EP1598866A1 - Kühlvorrichtung - Google Patents

Kühlvorrichtung Download PDF

Info

Publication number
EP1598866A1
EP1598866A1 EP04011767A EP04011767A EP1598866A1 EP 1598866 A1 EP1598866 A1 EP 1598866A1 EP 04011767 A EP04011767 A EP 04011767A EP 04011767 A EP04011767 A EP 04011767A EP 1598866 A1 EP1598866 A1 EP 1598866A1
Authority
EP
European Patent Office
Prior art keywords
cooling device
chambers
condensation
evaporation
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04011767A
Other languages
English (en)
French (fr)
Other versions
EP1598866B1 (de
Inventor
Stefan Wellhöfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOEMTRON AG
Original Assignee
Innowert GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innowert GmbH filed Critical Innowert GmbH
Priority to EP04011767A priority Critical patent/EP1598866B1/de
Priority to DE502004007887T priority patent/DE502004007887D1/de
Priority to ES04011767T priority patent/ES2312878T3/es
Priority to AT04011767T priority patent/ATE405948T1/de
Priority to JP2005141553A priority patent/JP3890349B2/ja
Priority to US11/131,629 priority patent/US20050257915A1/en
Publication of EP1598866A1 publication Critical patent/EP1598866A1/de
Application granted granted Critical
Publication of EP1598866B1 publication Critical patent/EP1598866B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to a cooling device for preferably large-area units to be cooled, give off the high heat outputs.
  • a cooling device which has a multiplicity of side by side arranged, one-sided open evaporation chambers with boundary walls made of thermally conductive material, arranged on the inner surfaces of each a fleece which is saturated with a liquid and which are capable of being over its outer surfaces with to be brought into contact with a material to be cooled, and one of the number of evaporation chambers corresponding plurality of juxtaposed, one-sided open condensation chambers with boundary walls made of thermally conductive material, which are adapted to give off heat to the environment via their outer surfaces, wherein a vaporization chamber and a condensation chamber each across their open sides are connected such that between evaporation chamber and condensation chamber a gastight closed, partially evacuated space area is formed, so that in Operation the liquid contained in the web of a vaporization chamber in the space area evaporated, condensed on the inner surface of the associated condensation chamber and is fed back to the web, wherein the boundary walls of the evaporation chambers and the boundary walls of the condensation chamber
  • Such a cooling device according to the invention now makes it possible even large Heat in the shortest time due to the small distance from the evaporator surface to be removed to the condensation surface.
  • Through the electrical and thermal decoupling of evaporation and Condensation surfaces is the heat transfer resistance of the cooling device according to the invention very low. Outdoor use is also possible as well as cooling high-voltage components.
  • the boundary walls and connecting webs of the evaporation chambers and condensation chambers each in one piece as an extruded profile educated. It is in particular an advantage of the present invention that the profile is such is formed, that the evaporation and condensation chambers in cross section respectively U-shaped with intermediate connecting webs arranged side by side are. This allows cooling systems of the type according to the invention are very simple and inexpensive produce and offer a variety of design and customization options.
  • the formed from evaporation and condensation chambers Spaces areas on their sides, each gas-tight with cover elements.
  • cover elements are made of polyurethane.
  • Such Plastic cover elements are simple and inexpensive to manufacture and provide for maintaining the vacuum very good properties, since they contract under vacuum and thus additionally seal.
  • the cooling device according to the invention preferably comprises plastic elements as between arranged on the profiles sealing strips on which the thermal and electrical decoupling ensure the evaporation and condensation chambers.
  • the outer surfaces of the condensation chambers are surface enlarged. This significantly increases the heat dissipation performance of the cooling system.
  • each condensation chamber is above the associated evaporation chamber arranged, whereby the condensed liquid is quickly supplied to the web and a continuously high heat output performance is ensured.
  • FIG. 1 shows a first preferred embodiment of the present invention, wherein the Cooling device 1 is shown in cross-section and a symmetry with respect to the by A-A has defined level.
  • the cooling device 1 has four evaporation chambers 10, which are bounded by boundary walls 11, each with Connecting webs 14 are interconnected.
  • the outer surfaces 12 of the evaporation chambers 10 are thermally in communication with the unit to be cooled (not shown).
  • a fleece 15 is arranged, which is soaked in liquid, such as distilled water or alcohol.
  • the cooling device 1 four condensation chambers 20, the are limited by boundary walls 21, each in turn with connecting webs 24 are interconnected.
  • the outer surfaces 22 of the condensation chambers 20 are suitable to give heat to their environment.
  • a gauze 25, preferably made of metal, is arranged in addition to it serves to receive the condensed liquid and the web 15 of the evaporation chamber 10 attributed.
  • the use of gauze 25 is due to capillary action convenient, because the cooling device is then also e.g. can work "upside down" but not necessary for the function of the cooling device according to the invention.
  • the gauze 25 prevents u.a. Also, that drops of condensed liquid directly into the evaporation chambers 10 fall behind.
  • the one-sided openings of the evaporation chambers 10 and the condensation chambers 20 are substantially opposite each other in the plane A-A, resulting in each case by an evaporation chamber 10 and condensation chamber 20 results in a space area 3, which is evacuated.
  • the boundary walls 11, 21 and connecting webs 14, 24 of the adjacent evaporation chambers 10 or condensation chambers 20 are preferably U-shaped in cross-section or cartridge-shaped profile, which in the preferred embodiment of extruded Aluminum is made.
  • the evaporation profile of the lower half is from the condensation profile of the upper half in a predetermined distance away, this distance being through the thickness of plastic elements 5, which are located between the connecting webs 14, 24 determined is.
  • plastic elements 5 the evaporation chambers 10 and condensation chambers 20 thermally and electrically decoupled from each other.
  • material of Plastic elements 5 can be plastics with suitable thermal and electrical properties be used. Of course, for the evaporation and condensation profiles also metals other than aluminum or other thermally conductive materials possible.
  • FIG. 2 shows the main components of the cooling device according to the invention from FIG. 1 mapped using the same reference numerals in an exploded view.
  • the profiles 16, 26 are arranged one above the other, being between the connecting webs 14, 24, the plastic elements 5 are located.
  • the connecting webs 14, 24 can, for example be shaped so that the plastic elements 5 can be inserted like a rail are, resulting in a tensile and gas-tight composite of the two profiles 16, 26 results.
  • the thus firmly interconnected profiles 16, 26 are laterally with the cover 7 completed.
  • These cover elements 7 are preferably made of polyurethane plastic carried out when (partial) evacuation of the space areas by means of deformed such known vacuum pump towards an even better seal.
  • Cooling device 1 are the evaporation and condensation brackets 10, 20th arranged vertically.
  • a use of this embodiment of the cooling device 1 at not vertical arrangement is of course also possible, although thereby the Efficiency of the cooling device is slightly lowered.
  • FIG. 3 shows a second preferred embodiment of the cooling device according to the invention 1, in which the evaporation chambers 10 and condensation chambers 20 are not are arranged mirror-symmetrically with respect to the symmetry plane defined by C-C.
  • the evaporation chambers 10 and condensation chambers 20 at 20 ° with respect to the plane perpendicular to the connection C-C plane inclined downwards or obliquely upwards parallel next to each other.
  • other angles of inclination can be selected.
  • a particular advantage of this embodiment is that when tilting the entire Cooling device 1 in the plane defined by C-C chimney-like air ducts can form between the condensation chambers 20, the cooling capacity of the device increase.
  • Figure 4 shows an exploded view of the main components of the cooling device according to the invention from Figure 3. It will find the same reference numerals as in Figure 2 use.
  • the boundary walls 11 of the evaporation chambers 10 consist of very good heat conducting material and those in the fleece 15 contained liquid evaporates in the partially evacuated space area 3 already at relatively low temperatures, because of the vacuum, the boiling temperature decreases.
  • the liquid vapor migrates due to the temperature difference in the direction of the condensation chambers 20, diffuses through the gauze 25 and condenses on the inner wall 23 This causes heat to the boundary walls 21 of the Condensation chambers 20 are discharged, via the outer wall 22 of the condensation chamber 20 is transferred to the environment.
  • the cooled, condensed liquid runs on the inner wall 23 and the metal gauze 25 again in the direction of the evaporation chambers 10 and is returned to the web 15.
  • This heat transfer mechanism via vaporized liquid is extremely effective, especially because the paths from the evaporator surface to the condensation surface are very high are small. It also has the advantage that in the cooling device relatively low temperatures to rule. In this way, significant amounts of heat in the shortest possible time be transported.
  • the cooling device according to the invention can be such design that the evaporator and condensation surfaces are arbitrarily large. Compared to conventional cooling devices that work on the heat pipe principle points the subject of the present invention to a much higher efficiency. This high efficiency and the electrical and thermal decoupling of evaporator and condensation surfaces causes the thermal resistance of the Cooling system is very low.
  • a cooling device which also large-area units to be cooled effectively cools, can be used in a variety of environments such as outdoors is that has a high efficiency, i. can dissipate high heat outputs, and both simple and relatively inexpensive to produce.
  • this is the principle a passive cooling device for large areas not on the exact embodiment limited, as disclosed in the previous description.
  • the cooling device according to the invention can be flexibly connected to a large number of external ones Framework conditions are adjusted. It is thus created a solution that extremely effective heat dissipation and environmentally friendly and maintenance-free works.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Die Erfindung betrifft eine Kühlvorrichtung (1) mit einer Vielzahl von nebeneinander angeordneten, einseitig offenen Verdampfungskammern (10), an deren Innenflächen (13) jeweils ein Vlies (15) angeordnet ist, das mit einer Flüssigkeit getränkt ist, und die geeignet sind, über ihre Außenflächen (12) mit einem zu kühlenden Material in Kontakt gebracht zu werden, und einer der Anzahl von Verdampfungskammern (10) entsprechenden Vielzahl von nebeneinander angeordneten, einseitig offenen Kondensationskammern (20), die geeignet sind, über ihre Außenflächen (22) Wärme an die Umgebung abzugeben. Dabei sind jeweils eine Verdampfungskammer (10) und eine Kondensationskammer (20) über ihre offenen Seiten derart verbunden, dass zwischen Verdampfungskammer (10) und Kondensationskammer (20) ein gasdicht abgeschlossener, teilevakuierter Raumbereich (3) ausgebildet ist, so dass im Betrieb die im Vlies (15) einer Verdampfungskammer (10) enthaltene Flüssigkeit im Raumbereich (3) verdampft, an der Innenfläche (23) der zugeordneten Kondensationskammer (20) kondensiert und wieder dem Vlies (15) zugeführt wird. Die Begrenzungswände (11) der Verdampfungskammern (10) und die Begrenzungswände (21) der Kondensationskammern (20) sind durch geeignete Kunststoffelemente (5) thermisch und elektrisch voneinander entkoppelt. <IMAGE>

Description

Die Erfindung betrifft eine Kühlvorrichtung für vorzugsweise großflächige zu kühlende Einheiten, die hohe Wärmeleistungen abgeben.
Durch den stark zunehmenden Einsatz von elektrischen oder elektronischen Geräten sowohl in der Industrie als auch in vielen Bereichen des täglichen Lebens existiert für Kühlvorrichtungen ein großer Bedarf. Dies gilt in erheblichem Maß auch für den Outdoorbereich, wo bislang aktive Kühlgeräte wie z.B. Lüfter eingesetzt werden. Diese bedingen in Betrieb eine unerwünschte Geräuschbildung und führen beim Ausfall unter Umständen schnell zu einer Überhitzung der zu kühlenden Einheit und deren Zerstörung.
Insbesondere bei großflächigen zu kühlenden Einheiten ist das Anbringen und der Betrieb von aktiven Kühlgeräten, die die geforderte hohe Kühlleistung erbringen, mit hohem Aufwand verbunden.
Allgemein bekannt ist die Verwendung von Heat-Pipes als Kühlvorrichtungen, bei denen durch die Verdampfung von Flüssigkeit und deren Kondensation ein Kühlprofilkörper Wärme abtransportiert. Herkömmliche Heat-Pipes sind jedoch für den großflächigen Einsatz nicht geeignet, da die Wege von der Verdampferfläche zur Kondensationsfläche relativ groß sind. Der Einsatz von mehreren Heat-Pipes auf einer großflächigen zu kühlenden Einheit ist kostspielig und aufgrund einer begrenzten abführbaren Wärmemenge ungeeignet.
Es ist daher die Aufgabe der vorliegenden Erfindung, eine Kühlvorrichtung für großflächige zu kühlende Einheiten zu liefern, die einen hohen Wirkungsgrad aufweist, vielseitig einsetzbar ist und deren Herstellung und Verwendung sehr einfach und kostengünstig ist.
Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.
Erfindungsgemäß wird eine Kühlvorrichtung vorgeschlagen, die eine Vielzahl von nebeneinander angeordneten, einseitig offenen Verdampfungskammern mit Begrenzungswänden aus wärmeleitendem Material aufweist, an deren Innenflächen jeweils ein Vlies angeordnet ist, das mit einer Flüssigkeit getränkt ist, und die geeignet sind, über ihre Außenflächen mit einem zu kühlenden Material in Kontakt gebracht zu werden, und eine der Anzahl von Verdampfungskammern entsprechenden Vielzahl von nebeneinander angeordneten, einseitig offenen Kondensationskammern mit Begrenzungswänden aus wärmeleitendem Material, die geeignet sind, über ihre Außenflächen Wärme an die Umgebung abzugeben, wobei jeweils eine Verdampfungskammer und eine Kondensationskammer über ihre offenen Seiten derart verbunden sind, dass zwischen Verdampfungskammer und Kondensationskammer ein gasdicht abgeschlossener, teilevakuierter Raumbereich ausgebildet ist, so dass im Betrieb die im Vlies einer Verdampfungskammer enthaltene Flüssigkeit im Raumbereich verdampft, an der Innenfläche der zugeordneten Kondensationskammer kondensiert und wieder dem Vlies zugeführt wird, wobei die Begrenzungswände der Verdampfungskammern und die Begrenzungswände der Kondensationskammern durch geeignete Kunststoffelemente thermisch und elektrisch voneinander entkoppelt sind.
Eine derartige erfindungsgemäße Kühlvorrichtung ermöglicht es nunmehr, selbst große Wärmemengen in kürzester Zeit aufgrund des geringen Weges von der Verdampferfläche zur Kondensationsfläche abzutransportieren. Dabei lassen sich die Verdampferflächen und die Kondensationsflächen beliebig groß gestalten und für den entsprechenden Einsatz optimieren. Durch die elektrische und wärmetechnische Entkopplung von Verdampfungs- und Kondensationsflächen ist der Wärmedurchgangswiderstand der erfindungsgemäßen Kühlvorrichtung sehr gering. Ein Einsatz im Freien ist ebenso möglich wie auch eine Kühlung hochspannungsführender Bauteile.
Vorteilhafterweise ist an den Innenflächen der Kondensationskammern jeweils eine Metallgaze angeordnet. Dadurch wird die kondensierte Flüssigkeit aufgefangen und damit der Wirkungsgrad der Kühlvorrichtung gesteigert. Aufgrund der Kapillarwirkung ist somit außerdem ein Einsatz der Kühlvorrichtung in jeder Orientierung möglich.
Bevorzugterweise sind die Begrenzungswände und Verbindungsstege der Verdampfungskammern und Kondensationskammern jeweils aus einem Stück als stranggepresstes Profil gebildet. Es ist insbesondere ein Vorteil der vorliegenden Erfindung, dass das Profil derart ausgebildet ist, dass die Verdampfungs- und Kondensationskammern im Querschnitt jeweils U-förmig mit dazwischen liegenden Verbindungsstegen nebeneinander angeordnet sind. Damit lassen sich Kühlsysteme der erfindungsgemäßen Art sehr einfach und kostengünstig herstellen und bieten vielfältige Gestaltungs- und Anpassungsmöglichkeiten.
Vorteilhafterweise sind die aus Verdampfungs- und Kondensationskammern gebildeten Raumbereiche an ihren Seiten jeweils mit Abdeckelementen gasdicht abgeschlossen. Insbesondere ist es von Vorteil, dass die Abdeckelemente aus Polyurethan gebildet sind. Derartige Abdeckelemente aus Kunststoff sind einfach und günstig herzustellen und bieten für die Aufrechterhaltung des Vakuums sehr gute Eigenschaften, da sie sich bei Vakuum zusammenziehen und somit zusätzlich abdichten.
Die erfindungsgemäße Kühlvorrichtung weist bevorzugterweise Kunststoffelemente als zwischen den Profilen angeordnete Dichtleisten auf, die die thermische und elektrische Entkopplung der Verdampfungs- und Kondensationskammern gewährleisten.
Um die Wärmeabgabeleistung zu erhöhen, befindet sich in den Raumbereichen als Flüssigkeit vorteilhafterweise Alkohol oder destilliertes Wasser.
Vorzugsweise sind die Außenflächen der Kondensationskammern oberflächenvergrößert. Dies erhöht die Wärmeabgabeleistung des Kühlsystems erheblich.
Bevorzugterweise ist jede Kondensationskammer oberhalb der zugehörigen Verdampfungskammer angeordnet, wodurch die kondensierte Flüssigkeit schnell dem Vlies zugeführt wird und eine kontinuierlich hohe Wärmeabgabeleistung sichergestellt ist.
Weitere Einzelheiten, Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung unter Bezugnahme auf die beigefügten Zeichnungen.
Diese zeigen:
Fig. 1
eine Querschnittansicht einer ersten Ausführungsform der erfindungsgemäßen Kühlvorrichtung;
Fig. 2
eine Explosionsdarstellung der Kühlvorrichtung aus Figur 1;
Fig. 3
eine Querschnittansicht einer zweiten Ausführungsform der erfindungsgemäßen Kühlvorrichtung; und
Fig. 4
eine Explosionsdarstellung der Kühlvorrichtung aus Figur 3.
Figur 1 zeigt eine erste bevorzugte Ausführungsform der vorliegenden Erfindung, wobei die Kühlvorrichtung 1 im Querschnitt dargestellt ist und eine Symmetrie bezüglich der durch A-A definierten Ebene aufweist. In der unteren Hälfte weist die Kühlvorrichtung 1 vier Verdampfungskammern 10 auf, die durch Begrenzungswände 11 begrenzt sind, die jeweils mit Verbindungsstegen 14 miteinander verbunden sind. Die Außenflächen 12 der Verdampfungskammern 10 stehen mit der zu kühlenden Einheit (nicht gezeigt) thermisch in Verbindung. Auf den Innenflächen 13 der Verdampfungskammern 10 ist ein Vlies 15 angeordnet, das mit Flüssigkeit, wie beispielsweise destilliertem Wasser oder Alkohol, getränkt ist.
In der oberen Hälfte weist die Kühlvorrichtung 1 vier Kondensationskammern 20 auf, die durch Begrenzungswände 21 begrenzt sind, die jeweils wiederum mit Verbindungsstegen 24 miteinander verbunden sind. Die Außenflächen 22 der Kondensationskammern 20 sind geeignet, Wärme an ihre Umgebung abzugeben. An den Innenflächen 23 der Kondensationskammern 20 ist eine vorzugsweise aus Metall gebildete Gaze 25 angeordnet, die dazu dient, die kondensierte Flüssigkeit aufzunehmen und zum Vlies 15 der Verdampfungskammer 10 zurückzuführen. Die Verwendung der Gaze 25 ist aufgrund der Kapillarwirkung zweckmäßig, weil die Kühlvorrichtung dann auch z.B. "auf den Kopf gestellt" arbeiten kann, jedoch nicht für die Funktion der erfindungsgemäßen Kühlvorrichtung notwendig. Die Gaze 25 verhindert u.a. auch, dass Tropfen der kondensierten Flüssigkeit direkt in die Verdampfungskammern 10 zurückfallen. Die einseitigen Öffnungen der Verdampfungskammern 10 und der Kondensationskammern 20 liegen einander in der Ebene A-A im wesentlichen gegenüber, wodurch sich durch jeweils eine Verdampfungskammer 10 und Kondensationskammer 20 ein Raumbereich 3 ergibt, der evakuiert wird. Die Begrenzungswände 11, 21 und Verbindungsstege 14, 24 der nebeneinander liegenden Verdampfungskammern 10 bzw. Kondensationskammern 20 sind durch ein im Querschnitt vorzugsweise U-förmiges oder patronenförmiges Profil gebildet, das in der bevorzugten Ausführungsform aus stranggepresstem Aluminium hergestellt ist.
Das Verdampfungsprofil der unteren Hälfte ist vom Kondensationsprofil der oberen Hälfte in einem vorbestimmten Abstand entfernt angeordnet, wobei dieser Abstand durch die Dicke von Kunststoffelementen 5, die sich zwischen den Verbindungsstegen 14, 24 befinden, bestimmt ist. Durch die Kunststoffelemente 5 sind die Verdampfungskammern 10 und Kondensationskammern 20 voneinander thermisch und elektrisch entkoppelt. Als Material der Kunststoffelemente 5 können Kunststoffe mit geeigneten thermischen und elektrischen Eigenschaften eingesetzt werden. Selbstverständlich sind für die Verdampfungs- und Kondensationsprofile auch andere Metalle als Aluminium oder andere wärmeleitende Materialien möglich.
In Figur 2 sind die Hauptbestandteile der erfindungsgemäßen Kühlvorrichtung aus Figur 1 unter Verwendung der selben Bezugszeichen in einer Explosionsdarstellung abgebildet. Die Profile 16, 26 sind übereinander angeordnet, wobei sich zwischen den Verbindungsstegen 14, 24 die Kunststoffelemente 5 befinden. Die Verbindungsstege 14, 24 können beispielsweise derart geformt sein, dass die Kunststoffelemente 5 schienenartig einschiebbar sind, wodurch sich ein zugfester und gasdichter Verbund der beiden Profile 16, 26 ergibt. Die auf diese Weise fest miteinander verbundenen Profile 16, 26 sind seitlich mit den Abdeckelementen 7 abgeschlossen. Diese Abdeckelemente 7 sind vorzugsweise aus Polyurethankunststoff ausgeführt, der sich bei (Teil-) Evakuierung der Raumbereiche mittels als solchen bekannten Vakuumpumpen in Richtung auf eine noch bessere Abdichtung verformt.
Bei der in Figur 1 und Figur 2 dargestellten bevorzugten Ausführungsform der erfindungsgemäßen Kühlvorrichtung 1 sind die Verdampfungs- und Kondensationsklammern 10, 20 senkrecht angeordnet. Eine Verwendung dieser Ausführungsform der Kühlvorrichtung 1 bei nicht senkrechter Anordnung ist selbstverständlich ebenso möglich, obwohl dadurch der Wirkungsgrad der Kühlvorrichtung geringfügig erniedrigt wird.
Figur 3 zeigt eine zweite bevorzugte Ausführungsform der erfindungsgemäßen Kühlvorrichtung 1, bei der die Verdampfungskammern 10 und Kondensationskammern 20 nicht spiegelsymmetrisch bezüglich der durch C-C definierten Symmetrieebene angeordnet sind. Im hier gezeigten Beispiel sind die Verdampfungskammern 10 bzw. Kondensationskammern 20 um 20° bezüglich der senkrecht auf der Verbindung C-C stehenden Ebene schräg nach unten bzw. schräg nach oben parallel nebeneinander angeordnet. Selbstverständlich können bei dieser Ausführungsform auch andere Winkel der Schrägstellung gewählt werden. Ein besonderer Vorteil dieser Ausführungsform ist, dass sich beim Kippen der gesamten Kühlvorrichtung 1 in der durch C-C definierten Ebene kaminartige Luftschächte zwischen den Kondensationskammern 20 bilden lassen, die die Kühlleistung der Vorrichtung erhöhen.
Figur 4 zeigt in Explosionsdarstellung die Hauptbestandteile der erfindungsgemäßen Kühlvorrichtung aus Figur 3. Es finden dabei die selben Bezugszeichen wie in Figur 2 Verwendung.
Im folgenden wird der Kühlprozess gemäß der vorliegenden Erfindung erläutert. Zunächst erwärmen sich die Begrenzungswände 11 der Verdampfungskammern 10, da die Außenflächen 12 mit dem zu kühlenden Medium, z.B. heißem Gas oder der zu kühlenden Einheit, z.B. einem elektronischen Bauteil, in Kontakt stehen. Die Begrenzungswände 11 der Verdampfungskammern 10 bestehen aus sehr gut wärmeleitendem Material und die im Vlies 15 enthaltene Flüssigkeit verdampft im teilevakuierten Raumbereich 3 bereits bei relativ niedrigen Temperaturen, da aufgrund des Vakuums die Siedetemperatur sinkt. Der Flüssigkeitsdampf wandert aufgrund des Temperaturunterschieds in Richtung der Kondensationskammern 20, diffundiert durch die Gaze 25 hindurch und kondensiert an der Innenwand 23 der Kondensationskammern 20. Dadurch wird Wärme an die Begrenzungswände 21 der Kondensationskammern 20 abgegeben, die über die Außenwand 22 der Kondensationskammer 20 auf die Umgebung übertragen wird. Die abgekühlte, kondensierte Flüssigkeit läuft an der Innenwand 23 bzw. der Metallgaze 25 wieder in Richtung der Verdampfungskammern 10 und wird wieder dem Vlies 15 zugeführt.
Dieser Wärmeübertragungsmechanismus über verdampfte Flüssigkeit ist äußerst wirksam, vor allem deshalb, da die Wege von der Verdampferfläche zur Kondensationsfläche sehr klein sind. Er bietet überdies den Vorteil, dass in der Kühlvorrichtung relativ niedrige Temperaturen herrschen. Auf diese Weise können erhebliche Wärmemengen in kürzester Zeit transportiert werden. Darüber hinaus läßt sich die erfindungsgemäße Kühlvorrichtung derart gestalten, dass die Verdampfer- und Kondensationsflächen beliebig groß sind. Im Vergleich zu herkömmlichen Kühlvorrichtungen, die nach dem Heat-Pipe-Prinzip funktionieren, weist der Gegenstand der vorliegenden Erfindung einen wesentlich höheren Wirkungsgrad auf. Dieser hohe Wirkungsgrad sowie die elektrische und thermische Entkopplung von Verdampfer- und Kondensationsflächen führt dazu, dass der Wärmedurchgangswiderstand des Kühlsystems sehr gering ist.
Durch die vorgeschlagene Verwendung von Strangpressprofilen und Kunststofformteilen ist die Herstellung von erfindungsgemäßen Kühlvorrichtungen sehr einfach und kostengünstig.
Somit wird eine Kühlvorrichtung geschaffen, die auch großflächige zu kühlende Einheiten effektiv kühlt, in unterschiedlichsten Umgebungen wie beispielsweise im Freien einsetzbar ist, die einen hohen Wirkungsgrad aufweist, d.h. hohe Wärmeleistungen abführen kann, und sowohl einfach als auch relativ kostengünstig herstellbar ist. Natürlich ist dieses Prinzip einer passiven Kühlvorrichtung für große Flächen nicht auf die exakte Ausführungsform beschränkt, wie sie in der bisherigen Beschreibung offenbart ist.
Schließlich ist es für die Anordnung der Verdampfungs- und Kondensationskammern 10, 20 auch denkbar, dass diese nicht parallel nebeneinander, sondern beispielsweise konzentrisch, d.h. ringförmig, oder auch unregelmäßig nebeneinander angeordnet sind.
Insgesamt kann die erfindungsgemäße Kühlvorrichtung flexibel an eine Vielzahl von äußeren Rahmenbedingungen angepasst werden. Es wird somit eine Lösung geschaffen, die äußerst wirkungsvoll Wärme abführen kann und umweltfreundlich sowie wartungsfrei funktioniert.

Claims (10)

  1. Kühlvorrichtung mit einer Vielzahl von nebeneinander angeordneten, einseitig offenen Verdampfungskammern (10) mit Begrenzungswänden (11) aus wärmeleitendem Material, an deren Innenflächen (13) jeweils ein Vlies (15) angeordnet ist, das mit einer Flüssigkeit getränkt ist, und die geeignet sind, über ihre Außenflächen (12) mit einem zu kühlenden Material in Kontakt gebracht zu werden, und einer der Anzahl von Verdampfungskammern (10) entsprechenden Vielzahl von nebeneinander angeordneten, einseitig offenen Kondensationskammern (20) mit Begrenzungswänden (21) aus wärmeleitendem Material, die geeignet sind, über ihre Außenflächen (22) Wärme an die Umgebung abzugeben, wobei jeweils eine Verdampfungskammer (10) und eine Kondensationskammer (20) über ihre offenen Seiten derart verbunden sind, dass zwischen Verdampfungskammer (10) und Kondensationskammer (20) ein gasdicht abgeschlossener, teilevakuierter Raumbereich (3) ausgebildet ist, so dass im Betrieb die im Vlies (15) einer Verdampfungskammer (10) enthaltene Flüssigkeit im Raumbereich (3) verdampft, an der Innenfläche (23) der zugeordneten Kondensationskammer (20) kondensiert und wieder dem Vlies (15) zugeführt wird, wobei die Begrenzungswände (11) der Verdampfungskammern (10) und die Begrenzungswände (21) der Kondensationskammern (20) durch geeignete Kunststoffelemente (5) thermisch und elektrisch voneinander entkoppelt sind.
  2. Kühlvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass an den Innenflächen (23) der Kondensationskammern (20) jeweils eine Gaze (25) angeordnet ist.
  3. Kühlvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Begrenzungswände (11, 21) der Verdampfungs- (10) und Kondensationskammern (20) jeweils aus einem stranggepressten Profil (16, 26) gebildet sind.
  4. Kühlvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass das Profil (16, 26) derart ausgebildet ist, dass die Verdampfungs- (10) und Kondensationskammern (20) im Querschnitt jeweils U-förmig mit dazwischen liegenden Verbindungsstegen (14, 24) geformt sind.
  5. Kühlvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Raumbereiche (3) an ihren Seiten jeweils mit Abdeckelementen (7) gasdicht abgeschlossen sind.
  6. Kühlvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Abdeckelemente (7) aus Polyurethan gebildet sind.
  7. Kühlvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Kunststoffelemente (5) als zwischen den Profilen (16, 26) angeordnete Dichtleisten ausgebildet sind.
  8. Kühlvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Flüssigkeit Alkohol oder destilliertes Wasser ist.
  9. Kühlvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Außenflächen (22) der Kondensationskammern (20) oberflächenvergrößert sind.
  10. Kühlvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass jede Kondensationskammer (20) oberhalb der zugehörigen Verdampfungskammer (10) angeordnet ist.
EP04011767A 2004-05-18 2004-05-18 Kühlvorrichtung Expired - Lifetime EP1598866B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP04011767A EP1598866B1 (de) 2004-05-18 2004-05-18 Kühlvorrichtung
DE502004007887T DE502004007887D1 (de) 2004-05-18 2004-05-18 Kühlvorrichtung
ES04011767T ES2312878T3 (es) 2004-05-18 2004-05-18 Dispositivo de enfriamiento.
AT04011767T ATE405948T1 (de) 2004-05-18 2004-05-18 Kühlvorrichtung
JP2005141553A JP3890349B2 (ja) 2004-05-18 2005-05-13 冷却装置
US11/131,629 US20050257915A1 (en) 2004-05-18 2005-05-18 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04011767A EP1598866B1 (de) 2004-05-18 2004-05-18 Kühlvorrichtung

Publications (2)

Publication Number Publication Date
EP1598866A1 true EP1598866A1 (de) 2005-11-23
EP1598866B1 EP1598866B1 (de) 2008-08-20

Family

ID=34925041

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04011767A Expired - Lifetime EP1598866B1 (de) 2004-05-18 2004-05-18 Kühlvorrichtung

Country Status (6)

Country Link
US (1) US20050257915A1 (de)
EP (1) EP1598866B1 (de)
JP (1) JP3890349B2 (de)
AT (1) ATE405948T1 (de)
DE (1) DE502004007887D1 (de)
ES (1) ES2312878T3 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201437591A (zh) * 2013-03-26 2014-10-01 Asustek Comp Inc 熱管結構

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0348838A2 (de) * 1988-06-27 1990-01-03 THE TEXAS A&amp;M UNIVERSITY SYSTEM Ausdehnbares Wärmeleitungsrohr für die thermische Regulierung von elektronischen Bauelementen
US5216580A (en) * 1992-01-14 1993-06-01 Sun Microsystems, Inc. Optimized integral heat pipe and electronic circuit module arrangement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2446139A1 (de) * 1974-09-27 1976-04-15 Barmag Barmer Maschf Verfahren zur herstellung texturierter garne
ES2241948T3 (es) * 2002-12-20 2005-11-01 Innowert Gmbh Dispositivo de refrigeracion para una unidad electrica o electronica.
DE10320838B4 (de) * 2003-05-08 2014-11-06 Rogers Germany Gmbh Faserverstärktes Metall-Keramik/Glas-Verbundmaterial als Substrat für elektrische Anwendungen, Verfahren zum Herstellen eines derartigen Verbundmaterials sowie Verwendung dieses Verbundmaterials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0348838A2 (de) * 1988-06-27 1990-01-03 THE TEXAS A&amp;M UNIVERSITY SYSTEM Ausdehnbares Wärmeleitungsrohr für die thermische Regulierung von elektronischen Bauelementen
US5216580A (en) * 1992-01-14 1993-06-01 Sun Microsystems, Inc. Optimized integral heat pipe and electronic circuit module arrangement

Also Published As

Publication number Publication date
DE502004007887D1 (de) 2008-10-02
EP1598866B1 (de) 2008-08-20
ATE405948T1 (de) 2008-09-15
ES2312878T3 (es) 2009-03-01
JP2005331234A (ja) 2005-12-02
JP3890349B2 (ja) 2007-03-07
US20050257915A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
DE60110061T2 (de) Thermoelektrischer entfeuchter
DE3617762A1 (de) Mit dem kapillareffekt arbeitende waermeuebertragungs-koerper und waermeuebertragungssystem
EP2177857B1 (de) Kälte- und/oder Wärmespeicher
WO2010094662A2 (de) Verdampfer und kühleinrichtung unter verwendung derartiger verdampfer
EP1217708A1 (de) Vorrichtung der Supraleitungstechnik
EP1432295B1 (de) Kühlvorrichtung für eine elektrische und/oder elektronische Einheit
EP1598866B1 (de) Kühlvorrichtung
DE102007044634B4 (de) Hochtemperatur-Polymer-Elektrolyt-Membran-Brennstoffzelle (HT-PEMFC) einschließlich Vorrichtungen zu deren Kühlung
DE202020004672U1 (de) Kühlvorrichtung elektrisch und thermisch entkoppelt
EP3812684B1 (de) Planare wärmeübertragungsvorrichtung, verwendung davon und verfahren zu deren herstellung
EP2158434A1 (de) Rückwandverflüssiger für haushaltskältegeräte
DE102019210190B4 (de) Thermoelektrische kühleinheit
WO2012031894A2 (de) Kältegerät mit skin-verflüssiger
WO2009121737A1 (de) Substrat mit flachem wärmerohr
DE19744281A1 (de) Vorrichtung zum Kühlen von Halbleiterbauelementen und ihre Verwendung
EP3599434A1 (de) Einkreis-kältegerät
DE1451089A1 (de) Kuehlanordnung
DE2406432A1 (de) Kuehleinrichtung mit chemischem verdampfungs-kuehlmittel
DE102022111460A1 (de) Batterieanordnung mit Kapillaranordnungen
DE202010012070U1 (de) Von Druckgefälle getriebene Kühlplatte
EP4161229A1 (de) Thermisch leitfähige halterung
DE102022120251A1 (de) Hochleistungsfähige zweiphasen-kühleinrichtung
EP0819899A2 (de) Wärmeisolierendes Gehäuse
DE102022112411A1 (de) Wärmetauscherpaneel zur Temperierung eines Raumes
DE102022101300A1 (de) Photovoltaik-Thermie-Modul

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

19U Interruption of proceedings before grant

Effective date: 20070630

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20071130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOEMTRON AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004007887

Country of ref document: DE

Date of ref document: 20081002

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2312878

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

BERE Be: lapsed

Owner name: SOEMTRON A.G.

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081120

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090518

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081121

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820