure. , or even more preferably at atmospheric pressure (called in English APPECVD (Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition) All these optional thin layers can, in known manner, be deposited by vacuum techniques of the sputtering type or by other techniques of the thermal decomposition type such as pyrolysis in the solid, liquid or gas phase, each of the aforementioned layers can combine several functions, but they can also be superimposed. The invention also relates to "anti-fouling" glazing
(salissures organiques et/ou minérales) et/ou « anti-buée », qu'ils soient monolithiques, multiples isolants du type double-vitrage ou feuilletés, et qui incorporent les substrats revêtus précédemment décrits. L'invention vise donc la fabrication de produits verriers, céramiques ou vitro- céramiques, et tout particulièrement la fabrication de vitrages « auto- nettoyants ». Ceux-ci peuvent avantageusement être des vitrages de bâtiment, comme des double-vitrages (on peut alors disposer le revêtement « côté extérieur » et/ou « côté intérieur », c'est-à-dire en face 1 et/ou en face 4). Cela s'avère tout particulièrement intéressant pour les vitrages peu accessibles au nettoyage et/ou qui ont besoin d'être nettoyés très fréquemment, comme des vitrages de toiture, des vitrages d'aéroports, ... Il peut aussi s'agir de vitrages pour véhicules où le maintien de la visibilité est un critère essentiel de sécurité. Ce revêtement peut ainsi être disposé sur des pare-brise, latéraux ou lunettes arrière de voiture, notamment sur la face des vitrages tournée vers l'intérieur de l'habitacle. Ce revêtement peut alors éviter la formation de buée, et/ou supprimer les traces de salissures du type trace de doigts, nicotine ou matériau organique du type plastifiant volatil « relargué » par le plastique habillant l'intérieur de l'habitacle, notamment celui du tableau de bord (relargage connu parfois sous le terme anglais de « fogging »). D'autres véhicules tels qu'avions ou trains peuvent aussi trouver intérêt à utiliser des vitrages munis du revêtement de l'invention. Nombre d'autres applications sont possibles, notamment pour les verres d'aquarium, les vitrines de magasin, les serres, les vérandas, les verres utilisés dans l'ameublement intérieur ou le mobilier urbain, mais aussi les miroirs, les écrans de télévision, le domaine de la lunetterie ou tout matériau d'architecture du type matériau de façade, de bardage, de toiture tel que des tuiles L'invention permet ainsi de fonctionnaliser ces produits connus, en leur conférant des propriétés anti-ultraviolet, anti-salissure, bactéricide, anti-reflet, anti- statique, anti-microorganisme, ... Une autre application intéressante du revêtement selon l'invention consiste à l'associer à un vitrage à absorption variable commandée électriquement du type vitrage électrochrome, photovoltaïque, vitrage à cristaux liquides éventuellement avec colorant dichroïque, vitrage à système de particules suspendues, vitrage viologène... Tous ces vitrages étant constitués en général d'une pluralité de substrats transparents entre lesquels sont disposés les éléments « actifs », on peut alors avantageusement disposer le revêtement sur la face extérieure d'au moins un de ces substrats. Notamment dans le cas d'un vitrage électrochrome, lorsque ce dernier est à l'état coloré, son absorption conduit à un certain echauffement en surface, ce qui, de fait, est susceptible d'accélérer la décomposition photocatalytique des substances carbonées se déposant sur le revêtement selon l'invention. Pour plus de détails sur la structure d'un vitrage électrochrome, on se reportera avantageusement à la demande de brevet EP-A-0 575 207 décrivant un double vitrage feuilleté électrochrome, le revêtement selon l'invention pouvant, de préférence, être disposé en face 1. Ce revêtement d'oxyde métallique est donc réalisé à l'aide de la technique dite APPECVD qui consiste au dépôt chimique en phase gazeuse, notamment à partir d'un mélange de gaz comprenant au moins un précurseur organométallique et/ou un halogénure métallique dudit oxyde métallique (oxyde de titane par exemple dans notre cas), le dépôt étant assisté par une source plasma. Le matériau semi-conducteur photocatalytique choisi est de l'oxyde de titane. Il en existe d'autres qui peuvent être utilisés. On pourra se reporter au brevet de la demanderesse (FR2738813). Le matériau semi-conducteur peut être dopé (N, F, Pt, Pd, Métaux...) pour améliorer ses performances photocatalytiques ou adapter le gap optique et ainsi être adapté à différentes longueurs d'onde du spectre solaire (UV, visible). Le mélange gazeux utilisé incorpore un précurseur organométallique et/ou un halogénure de métaux. Pour l'oxyde de titane, on peut citer TiCI , TiPT, éthoxyde (butoxide....) de Ti, diisopropoxide bis(acétylacétonate) de Ti, Titanium (III) tris(2,2,6,6-tetramethyl-3,5-heptanedionate. Ce mélange gazeux peut incorporer également au moins un oxydant ou un mélange d'oxydants (air, O2, CO2, N2O, organique : alcool, ester....) ou au moins un réducteur ou un mélange de réducteur (H2, hydrocarbures...) et le gaz vecteur utilisé est de l'air, l'azote, l'hélium ou l'argon ou un mélange de ces gaz. De préférence, il sera principalement constitué d'hélium et/ou d'azote et/ou d'argon. Pour les dopants ou les dépôts mixtes, on peut utiliser les mêmes gammes de précurseurs (organométalliques / halogénures) pour les métaux. Pour le fluor, on utilisera par exemple l'acide trifluoroacetique (TFA), le HF, NF3... Pour l'azote, on peut utiliser NH3 ou des aminés (primaires, secondaires ou tertiaires). On peut aussi utiliser des précurseur contenant à la fois le titane et le dopant (par ex : Tétrakisdiethylamino titane, Tétrakisdimethylamino titane ou tetrachlorodiamminotitanium...) Le mélange gazeux réactionnel est alors dissocié, par une source plasma, soit directement au sein du plasma, soit de manière déportée, soufflée (de manière indirecte). L'oxyde métallique à propriété photocatalytique se dépose de manière continue et uniforme en au moins une partie de l'une au moins des faces du substrat. Le substrat et la zone de dépôt incorporant la source plasma ayant un déplacement relatif. Il peut être intéressant, par ailleurs, de déposer le revêtement non pas en une seule fois, mais par au moins deux étapes successives, ce qui semble favoriser la cristallisation de l'oxyde de titane sur toute l'épaisseur du revêtement lorsqu'on le choisit relativement épais. De même, il est peut être intéressant de faire subir au revêtement à propriété photo-catalytique, un traitement thermique post-dépôt ou un traitement plasma, une fois le Tiθ2 formé, afin d'améliorer son taux de cristallisation. La température de traitement choisie peut en outre permettre de mieux contrôler le taux de cristallisation et la nature cristalline, anatase et/ou rutile, de l'oxyde. Le procédé de dépôt objet de l'invention est intéressant car la source de plasma peut être suffisante pour apporter l'énergie thermique (sans à avoir à chauffer le substrat) suffisante à l'obtention des propriétés cristallographiques désirées au niveau de l'oxyde métallique déposé, sensiblement inférieure à 300 °C pour un substrat verrier, sensiblement inférieure à 130 °C pour un substrat en matière plastique (par exemple en PMMA, polycarbonate, PEN). Dans ce cas, on interposera une couche barrière entre le substrat et la couche à propriété photocatalytique. Cependant, dans le cas d'un substrat de verre sodo-calcique, des recuissons multiples et prolongées peuvent favoriser une atténuation de l'activité photocatalytique à cause d'une trop grande migration des alcalins du substrat vers la couche photoréactive. L'utilisation d'une couche barrière entre le substrat, s'il est en verre standard, et le revêtement, ou le choix d'un substrat de verre de composition adéquate, ou encore le choix d'un verre sodo-calcique dont la surface est désalcalinisée, permettent de s'affranchir de ce risque. Selon une variante de l'invention, le revêtement comprend des additifs aptes à étendre le phénomène photocatalytique dû à l'oxyde de titane, en évitant la recombinaison des porteurs de charge dans le matériau. A titre d'exemple on utilise un substrat verrier transparent, clair silico-sodo- calcique de 4 mm d'épaisseur. Il va de soi que l'invention n'est pas limitée à ce type spécifique de verre. Le verre peut en outre ne pas être plan, mais bombé. Selon un premier exemple de réalisation, une couche de Tiθ2 à partir de TiCI4 est déposée par décharge homogène fonctionnant à pression atmosphérique La couche mince de TiÛ2 a été déposée sur un substrat verrier propre chauffé à une température de 260°C. Le mélange de gaz qui est introduit est constitué d'hélium (He) et d'oxygène (O2). Les débits respectifs de ces gaz sont 14 slpm et 1 sccm. Le précurseur organométallique, le tétrachlorure de titane (TiCU), est versée dans un bulleur de 0,5 I. Ce bulleur est chauffé à 10°C et un gaz vecteur (He) est injecté dans le bulleur avec un débit de 140 sccm pour transporter les vapeurs organometalliques. A l'équilibre, la pression totale dans le réacteur est maintenue à 1013 mbar ± 50 mbar. Les électrodes, recouvertes d'une barrière diélectrique d'alumine (0.5 mm ± 0.1 mm), sont distance de 5 mm et elles sont alimentées avec une tension alternative sinusoïdale de 1.1 Volt efficace à une fréquence de 25 kHz. Dans ces conditions ont obtient un dépôt homogène de TiO2. On obtient, dans les conditions de dépôt ci-dessus mentionnées, une couche mince de Tiθ2 de 220 nm d'épaisseur. Celle-ci possède une activité photo-catalytique. Le test TAS (précision à 10% près) donne un K = 12.10-3 cm-1. min-1 avec une diminution de l'air du pic de 50% après une heure. Ce test est décrit par exemple dans la demande WO01/32578. Une analyse par spectrométrie RAMAN montre que le TiO2 est cristallisé sous forme anatase. Selon un deuxième exemple de réalisation, une couche de TiO2 à partir de TipT est déposée par décharge homogène fonctionnant à pression atmosphérique La couche mince de TiÛ2 a été déposée sur un substrat verrier propre chauffé à une température de 235°C. Le mélange de gaz qui est introduit est constitué d'hélium (He) et d'oxygène (O2). Les débits respectifs de ces gaz sont 11 slpm et 20 sccm. Le précurseur organométallique, le TipT (tétraisopropoxyde de titane), est versé dans un bulleur de 0,5 I. Ce bulleur est chauffé à 50°C et un gaz vecteur (He) est injecté dans le bulleur avec un débit de 500 sccm pour transporter les vapeurs organometalliques. A l'équilibre, la pression totale dans le réacteur est maintenue à 1013 mbar ± 50 mbar. Les électrodes, recouvertes d'une barrière diélectrique d'alumine (0.5 mm ± 0.1 mm), sont distance de 6 mm et elles sont alimentées avec une tension alternative sinusoïdale de 1.1 Volt efficace à une fréquence de 10 kHz. Dans ces conditions, on obtient un dépôt homogène de Tiθ2.(organic and / or mineral soiling) and / or "anti-fogging", whether they are monolithic, multiple insulators of the double-glazing or laminated type, and which incorporate the coated substrates previously described. The invention therefore relates to the manufacture of glass, ceramic or vitro-ceramic products, and very particularly the manufacture of "self-cleaning" glazing. These can advantageously be building glazing, such as double glazing (it is then possible to arrange the coating “outside side” and / or “inside side”, that is to say on face 1 and / or on face 4). This is particularly advantageous for glazing that is difficult to access for cleaning and / or that needs to be cleaned very frequently, such as roof glazing, airport glazing, etc. It may also be glazing for vehicles where maintaining visibility is an essential safety criterion. This coating can thus be placed on windshields, lateral or rear windows of the car, in particular on the face of the glazing facing towards the interior of the passenger compartment. This coating can then prevent the formation of fogging, and / or remove traces of soiling of the fingerprint type, nicotine or organic material of the volatile plasticizer type "released" by the plastic coating the interior of the passenger compartment, in particular that of the dashboard (release sometimes known under the English term "fogging"). Other vehicles such as planes or trains may also find advantage in using glazing provided with the coating of the invention. Many other applications are possible, especially for aquarium glasses, shop windows, greenhouses, verandas, glasses used in interior or street furniture, but also mirrors, television screens, the field of eyewear or any architectural material of the facade, cladding, roofing material type such as tiles The invention thus makes it possible to functionalize these known products, by giving them anti-ultraviolet, anti-fouling properties, bactericide, anti-reflection, anti-static, anti-microorganism, etc. Another interesting application of the coating according to the invention consists in associating it with an electrically controlled variable absorption glazing of the electrochromic, photovoltaic, crystal glazing type. liquids possibly with dichroic dye, glazing with suspended particles system, viologene glazing ... All these glazings being generally made up of p the plurality of transparent substrates between which the “active” elements are arranged, it is then advantageously possible to arrange the coating on the external face of at least one of these substrates. In particular in the case of electrochromic glazing, when the latter is in the colored state, its absorption leads to a certain heating on the surface, which, in fact, is capable of accelerating the photocatalytic decomposition of the carbonaceous substances depositing on the coating according to the invention. For more details on the structure of an electrochromic glazing, advantageously reference will be made to patent application EP-A-0 575 207 describing an electrochromic laminated double glazing, the coating according to the invention can preferably be arranged in side 1. This metal oxide coating is therefore produced using the so-called APPECVD technique which consists of chemical deposition in the gas phase, in particular from a mixture of gases comprising at least one organometallic precursor. and / or a metal halide of said metal oxide (titanium oxide for example in our case), the deposition being assisted by a plasma source. The photocatalytic semiconductor material chosen is titanium oxide. There are others that can be used. Reference may be made to the applicant's patent (FR2738813). The semiconductor material can be doped (N, F, Pt, Pd, Metals ...) to improve its photocatalytic performance or adapt the optical gap and thus be adapted to different wavelengths of the solar spectrum (UV, visible) . The gas mixture used incorporates an organometallic precursor and / or a metal halide. For titanium oxide, mention may be made of TiCI, TiPT, Ti ethoxide (butoxide, etc.), Ti diisopropoxide (acetylacetonate), Titanium (III) tris (2,2,6,6-tetramethyl-3 , 5-heptanedionate. This gaseous mixture can also incorporate at least one oxidant or a mixture of oxidants (air, O 2 , CO 2 , N2O, organic: alcohol, ester, etc.) or at least one reducing agent or a mixture reducing agent (H2, hydrocarbons, etc.) and the carrier gas used is air, nitrogen, helium or argon or a mixture of these gases. Preferably, it will mainly consist of helium and / or nitrogen and / or argon. For dopants or mixed deposits, the same ranges of precursors (organometallic / halides) can be used for metals. For fluorine, trifluoroacetic acid is used for example ( TFA), HF, NF3 ... For nitrogen, NH3 or amines (primary, secondary or tertiary) can be used. It is also possible to use precursors containing both titanium and dopant (for example: Tétrakisdiethylamino titane, Tétrakisdimethylamino titane or tetrachlorodiamminotitanium ...) The reaction gas mixture is then dissociated, by a plasma source, either directly within the plasma, or remotely, blown out (indirectly). The metal oxide with photocatalytic property is deposited continuously and uniformly in at least part of at least one of the faces of the substrate. The substrate and the deposition zone incorporating the plasma source having a relative displacement. It may also be advantageous to deposit the coating not at once, but by at least two successive stages, which seems to favor the crystallization of titanium oxide over the entire thickness of the coating when it is chooses relatively thick. Similarly, it may be advantageous to subject the coating with photo-catalytic property, a post-deposition heat treatment or a plasma treatment, once the Tiθ2 has been formed, in order to improve its rate of crystallization. The treatment temperature chosen can also allow better control of the crystallization rate and the crystalline, anatase and / or rutile nature of the oxide. The deposition process which is the subject of the invention is advantageous because the plasma source can be sufficient to provide thermal energy (without having to heat the substrate) sufficient to obtain the desired crystallographic properties at the level of the metal oxide. deposited, substantially less than 300 ° C for a glass substrate, substantially less than 130 ° C for a plastic substrate (for example PMMA, polycarbonate, PEN). In this case, a barrier layer will be interposed between the substrate and the photocatalytic property layer. However, in the case of a soda-lime glass substrate, multiple and prolonged annealing can favor an attenuation of the photocatalytic activity because of too great migration of alkalis from the substrate to the photoreactive layer. The use of a barrier layer between the substrate, if it is standard glass, and the coating, or the choice of a glass substrate of suitable composition, or the choice of a soda-lime glass whose surface is dealkalized, eliminating this risk. According to a variant of the invention, the coating comprises additives capable of extending the photocatalytic phenomenon due to titanium oxide, by avoiding the recombination of charge carriers in the material. By way of example, a transparent, clear silica-soda-lime glass substrate 4 mm thick is used. It goes without saying that the invention is not limited to this specific type of glass. The glass may also not be flat, but curved. According to a first embodiment, a layer of Tiθ2 from TiCI4 is deposited by homogeneous discharge operating at atmospheric pressure. The thin layer of TiO2 was deposited on a clean glass substrate heated to a temperature of 260 ° C. The gas mixture which is introduced consists of helium (He) and oxygen (O 2 ). The respective flow rates of these gases are 14 slpm and 1 sccm. The organometallic precursor, titanium tetrachloride (TiCU), is poured into a 0.5 I bubbler. This bubbler is heated to 10 ° C and a gas vector (He) is injected into the bubbler with a flow rate of 140 sccm to transport the organometallic vapors. At equilibrium, the total pressure in the reactor is maintained at 1013 mbar ± 50 mbar. The electrodes, covered with a dielectric barrier of alumina (0.5 mm ± 0.1 mm), are 5 mm apart and they are supplied with a sinusoidal alternating voltage of 1.1 Volt rms at a frequency of 25 kHz. Under these conditions have obtained a homogeneous deposition of TiO 2 . In the above-mentioned deposition conditions, a thin layer of Tiθ2 220 nm thick is obtained. This has a photo-catalytic activity. The TAS test (accuracy to within 10%) gives a K = 12.10- 3 cm -1 . min- 1 with a decrease in peak air of 50% after one hour. This test is described for example in application WO01 / 32578. Analysis by RAMAN spectrometry shows that TiO 2 is crystallized in anatase form. According to a second exemplary embodiment, a layer of TiO 2 from TipT is deposited by homogeneous discharge operating at atmospheric pressure. The thin layer of TiO 2 was deposited on a clean glass substrate heated to a temperature of 235 ° C. The gas mixture which is introduced consists of helium (He) and oxygen (O2). The respective flow rates of these gases are 11 slpm and 20 sccm. The organometallic precursor, TipT (titanium tetraisopropoxide), is poured into a 0.5 I bubbler. This bubbler is heated to 50 ° C. and a carrier gas (He) is injected into the bubbler with a flow rate of 500 sccm for transport organometallic vapors. At equilibrium, the total pressure in the reactor is maintained at 1013 mbar ± 50 mbar. The electrodes, covered with an alumina dielectric barrier (0.5 mm ± 0.1 mm), are 6 mm apart and they are supplied with a sinusoidal alternating voltage of 1.1 Volt rms at a frequency of 10 kHz. Under these conditions, a homogeneous deposit of Tiθ2 is obtained.
La couche mince ainsi déposée de ΗO2 a une épaisseur de 260 nm et possède une activité photo-catalytique. Le test TAS (précision à 10% près) donne un K = 8JO-3 cm-1. min-1 avec une diminution de l'air du pic de 24 % après une heure. De même une analyse RAMAN montre que le TiO2 est cristallisé sous forme rutile. Selon un troisième exemple de réalisation, une couche de TiO2 à partir de TiCI4 est déposée par décharge homogène fonctionnant à pression atmosphérique. Les conditions de dépôt sont identiques à celles du premier exemple, la durée est diminuée de manière à obtenir une épaisseur de couche supérieure. Cette couche mince de ΗO2 de 54 nm d'épaisseur et déposée dans les conditions de l'exemple 1 possède une activité photo-catalytique. Le test TAS (précision à 10% près) donne un K = 4.10-3 cm-1. min-1 avec une diminution de l'air du pic de 16% après une heure. Des mesures optiques résumées dans le tableau ci-dessous, montrent que la couche n'est pas absorbante (l'absorption du verre nu étant comprise entre 1.5 et 2)The thin layer thus deposited of ΗO2 has a thickness of 260 nm and has a photo-catalytic activity. The TAS test (accuracy to within 10%) gives a K = 8JO- 3 cm- 1 . min- 1 with a decrease in peak air of 24% after one hour. Similarly, a RAMAN analysis shows that TiO 2 is crystallized in rutile form. According to a third embodiment, a layer of TiO 2 from TiCI4 is deposited by homogeneous discharge operating at atmospheric pressure. The deposition conditions are identical to those of the first example, the duration is reduced so as to obtain a greater layer thickness. This thin layer of ΗO2 54 nm thick and deposited under the conditions of Example 1 has a photo-catalytic activity. The TAS test (accuracy to within 10%) gives a K = 4.10- 3 cm- 1 . min -1 with a decrease in peak air of 16% after one hour. Optical measurements summarized in the table below show that the layer is not absorbent (the absorption of bare glass is between 1.5 and 2)
On pourra noter que les trois exemples de réalisation ont été réalisées sans interposition de couche barrière entre la couche de Tiθ2 et le substrat. Selon un quatrième exemple de réalisation, la couche de Tiθ2 a été déposée sur un substrat verrier propre chauffé à une température de 260°C. Le mélange de gaz qui est introduit est constitué d'azote (N2) et d'oxygène (O2). Le débit d'azote est de 10 slpm avec 150 ppm d'02. Le précurseur organométallique, le tétrachlorure de titane (TiCU), est versée dans un bulleur de 0,5 I. Ce bulleur est chauffé à 10°C et un gaz vecteur (He) est injecté dans le bulleur avec un débit de 140 sccm pour transporter les vapeurs organometalliques. A l'équilibre, la pression totale dans le réacteur est maintenue à 1013 mbar ± 50 mbar. Les électrodes, recouvertes d'une barrière diélectrique d'alumine (0.5 mm ± 0J mm), sont distance de 5 mm et elles sont alimentées avec une tension alternative sinusoïdale de 1.1 Volt efficace à une fréquence de 5 kHz. Dans ces conditions ont obtient un dépôt homogène de Tiθ2. cristallisé sous forme anatase et présentant une activité photocatalytique de 11.10-3 cm-1.min-1, l'épaisseur de la couche étant environ de 150 nm. It will be noted that the three exemplary embodiments were carried out without the interposition of a barrier layer between the Tiθ2 layer and the substrate. According to a fourth embodiment, the layer of Ti couche2 was deposited on a clean glass substrate heated to a temperature of 260 ° C. The gas mixture which is introduced consists of nitrogen (N2) and oxygen (O2). The nitrogen flow is 10 slpm with 150 ppm of O2. The organometallic precursor, titanium tetrachloride (TiCU), is poured into a 0.5 I bubbler. This bubbler is heated to 10 ° C. and a carrier gas (He) is injected into the bubbler with a flow rate of 140 sccm for transport organometallic vapors. At equilibrium, the total pressure in the reactor is maintained at 1013 mbar ± 50 mbar. The electrodes, covered with an alumina dielectric barrier (0.5 mm ± 0J mm), are 5 mm apart and they are supplied with a sinusoidal alternating voltage of 1.1 Volt rms at a frequency of 5 kHz. Under these conditions have obtained a homogeneous deposit of Tiθ2. crystallized in anatase form and having a photocatalytic activity of 11.10 -3 cm-1.min-1, the thickness of the layer being approximately 150 nm.

Claims

REVENDICATIONS 1- Procédé de dépôt sur un substrat d'un revêtement à base de matériaux semi-conducteurs à base d'oxydes métalliques, notamment d'oxyde de titane, qui sont aptes, sous l'effet d'un rayonnement de longueur d'onde adéquate, à initier des réactions radicalaires provoquant l'oxydation de produits organiques de manière à conférer des propriétés photocatalytiques audit revêtement, caractérisé en ce qu'on dépose le revêtement à propriété photocatalytique par dépôt chimique en phase gazeuse, notamment à partir d'un mélange de gaz comprenant au moins un précurseur organométallique et/ou un halogénure métallique dudit oxyde métallique, le dépôt étant assisté par une source plasma. 2- Procédé selon la revendication 1 , caractérisé en ce qu'on injecte, parallèlement au mélange contenant le précurseur, au moins un gaz vecteur ou un mélange de gaz vecteurs choisi parmi l'air, l'azote, l'hélium, l'argon. 3 - Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'on incorpore au mélange de gaz un agent oxydant ou un mélange d'agents oxydants. 4 - Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'on incorpore au mélange de gaz un agent réducteur ou un mélange d'agents réducteurs. 5 - Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la phase de réaction et de dépôt s'effectue à pression réduite. 6 - Procédé selon la revendication 5, caractérisé en ce que la phase de réaction et de dépôt s'effectue à pression atmosphérique. 7 - Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'on dépose préalablement au revêtement à propriété photocatalytique au moins une sous couche permettant d'apporter une autre fonctionnalité audit revêtement à propriété photocatalytique et/ou de renforcer lesdites propriétés dudit revêtement. 8 - Procédé selon l'une des revendications 1 à 7, caractérisé en ce qu'on incorpore au mélange gazeux comprenant au moins le précurseur organométallique et/ou un halogénure métallique dudit oxyde métallique, au moins un autre type de matériau minéral, notamment sous forme d'un oxyde amorphe ou partiellement cristallisé, par exemple un oxyde de silicium (ou mélange d'oxydes), de titane, d'étain, de zirconium, d'aluminium, de vanadium, d'antimoine, de zinc, de nickel, de cobalt, éventuellement sous forme mixtes ou dopés . 9 - Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'on réalise le dépôt du revêtement à propriété photocatalytique sur le substrat au sein même de la décharge de plasma. 10 - Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'on réalise le dépôt du revêtement à propriété photocatalytique sur le substrat hors de la décharge de plasma. 11 - Substrat à base verrière, céramique ou vitro-céramique, ou plastique muni sur au moins une partie d'au moins une de ses faces d'un revêtement à propriété photo-catalytique comportant de l'oxyde de titane au moins partiellement cristallisé, obtenu par la mise en œuvre du procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'oxyde de titane cristallisé est sous forme anatase, sous forme rutile, sous forme de brookite, ou sous forme d'un mélange d'anatase, de rutile, de brookite. 12 - Substrat selon la revendication 11 , caractérisé en ce que l'oxyde de titane cristallisé est sous forme de cristallites de taille moyenne comprise entre 0,5 et 60 nm, de préférence 1 à 50. 13 - Substrat selon l'une des revendications 11 ou 12, caractérisé en ce que le revêtement comporte également un matériau minéral, notamment sous forme d'un oxyde ou mélange d'oxydes amorphe ou partiellement cristallisé du type oxyde de silicium, oxyde de titane, oxyde d'étain, oxyde de zirconium, oxyde d'aluminium, oxyde de vanadium, oxyde d'antimoine, oxyde de zinc, oxyde de tungstène, oxyde de cobalt, oxyde de nickel. 14 - Substrat selon l'une des revendications 11 ou 12, caractérisé en ce que le revêtement comprend des additifs aptes à étendre le phénomène photocatalytique dû à l'oxyde de titane, notamment en augmentant la bande d'absorption du revêtement et/ou en augmentant le nombre de porteurs de charges par dopage du réseau cristallin de l'oxyde ou par dopage de surface du revêtement et/ou en augmentant rendement et cinétique des réactions photocatalytiques, ou en évitant la recombinaison des porteurs de charge dans le matériau, en recouvrant au moins une partie du revêtement par un catalyseur. 15 - Substrat selon la revendication 14, caractérisé en ce que le réseau cristallin de l'oxyde de titane est dopé, notamment par au moins un des éléments métalliques ou non métalliques. 16 - Substrat selon l'une des revendications 11 à 15, caractérisé en ce que l'épaisseur du revêtement est compris entre 5 nm et 1 micron, de préférence de 5 à 100 nm. 17 - Substrat selon l'une des revendications 11 à 16, caractérisé en ce que l'activité photocatalytique du revêtement est d'au moins 5.10"3 cm-1 min ~1 mesurée à l'aide du test TAS. 18 - Substrat selon l'une des revendications 11 à 17, caractérisé en ce que la rugosité RMS du revêtement photocatalytique est comprise entre 2 et 20 nm, notamment entre 5 et 20 nm. 19 - Substrat selon l'une des revendications 11 à 18, caractérisé en ce que la réflexion lumineuse du revêtement photocatalytique est inférieure à 30 %, de préférence inférieure ou égale à 20 % avec une couleur neutre. 20 - Substrat selon l'une des revendications 11 à 18, caractérisé en ce que l'absorption du revêtement photocatalytique est inférieure à 10%, de préférence inférieure à 5 % . 21- Substrat selon l'une des revendications 11 à 19, caractérisé en ce qu'il est disposé sous le revêtement à propriété photocatalytique au moins une couche mince à fonction anti-statique, thermique, optique, ou faisant barrière à la migration des alcalins provenant du substrat . 22 - Substrat selon la revendication 21 , caractérisé en ce que la couche mince à fonction anti-statique, éventuellement à polarisation contrôlée, et/ou thermique et/ou optique est à base de matériau conducteur du type métal ou du type oxyde métallique dopé tel que ITO, Snθ2.'Sb, Snθ2:F, ZnO:ln, ZnO:F, ZnO:AI, ZnO:Sn ou oxyde métallique sous-stoechiométrique en oxygène comme SnO2- x 23 - Substrat selon la revendication 21 , caractérisé en ce que la couche mince à fonction optique est à base d'un oxyde ou d'un mélange d'oxydes dont l'indice de réfraction est intermédiaire entre celui du revêtement et celui du substrat, notamment choisi(s) parmi les oxydes suivants : AI2Û3, Snθ2, ln2θ3, ou à base d'oxycarbure ou d'oxynitrure de silicium, ou d'oxydes mixtes à base d'un mélange de matériau à haut indice de réfraction avec un matériau à bas indice de réfraction. 24 - Substrat selon la revendication 21 , caractérisé en ce que la couche mince à fonction de barrière aux alcalins est à base d'oxyde, de nitrure, d'oxynitrure ou d'oxycarbure de silicium, d'AbOs :F ou de nitrure d'aluminium, de Snθ2 ou de nitrure de silicium. 25 - Substrat selon l'une des revendications 11 à 24, caractérisé en ce que le substrat est transparent, plat ou bombé. 26 - Substrat selon l'une des revendications 11 à 24, caractérisé en ce que le substrat est un substrat verrier. 27 - Substrat selon l'une des revendications 11 à 24, caractérisé en e que le substrat est à un substrat à base de polymère, notamment PMMA, de polycarbonate, de PEN 28 - Vitrage « anti-salissures et/ou anti-buée », monolithique, multiple du type double-vitrage ou feuilleté incorporant un substrat selon l'une quelconque des revendications 11 à 27 en vue de la fabrication d'un vitrage « auto-nettoyant», anti-buée et/ou anti-salissures, du type salissures organiques et/ou minérales, notamment des vitrages pour le bâtiment du type double-vitrage, des vitrages pour véhicules du type pare- brise, lunette arrière ou latéraux d'automobile, trains, avions, ou vitrages utilitaires comme des verres d'aquarium, de vitrines, de serre, d'ameublement intérieur, de mobilier urbain, ou des miroirs, écrans de télévision, vitrages à absorption variable commandée électriquement, de cellules photovoltaïques. CLAIMS 1- Method of depositing on a substrate a coating based on semiconductor materials based on metal oxides, in particular titanium oxide, which are capable, under the effect of a radiation of length adequate wave, to initiate radical reactions causing the oxidation of organic products so as to confer photocatalytic properties on said coating, characterized in that the coating with photocatalytic property is deposited by chemical gas deposition, in particular from a gas mixture comprising at least one organometallic precursor and / or a metal halide of said metal oxide, the deposition being assisted by a plasma source. 2- A method according to claim 1, characterized in that one injects, parallel to the mixture containing the precursor, at least one carrier gas or a mixture of carrier gases chosen from air, nitrogen, helium, argon. 3 - Method according to one of claims 1 or 2, characterized in that incorporates into the gas mixture an oxidizing agent or a mixture of oxidizing agents. 4 - Method according to one of claims 1 or 2, characterized in that incorporates into the gas mixture a reducing agent or a mixture of reducing agents. 5 - Method according to one of claims 1 to 4, characterized in that the reaction and deposition phase is carried out at reduced pressure. 6 - Process according to claim 5, characterized in that the reaction and deposition phase is carried out at atmospheric pressure. 7 - Method according to one of claims 1 to 6, characterized in that prior to coating with photocatalytic property deposited at least one under layer for providing another functionality to said coating with photocatalytic property and / or to enhance said properties of said coating. 8 - Method according to one of claims 1 to 7, characterized in that incorporates into the gas mixture comprising at least the organometallic precursor and / or a metal halide of said metal oxide, at least one other type of mineral material, in particular under form of an amorphous or partially crystallized oxide, for example an oxide of silicon (or mixture of oxides), of titanium, of tin, of zirconium, of aluminum, of vanadium, antimony, zinc, nickel, cobalt, optionally in mixed or doped form. 9 - Method according to one of claims 1 to 8, characterized in that the coating of the photocatalytic property coating is carried out on the substrate within the plasma discharge. 10 - Method according to one of claims 1 to 8, characterized in that one realizes the deposition of the coating with photocatalytic property on the substrate out of the plasma discharge. 11 - Glass-based, ceramic or vitro-ceramic, or plastic substrate provided on at least part of at least one of its faces with a coating with photocatalytic property comprising at least partially crystallized titanium oxide, obtained by implementing the method according to any one of the preceding claims, characterized in that the crystallized titanium oxide is in anatase form, in rutile form, in brookite form, or in the form of a mixture of anatase, rutile, brookite. 12 - Substrate according to claim 11, characterized in that the crystallized titanium oxide is in the form of crystallites of average size between 0.5 and 60 nm, preferably 1 to 50. 13 - Substrate according to one of claims 11 or 12, characterized in that the coating also comprises an inorganic material, in particular in the form of an oxide or mixture of amorphous or partially crystallized oxides of the silicon oxide, titanium oxide, tin oxide, zirconium oxide type , aluminum oxide, vanadium oxide, antimony oxide, zinc oxide, tungsten oxide, cobalt oxide, nickel oxide. 14 - Substrate according to one of claims 11 or 12, characterized in that the coating comprises additives capable of extending the photocatalytic phenomenon due to titanium oxide, in particular by increasing the absorption band of the coating and / or by increasing the number of charge carriers by doping the crystal lattice of the oxide or by doping the surface of the coating and / or by increasing the yield and kinetics of the photocatalytic reactions, or by avoiding the recombination of charge carriers in the material, by covering at least part of the coating with a catalyst. 15 - Substrate according to claim 14, characterized in that the crystal lattice of the titanium oxide is doped, in particular by at least one of the metallic or non-metallic elements. 16 - Substrate according to one of claims 11 to 15, characterized in that the thickness of the coating is between 5 nm and 1 micron, preferably from 5 to 100 nm. 17 - Substrate according to one of claims 11 to 16, characterized in that the photocatalytic activity of the coating is at least 5.10 " 3 cm- 1 min ~ 1 measured using the TAS test. 18 - Substrate according to one of claims 11 to 17, characterized in that the RMS roughness of the photocatalytic coating is between 2 and 20 nm, in particular between 5 and 20 nm 19 - Substrate according to one of claims 11 to 18, characterized in that the light reflection of the photocatalytic coating is less than 30%, preferably less than or equal to 20% with a neutral color 20 - Substrate according to one of claims 11 to 18, characterized in that the absorption of the photocatalytic coating is less than 10%, preferably less than 5% 21. Substrate according to one of claims 11 to 19, characterized in that it is arranged under the coating with photocatalytic property at least one thin layer with anti-static function, THERMAL e, optical, or forming a barrier to the migration of alkalis from the substrate. 22 - Substrate according to claim 21, characterized in that the thin layer with anti-static function, optionally with controlled polarization, and / or thermal and / or optical is based on conductive material of the metal type or of the doped metal oxide type such as ITO, Snθ2.'Sb, Snθ2: F, ZnO: ln, ZnO: F, ZnO: AI, ZnO: Sn or sub-stoichiometric metal oxide in oxygen as SnO 2 - x 23 - Substrate according to claim 21, characterized in that the thin layer with an optical function is based on an oxide or a mixture of oxides whose refractive index is intermediate between that of the coating and that of the substrate, chosen in particular from the following oxides: AI2Û3, Snθ2, ln2θ3, or based on oxycarbide or silicon oxynitride, or mixed oxides based on a mixture of high refractive index material with low refractive index material. 24 - Substrate according to claim 21, characterized in that the thin layer with an alkali barrier function is based on silicon oxide, nitride, oxynitride or oxycarbide, AbOs: F or nitride d aluminum, Snθ2 or silicon nitride. 25 - Substrate according to one of claims 11 to 24, characterized in that the substrate is transparent, flat or curved. 26 - Substrate according to one of claims 11 to 24, characterized in that the substrate is a glass substrate. 27 - Substrate according to one of claims 11 to 24, characterized in that the substrate is a polymer-based substrate, in particular PMMA, polycarbonate, PEN 28 - Glazing "anti-fouling and / or anti-fog" , monolithic, multiple of the double-glazed or laminated type incorporating a substrate according to any one of claims 11 to 27 for the manufacture of a "self-cleaning", anti-fog and / or anti-fouling glazing, organic and / or mineral soiling type, in particular glazing for the building of the double glazing type, glazing for vehicles of the windshield, rear or side window type of automobile, trains, airplanes, or utility glazing such as aquarium, display cases, greenhouse, interior furnishings, street furniture, or mirrors, television screens, electrically controlled variable absorption glazing, photovoltaic cells.
EP04767517A 2003-07-01 2004-06-30 Method for deposition of titanium oxide by a plasma source Withdrawn EP1644554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0307948A FR2857030B1 (en) 2003-07-01 2003-07-01 PROCESS FOR TITANIUM OXIDE DEPOSITION BY PLASMA SOURCE
PCT/FR2004/001673 WO2005012593A1 (en) 2003-07-01 2004-06-30 Method for deposition of titanium oxide by a plasma source

Publications (1)

Publication Number Publication Date
EP1644554A1 true EP1644554A1 (en) 2006-04-12

Family

ID=33522639

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767517A Withdrawn EP1644554A1 (en) 2003-07-01 2004-06-30 Method for deposition of titanium oxide by a plasma source

Country Status (7)

Country Link
US (1) US7976909B2 (en)
EP (1) EP1644554A1 (en)
JP (1) JP2007516343A (en)
KR (1) KR20060121660A (en)
CN (1) CN1816645B (en)
FR (1) FR2857030B1 (en)
WO (1) WO2005012593A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2570369C (en) 2004-07-12 2008-02-19 Cardinal Cg Company Low-maintenance coatings
DE04405784T1 (en) * 2004-12-20 2007-01-04 Rolex Sa Clock dial and method of manufacture of this dial
KR100620076B1 (en) * 2005-04-27 2006-09-06 한국과학기술연구원 C and n-doped titaniumoxide-based photocatalytic and self-cleaning thin films and the process for production thereof
US20070212486A1 (en) * 2005-05-20 2007-09-13 Dinega Dmitry P Plasma Enhanced Chemical Vapor Deposition of Metal Oxide
CN101466649B (en) 2006-04-11 2013-12-11 卡迪奈尔镀膜玻璃公司 Photocatalytic coatings having improved low-maintenance properties
US7989094B2 (en) 2006-04-19 2011-08-02 Cardinal Cg Company Opposed functional coatings having comparable single surface reflectances
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
US20080115444A1 (en) 2006-09-01 2008-05-22 Kalkanoglu Husnu M Roofing shingles with enhanced granule adhesion and method for producing same
FR2908137A1 (en) * 2006-11-02 2008-05-09 Lapeyre Sa THIN FILM DEPOSITION METHOD AND PRODUCT OBTAINED
US8349435B2 (en) 2007-04-04 2013-01-08 Certainteed Corporation Mineral surfaced asphalt-based roofing products with encapsulated healing agents and methods of producing the same
CN100551450C (en) * 2007-05-29 2009-10-21 中国科学院上海硅酸盐研究所 A kind of preparation method of antiseptic biological active titanium coating
EP2261186B1 (en) 2007-09-14 2017-11-22 Cardinal CG Company Low maintenance coating technology
JP5452900B2 (en) * 2007-09-21 2014-03-26 株式会社半導体エネルギー研究所 Method for manufacturing substrate with semiconductor film
JP2009094488A (en) * 2007-09-21 2009-04-30 Semiconductor Energy Lab Co Ltd Method of manufacturing substrate provided with semiconductor film
FR2950878B1 (en) 2009-10-01 2011-10-21 Saint Gobain THIN LAYER DEPOSITION METHOD
JP2011176287A (en) * 2010-02-01 2011-09-08 Fujifilm Corp Photoelectric conversion element, thin film solar cell, and method of manufacturing photoelectric conversion element
JP2011176285A (en) * 2010-02-01 2011-09-08 Fujifilm Corp Photoelectric conversion element, thin film solar cell, and method of manufacturing photoelectric conversion element
US8791044B2 (en) * 2010-04-30 2014-07-29 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Doped titanium dioxide as a visible and sun light photo catalyst
CN103827350B (en) * 2011-07-11 2016-01-13 莲花应用技术有限责任公司 Mixed metal oxide barrier film and the Atomic layer deposition method for the preparation of mixed metal oxide barrier film
CN103000702A (en) * 2011-09-14 2013-03-27 吉富新能源科技(上海)有限公司 Dustproof and anti-staining solar battery technology
CN102989456A (en) * 2011-09-14 2013-03-27 大汉光电股份有限公司 Double-doped photocatalyst material
CN102717560B (en) * 2012-06-13 2015-02-18 南京工业大学 Organic-inorganic composite self-cleaning coating initiated by sunlight and preparation method thereof
US10060019B2 (en) * 2012-11-16 2018-08-28 The Boeing Company Thermal spray coated reinforced polymer composites
US20140153122A1 (en) * 2012-11-30 2014-06-05 Guardian Industries Corp. Concentrating solar power apparatus having mirror coating and anti-soiling coating
WO2014183097A1 (en) * 2013-05-09 2014-11-13 Massachusetts Institute Of Technology Anti-fingerprint photocatalytic nanostructure for transparent surfaces
KR20160014648A (en) * 2013-06-06 2016-02-11 허니웰 인터내셔날 인코포레이티드 Liquid titanium oxide compositions, methods for forming the same, and methods for etching material layers of or overlying substrates using the same
DE102014111935A1 (en) * 2014-08-20 2016-02-25 Heraeus Deutschland GmbH & Co. KG Two-layer coating system with partially absorbing layer and process and sputtering target for the production of this layer
US10508551B2 (en) 2016-08-16 2019-12-17 General Electric Company Engine component with porous trench
WO2018093985A1 (en) 2016-11-17 2018-05-24 Cardinal Cg Company Static-dissipative coating technology
US10730799B2 (en) 2016-12-31 2020-08-04 Certainteed Corporation Solar reflective composite granules and method of making solar reflective composite granules
GB201702168D0 (en) * 2017-02-09 2017-03-29 Pilkington Group Ltd Coated glazing
US10427650B2 (en) * 2017-02-16 2019-10-01 Ford Global Technologies, Llc Self-cleaning system for interior of a motor vehicle
KR101979494B1 (en) * 2017-03-20 2019-05-16 고려대학교 산학협력단 Antibacterial structure using photocatalyst and method thereof
CN111295423A (en) * 2017-11-02 2020-06-16 安特卫普大学 Self-cleaning coating
CN109261143B (en) * 2018-10-23 2021-04-09 江西科技师范大学 Preparation method of titanium dioxide particles with surfaces doped with rare earth elements
US11473193B2 (en) * 2019-04-30 2022-10-18 King Fahd University Of Petroleum And Minerals Fabrication, characterization and photoelectrochemical properties of CeO2-TiO2 thin film electrodes
US11081343B2 (en) 2019-07-19 2021-08-03 International Business Machines Corporation Sub-stoichiometric metal-oxide thin films
CN112387264B (en) * 2020-11-16 2022-02-08 西南石油大学 TiO based on plasma treatment2Method of modifying TiO2Photocatalyst and application
CN113136601B (en) * 2021-04-14 2022-05-10 山东省科学院能源研究所 Titanium dioxide semiconductor film, preparation method and application thereof in photoelectrocatalysis
KR102374092B1 (en) * 2021-10-14 2022-03-14 이세창 A wafer coating device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253322A (en) * 1995-03-10 1996-10-01 Res Dev Corp Of Japan Production of titanium oxide thin membrane
JPH08313705A (en) * 1995-05-22 1996-11-29 Seiko Epson Corp Anti-clouding article and its production
FR2738813B1 (en) * 1995-09-15 1997-10-17 Saint Gobain Vitrage SUBSTRATE WITH PHOTO-CATALYTIC COATING
US6027766A (en) * 1997-03-14 2000-02-22 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning article and method of making same
JPH11133205A (en) * 1997-04-21 1999-05-21 Sekisui Chem Co Ltd Production of antireflection film
JP2000147209A (en) * 1998-09-09 2000-05-26 Sekisui Chem Co Ltd Antireflection film and its production
GB9913315D0 (en) * 1999-06-08 1999-08-11 Pilkington Plc Improved process for coating glass
JP2001046884A (en) * 1999-08-12 2001-02-20 Nagasaki Prefecture Production of photocatalytic titanium oxide film
US6290180B1 (en) * 1999-09-09 2001-09-18 Lockheed Martin Corporation Photocatalytic coatings on optical solar reflectors to decompose organic contaminants
JP2001335343A (en) * 2000-05-23 2001-12-04 Central Glass Co Ltd Glass with photocatalytic film and its procuction method
JP2002105641A (en) * 2000-10-03 2002-04-10 Murakami Corp Composite material and manufacturing method
JP2002119864A (en) * 2000-10-18 2002-04-23 Matsushita Electric Ind Co Ltd Method for manufacturing thin photocatalyst film
JP5050299B2 (en) * 2001-05-17 2012-10-17 コニカミノルタホールディングス株式会社 Surface treatment method for long substrate and optical film produced by the method
JP2003096569A (en) * 2001-09-25 2003-04-03 Konica Corp Thin film depositing method, base material, and thin film depositing apparatus
CN100436640C (en) * 2002-09-30 2008-11-26 英科特有限责任公司 Composite material
US6890656B2 (en) * 2002-12-20 2005-05-10 General Electric Company High rate deposition of titanium dioxide
US20040202890A1 (en) * 2003-04-08 2004-10-14 Kutilek Luke A. Methods of making crystalline titania coatings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005012593A1 *

Also Published As

Publication number Publication date
WO2005012593A1 (en) 2005-02-10
US20070092734A1 (en) 2007-04-26
US7976909B2 (en) 2011-07-12
JP2007516343A (en) 2007-06-21
CN1816645B (en) 2010-04-28
KR20060121660A (en) 2006-11-29
CN1816645A (en) 2006-08-09
FR2857030A1 (en) 2005-01-07
FR2857030B1 (en) 2006-10-27

Similar Documents

Publication Publication Date Title
EP1644554A1 (en) Method for deposition of titanium oxide by a plasma source
EP0850204B1 (en) Photocatalytic coating substrate
EP0850203B1 (en) Titanium dioxide-based photocatalytic coating substrate, and titanium dioxide-based organic dispersions
WO2003087005A1 (en) Substrate with a self-cleaning coating
EP1654201B1 (en) Method for preparing a photocatalytic coating integrated into glazing heat treatment
EP1737801A2 (en) Photocatalytic substrate active under a visible light
EP2523919B1 (en) Photocatalytic material and glass sheet or photovoltaic cell including said material
FR2738812A1 (en) New photo-catalytic coatings based on titanium di:oxide in a mineral or organic dispersion
EP3655370B1 (en) Anti-condensation glass with easy maintenance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20061012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20070404