EP1581734A1 - Verfahren und vorrichtung zur diagnose der dynamischen eigenschaften einer zur zylinderindividuellen lambdaregelung verwendeten lambdasonde - Google Patents

Verfahren und vorrichtung zur diagnose der dynamischen eigenschaften einer zur zylinderindividuellen lambdaregelung verwendeten lambdasonde

Info

Publication number
EP1581734A1
EP1581734A1 EP03799439A EP03799439A EP1581734A1 EP 1581734 A1 EP1581734 A1 EP 1581734A1 EP 03799439 A EP03799439 A EP 03799439A EP 03799439 A EP03799439 A EP 03799439A EP 1581734 A1 EP1581734 A1 EP 1581734A1
Authority
EP
European Patent Office
Prior art keywords
lambda
cylinder
value
controllers
detuning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03799439A
Other languages
English (en)
French (fr)
Other versions
EP1581734B1 (de
Inventor
Andreas Koring
Ruediger Deibert
Michael Daetz
Eberhard Schnaibel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Volkswagen AG
Original Assignee
Robert Bosch GmbH
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH, Volkswagen AG filed Critical Robert Bosch GmbH
Publication of EP1581734A1 publication Critical patent/EP1581734A1/de
Application granted granted Critical
Publication of EP1581734B1 publication Critical patent/EP1581734B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system

Definitions

  • the invention relates to a method and a device for diagnosing the dynamic properties of lambda probes with regard to a single-cylinder lambda control according to the preambles of the respective independent claims.
  • Lambda control in conjunction with a catalytic converter is the most effective exhaust gas purification process for the gasoline engine today. Only in combination with currently available ignition and injection systems can very low Emission values can be achieved. In most countries, legislators even prescribe limit values for engine exhaust.
  • lambda control the respective exhaust gas is always measured and the quantity of fuel supplied is corrected immediately in accordance with the measurement result, for example using the injection system.
  • the sum of the lambda signal can be used to infer the lambda of the individual engine cylinders, the exhaust gas of which is fed to the installation location of the probe. This makes it possible to correct cylinder-specific La bda differences and thus improve the exhaust gas result, or at least the exhaust gas stability.
  • the dynamic properties of a lambda probe when new are usually sufficient in a selected operating range.
  • the dynamic properties of the probe change in such a way that cylinder-specific lambda values cannot be resolved, since the response times of the probe increase, the lambda control does not intervene, although lambda fluctuations actually exist in the exhaust gas.
  • causes of reduced probe dynamics are, for example. Narrowing of the protective tube openings of the probe or the contamination of function-determining sensor ceramic parts of the solid electrolyte due to deposits. In the case of broadband probes, contamination of the diffusion barrier there is also an option.
  • a non-functioning single cylinder lambda control leads to the violation of the exhaust gas limit values specified by the legislator.
  • the changed dynamic properties of the lambda probe must be displayed, for example, by means of a control lamp.
  • the present invention is therefore based on the object of specifying a method and a device of the type mentioned at the outset which permit reliable diagnosis of the dynamic properties of a lambda sensor with regard to single-cylinder lambda control.
  • the method according to the invention provides, in particular, for detecting at least one manipulated variable of the lambda control and comparing it with a predeterminable maximum threshold and, if the maximum threshold is exceeded, the dynamic behavior of the lambda sensor in With regard to the usability for the cylinder-specific lambda control to be assessed as insufficient.
  • the dynamic properties of the lambda probe are recorded by means of the individual cylinder control itself. It is based on the idea that the mode of operation of individual cylinder-specific controllers diverges if the dynamic properties are insufficient and that the associated manipulated variables, namely one or more manipulated variables, exceed a predeterminable maximum threshold value.
  • the dynamic behavior of the lambda probe is determined by means of a test function, i.e. by means of an initiated disturbance or detuning of the current lambda value.
  • the test function can be carried out once, temporarily, periodically or event-controlled.
  • the predeterminable maximum threshold for a cylinder-specific controller can be exceeded, for example, when the controller is active and the value of the respective manipulated variable exceeds the predeterminable amount or the manipulated variable can no longer be increased due to its structure. In this case, the dynamic properties of the lambda sensor with regard to the usability for the Single cylinder load control considered insufficient.
  • the invention further relates to a diagnostic device which works according to the method according to the invention.
  • the diagnostic routine described below with reference to the figure for recognizing the operational capability or non-operational capability of a lambda sensor of a gasoline engine is preferably carried out only during the time in which a single-cylinder control having individual controllers is active.
  • the test function described below is carried out once or several times and the results of the tests are only evaluated as long as the test function is active.
  • step 30 it is determined in step 30 whether the engine is moving is at all in an operating state suitable for single-cylinder control and thus for the detection of the dynamic properties of the lambda sensor. If this is not the case, a loop is returned to the beginning of the routine. Otherwise, the manipulated variables of the individual controllers are monitored 40 and, after the manipulated variables have been recorded, it is further checked 50 whether at least one of the manipulated variables exceeds a predeterminable maximum threshold. If this is not the case, the process jumps back to step 40, possibly including a delay stage 60.
  • a next step 70 it is checked whether there is a suitable time for activating the test function. If the answer is in the negative, this test 70 is repeated in a loop, also possibly including a delay stage.
  • test routine begins with the current values of the manipulated variables of the individual controllers being buffered 80. Then there is a fault on the currently determined lambda values switched on 90 and observes or records 100 the manipulated variables of the individual rules].
  • the procedure or routine described above may be carried out several times in order to be able to optimize the manipulated variables, so to speak, iteratively 'or step by step.
  • the dynamic properties of the lambda probe in relation to the single cylinder control are accordingly determined with the help of the controller function itself and / or the described active test function.
  • the lambda of a cylinder is targeted by varying the cylinder-specific fuel measurement by a previously defined amount x tune.
  • this cylinder trimming must be represented as an additional offset with approximately the same amount as the trimming in the associated cylinder-specific manipulated variable of the single-cylinder control. If the resulting manipulated variable change is only a portion y of the stimulated cylinder trim, this means that the lambda probe can no longer fully follow the cylinder-specific fluctuations due to reduced dynamics. If the component y falls below a predefinable threshold z, ie a residual error x - z relevant to exhaust gas can no longer be corrected, an error signal must be output. The resulting exhaust gas disadvantage is not relevant in this case.
  • the invention can be implemented either as hardware or in the form of a control program as part of the engine control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Testing Of Engines (AREA)

Abstract

Bei einem Verfahren zur Diagnose der dynamischen Eigenschaften einer Lambdasonde, die wenigstens zeitweilig zu einer zylinderindividuellen Lambdaregelung verwendet wird, ist erfindungsgemäß vorgesehen, dass wenigstens eine Stellgröße der Lambdaregelung erfasst und mit einer vorgebbaren maximalen Schwelle verglichen wird und im Falle des Überschreitens der maximalen Schwelle das dynamische Verhalten der Lambdasonde im Hinblick auf die Einsatzfähigkeit für die zylinderindividuelle Lambdaregelung als nicht ausreichend bewertet wird.

Description

Verfahren und Vorrichtung zur Diagnose der dynamischen Eigenschaften einer zur zylinderindividuellen Lambdaregelung verwendeten Lambdasonde
Beschreibung
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Diagnose der dynamischen Eigenschaften von Lambdasonden im Hinblick auf eine Einzelzylinder- Lambdaregelung gemäß den Oberbegriffen der jeweiligen unabhängigen Ansprüche.
Eine Lambdaregelung, in Verbindung mit einem Katalysator, ist heute das wirksamste Abgasreinigungsverfahren für den Ottomotor. Erst im Zusammenspiel mit derzeit verfügbaren Zünd- und Einspritzsystemen können sehr niedrige Abgaswerte erreicht werden. In den meisten Ländern schreibt der Gesetzgeber sogar Grenzwerte für das Motorabgas vor.
Besonders wirkungsvoll ist der Einsatz eines Dreiwegeoder Selektiv-Katalysators. Dieser Katalysatortyp hat die Eigenschaft, Kohlenwasserstoffe, Kohlenmonoxid und Stickoxide bis zu mehr als 98% abzubauen, falls der Motor in einem Bereich von etwa 1% um das stöchiometrische Luft-Kraftstoff-Verhältnis mit Lambda = 1 betrieben wird. Dabei gibt Lambda an, wieweit das tatsächliche vorhandene Luft-Kraftstoff-Gemisch von dem Wert Lambda = 1 abweicht, der einem zur vollständigen Verbrennung theoretisch notwendigen Massenverhältnis von 14,7 kg Luft zu 1 kg Benzin entspricht, d.h. Lambda ist der Quotient aus zugeführter Luftmasse und theoretischem Luftbedarf.
Bei der Lambdaregelung wird grundsätzlich das jeweilige Abgas gemessen und die zugeführte Kraftstoffmenge entsprechend dem Messergebnis bspw. mittels des Einspritzsystems sofort korrigiert. Als Messfühler wird dabei eine Lambdasonde verwendet, die ein stetiges Lambdasignal um Lambda = 1 messen kann und so ein Signal liefert, das anzeigt, ob das Gemisch fetter oder magerer als Lambda = 1 ist.
Die Wirkung dieser Lambdasonden beruht in an sich bekannter Weise auf dem Prinzip einer galvanischen Sauerstoff-Konzentrationszelle mit einem Festkörperelektrolyt.
Es ist weiterhin bekannt, eine Einzelzylinder- Lambdaregelung zur Abgasverbesserung einzusetzen, falls die Lambdasonde aufgrund ihrer dynamischen Eigenschaften in der Lage ist, Lambdaschwankungen im Abgasstrom am Sondeneinbauort, welche durch zylinderindividuelle La bdaunterschiede hervorgerufen werden, zu folgen.
Durch zeitlich hochauflösende Auswertung des von der Lambdasonde stammenden Signals kann aus dem Summen- Lambdasignal auf das Lambda der einzelnen Motorzylinder, deren Abgas dem Einbauort der Sonde zugeführt wird, geschlossen werden. Damit können zylinderindividuelle La bda-Unterschiede korrigiert und somit das Abgasergebnis, zumindest jedoch die Abgasstabilität, verbessert werden.
Die dynamischen Eigenschaften einer Lambdasonde im Neuzustand sind in einem ausgewählten Betriebsbereich meist ausreichend. Verändern sich jedoch die dynamischen Eigenschaften der Sonde dahingehend, dass zylinderindividuelle Lambdawerte nicht aufgelöst werden können, da die Reaktionszeiten der Sonde sich erhöhen, wird die Lambdaregelung nicht eingreifend tätig, obwohl im Abgas tatsächlich Lambdaschwankungen vorliegen. Ursachen einer reduzierten Sondendynamik sind bspw. Verengungen von Schutzrohröffnungen der Sonde oder die Verschmutzung von funktionsbestimmenden Sensorkeramikteilen des Festkörperelektrolyten aufgrund von Ablagerungen. Bei Breitbandsonden kommt zusätzlich eine Verschmutzung der dort vorhandenen Diffusionsbarriere in Betracht. Im ungünstigsten Fall führt eine nicht funktionierende Einzelzylinder- Lambdaregelung zur Verletzung der genannten, durch den Gesetzgeber geforderten Abgasgrenzwerte. In diesem Fall müssen die veränderten dynamischen Eigenschaften der Lambdasonde bspw. mittels einer Kontrollleuchte angezeigt werden.
Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art anzugeben, welche eine zuverlässige Diagnose der dynamischen Eigenschaften einer Lambdasonde im Hinblick auf Einzelzylinder-Lambdaregelung gestattet.
Diese Aufgabe wird bei einem Verfahren und einer Vorrichtung zur Diagnose der vorgenannten Art gelöst durch die Merkmale der jeweiligen unabhängigen Ansprüche.
Das erfindungsgemäße Verfahren sieht insbesondere vor, wenigstens eine Stellgröße der Lambdaregelung zu erfassen und mit einer vorgebbaren maximalen Schwelle zu vergleichen und im Falle des Überschreitens der maximalen Schwelle das dynamische Verhalten der Lambdasonde im Hinblick auf die Einsatzfahigkeit für die zylinderindividuelle Lambdaregelung als nicht ausreichend zu bewerten.
Die dynamischen Eigenschaften der Lambdasonde werden in einer ersten erfindungsgemäßen Variante mittels der Einzelzylinderregelung selbst erfasst. Es liegt dabei der Gedanke zugrunde, dass die Arbeitsweise einzelner zylinderindividueller Regler bei nicht ausreichenden dynamischen Eigenschaften divergiert und die zugehörigen Stellgrößen, und zwar eine oder mehrere Stellgrößen, einen vorgebbaren maximalen Schwellwert überschreiten.
In einer zweiten erfindungsgemäßen Variante wird das dynamische Verhalten der Lambdasonde mittels einer Testfunktion, d.h. mittels einer eingeleiteten Störung oder Verstimmung des aktuellen Lambdawertes, erfasst. Die Testfunktion kann einmalig, zeitweilig periodisch oder ereignisgesteuert durchgeführt werden.
Die vorgebbare maximale Schwelle für einen zylinderindividuellen Regler kann bspw. dann überschritten sein, wenn der Regler aktiv ist und der Wert der jeweiligen Stellgröße den vorgebbaren Betrag übertrifft oder die Stellgröße aufgrund ihrer Struktur überhaupt nicht mehr vergrößert werden kann. In diesem Fall werden die dynamischen Eigenschaften der Lambdasonde im Hinblick auf die Einsatzfahigkeit für die Einzelzylinder-La bdaregelung als nicht ausreichend erachtet.
Die Erfindung betrifft des Weiteren eine Diagnosevorrichtung, welche nach dem erfindungsgemäßen Verfahren arbeitet.
Die Erfindung wird nachfolgend, unter Bezugnahme auf die beigefügte Zeichnung, anhand eines Ausführungsbeispiels noch eingehender erläutert, aus dem sich weitere Merkmale und Vorteile der Erfindung ergeben. Die einzige Figur zeigt eine bevorzugte Ausgestaltung des erfindungsgemäßen Diagnoseverfahrens anhand eines Flussdiagramms.
Die nachfolgend anhand der Figur beschriebene Diagnoseroutine zur Erkennung der Einsatzfahigkeit bzw. Nicht-Einsatzfähigkeit einer Lambdasonde eines Ottomotors wird bevorzugt nur während der Zeit, in welcher eine einzelne Regler aufweisende Einzelzylinderregelung aktiv ist, durchgeführt. Je nach Strategie wird dabei die nachfolgend beschriebene Testfunktion einmalig oder mehrmals ausgeführt und die Ergebnisse der Tests nur solange ausgewertet, wie die Testfunktion aktiv ist.
Nach dem Start 10 der Routine wird zunächst die Motordrehzahl und/oder die Motorlast und/oder der Abgasmassenstrom erfasst 20. Basierend auf diesen Daten wird in Schritt 30 festgestellt, ob der Motor sich überhaupt in einem für die Einzelzylinderregelung und damit für die Erkennung der dynamischen Eigenschaften der Lambdasonde geeigneten Betriebszustand befindet. Ist dies nicht der Fall, wird in Form einer Schleife wieder an den Anfang der Routine zurückgesprungen. Andernfalls werden die Stellgrößen der einzelnen Regler überwacht 40 und nach Erfassen der Stellgrößen wird weiterhin geprüft 50, ob wenigstens eine der Stellgrößen im Betrag eine vorgebbare Maximalschwelle überschreitet. Ist dies nicht der Fall, wird wieder zu Schritt 40 zurückgesprungen, ggf. unter Einbeziehung einer Verzögerungsstufe 60.
Falls eine oder mehrere Stellgrößen der einzelnen Regler eine vorgebbare maximale Schwelle betragsmäßig überschreiten, wird angenommen, dass die dynamischen Eigenschaften der Lambdasonde nicht ausreichend sind.
In einem nächsten Schritt 70 wird geprüft, ob ein geeigneter Zeitpunkt zur Aktivierung der Testfunktion vorliegt. Ist dies zu verneinen, wird diese Prüfung 70 in einer Schleife wiederholt, ebenfalls ggf. unter Einbeziehung einer Verzögerungsstufe.
Andernfalls beginnt die Testroutine damit, dass die aktuell vorliegenden Werte der Stellgrößen der einzelnen Regler zwischengespeichert 80 werden. Danach wird auf die aktuell ermittelten Lambdawerte eine Störung aufgeschaltet 90 und die Stellgrößen der einzelnen Regle] beobachtet bzw. erfasst 100.
Im Anschluss daran wird geprüft 110, ob der Regler bzw. die Regler in der Lage ist/sind, die Störung auszuregeln. Ist dies der Fall, wird ggf. ein positives Signal ausgegeben 120, wonach die Dynamik der Sonde ausreichend ist. Andernfalls wird angenommen, dass die dynamischen Anforderungen nicht erfüllt sind und ein entsprechendes negatives Signal ausgegeben 130.
Abschließend wird die Störung zurückgenommen 140 und es erfolgt eine Neuinitialisierung 150 der einzelnen Regler mit den zwischengespeicherten Werten. Daraufhin wird wiederum eine Störung aufgeschaltet, wie durch den Rücksprung 160 angedeutet ist.
Die vorbeschriebene Prozedur oder Routine wird ggf. mehrfach durchgeführt, um die Stellgrößen sozusagen , iterativ' oder schrittweise optimieren zu können.
Die dynamischen Eigenschaften der Lambdasonde in Bezug auf die Einzelzylinderregelung werden demnach mit Hilfe der Reglerfunktion selbst und/oder der beschriebenen aktiven Testfunktion ermittelt. In einer geeigneten Fahrsituation wird gezielt das Lambda eines Zylinders durch Variation der zylinderindividuellen Kraftstoffmessung um einen vorher definierten Betrag x verstimmt. Bei aktiver Einzelzylinder-Regelung uss sich diese Zylindervertrimmung als zusätzlicher Offset mit etwa dem gleichen Betrag wie die Vertrimmung in der dazugehörigen zylinderindividuellen Stellgröße der Einzelzylinderregelung abbilden. Beträgt die resultierende Stellgrößenänderung nur einen Anteil y der stimulierten Zylindervertrimmung, bedeutet dies, dass die Lambdasonde aufgrund einer reduzierten Dynamik den zylinderindividuellen Schwankungen nicht mehr in vollem Umfang folgen kann. Unterschreitet der Anteil y eine vorgebbare Schwelle z, d.h. ein abgasrelevanter Restfehler x - z kann nicht mehr ausgeregelt werden, muss ein Fehlersignal ausgegeben werden. Der entstehende Abgasnachteil ist in diesem Fall nicht von Belang.
Im Falle einer Gutprüfung, d.h. die Sondendynamik für Einzelzylinder-Lambdaregelung wird als ausreichend erachtet, da die Vertrimmung wird vollständig oder nahezu vollständig ausgeregelt wird, entsteht durch die beschriebene Testfunktion kein Abgasnachteil. Zudem erfolgt nach Abschluss einer Prüfung, wie vorbeschrieben, eine Zurücksetzung der Zylindervertrimmung in den Ausgangszustand.
Es ist anzumerken, dass eine etwa erfasste Änderung der dynamischen Eigenschaften der Lambdasonde für die übrigen Funktionen der Motorsteuerung, die das Lambdasondensignal auswerten, nicht von Relevanz ist und diese daher getrennt zu überwachen sind.
Die Erfindung kann entweder als Hardware oder in Form eines Steuerprogramms als Teil der Motorsteuerung implementiert werden.

Claims

Patentansprüche
1. Verfahren zur Diagnose der dynamischen Eigenschaften einer Lambdasonde, die wenigstens zeitweilig zu einer zylinderindividuellen Lambdaregelung verwendet wird, dadurch gekennzeichnet, dass wenigstens eine Stellgröße der Lambdaregelung erfasst und mit einer vorgebbaren maximalen Schwelle verglichen wird und im Falle des Überschreitens der maximalen Schwelle das dynamische Verhalten der Lambdasonde im Hinblick auf die Einsatzfahigkeit für die zylinderindividuelle Lambdaregelung als nicht ausreichend bewertet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Wert von Lambda wenigstens eines Zylinders um einen vorgebbaren Wert verstimmt und geprüft wird, ob die Verstimmung um den vorgebbaren Wert als Offset oder Faktor in der Stellgröße des jeweiligen Reglers der Lambdaregelung abgebildet wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass geprüft wird, ob die Differenz oder der Absolutwert der Differenz zwischen Verstimmung und Offset kleiner als die vorgebbare maximale Schwelle ist.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Wert von Lambda durch Variation der zylinderindividuellen Kraftstoffmessung verstimmt wird.
5. Verfahren nach einem der Ansprüche 2 bis 4, gekennzeichnet durch die Schritte:
Erkennung eines geeigneten Betriebsbereichs für die zylinderindividuelle Lambdaregelung;
Überwachung der Stellgrößen der einzelnen Lambdaregler und, falls eine oder mehrere Stellgrößen betragsmäßig ihre maximale Größe überschreitet, Durchführung der nachfolgenden Schritte;
Erkennung eines geeigneten Zeitpunktes zur Durchführung der nachfolgenden Schritte;
Zwischenspeicherung der Stellgrößen der einzelnen Lambdaregler;
Verstimmung des Wertes von Lambda wenigstens eines Zylinders um den vorgebbaren Wert; Beobachtung der Stellgrößen der einzelnen Lambdaregler;
Feststellung, ob die Lambdaregler in der Lage sind, die Verstimmung des Wertes von Lambda auszugleichen oder nicht und im Falle, dass die Lambdaregler dazu in der Lage sind, Rücknahme der Verstimmung und Neuinitialisierung der einzelnen Lambdaregler mit den zwischengespeicherten Stellgrößen, andernfalls Ausgabe eines Fehlersignals.
6. Diagnosevorrichtung zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche.
EP03799439A 2002-12-23 2003-12-19 Verfahren und vorrichtung zur diagnose der dynamischen eigenschaften einer zur zylinderindividuellen lambdaregelung verwendeten lambdasonde Expired - Lifetime EP1581734B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10260721 2002-12-23
DE10260721A DE10260721A1 (de) 2002-12-23 2002-12-23 Verfahren und Vorrichtung zur Diagnose der dynamischen Eigenschaften einer zur zylinderindividuellen Lambdaregelung verwendeten Lambdasonde
PCT/DE2003/004250 WO2004059152A1 (de) 2002-12-23 2003-12-19 Verfahren und vorrichtung zur diagnose der dynamischen eigenschaften einer zur zylinderindividuellen lambdaregelung verwendeten lambdasonde

Publications (2)

Publication Number Publication Date
EP1581734A1 true EP1581734A1 (de) 2005-10-05
EP1581734B1 EP1581734B1 (de) 2008-03-26

Family

ID=32602436

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03799439A Expired - Lifetime EP1581734B1 (de) 2002-12-23 2003-12-19 Verfahren und vorrichtung zur diagnose der dynamischen eigenschaften einer zur zylinderindividuellen lambdaregelung verwendeten lambdasonde

Country Status (6)

Country Link
US (1) US7481104B2 (de)
EP (1) EP1581734B1 (de)
JP (1) JP4369872B2 (de)
CN (1) CN100449130C (de)
DE (2) DE10260721A1 (de)
WO (1) WO2004059152A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005027990B4 (de) * 2005-06-17 2007-05-10 Audi Ag Vorrichtung zur dynamischen Überprüfung einer Abgassonde
DE102005045932A1 (de) 2005-09-26 2007-03-29 Robert Bosch Gmbh Gerät und Verfahren zur Diagnose einer technischen Vorrichtung
DE102006061117B3 (de) * 2006-12-22 2007-08-02 Audi Ag Verfahren zur Phasenadaption einer zylinderselektiven Lambdaregelung bei einer mehrzylindrigen Brennkraftmaschine
DE102007042086B4 (de) * 2007-09-05 2014-12-24 Continental Automotive Gmbh Testverfahren für eine Abgassonde einer Brennkraftmaschine, insbesondere für eine Lambda-Sonde
DE102007045984A1 (de) 2007-09-26 2009-04-02 Continental Automotive Gmbh Verfahren zur Ermittlung der dynamischen Eigenschaften eines Abgassensors einer Brennkraftmaschine
DE102008001569B4 (de) * 2008-04-04 2021-03-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde
DE102008001213A1 (de) 2008-04-16 2009-10-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE102008001579A1 (de) 2008-05-06 2009-11-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose der Dynamik einer Breitband-Lambdasonde
DE102008042549B4 (de) 2008-10-01 2018-03-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose einer Abgassonde
DE102008058008B3 (de) * 2008-11-19 2010-02-18 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102009045376A1 (de) 2009-10-06 2011-04-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE102009047648B4 (de) 2009-12-08 2022-03-03 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose von Abweichungen bei einer Einzelzylinder-Lambdaregelung
DE102009054935B4 (de) 2009-12-18 2022-03-10 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE102011002782B3 (de) * 2011-01-17 2012-06-21 Continental Automotive Gmbh Vefahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US8499624B1 (en) * 2012-02-16 2013-08-06 Delphi Technologies, Inc. Method to determine performance characteristic of an engine exhaust system
DE102013216223A1 (de) * 2013-08-15 2015-02-19 Robert Bosch Gmbh Universell einsetzbare Steuer- und Auswerteeinheit insbesondere zum Betrieb einer Lambdasonde
DE102014208585A1 (de) 2014-05-07 2015-11-12 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102014216844B3 (de) * 2014-08-25 2015-10-22 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102019100577B3 (de) 2019-01-11 2019-12-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Überwachung von Sensorsignalen und quantitative Ermittlung des stöchiometrischen Kraftstoff-Luftverhältnisses des gefahrenen Kraftstoffs mittels Injektortest und Katalysatordiagnose in einem Fahrzeug

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3816520A1 (de) 1988-05-14 1989-11-23 Bosch Gmbh Robert Regelverfahren und -vorrichtung, insbesondere lambdaregelung
DE4140618A1 (de) * 1991-12-10 1993-06-17 Bosch Gmbh Robert Verfahren und vorrichtung zur ermittlung der konvertierungsfaehigkeit eines katalysators
DE4236008C2 (de) 1992-10-24 2002-03-28 Bosch Gmbh Robert Verfahren und Vorrichtung zur adaptiven Einzelzylinder-Lambdaregelung bei einem Motor mit variabler Ventilsteuerung
JP3729295B2 (ja) * 1996-08-29 2005-12-21 本田技研工業株式会社 内燃機関の空燃比制御装置
DE19733107C2 (de) * 1997-07-31 2003-02-13 Siemens Ag Verfahren zur Überprüfung der Funktionsfähigkeit einer Lambdasonde
DE19734073C1 (de) 1997-08-06 1998-11-12 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur Reinigung der Rumpfaußenfläche von Schiffen
DE19734072C2 (de) 1997-08-06 2001-12-13 Iq Mobil Electronics Gmbh Lambda-Regelung für Einspritzanlagen mit adaptivem Filter
DE19734670C1 (de) * 1997-08-11 1999-05-27 Daimler Chrysler Ag Verfahren zur Vertauschprüfung von Lambdasonden
DE19856367C1 (de) * 1998-12-07 2000-06-21 Siemens Ag Verfahren zur Reinigung des Abgases mit Lambda-Regelung
DE19903721C1 (de) 1999-01-30 2000-07-13 Daimler Chrysler Ag Betriebsverfahren für eine Brennkraftmaschine mit Lambdawertregelung und Brennkraftmaschine
DE10038338A1 (de) * 2000-08-05 2002-02-14 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung eines Sensors
DE10128969C1 (de) * 2001-06-15 2002-12-12 Audi Ag Verfahren zur Diagnose einer Führungssonde
DE10130054B4 (de) * 2001-06-21 2014-05-28 Volkswagen Ag Abgasanlage einer mehrzylindrigen Verbrennungskraftmaschine und Verfahren zur Reinigung eines Abgases
DE10161901B4 (de) * 2001-12-17 2010-10-28 Volkswagen Ag Verfahren und Vorrichtung zur Kompensation des Offsets der linearen Sensorcharakteristik eines im Abgas einer Verbrennungskraftmaschine angeordneten Sensors
DE10206402C1 (de) * 2002-02-15 2003-04-24 Siemens Ag Verfahren zur zylinderselektiven Lambdaregelung
JP2005147140A (ja) * 2003-11-14 2005-06-09 Robert Bosch Gmbh 内燃機関のミスファイアの検知方法及び運転装置
DE102005054735B4 (de) * 2005-11-17 2019-07-04 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004059152A1 *

Also Published As

Publication number Publication date
DE10260721A1 (de) 2004-07-29
DE50309504D1 (de) 2008-05-08
US20060170538A1 (en) 2006-08-03
JP2006511752A (ja) 2006-04-06
CN100449130C (zh) 2009-01-07
US7481104B2 (en) 2009-01-27
WO2004059152A1 (de) 2004-07-15
JP4369872B2 (ja) 2009-11-25
CN1692218A (zh) 2005-11-02
EP1581734B1 (de) 2008-03-26

Similar Documents

Publication Publication Date Title
EP1581734B1 (de) Verfahren und vorrichtung zur diagnose der dynamischen eigenschaften einer zur zylinderindividuellen lambdaregelung verwendeten lambdasonde
DE19630940C2 (de) Verfahren zur Überprüfung des Katalysatorwirkungsgrades
DE102008001569B4 (de) Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde
EP1228301B1 (de) Verfahren zum überprüfen eines abgaskatalysators einer brennkraftmaschine
EP1327138B1 (de) Verfahren und vorrichtung zur eigendiagnose eines nox-sensors
EP1192340B1 (de) Verfahren zum überprüfen eines dreiwege-abgaskatalysators einer brennkraftmaschine
EP1131544A1 (de) ÜBERWACHUNGSVERFAHREN FÜR NOx SPEICHERKATALYSATOREN UND ABGASREINIGUNGSVORRICHTUNG ZUR DURCHFÜHRUNG DIESES VERFAHRENS
EP1214511A1 (de) VERFAHREN ZUR FUNKTIONSÜBERWACHUNG EINES IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NO x?-SENSORS
DE4233977C2 (de) Gerät zur Erfassung der Verschlechterung eines Katalysators für einen Verbrennungsmotor
DE19636415B4 (de) Verfahren und Vorrichtung zur Überwachung der Funktionsweise eines Kohlenwasserstoffsensors für eine Brennkraftmaschine
EP1724458A1 (de) Verfahren und Vorrichtung zur Diagnose eines Messwertes
DE102016211506A1 (de) Verfahren und Vorrichtung zur Überwachung der Funktionsfähigkeit einer Abgasreinigungsanlage
DE102004017274B4 (de) Verbesserte Diagnose eines mehrreihigen, katalytischen Abgassystems
DE102009045376A1 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
EP0530655B1 (de) Verfahren und Vorrichtung zur Regelung eines Otto-Motors und Prüfung eines ihm nachgeschalteten Katalysators
DE102009054935B4 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
WO1994028292A1 (de) Verfahren zur überprüfung des katalysatorwirkungsgrades
DE102016210143A1 (de) Verfahren zur Ermittlung eines Alterungszustands eines NOx-Speicherkatalysators einer Abgasnachbehandlungsanlage eines für einen Magerbetrieb ausgelegten Verbrennungsmotors sowie Steuerungseinrichtung
DE102022129061A1 (de) Verfahren zur Diagnose eines Katalysators mit Sauerstoffspeicherfähigkeit
EP1143131A2 (de) Mehrflutige Abgasanlage und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses und Steuerung einer NOx-Regeneration eines NOx-Speicherkatalysators
DE10257059B4 (de) Verfahren und Vorrichtung zur Diagnose von Katalysatoreinheiten
DE102015224929B4 (de) Verfahren zur Überprüfung eines Feuchtigkeitssensors eines Dieselmotors
DE10331331B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102006002257B4 (de) Verfahren und Vorrichtung zum Betreiben eines Abgaskatalysators einer Brennkraftmaschine
WO2009043737A1 (de) Verfahren zur ermittlung der dynamischen eigenschaften eines abgassensors einer brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50309504

Country of ref document: DE

Date of ref document: 20080508

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081230

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191216

Year of fee payment: 17

Ref country code: FR

Payment date: 20191218

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200221

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50309504

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201219

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701