EP1580783B1 - Dispositif de commande pour l'actionnement coordonné d'au moins deux appareils de commutation dont un est à coupure le vide - Google Patents

Dispositif de commande pour l'actionnement coordonné d'au moins deux appareils de commutation dont un est à coupure le vide Download PDF

Info

Publication number
EP1580783B1
EP1580783B1 EP05102321A EP05102321A EP1580783B1 EP 1580783 B1 EP1580783 B1 EP 1580783B1 EP 05102321 A EP05102321 A EP 05102321A EP 05102321 A EP05102321 A EP 05102321A EP 1580783 B1 EP1580783 B1 EP 1580783B1
Authority
EP
European Patent Office
Prior art keywords
control device
switchgear
gas
auxiliary shaft
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05102321A
Other languages
German (de)
English (en)
Other versions
EP1580783A1 (fr
Inventor
Michel Perret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1580783A1 publication Critical patent/EP1580783A1/fr
Application granted granted Critical
Publication of EP1580783B1 publication Critical patent/EP1580783B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/14Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc
    • H01H33/143Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc of different construction or type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6661Combination with other type of switch, e.g. for load break switches

Definitions

  • the invention relates to a control device for the coordinated actuation of at least two switching devices electrically connected in series to constitute a switching assembly of which a first switching device in the vacuum comprises a pair of separable contacts for the switching between a closed position and an open position.
  • the control device comprises a main operating shaft for operating a second switching device immersed in a gaseous insulating fluid contained in a certain volume at a predetermined pressure, and further comprises an auxiliary shaft adapted to be displaced by coupling means for allow the operation of a moving contact of the first switching device during a displacement of the main shaft, the movable contact being held in abutment against the other contact in the closed position of the first device by a force intended to produce a contact pressure greater than a determined value.
  • a certain contact pressure is generally necessary when a vacuum interrupter is closed, in order to prevent the contacts from separating under the effect of the electrodynamic repulsion forces. particularly if a short-circuit current flows through the switch.
  • the control device for operating a hybrid high voltage circuit breaker comprises a main operating shaft for operating a dielectric insulating gas switch such as SF 6 .
  • This hybrid circuit breaker is insulating in the air, since the gas switch breaking chamber is contained in an insulating casing which has fins on its outer surface.
  • the main operating shaft is contained in a compartment delimited by a housing, which communicates with another compartment delimited by the insulating envelope of the gas switch to allow the main shaft to be connected to the moving contact of the switch. .
  • This housing is sized to contain a vacuum switch whose fixed contact is connected to one of its walls. The housing is therefore a pole of the hybrid high voltage circuit breaker.
  • a connection terminal of this pole of the hybrid circuit breaker is fixed to the housing being interposed between the two compartments, so that the permanent current in the circuit breaker does not pass through the vacuum switch whose function is to support the transient voltage recovery during a power interruption.
  • the movable contact of the vacuum interrupter is electrically connected to the moving contact of the gas interrupter by a connecting braid, and is actuated by an auxiliary shaft which comprises spring means for producing a sufficient contact pressure when the vacuum interrupter is closed.
  • This auxiliary shaft is perpendicular to the main shaft and is coupled by a bracket-shaped lever which pivots about an axis fixed to the housing, which allows a movement return substantially 90 °.
  • the vacuum interrupter is subjected to the pressure of the dielectric insulating gas which fills the two compartments. Since a virtually zero pressure prevails in the sealed chamber of the vacuum interrupter, also known as the vacuum interrupter, this chamber must be designed to withstand the external gas pressure forces which may be particularly intense, particularly on the insulating cylindrical wall. as well as the metal bellows of the vacuum bulb. If the pressure of the insulating gas must be relatively high, generally greater than five bars when using a gas mixture with a proportion of nitrogen greater than 80% as known from the state of the art, or using pure nitrogen, it is possible to use a vacuum bulb whose structure of the sealed chamber is designed to resist this pressure, but this type of vacuum switch is still rare and particularly expensive.
  • JP 20003045300 which describes the realization of a resin molding around a vacuum ampoule intended to be immersed in a pure nitrogen medium under a pressure of several bars. This solution is still expensive to implement, and it remains difficult to avoid a too high pressure of insulating gas is applied in particular on the metal bellows of the bulb at the risk of deforming or breaking.
  • abutment member having substantially the shape of a socket whose bottom is pierced to be traversed by the auxiliary shaft.
  • This abutment member is firmly inserted inside a flange which is connected to the housing and which participates in the electrical connection in series of the two switching devices.
  • the elastic means deform being maintained between the bottom of the sleeve and a collar secured to a shaft of the auxiliary shaft. The free distance between this collar and a shoulder of the bushing determines the remaining travel for the moving contact of the vacuum interrupter until the switch is fully open.
  • the vacuum switch is located in a compartment adjacent to the compartment defined by the housing.
  • the two adjacent compartments communicate through the interior space of the abutment member, even though the passage for the insulating gas through the aforementioned spring arrangement is relatively narrow. Therefore, if the pressure of the insulating gas in the gas switch break chamber is to be relatively high, the vacuum switch compartment will inevitably be subjected to the same or nearly equal pressure. The problem of resistance to pressure for the sealed chamber of the vacuum interrupter can therefore also arise with such a hybrid circuit breaker device.
  • elastic means such as washers for producing the contact pressure in the vacuum switch do not allow to obtain a significant stroke for the movable contact of the switch.
  • elastic washers allow a maximum stroke of the order of a centimeter.
  • hybrid high-voltage circuit breakers will be required to respond to increasingly higher voltage ranges, which will require adopting vacuum switches with a spread of contacts increasingly important, typically greater than two centimeters. It seems in this case difficult to be able continue to use disk washers or springs in the control device of a vacuum interrupter, since the maximum spacing of the contacts of this switch would then be limited by the characteristics of these elastic contact pressure means independently of the intrinsic characteristics of the switch. It may be recalled in this regard that the maximum intrinsically permissible stroke for the moving contact of a vacuum interrupter generally depends on the elastic limits of the metal bellows sealing switch.
  • a first object of the invention is to make it possible to increase the insulating gas pressure in a gas switch of a switching assembly, and in particular of a hybrid cut-off switching assembly, without this necessitating increasing the protection of the vacuum interrupter against the pressure of the gas surrounding its sealed chamber, in particular at the level of the metal sealing bellows.
  • a second object of the invention is to propose a control device for a switching assembly comprising a vacuum interrupter, which allows to possibly do without a mechanical elastic arrangement to produce the contact pressure in the switch or that allows at least such an elastic arrangement does not have to produce alone the essential of the contact pressure required for the switch to pass a short-circuit current.
  • an ancillary purpose is to allow the movable contact of the vacuum interrupter to be operated over the entire stroke intrinsically allowed for the switch.
  • the subject of the invention is a control device as defined above, characterized in that the auxiliary shaft passes through a wall which separates the volume of gaseous insulating fluid from another volume of fluid at a pressure. lower, the difference of the respective pressures of the two fluids providing a certain force which is applied to the auxiliary shaft and which participates in the contact pressure force.
  • a portion of the auxiliary shaft is constituted by a piston able to be displaced inside a bore formed by a part which is sealingly mounted on an opening of the wall, insulating gas sealing means being arranged between the piston and the bore.
  • the wall and the bore constitute a conductive assembly electrically connected to a pole of the second switching device
  • the piston comprises at least one electrically conductive portion connected to the moving contact of the first switching device
  • sliding contacts are arranged between bore and the conductive portion of the piston.
  • the wall may be constituted by a face of a housing which encloses at least a portion of the gaseous insulating fluid volume and in which are arranged the coupling means.
  • the housing is preferably open on one side which is sealingly connected to one end of an insulating jacket providing insulation in the housing. air between the two poles of the second switching device. The casing is then placed directly in the air, and has a role of sealing between the insulating gas of the second apparatus and the outside air.
  • the switching assembly is intended to be used as a shielded type of equipment in a metal enclosure
  • the housing then has a role of mechanical support and no longer sealing since the metal casing of the equipment is necessarily sealed between the volume of gaseous insulating fluid and the outside air.
  • the wall is sealed to a conductive plate electrically connected to a pole of the second switching device and has a flexible zone in the center of which is provided an opening which is traversed with sealing by the auxiliary shaft.
  • the flexible zone of the wall then constitutes a sealing bellows which has a mechanical role of producing a differential pressure force.
  • the auxiliary shaft comprises a portion in the form of a guide piston adapted to be moved with electrical contact inside a bore electrically connected to the conductive plate.
  • the coupling means may comprise mechanical elastic compression means capable of exerting a resultant force on the auxiliary shaft to participate in the contact pressure force in addition to the force provided by the difference of the respective pressures of the two insulating fluids
  • the figure 1 schematically represents a control device according to the invention, applied to a cutoff and disconnection assembly known per se and shown in the closed position of current flow.
  • the figure 2 schematically represents the control device of the figure 1 in the open position of interruption of the current by the switching assembly.
  • the figure 3 schematically represents a control device according to the invention, applied to a hybrid switching switching assembly in which the vacuum switching apparatus is disposed substantially perpendicular to the main axis of the switching apparatus in the gas .
  • the figure 4 schematically represents the control device of the figure 3 in the open position of the switching assembly.
  • the figure 5 schematically represents a control device similar to that of the figure 3 , in which is provided the possibility of a reclosing of the switchgear in the vacuum after the end of the circuit breaker function provided by the switchgear in the gas.
  • the figure 6 schematically represents a control device similar to that of the figure 5 , in an application for a shielded switching assembly.
  • the figure 7 schematically represents another control device according to the invention, wherein the coupling means between the main shaft and the auxiliary shaft allow a similar result to that provided by the control device of the figure 3 and in which a safety evacuation is provided in case of leakage at the gaseous insulating fluid sealing means.
  • FIGS. 7a and 7b very schematically represent the operating principle of the mobile contact of the switching device in the vacuum through the rotating cam coupling means shown on the figure 7 .
  • the figure 8 schematically represents the control device of the figure 3 to which are added resilient means for increasing the contact pressure in the closed position of passage of the current in the switching assembly.
  • the figure 9 schematically represents an improvement of the mechanism for actuating the moving contact of the switching apparatus in such a vacuum that represented on the figure 3 , to increase the contact pressure in this device without increasing the maneuvering energy required for a control device according to the invention.
  • the figure 9a is an enlargement of the improved actuation mechanism that is shown on the figure 9 in the closed position of the switching assembly.
  • the figure 9b schematically represents the actuating mechanism of the figure 9a in the open position of the switching assembly.
  • the Figure 9c schematically represents another mechanism for improved actuation of the moving contact of the switching apparatus in a vacuum, allowing a result similar to that provided by the actuating mechanism of the figure 9 .
  • the figure 9d schematically represents another improved actuation mechanism of the moving contact of the switching apparatus in a vacuum.
  • the figure 10 schematically represents an alternative embodiment of the gaseous insulating fluid sealing means whose pressure is used for the operation of a control device according to the invention.
  • the figure 11 schematically represents an alternative embodiment of the control device shown in FIG. figure 10 , which comprises a safety space at atmospheric pressure operating on the safety principle used in the control device of the figure 7 .
  • the control device according to the invention which is schematically represented on the figure 1 is applied to a switching assembly, and more specifically a cutoff and disconnection assembly, as known in particular from the patent document WO 0074095 A1 .
  • This document describes an operating mechanism for the combined actuation of two switching devices electrically connected in series, with a first switchgear device in a vacuum and a second switching device consisting of a switchgear disconnector arranged in air to provide a disconnect function after the power cut by the first device.
  • the operating rod of the movable contact of the vacuum switch can be actuated in translation by means of a pivoting cam adapted to press against a shoulder secured to the rod at its end.
  • the mechanism for providing contact pressure is not described in this document, but a conventional spring mechanism and / or electromagnetic drive may be used.
  • the connecting rod of the pivoting knife is articulated on a lever integral in rotation with the cam, just as the main operating shaft is articulated on another lever to drive the cam in rotation.
  • a movement of the main operating shaft makes it possible to actuate the two switching devices in a coordinated manner, which allows the respective movable contacts of these devices to have movements which follow a determined temporal sequence.
  • the profile of the cam allows here to quickly separate the contacts of the vacuum switch before that the rotation of the cam is sufficient to separate the pivoting knife from the fixed contact of the disconnector, which corresponds to a normal sequence for such a cutoff and disconnect assembly.
  • the cutoff and disconnect assembly shown on the figure 1 is similar on many points with that described in the patent WO 0074095 A1 .
  • the first modification according to the invention for this state of the art consists in providing an enclosure filled with a gaseous insulating fluid G 2 under a pressure P 2 and in the volume V 2 of which the disconnecting apparatus 10 is housed and a much of the control device.
  • This enclosure comprises a metal casing 7 which is electrically connected to the pivoting knife 15 of the disconnector 10 and which is open on the side of the disconnector 10 to be assembled in a sealed manner with an end of an insulating casing 18.
  • the casing 7 constitutes one of the two poles of the disconnector, and the insulating casing 18 ensures the insulation in the air between the casing and the other pole which supports the fixed contact 16 of the disconnector. It is placed directly in the air, and has a sealing role between the insulating gas G 2 and the air.
  • the tree main 2 maneuver comprises a translationally movable portion through the housing tightly to be connected to a not shown control mechanism.
  • coupling means 3 comprise a pivoting cam 14 integral with a lever on which is articulated a connecting rod 12 for actuating the pivoting knife 15. These means 3 allow to couple the respective movements of the main shaft 2 and the shaft auxiliary 4 which serves as operating rod of the movable contact 5 of the vacuum switch 1. This contact 5 is shown in the closed position of current flow, and bears against the fixed contact 6 of the vacuum switch to ensure the necessary contact pressure.
  • the auxiliary shaft 4 here comprises a piston 4A which passes through a sealed wall 7A of the casing 7 and which is able to be moved inside a bore 8 formed by a part which is sealingly mounted on an opening of said wall 7A. Sealing means 17 to the insulating gas G2, produced by an O-ring, are arranged between the piston and the bore 8.
  • the piston 4A comprises at least one electrically conductive portion 4A2 which is assembled in electrical contact with the movable contact 5 of the vacuum switch. During the displacement of the piston 4A, the portion 4A2 of the piston also remains in electrical contact with the bore 8 by means of sliding contacts such as, for example, spring-loaded toric contacts known per se.
  • the bore 8 opens out of the casing 7 on a volume V 1 filled with a fluid G 1 maintained at a pressure P 1 less than the pressure P 2 of the gaseous insulating fluid G 2 in the housing.
  • the fluid G 1 may be an insulating gas, of the same nature or different from G 2 , or a liquid or a dielectric gel, or a small volume of air or other gas at the pressure P 1 without dielectric properties and provided adjacent a volume of solid or dielectric gel that surrounds the sealed chamber of the vacuum interrupter to provide dielectric isolation between the two poles of the switch.
  • the fluid G 1 represented is an insulating gas contained in a rigid insulating envelope 11 fixed sealingly against the housing 7 around its bore 8.
  • the difference between the pressure P 2 of the gas G 2 inside the casing 7 and the pressure P 1 of the gas G 1 inside the sealed envelope 11 applies to the piston 4A a differential pressure force Fp which is the product of the value P 2 -P 1 and the section of the piston in the bore 8.
  • the differential pressure force Fp can be provided to ensure the contact pressure force necessary to maintain the contacts 5 and 6 of the vacuum switch 1 rest against each other even if a short-circuit current flows through the switch.
  • the total differential pressure force which is exerted on the movable contact 5 of the vacuum interrupter 1 is actually the sum of the the differential pressure force Fp defined above and the gas pressure force G 1 exerted on the metal bellows 19 of the vacuum interrupter, because this bellows makes a mobile separation between the vacuum in the sealed chamber of the switch and the gas G 1 around this chamber.
  • the contact pressure force F c is defined as the force to be exerted on the moving contact 5 of the vacuum interrupter in addition to the gas pressure force G 1 exerted on the bellows d sealing the switch, in order to keep the contacts of the switch pressed against each other under specified current conditions.
  • the control device of the figure 1 is schematically shown in the open position of interruption of the current by the switching assembly.
  • the part of the pivoting knife disconnector is not shown, but it will be understood from the position of the connecting rod 12 of operation of the pivoting knife of the disconnector that the knife is open.
  • the movement of the main shaft 2 towards the bottom of the figure, driven by a not shown control device, causes the rotation of the pivoting cam 14, the profile of which is intended to press against the shoulder 4B of the auxiliary shaft 4 from the beginning of the rotation.
  • the bearing force of the cam 14 against the shoulder 4B is provided sufficient to exceed the differential pressure force Fp which remains substantially constant over the entire stroke of the piston 4A.
  • the contacts 5 and 6 of the vacuum switch are separated with a spacing provided to not exceed the elastic limits of the metal bellows 19 of this switch.
  • a control device is shown schematically in an application for a switching assembly called hybrid breaker or hybrid circuit breaker, which associates the switchgear in a vacuum to a switchgear device in a gas .
  • these two switching devices are called respectively vacuum switch and gas switch.
  • the gas switch 10 not shown on the left of the figure, typically has a moving contact assembly comprising a movable arc contact able to be operated in translation by the main shaft 2 for operating the hybrid circuit breaker.
  • This main shaft is connected in conventional manner by an insulating rod to a control mechanism not shown to the right of the figure.
  • the position of the shaft 2 corresponds here to the closed state of the hybrid circuit breaker, that is to say the state of passage of a permanent current in the circuit breaker.
  • the vacuum switch 1 and the translation axis of the auxiliary shaft 4 are arranged in the same direction Y substantially perpendicular to the direction of the translation axis X of the main shaft 2, but it is conceivable to provide an angle different from 90 ° between these two directions.
  • the vacuum switch 1, the bore part 8, the piston 4A and the sealing means 17 are of the same type as the corresponding elements on the figure 1 .
  • the O-ring which constitutes the sealing means 17 is not in contact with the electrically conductive portion 4A2 in the form of a sleeve of the piston 4A, and is arranged in a housing of the part which forms the bore 8 so as to to be in permanent support against an annular element 27 mounted with seal on this part 4A2.
  • the annular element 27 is not necessarily electrically conductive, and is provided to be able to be moved in abutment against the O-ring without significantly affecting the quality of the seal.
  • the leakage rate of the gaseous insulating fluid G 2 to the volume V 1 of gaseous insulating fluid G 1 can thus be maintained at a very low level over a year of operation of the hybrid circuit breaker.
  • the amount of gas G 2 fleeing to the volume V 1 a mean value in time substantially equal to the loss of the gas G 1 from the volume V 1 to the outside of the insulating envelope 11. From in this way, if the gases G 1 and G 2 are of the same nature or have similar dielectric properties, the pressure P 1 of gas in the envelope 11 can be maintained within a range of permissible extreme values [P 1min , P 1max ] to maintain the dielectric strength between the two poles of the vacuum interrupter 1 while not exceeding a maximum critical value for the mechanical structure of the switch.
  • a device for measuring the pressure P 1 may be provided in particular to control that this pressure remains above the low limit P 1min and prevent the tripping of the hybrid circuit breaker if P 1 falls below this limit.
  • a safety device consisting of, for example, a prestressed spring valve 23 may be provided.
  • Such a valve which can be installed for example in an opening of the metal disk 22 which carries the fixed contact 6 of the vacuum interrupter 1 and which closes the envelope 11, is designed to open slightly in order to allow a clearance towards the atmosphere of a small amount of the gas G 1 in overpressure relative to the maximum critical value.
  • this solution assumes that the gas G 1 does not present a danger to the atmosphere, and it is in this case advantageous to use pure nitrogen.
  • the metal casing 7 is open on the side of the gas switch 10 to be assembled in a sealed manner with an end of a insulating casing (not shown) which encloses the cut-off chamber of the gas switch.
  • the casing 7 is one of the two poles of the gas switch 10 being electrically connected to the movable contact assembly, not shown, of this switch.
  • the conductive portion 4A2 of the piston 4A remains in electrical contact with the bore 8 through sliding contacts 9.
  • the hybrid circuit breaker thus formed is of the air-insulating type as well as the device of the figure 1 .
  • the coupling means 3 between the main shaft 2 and the auxiliary shaft 4 comprise a cam 30 which is integral in translation with the main shaft 2 and which can be formed by a section 2A of this shaft 2 as shown in FIG. .
  • the surface of the cam 30 is arranged to allow the guiding of a rolling element or roller 31 which is integral in motion with the auxiliary shaft 4.
  • the axis of this roller is mounted on a bearing carried by a cradle 4A3 which constitutes a part of the auxiliary shaft 4.
  • This cradle is fixed on a part 4A1 inserted in the electrically conductive part 4A2 of the piston 4A, this part 4A1 not being necessarily conductive since the electrical conduction between the bore 8 and the contact mobile 5 of the vacuum switch is provided by the part 4A2.
  • An end portion 4B of the cradle 4A3 of the auxiliary shaft 4 is slidable in translation in a guide element 13 which is fixed on a face 7B of the casing 7, this face being opposite to the face which constitutes the wall 7A crossed by the piston 4A of the auxiliary shaft.
  • the translational drive of the main shaft 2 along the X axis allows, after a determined dead travel, to translate the auxiliary shaft 4 in translation. the Y axis until the complete separation of the contacts 5 and 6 of the vacuum switch as shown in FIG. figure 4 .
  • the dead stroke of the main shaft 2 is defined here as the distance to be traveled by the shaft, and therefore also to be traversed by the moving arc contact of the gas switch, so that the cam 30 comes into contact with the wheel 31 from the closed state of the circuit breaker.
  • the dead stroke is also sometimes referred to as the relative speed setting distance of the gas switch arcing contacts, and typically corresponds to the mutual overlap distance of the two arcing contacts of the switch in a contact configuration. called tulip.
  • the cam and wheel coupling used here between the main shaft 2 and the auxiliary shaft 4 implements a well-known principle in the field of motion return mechanisms. Such coupling has also been used for a long time for coordinated control systems of several electrical switches including a vacuum switch.
  • the patent document EP0132083 shows a device for actuating a vacuum switch and a disconnector from an operating shaft of the movable contact of the disconnector moved in translation by a single command.
  • a cam integral in translation with this shaft is coupled to a caster integral in translation with the movable contact of the vacuum interrupter, this switch being arranged perpendicularly to the shaft.
  • a contact pressure spring permanently applies a thrust on the moving contact of the vacuum switch, to obtain the necessary contact pressure in the switch in the closed position.
  • the coupling means 3 used in the present control device are therefore similar to those described in EP0132083 . It may be noted that the invention makes it possible advantageously to dispense with the indispensable contact pressure spring in a conventional control device, or in any case allows the force to be exerted by a mechanical spring device to be reduced, as shown later in the drawings. comments from figures 8 and 9 .
  • the wheel 31 and the main shaft 2 are arranged so that a small clearance exists between these two elements in the closed state of the hybrid circuit breaker shown in FIG. figure 3 , and also during the course of the dead race by the main shaft during a tripping of the circuit breaker.
  • the height of the cam 30 in the direction of the Y axis of translation of the auxiliary shaft 4 is provided as a function of the spacing e desired for the contacts 5 and 6 of the vacuum switch, as shown in FIG. figure 4 .
  • the control device of the figure 3 is shown schematically in the open position of the switching assembly.
  • the optional device for safety against the gas overpressure in the insulating envelope of the vacuum interrupter 1 is not shown in this figure.
  • the tripping of the circuit breaker is effected by a translation of the main shaft 2 along the X axis to the right of the figure to separate the arcing contacts from the gas switch 10.
  • the main part 30A which corresponds to the so-called opening slope of the cam 30 comes into contact with the wheel 31 to translate the auxiliary shaft 4 in translation along the Y axis downwards from the FIG. .
  • the movable contact 5 of the vacuum switch thus adopts a motion profile predetermined by the shape of the main portion 30A.
  • the translation of the auxiliary shaft 4 is completed when the path of the wheel 31 leaves the main part 30A of the cam, that is to say when the surface of the cam on which the wheel is supported becomes parallel to the direction of the cam. X axis. It is thus possible to continue the mutual separation of the arcing contacts of the gas interrupter after the contacts 5 and 6 of the vacuum interrupter 1 are completely separated with the desired distance e, until 'at the end of the breaker function shown on the figure 4 . It may be noted that during the opening of the vacuum switch 1, the O-ring which constitutes the sealing means 17 remains in permanent abutment against the annular element 27 with which it seals the piston 4A with gas.
  • the wheel 31 is in abutment against the cam 30 by exerting thereon a force equal to the force Fp provided by the difference of the respective pressures of the two gases on either side of the piston 4A.
  • the main shaft 2 and its cam 30 thus provide a locking function of the movable contact 5 of the vacuum switch in its open position.
  • FIG 5 is schematically represented a control device similar to that of the figure 3 , in which the vacuum interrupter is closed again after the end of the circuit breaker function provided by the gas switch.
  • the extra race performed here by the main shaft 2 after the end of the circuit breaker function can allow the switching assembly to provide a disconnector function in addition to the circuit breaker function, because the arc contacts of the switch to gas can be sufficiently far apart to provide a disconnection distance in the gaseous insulating fluid G 2 of the switch.
  • the section 2A of the main shaft 2 on which the cam 30 is formed is elongated with respect to the design of the cam of the device. figures 3 and 4 to allow to provide on the cam a secondary portion 30B with a so-called reclosure slope. This reclosing slope is inclined in the opposite direction to the opening slope of the main part 30A of the cam.
  • the slope profile of the abutment 30B allows the wheel 31 and thus the auxiliary shaft 4 to approach the fixed contact of the vacuum switch so that the mobile contact come press this fixed contact with an instantaneous speed almost zero at the moment of impact.
  • the same contact pressure force as that corresponding to the closed state of the hybrid circuit breaker is applied to the moving contact of the vacuum interrupter after its reclosing. Reclosing prevents the electrically connected parts of the movable contact of the vacuum interrupter from being at a floating potential when the hybrid switch-breaker is in the disconnection position, because such a floating potential could damage the switch. empty in certain configurations of the line that is sectioned by the switching set.
  • FIG 6 is schematically represented a control device similar to that of the figure 5 , in an application for a shielded switching assembly.
  • the casing 7 which is at the potential of the high voltage in operation must be electrically insulated from the sealed metal casing 42 which constitutes the shielded vessel of the switching assembly. Because this sealed tank encloses the gaseous insulating fluid G 2 of the gas circuit breaker at a certain pressure P 2 , it is not essential that the casing 7 is also gas-tight, except for providing, for example, a gas pressure. higher in the crankcase than in the space remaining between this crankcase and the tank.
  • the housing 7 is open, and has the same role of electrical conductor and mechanical support in the control devices according to the invention shown above for air-insulated switchgear assemblies.
  • the main shaft 2 and its cam 30 are provided to allow the switching assembly to provide a disconnector function in addition to the circuit breaker function.
  • a conductive portion of the main shaft 2 is electrically connected to the casing 7 by sliding contacts and is provided at its outer end to the housing of a stud 2B on which is articulated an insulating rod which forms a portion 2C of the shaft 2 and which crosses with sealing the tank 42 of the shielded assembly to be connected to a control mechanism not shown.
  • the pad 2B is arranged to come into electrical contact with a terminal 43 fixed to the tank 42 and through which the insulating rod 2C of the shaft 2 passes, thanks to an additional stroke of the shaft 2 after the end of the disconnecting function.
  • the casing 7 is thus potential-ground to the tank 42, via the conductive part of the main shaft 2. This makes it possible to ground the shielded line which is connected to the fixed contact of the vacuum switch, since this switch was closed at the end of the circuit breaker function and therefore its fixed contact is electrically connected to the housing 7.
  • the central conductor 50 of the shielded line is here immersed in the gas G 1 surrounding the sealed chamber of the vacuum switch and whose pressure P 1 is lower than the pressure P 2 of the gas G 2 surrounding the gas switch.
  • the switching assembly thus produced is a shielded hybrid switch-breaker which can provide an additional grounding function on one side of the line.
  • the figure 7 schematically represents another control device according to the invention, shown in the closed state of the switching assembly.
  • the auxiliary shaft 4 is identical to that of the control device of the figure 3 . It similarly carries a roller 31 intended to be displaced by a cam, and is likewise able to slide in translation in a guide element 13 fixed to the casing 7.
  • the coupling means between the main shaft 2 and the 'tree auxiliary 4 here use a rotary cam 14 'to act on the wheel 31.
  • the rotation shaft 48 of the cam 14 ' is mounted on bearings fixed to the casing 7, and is integral in rotation with a wheel 32 which comprises a circular toothing meshing with a rack 21 carried by the main shaft 2.
  • a translation of the main shaft causes the rotation of the cam 14 'whose profile is intended to act on the wheel 31 after a certain dead stroke of the main shaft, in a coordinated manner with the separation of the contacts of the switch gas.
  • the dielectric medium around the sealed chamber of the vacuum interrupter is constituted here by a dielectric material 28 molded around this chamber and contained in an insulating envelope 11.
  • the insulating envelope 11 could as well be constituted by the dielectric material 28 overmolded if this material has sufficient mechanical rigidity and weather resistance. Only a small volume V 1 of gaseous fluid G 1 is adjacent to the sealed chamber of the vacuum interrupter, between the flange of the chamber traversed by the moving contact of the switch and the bore part 8 in which can slide the piston 4A of the auxiliary shaft 4.
  • the gas G 1 is not necessarily insulating, since it has no role of dielectric insulation to ensure between the poles of the vacuum switch, and it It is not necessary to control the pressure of this gas since a possible leak would not have any consequences on the dielectric insulation between the poles.
  • Sealing means 26 are provided here to prevent any communication between the volume V 1 and the outside atmosphere, and the gas G 1 is filled at a pressure higher than the atmospheric pressure so that a possible leakage of the volume V 1 is carried out in one direction towards the outside atmosphere.
  • This provision aims to maintain a volume V 1 free of moisture and dust of the outside atmosphere.
  • the gas G 1 is filled at the factory, during assembly of the switching assembly, at a pressure for example of the order of twice the atmospheric pressure and which corresponds to the temporary filling pressure of the gas G 2 in the casing 7 for the safe transport of the switching assembly before final on-site filling for operation. It is therefore not necessary to fill and control the volume V 1 after the switching assembly is out of the factory, which is significant for the operator.
  • the sealing means 26 are not essential, since it would be acceptable for the volume V 1 to be filled with air in communication with the outside atmosphere if the flange which is traversed by the moving contact of the switch vacuum is provided to operate in such a configuration.
  • the bore part 8 comprises a radial orifice 24, which communicates the external atmosphere with an interstitial space between the piston 4A and the bore 8 and which opens into this interstitial space between the sealing means 17 and the switch empty, of so that a possible gas leak G 2 of the volume V 2 of the casing 7 through the sealing means 17 is discharged to the outside atmosphere.
  • a safety device such as a valve. overpressure evacuation as the valve 23 of the device of the figure 3 .
  • the radial orifice 24 constitutes in itself a safety evacuation in the event of leakage of the gas G 2 through the sealing means 17.
  • FIGs 7a and 7b very schematically represent the principle of operation of the movable contact of the vacuum switch through the rotating cam 14 '.
  • the figure 7a reproduces the configuration of the figure 7 in which the contacts of the vacuum interrupter 1 are closed.
  • a small clearance is required between the rolling surface of the wheel 31 and the surface of the arcuate portion of the cam 14 'which corresponds to the path of the idle stroke.
  • the figure 7b corresponds to the configuration of the figure 7 after tripping of the hybrid circuit breaker and at the moment when the contacts of the vacuum interrupter are completely separated with the desired distance e.
  • the cam has made a rotation of almost 180 ° here, which can be continued while maintaining the spacing e. It may be noted that the profile of the cam would allow a reclosing of the vacuum switch by an additional stroke of the main shaft 2 and provided of course that the rack 21 has a sufficient length.
  • the coupling by a rotary cam allows a result similar to that obtained by a coupling using a cam in translation as in the control device of the figure 3 .
  • the control device of the figure 7 may have as advantages on the one hand to be able to reduce the relative speed of impact between the respective surfaces of the cam 14 'and the wheel 31 at the end of the dead stroke, and on the other hand to greatly reduce the transverse forces exerted on the main shaft 2, which allows in particular to limit the wear of the longitudinal guide elements of the shaft.
  • a coupling is more expensive to achieve than a coupling using a cam in translation.
  • the control device shown schematically on the figure 8 constitutes an improvement of the control device of the figure 3 .
  • Mechanical means of elastic compression are in fact added to reinforce the contact pressure in the closed position of passage of the current in the switching assembly.
  • These resilient compression means comprise a spring 35 which is mounted prestressed on the auxiliary shaft 4 in the direction of the axis Y of the shaft. This spring 35 has one end which bears against a pusher element 34 housed in an abutment member 34 'fixed to the cradle 4A3 of the shaft 4, and has another end which bears against the piston 4A of the shaft .
  • This pusher element 34 is able to be brought closer to the other end of the spring 35, by detaching from its stop position held by the member 34 ', when a low amplitude compression of the spring 35 is performed under the action of a finger 33 which is fixed to the main shaft 2 and which is here provided to slide against the push member 34.
  • Such compression of the spring 35 makes it possible to apply to the auxiliary shaft 4 a force which is added to the differential pressure force Fp provided by the difference in the respective pressures of the two gaseous insulating fluids, and which reinforces the pressure force.
  • contact F c in the closed position of the switching assembly that is to say the closing position of the switching device in the gas.
  • Such a configuration can be advantageous if the force Fp proves insufficient to ensure by itself the contact pressure force F c necessary to withstand the electrodynamic forces tending to move the contacts of the vacuum switch in the case of a short circuit current.
  • This configuration may indeed be preferred to the alternative which would be to increase the diameter of the piston 4A to increase the differential pressure force, because it allows to maintain a minimum value of contact pressure force even in case of significant gas leakage from the volume of the gas switch.
  • Such a minimum value of contact pressure force provided by a mechanical spring would make it possible to maintain operating the switching assembly in its closed position to pass a nominal current, even in the unlikely event that the volume of the gas switch would be reduced to atmospheric pressure following a very significant gas leak . There would thus be no repulsion (with separation) of the contacts of the vacuum interrupter and arcing of arcs between the contacts, provided that said minimum value of contact pressure force exceeds the minimum value required for a rated current specified.
  • a mechanical spring system to reinforce the contact pressure in a control device can constitute an appreciable security in terms of safety and continuity of operation of the switching assembly provided with the control device.
  • Other configurations than that of the device of the figure 8 for such additional systems with mechanical springs can be envisaged, and the mechanical energy of the spring or springs can be used to participate in the work of complete separation of the contacts of the vacuum switch, as shown in the following.
  • a complementary system with mechanical springs is shown schematically on the figure 9 , allowing an improvement of the actuating mechanism of the moving contact of the switching apparatus in the vacuum as shown in FIG. figure 3 .
  • This complementary system has mechanical means of elastic compression which comprise two springs 36 and 37 each acting on a pivoting arm whose one end comprises a wheel arranged to press against a profiled rolling surface on the cradle 4A3 of the auxiliary shaft 4, on the side of the end 4B of the shaft 4 which can slide in translation in a guide member 13 'fixed to the housing.
  • This complementary system with springs is shown in enlargement on the figure 9a .
  • the two pivoting arms 38 and 39 each carry a wheel 40 and 41 respectively.
  • the two profiled rolling surfaces on the cradle 4A3 are here symmetrical, as are the provisions of the springs 36 and 37 and the pivoting arms.
  • the resulting force F r exerted by the spring system is directed along the Y axis of the auxiliary shaft 4, due to the symmetry of the arrangement of the system with respect to this axis.
  • the profile of the rolling surfaces on the cradle 4A3 is provided so that the resulting force F r is directed in the same direction as the differential pressure force F p , thus participating in the contact pressure force F c which is equal to the sum Fp + F r .
  • This profile is also designed so that the force F r changes direction along the Y axis, during a displacement of the auxiliary shaft 4 consecutive to a maneuver of the main shaft 2 for opening or closing the switching assembly.
  • the change of direction of the force F r is visible on the figure 9b which represents the actuating mechanism in the open position of the switching assembly at the end of the circuit breaker function.
  • Each rolling surface has a profile with a lateral boss, so that the projected component on the Y axis of the force exerted by a spring 36 or 37 on the auxiliary shaft 4 vanishes to change direction when the contact between a wheel 40 or 41 and the running surface passes the top of the lateral boss.
  • the top of such a boss is defined as the zone of the boss furthest from the Y axis.
  • the force F r changes direction to oppose the differential pressure force Fp. It may be noted that such a change of direction makes it possible to reduce somewhat the work to be performed by the control mechanism of the main shaft 2 for complete opening. It is understood that the energies of the springs as well as the profiles of the lateral bosses are provided so that the force F r remains lower than Fp in absolute value, so that the auxiliary shaft 4 is always subjected to a resultant force equal to the sum of the mechanical and pneumatic forces which is directed towards the vacuum interrupter to allow a closing (or reclosing) of the contacts of the switch.
  • FIG. 9c is schematically shown another mechanism for improved operation of the moving contact of the switching apparatus in the vacuum.
  • the result is similar to that provided by the actuating mechanism of the figure 9 , and allows to a lesser extent to increase the contact pressure in this device without increasing the maneuvering energy required for the control device.
  • the two identical springs 36 and 37 arranged symmetrically with respect to the Y axis, each have a first end articulated in rotation on a fixed support, and a second end articulated in rotation on the auxiliary shaft.
  • the change of direction of the force F r is effected when the two springs are simultaneously oriented in the same direction perpendicular to the axis Y of the auxiliary shaft, which occurs in practice when the tree has traveled most of the stroke e for the desired spacing of the contacts of the vacuum switch.
  • FIG. 9d is schematically shown another improved actuation mechanism of the movable contact of the switching apparatus in the vacuum, which advantageously combines the two previous solutions.
  • the cradle 4A3 of the auxiliary shaft 4 comprises a single profiled running surface on which is supported a wheel mounted at one end of a pivoting arm.
  • one end of a spring 37 acts on this pivoting arm, and the profile of the rolling surface has a lateral boss provided so that the projected component on the Y axis of the force exerted by the spring 37 on the auxiliary shaft 4 can be canceled to change direction.
  • the cradle 4A3 also has a pivoting hinge attached to one end of another spring 36 as in the solution described with reference to the Figure 9c .
  • the spring 36 has a lower energy than the spring 37, and the resulting force F r exerted by the two springs on the shaft 4 has a component F r X which is oriented towards the gas switch, along the axis of X translation of the main shaft 2.
  • This orientation of the component F r X makes it possible to reduce the instantaneous forces at the contact surface 13'A between the end 4B of the shaft 4 and the guide element 13 'fixed to the casing 7.
  • These instantaneous forces are indeed relatively important when the cam 30 comes into contact with the wheel 31 during an opening operation of the switching assembly, due to the instantaneous speed of several meters per second for the translation of the main shaft 2, and a fortiori if the opening slope of the main portion 30A of the cam 30 is relatively pronounced.
  • the presence of the pivoting spring 36 is not essential, and its main role is to reinforce if necessary the component F r Y of the resultant force F r along the Y axis while decreasing the component F r X.
  • FIG 10 is schematically represented an alternative embodiment of the gaseous insulating fluid sealing means G 2 of the gas switch and whose pressure P 2 is used for the operation of a control device according to the invention.
  • gas sealing means in the interstitial space 49 between the piston 4A 'and the bore part 8' which carries the sliding contacts 9.
  • the piston essentially has a role of mechanical guiding of the auxiliary shaft 4 and electrical conduction between the movable contact of the vacuum switch and a conductive plate 20 electrically connected to a pole of the gas switch, this plate 20 may constitute a face of a metal housing as referenced 7 in the previous achievements.
  • the vacuum switch is surrounded by a gas G 1 which is distributed on both sides of the piston 4A 'with substantially the same pressure P 1 .
  • the piston 4A ' may comprise a passage formed by a small channel 25, but such a channel is not normally necessary because even a relatively slow equalization of the pressure of the gas G 1 between the two sides of the piston is effected by the interstitial space 49 not gas tight.
  • a device 45 for measuring the pressure P 1 is provided in particular to control that this pressure remains above the low limit P 1min .
  • the wall 7 ' which separates the two gaseous insulating fluids G 1 and G 2 is sealingly sealed to the conductive plate 20, and has a flexible zone in the center of which is provided an opening which is traversed with sealing by the auxiliary shaft 4
  • This wall 7 ' is in the form of a sealing bellows, and may be made from a metal intended to provide a flexibility and sufficient mechanical strength. It preferably has the shape of a disk open at its center for the passage of the shaft 4. Its diameter may be much greater than the diameter of the piston 4A ', the latter can also be decreased as the electric conduction section by the sliding contacts 9 remains in adequacy with the current to be passed through the switching assembly.
  • the leakage rate of the gas G 2 at the pressure P 2 to the volume V 1 of the gas G 1 at the pressure P 1 is normally negligible, and the quantity of gas G 2 passing in this volume V 1 will normally always be lower than the quantity of gas G 1 can leak from this volume to the outside of the insulating envelope 11. There is therefore in principle no risk that the pressure P 1 increases until exceeding the maximum value P 1max critical for the mechanical structure of the vacuum interrupter, and it it is not necessary to provide a safety device such as a valve for evacuating gas G 1 under pressure.
  • a rupture disk 46 also sometimes called frangible disk and intended to break when the difference gas pressure between the two sides of the disc exceeds a determined breaking value.
  • This rupture disk 46 is mounted here on a metal annular piece 44 which electrically connects the bore piece 8 'to the conductive plate 20, and which also contributes to the seal between the volume V 1 and the external atmosphere.
  • FIG. 11 An alternative embodiment of the preceding control device of the figure 10 is schematically represented on the figure 11 .
  • This variant comprises a safety space at atmospheric pressure which operates on the safety principle used in the control device of the figure 7 .
  • the wall 7 ' which has a particular role of sealing bellows with respect to gas G 2 of the gas switch, would not provide a perfect seal, any gas leak G 2 through this bellows would be discharged to the outside atmosphere via a channel 24.
  • the volume V 1 which is between the wall 7 'and the piston 4A of the auxiliary shaft communicates with the outside atmosphere through the channel 24, and the G 1 gas contained in this volume V 1 is here atmospheric air.
  • a dielectric material 28 is overmolded around the sealed chamber of the vacuum interrupter.
  • the gas G 0 of the volume V 0 between the material 28 and the piston 4A is similar to the gas G 1 used for the device of the figure 7 and what has been said previously with respect to this gas remains valid for the present configuration.
  • the piston 4A has no role here to generate the necessary contact pressure force in the vacuum interrupter.
  • the gas G 0 is at a pressure preferably greater than atmospheric pressure, the differential pressure between the two sides of the piston generates a force which tends to oppose (while still much lower) the differential pressure force generated by the gas G 2 on the flexible wall 7 '.
  • the diameter of the piston 4A will be provided as small as possible, provided that the electrical conduction section through the sliding contacts 9 remains sufficient. It may be noted that the sealing means 26 and the annular sealing element 27 are not necessarily indispensable and that the gas G 0 could then be atmospheric air, as explained above in connection with the device of the figure 7 .
  • control device which have been described in the foregoing have been shown in applications to switching assemblies having in each case a vacuum interrupter associated with a gas switch.
  • control device can be applied to a switching assembly of which a first and / or a second switching device consists of several switches arranged electrically in series or in parallel.
  • a switching assembly may comprise a vacuum switching apparatus consisting of a plurality of vacuum interrupters connected in parallel with their moving movable contacts in movement while being connected to the same auxiliary shaft displaceable in translation.

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

    DESCRIPTION
  • L'invention se rapporte à un dispositif de commande pour l'actionnement coordonné d'au moins deux appareils de commutation électriquement reliés en série pour constituer un ensemble de commutation dont un premier appareil de commutation dans le vide comporte une paire de contacts séparables pour la commutation entre une position de fermeture et une position d'ouverture. Le dispositif de commande comporte un arbre principal de manoeuvre pour actionner un second appareil de commutation immergé dans un fluide isolant gazeux contenu dans un certain volume à une pression déterminée, et comporte en outre un arbre auxiliaire apte à être déplacé par des moyens de couplage pour permettre la manoeuvre d'un contact mobile du premier appareil de commutation lors d'un déplacement de l'arbre principal, le contact mobile étant maintenu en appui contre l'autre contact dans la position de fermeture du premier appareil par une force prévue pour produire une pression de contact supérieure à une valeur déterminée. Il est en effet bien connu qu'une certaine pression de contact est généralement nécessaire lorsque un interrupteur à vide est fermé, afin d'empêcher les contacts de se séparer sous l'effet des forces de répulsion électrodynamiques en particulier si un courant de court-circuit parcourt l'interrupteur.
  • Un dispositif de ce genre est connu notamment du document de brevet WO9708723 . Le dispositif de commande pour l'actionnement d'un disjoncteur hybride haute tension comporte un arbre principal de manoeuvre pour actionner un interrupteur à gaz isolant diélectrique tel que du SF6. Ce disjoncteur hybride est à isolation dans l'air, puisque la chambre de coupure de l'interrupteur à gaz est contenue dans une enveloppe isolante qui présente des ailettes sur sa surface externe. L'arbre principal de manoeuvre est contenu dans un compartiment délimité par un carter, qui communique avec un autre compartiment délimité par l'enveloppe isolante de l'interrupteur à gaz pour permettre de relier l'arbre principal avec le contact mobile de l'interrupteur. Ce carter est dimensionné pour contenir un interrupteur à vide dont le contact fixe est relié à une de ses parois. Le carter constitue donc un pôle du disjoncteur hybride haute tension.
  • Une borne de raccordement de ce pôle du disjoncteur hybride est fixée au carter en étant intercalée entre les deux compartiments, de telle sorte que le courant permanent dans le disjoncteur ne transite pas par l'interrupteur à vide qui a pour fonction de supporter la tension transitoire de rétablissement lors d'une interruption du courant. Le contact mobile de l'interrupteur à vide est électriquement relié au contact mobile de l'interrupteur à gaz par une tresse de liaison, et est actionné par un arbre auxiliaire qui comprend des moyens à ressort pour produire une pression de contact suffisante lorsque l'interrupteur à vide est fermé. Cet arbre auxiliaire est perpendiculaire à l'arbre principal et y est couplé par un levier en forme d'équerre qui pivote autour d'un axe fixé au carter, ce qui permet d'effectuer un renvoi de mouvement sensiblement à 90°.
  • L'interrupteur à vide est soumis à la pression du gaz isolant diélectrique qui remplit les deux compartiments. Du fait qu'une pression quasiment nulle règne dans la chambre étanche de l'interrupteur à vide aussi appelé ampoule à vide, cette chambre doit être prévue pour supporter les efforts de pression du gaz extérieur qui peuvent être particulièrement intenses notamment sur la paroi cylindrique isolante ainsi que le soufflet métallique de l'ampoule à vide. Si la pression du gaz isolant doit être relativement élevée, généralement supérieure à cinq bars en cas d'utilisation d'un mélange gazeux avec une proportion d'azote supérieure à 80% comme connu de l'état de la technique, ou encore en utilisant de l'azote pur, il est possible d'utiliser une ampoule à vide dont la structure de la chambre étanche est conçue pour résister à cette pression, mais ce type d'interrupteur à vide est encore rare et particulièrement coûteux. Il est aussi possible de prévoir un renforcement protecteur autour de l'interrupteur à vide, comme connu du document de brevet japonais JP 20003045300 qui décrit la réalisation d'un moulage en résine autour d'une ampoule à vide destinée à être immergée dans un milieu d'azote pur sous une pression de plusieurs bars. Cette solution est encore coûteuse à mettre en oeuvre, et il reste difficile d'éviter qu'une pression trop élevée de gaz isolant soit appliquée notamment sur le soufflet métallique de l'ampoule au risque de le déformer ou de le rompre.
  • Il est par ailleurs connu de la demande de brevet en Europe EP 1 310 970 un autre dispositif de ce genre, qui utilise des moyens de couplage différents pour permettre la manoeuvre du contact mobile de l'interrupteur à vide par un arbre auxiliaire couplé à l'arbre principal. En outre, les deux appareils de commutation (non représentés dans ce document de brevet) sont électriquement reliés en série par l'intermédiaire notamment d'un carter qui renferme les moyens de couplage et qui communique avec la chambre de coupure de l'interrupteur à gaz. De ce fait, le courant permanent dans le disjoncteur hybride transite par l'interrupteur à vide. L'arbre auxiliaire comprend des moyens élastiques tels que par exemple un arrangement de ressorts à disques ou rondelles Belleville pour produire une pression de contact suffisante lorsque l'interrupteur à vide est fermé. Ces moyens élastiques sont logés à l'intérieur d'un organe de butée ayant sensiblement la forme d'une douille dont le fond est percé pour être traversé par l'arbre auxiliaire. Cet organe de butée est fermement inséré à l'intérieur d'une bride qui est raccordée au carter et qui participe à la liaison électrique en série des deux appareils de commutation. Lors d'une ouverture de l'interrupteur à vide, les moyens élastiques se déforment en étant maintenus entre le fond de la douille et un collier solidaire d'une tige de l'arbre auxiliaire. La distance libre entre ce collier et un épaulement de la douille détermine la course restante pour le contact mobile de l'interrupteur à vide jusqu'à l'ouverture complète de l'interrupteur.
  • L'interrupteur à vide est situé dans un compartiment adjacent au compartiment délimité par le carter. Les deux compartiments adjacents communiquent par l'espace intérieur de l'organe de butée, même si le passage pour le gaz isolant à travers l'arrangement de ressorts précité est relativement étroit. De ce fait si la pression du gaz isolant dans la chambre de coupure de l'interrupteur à gaz doit être relativement élevée, le compartiment de l'interrupteur à vide sera inévitablement soumis à une pression identique ou quasiment égale. Le problème de résistance à la pression pour la chambre étanche de l'interrupteur à vide peut donc aussi se poser avec un tel dispositif disjoncteur hybride.
  • D'autre part, des moyens élastiques tels que des rondelles pour produire la pression de contact dans l'interrupteur à vide ne permettent pas d'obtenir une course importante pour le contact mobile de l'interrupteur. Typiquement, des rondelles élastiques autorisent une course maximale de l'ordre du centimètre. Or, les disjoncteurs hybrides haute tension seront amenés à répondre à des gammes de tensions de plus en plus élevées, ce qui nécessitera d'adopter des interrupteurs à vide avec un écartement des contacts de plus en plus important, typiquement supérieur à deux centimètres. Il semble dans ce cas difficile de pouvoir continuer à utiliser des rondelles ou ressorts à disques dans le dispositif de commande d'un interrupteur à vide, car l'écartement maximal des contacts de cet interrupteur serait alors limité par les caractéristiques des ces moyens élastiques de pression de contact indépendamment des caractéristiques intrinsèques de l'interrupteur. On peut rappeler à ce sujet que la course maximale intrinsèquement autorisée pour le contact mobile d'un interrupteur à vide dépend généralement des limites d'élasticité du soufflet métallique d'étanchéité de l'interrupteur.
  • L'adoption de ressorts hélicoïdaux classiques peut permettre d'obtenir le débattement souhaité pour le contact mobile de l'interrupteur à vide. Mais du fait que la pression de contact est classiquement assurée intégralement par un ressort mécanique, les dimensions et la masse en mouvement du dispositif de pression de contact à ressort doivent inévitablement augmenter avec l'intensité maximale de court-circuit autorisée par l'interrupteur.
  • L'invention a pour but de remédier à ces inconvénients. Un premier but de l'invention est de permettre d'augmenter la pression de gaz isolant dans un commutateur à gaz d'un ensemble de commutation, et notamment d'un ensemble de commutation à coupure hybride, sans que ceci nécessite d'augmenter la protection de l'interrupteur à vide contre la pression du gaz qui entoure sa chambre étanche en particulier au niveau du soufflet métallique d'étanchéité. Un second but de l'invention est de proposer un dispositif de commande pour un ensemble de commutation comprenant un interrupteur à vide, qui permette éventuellement de se passer d'un agencement élastique mécanique pour produire la pression de contact dans l'interrupteur ou qui permette au moins qu'un tel agencement élastique n'ait pas à produire à lui seul l'essentiel de la pression de contact nécessaire à l'interrupteur pour transiter un courant de court-circuit. Enfin, un but annexe est de permettre au contact mobile de l'interrupteur à vide d'être manoeuvré sur toute la course intrinsèquement autorisée pour l'interrupteur.
  • A cet effet, l'invention a pour objet un dispositif de commande tel que défini précédemment, caractérisé en ce que l'arbre auxiliaire traverse avec étanchéité une paroi qui sépare le volume de fluide isolant gazeux d'un autre volume de fluide à une pression inférieure, la différence des pressions respectives des deux fluides procurant une certaine force qui est appliquée sur l'arbre auxiliaire et qui participe à la force de pression de contact.
  • Selon un premier mode de réalisation avantageux, une partie de l'arbre auxiliaire est constituée d'un piston apte à être déplacé à l'intérieur d'un alésage formé par une pièce qui est montée de façon étanche sur une ouverture de la paroi, des moyens d'étanchéité au gaz isolant étant agencés entre le piston et l'alésage. Préférablement, la paroi et l'alésage constituent un assemblage conducteur électriquement relié à un pôle du second appareil de commutation, le piston comporte au moins une partie conductrice électriquement raccordée au contact mobile du premier appareil de commutation, et des contacts glissants sont disposés entre l'alésage et la partie conductrice du piston. La paroi peut être constituée par une face d'un carter qui renferme au moins une partie du volume de fluide isolant gazeux et dans lequel sont disposés les moyens de couplage.
  • Si l'ensemble de commutation est destiné à être utilisé comme appareillage à isolation dans l'air, le carter est de préférence ouvert sur un côté qui est assemblé de façon étanche avec une extrémité d'une enveloppe isolante assurant l'isolation dans l'air entre les deux pôles du second appareil de commutation. Le carter est alors disposé directement dans l'air, et a un rôle d'étanchéité entre le gaz isolant du second appareil et l'air extérieur.
  • Si par contre l'ensemble de commutation est destiné à être utilisé comme appareillage de type blindé sous enveloppe métallique, le carter a alors un rôle de support mécanique et non plus d'étanchéité puisque l'enveloppe métallique de l'appareillage est nécessairement étanche entre le volume de fluide isolant gazeux et l'air extérieur.
  • Selon un second mode de réalisation, la paroi est scellée à une plaque conductrice électriquement relié à un pôle du second appareil de commutation et présente une zone flexible au centre de laquelle est prévue une ouverture qui est traversée avec étanchéité par l'arbre auxiliaire. La zone flexible de la paroi constitue alors un soufflet d'étanchéité qui a un rôle mécanique de production d'une force de pression différentielle. Préférablement, l'arbre auxiliaire comprend une partie sous la forme d'un piston de guidage apte à être déplacé avec contact électrique à l'intérieur d'un alésage électriquement reliée à la plaque conductrice.
  • Dans les deux modes de réalisation précités, les moyens de couplage peuvent comprendre des moyens mécaniques de compression élastique aptes à exercer une force résultante sur l'arbre auxiliaire pour participer à la force de pression de contact en complément de la force procurée par la différence des pressions respectives des deux fluides isolants
  • L'invention, ses caractéristiques et ses avantages, sont précisés dans la description qui suit, en référence aux dessins annexés qui en illustrent certaines formes de réalisation à titre d'exemples non limitatifs.
  • La figure 1 représente schématiquement un dispositif de commande selon l'invention, appliqué à un ensemble de coupure et de déconnexion connu en soi et représenté en position fermée de passage du courant.
  • La figure 2 représente schématiquement le dispositif de commande de la figure 1 en position ouverte d'interruption du courant par l'ensemble de commutation.
  • La figure 3 représente schématiquement un dispositif de commande selon l'invention, appliqué à un ensemble de commutation à coupure hybride dans lequel l'appareil de commutation dans le vide est disposé de façon sensiblement perpendiculaire à l'axe principal de l'appareil de commutation dans le gaz.
  • La figure 4 représente schématiquement le dispositif de commande de la figure 3 dans la position d'ouverture de l'ensemble de commutation.
  • La figure 5 représente schématiquement un dispositif de commande analogue à celui de la figure 3, dans lequel est prévue la possibilité d'une refermeture de l'appareil de commutation dans le vide après la fin de la fonction disjoncteur assurée par l'appareil de commutation dans le gaz.
  • La figure 6 représente schématiquement un dispositif de commande analogue à celui de la figure 5, dans une application pour un ensemble de commutation blindé.
  • La figure 7 représente schématiquement un autre dispositif de commande selon l'invention, dans lequel les moyens de couplage entre l'arbre principal et l'arbre auxiliaire permettent un résultat analogue à celui procuré par le dispositif de commande de la figure 3, et dans lequel une évacuation de sécurité est prévue en cas de fuite au niveau des moyens d'étanchéité au fluide isolant gazeux.
  • Les figures 7a et 7b représentent très schématiquement le principe de manoeuvre du contact mobile de l'appareil de commutation dans le vide grâce à la came tournante des moyens de couplage représentés sur la figure 7.
  • La figure 8 représente schématiquement le dispositif de commande de la figure 3 auquel sont ajoutés des moyens élastiques pour renforcer la pression de contact en position fermée de passage du courant dans l'ensemble de commutation.
  • La figure 9 représente schématiquement une amélioration du mécanisme d'actionnement du contact mobile de l'appareil de commutation dans le vide tel que représenté sur la figure 3, permettant d'augmenter la pression de contact dans cet appareil sans augmenter l'énergie de manoeuvre nécessaire pour un dispositif de commande selon l'invention.
  • La figure 9a est un agrandissement du mécanisme d'actionnement amélioré qui est représenté sur la figure 9 en position de fermeture de l'ensemble de commutation.
  • La figure 9b représente schématiquement le mécanisme d'actionnement de la figure 9a en position d'ouverture de l'ensemble de commutation.
  • La figure 9c représente schématiquement un autre mécanisme d'actionnement amélioré du contact mobile de l'appareil de commutation dans le vide, permettant un résultat analogue à celui procuré par le mécanisme d'actionnement de la figure 9.
  • La figure 9d représente schématiquement un autre mécanisme d'actionnement amélioré du contact mobile de l'appareil de commutation dans le vide.
  • La figure 10 représente schématiquement une alternative de réalisation des moyens d'étanchéité au fluide isolant gazeux dont la pression est utilisée pour le fonctionnement d'un dispositif de commande selon l'invention.
  • La figure 11 représente schématiquement une variante de réalisation du dispositif de commande représenté sur la figure 10, qui comporte un espace de sécurité à la pression atmosphérique fonctionnant sur le principe de sécurité utilisé dans le dispositif de commande de la figure 7.
  • Le dispositif de commande selon l'invention qui est représenté schématiquement sur la figure 1 est appliqué à un ensemble de commutation, et plus précisément un ensemble de coupure et de déconnexion, tel que connu notamment du document de brevet WO 0074095 Al . Il est décrit dans ce document un mécanisme de manoeuvre pour l'actionnement combiné de deux appareils de commutation électriquement reliés en série, avec un premier appareil de commutation dans le vide et un second appareil de commutation constitué d'un sectionneur à couteau pivotant disposé dans l'air pour assurer une fonction de déconnexion après la coupure du courant par le premier appareil. La tige de manoeuvre du contact mobile de l'interrupteur à vide peut être actionnée en translation grâce à une came pivotante apte à appuyer contre un épaulement solidaire de la tige à son extrémité. Le mécanisme pour assurer la pression de contact n'est pas décrit dans ce document, mais un mécanisme classique à ressort et/ou par commande électromagnétique peut être utilisé. La bielle de manoeuvre du couteau pivotant est articulée sur un levier solidaire en rotation de la came, de même que l'arbre principal de manoeuvre est articulé sur un autre levier pour entraîner la came en rotation.
  • Ainsi, un mouvement de l'arbre principal de manoeuvre permet d'actionner les deux appareils de commutation de façon coordonnée, ce qui permet aux contacts mobiles respectifs de ces appareils d'avoir des mouvements qui suivent une séquence temporelle déterminée. Le profil de la came permet ici de séparer rapidement les contacts de l'interrupteur à vide avant que la rotation de la came soit suffisante pour séparer le couteau pivotant du contact fixe du sectionneur, ce qui correspond à une séquence normale pour un tel ensemble de coupure et de déconnexion.
  • L'ensemble de coupure et de déconnexion représenté sur la figure 1 est similaire sur beaucoup de points avec celui décrit dans le brevet WO 0074095 Al . La première modification selon l'invention pour cet état de la technique consiste à prévoir une enceinte remplie d'un fluide isolant gazeux G2 sous une pression P2 et dans le volume V2 de laquelle sont logés l'appareil 10 de déconnexion et une grande partie du dispositif de commande. Cette enceinte comprend un carter métallique 7 qui est électriquement relié au couteau pivotant 15 du sectionneur 10 et qui est ouvert du côté du sectionneur 10 pour être assemblé de façon étanche avec une extrémité d'une enveloppe isolante 18. Le fait d'avoir le sectionneur disposé dans un milieu gazeux sous pression qui possède de meilleures propriétés d'isolation diélectrique que l'air ambiant permet d'augmenter la tenue diélectrique du sectionneur en position d'ouverture, ou encore de diminuer les dimensions du sectionneur sans diminuer sa tenue diélectrique.
  • Le carter 7 constitue un des deux pôles du sectionneur, et l'enveloppe isolante 18 assure l'isolation dans l'air entre le carter et l'autre pôle qui supporte le contact fixe 16 du sectionneur. Il est disposé directement dans l'air, et a un rôle d'étanchéité entre le gaz isolant G2 et l'air. L'arbre principal 2 de manoeuvre comprend une partie déplaçable en translation qui traverse le carter de façon étanche pour être reliée à un mécanisme de commande non représenté. De même que dans le dispositif de WO 0074095 , des moyens de couplage 3 comprennent une came pivotante 14 solidaire d'un levier sur lequel est articulé une bielle 12 de manoeuvre du couteau pivotant 15. Ces moyens 3 permettent de coupler les mouvements respectifs de l'arbre principal 2 et de l'arbre auxiliaire 4 qui fait office de tige de manoeuvre du contact mobile 5 de l'interrupteur à vide 1. Ce contact 5 est représenté en position fermée de passage du courant, et est en appui contre le contact fixe 6 de l'interrupteur à vide pour assurer la pression de contact nécessaire.
  • L'arbre auxiliaire 4 comporte ici un piston 4A qui traverse avec étanchéité une paroi 7A du carter 7 et qui est apte à être déplacé à l'intérieur d'un alésage 8 formé par une pièce qui est montée de façon étanche sur une ouverture de ladite paroi 7A. Des moyens d'étanchéité 17 au gaz isolant G2, réalisés par un joint torique, sont agencés entre le piston et l'alésage 8. Le piston 4A comporte au moins une partie 4A2 électriquement conductrice qui est assemblée en contact électrique avec le contact mobile 5 de l'interrupteur à vide. Lors du déplacement du piston 4A, la partie 4A2 du piston reste aussi en contact électrique avec l'alésage 8 grâce à des contacts glissants comme par exemple des contacts toriques à ressort connus en soi.
  • L'alésage 8 débouche à l'extérieur du carter 7 sur un volume V1 rempli d'un fluide G1 maintenu à une pression P1 inférieure à la pression P2 du fluide isolant gazeux G2 dans le carter. Le fluide G1 peut être un gaz isolant, de même nature ou différent de G2, ou encore un liquide ou un gel diélectrique, ou encore un petit volume d'air ou d'un autre gaz à la pression P1 sans propriétés diélectriques particulières et prévu adjacent à un volume de solide ou de gel diélectrique qui entoure la chambre étanche de l'interrupteur à vide pour assurer l'isolation diélectrique entre les deux pôles de l'interrupteur. Sur la figure 1, le fluide G1 représenté est un gaz isolant contenu dans une enveloppe isolante rigide 11 fixée avec étanchéité contre le carter 7 autour de son alésage 8.
  • La différence entre la pression P2 du gaz G2 à l'intérieur du carter 7 et la pression P1 du gaz G1 à l'intérieur de l'enveloppe étanche 11 applique sur le piston 4A une force de pression différentielle Fp qui est le produit de la valeur P2-P1 et de la section du piston dans l'alésage 8. En fonction de ces paramètres, la force de pression différentielle Fp peut être prévue pour assurer la force de pression de contact nécessaire pour maintenir les contacts 5 et 6 de l'interrupteur à vide 1 en appui l'un contre l'autre même si un courant de court-circuit parcourt l'interrupteur. Il faut en outre noter que la force totale de pression différentielle qui s'exerce sur le contact mobile 5 de l'interrupteur à vide 1 est en réalité la somme de la force de pression différentielle Fp définie ci-dessus et de la force de pression du gaz G1 qui s'exerce sur le soufflet métallique 19 d'étanchéité de l'interrupteur à vide, du fait que ce soufflet réalise une séparation mobile entre le vide dans la chambre étanche de l'interrupteur et le gaz G1 autour de cette chambre. Dans ce qui suit, la force de pression de contact Fc est définie comme la force à exercer sur le contact mobile 5 de l'interrupteur à vide en supplément de la force de pression du gaz G1 qui s'exerce sur le soufflet d'étanchéité de l'interrupteur, afin de maintenir les contacts de l'interrupteur en appui l'un contre l'autre dans des conditions de courant spécifiées.
  • Sur la figure 2, le dispositif de commande de la figure 1 est représenté schématiquement en position ouverte d'interruption du courant par l'ensemble de commutation. La partie du sectionneur à couteau pivotant n'est pas représentée, mais on comprendra de par la position de la bielle 12 de manoeuvre du couteau pivotant du sectionneur que ce couteau est ouvert. Le mouvement de l'arbre principal 2 vers le bas de la figure, entraîné par un dispositif de commande non représenté, provoque la rotation de la came pivotante 14 dont le profil est prévu pour appuyer contre l'épaulement 4B de l'arbre auxiliaire 4 dès le début de la rotation. La force d'appui de la came 14 contre l'épaulement 4B est prévue suffisante pour dépasser la force de pression différentielle Fp qui reste sensiblement constante sur toute la course du piston 4A. En fin de course du piston, comme représenté sur la figure, les contacts 5 et 6 de l'interrupteur à vide sont séparés avec un écartement prévu pour ne pas excéder les limites d'élasticité du soufflet métallique 19 de cet interrupteur.
  • Sur la figure 3, un dispositif de commande selon l'invention est représenté schématiquement dans une application pour un ensemble de commutation appelé disjoncteur à coupure hybride ou encore disjoncteur hybride, qui associe l'appareil de commutation dans le vide à un appareil de commutation à coupure dans un gaz. Dans ce qui suit, ces deux appareils de commutation sont appelés respectivement interrupteur à vide et interrupteur à gaz. L'interrupteur à gaz 10, non représenté à gauche de la figure, possède typiquement un équipage de contacts mobiles comprenant un contact d'arc mobile apte à être manoeuvré en translation par l'arbre principal 2 de manoeuvre du disjoncteur hybride. Cet arbre principal est relié de façon classique par une bielle isolante à un mécanisme de commande non représenté à droite de la figure. La position de l'arbre 2 correspond ici à l'état fermé du disjoncteur hybride, c'est à dire l'état de passage d'un courant permanent dans le disjoncteur. L'interrupteur à vide 1 et l'axe de translation de l'arbre auxiliaire 4 sont disposés selon une même direction Y sensiblement perpendiculaire à la direction de l'axe de translation X de l'arbre principal 2, mais il est envisageable de prévoir un angle différent de 90° entre ces deux directions.
  • L'interrupteur à vide 1, la pièce d'alésage 8, le piston 4A et les moyens d'étanchéité 17, sont de même type que les éléments correspondants sur la figure 1. Préférablement, le joint torique qui constitue les moyens d'étanchéité 17 n'est pas en contact avec la partie électriquement conductrice 4A2 en forme de douille du piston 4A, et est disposé dans un logement de la pièce qui forme l'alésage 8 de façon à être en appui permanent contre un élément annulaire 27 monté avec étanchéité sur cette partie 4A2. L'élément annulaire 27 n'est pas nécessairement électriquement conducteur, et est prévu pour pouvoir être déplacé en appui contre le joint torique sans affecter de façon notable la qualité de l'étanchéité. Le taux de fuite du fluide isolant gazeux G2 vers le volume V1 de fluide isolant gazeux G1 peut ainsi être maintenu à un niveau très faible sur une année d'exploitation du disjoncteur hybride.
  • Idéalement, il sera recherché pour la quantité de gaz G2 fuyant vers le volume V1 une valeur moyenne dans le temps sensiblement égale à la perte du gaz G1 depuis le volume V1 vers l'extérieur de l'enveloppe isolante 11. De cette façon, si les gaz G1 et G2 sont de même nature ou ont des propriétés diélectriques similaires, la pression P1 de gaz dans l'enveloppe 11 peut être maintenue dans une fourchette de valeurs extrêmes admissibles [P1min, P1max] pour conserver la tenue diélectrique entre les deux pôles de l'interrupteur à vide 1 tout en n'excédant pas une valeur maximale critique pour la structure mécanique de l'interrupteur. Par sécurité, un dispositif de mesure de la pression P1 pourra être prévu notamment pour contrôler que cette pression reste supérieure à la limite basse P1min et empêcher le déclenchement du disjoncteur hybride si P1 descend sous cette limite. Inversement, en cas de dépassement de la valeur maximale critique P1max, il pourra être prévu un dispositif de sécurité constitué par exemple d'une soupape 23 à ressort précontraint. Une telle soupape, pouvant être installée par exemple dans une ouverture du disque métallique 22 qui porte le contact fixe 6 de l'interrupteur à vide 1 et qui ferme l'enveloppe 11, est prévue pour s'ouvrir légèrement afin de permettre un dégagement vers l'atmosphère d'une petite quantité du gaz G1 en surpression par rapport à la valeur maximale critique. Bien entendu, cette solution suppose que le gaz G1 ne présente pas de danger pour l'atmosphère, et il est dans ce cas avantageux d'utiliser de l'azote pur.
  • La différence des pressions respectives P2 et P1 des deux fluides isolants gazeux G2 et G1 procure une certaine force Fp qui est appliquée sur l'arbre auxiliaire 4 et qui assure ici à elle seule toute la force de pression de contact Fc, de la même façon que pour le dispositif de la figure 1. Cette force Fp est proportionnelle au carré du diamètre D du piston.
  • De façon analogue à l'ensemble de commutation représenté sur la figure 1, le carter métallique 7 est ouvert du côté de l'interrupteur à gaz 10 pour être assemblé de façon étanche avec une extrémité d'une enveloppe isolante non représentée qui renferme la chambre de coupure de l'interrupteur à gaz. Le carter 7 constitue un des deux pôles de l'interrupteur à gaz 10 en étant électriquement relié à l'équipage de contacts mobiles, non représenté, de cet interrupteur. La partie conductrice 4A2 du piston 4A reste en contact électrique avec l'alésage 8 grâce à des contacts glissants 9. Le disjoncteur hybride ainsi constitué est de type à isolation dans l'air de même que le dispositif de la figure 1.
  • Les moyens de couplage 3 entre l'arbre principal 2 et l'arbre auxiliaire 4 comprennent une came 30 qui est solidaire en translation de l'arbre principal 2 et qui peut être formée par un tronçon 2A de cet arbre 2 comme représenté sur la figure. La surface de la came 30 est agencée pour permettre le guidage d'un élément de roulement ou roulette 31 qui est solidaire en mouvement de l'arbre auxiliaire 4. L'axe de cette roulette est monté sur un palier porté par un berceau 4A3 qui constitue une partie de l'arbre auxiliaire 4. Ce berceau est fixé sur une partie 4A1 insérée dans la partie électriquement conductrice 4A2 du piston 4A, cette partie 4A1 n'étant pas nécessairement conductrice puisque la conduction électrique entre l'alésage 8 et le contact mobile 5 de l'interrupteur à vide est assurée par la partie 4A2. Une partie d'extrémité 4B du berceau 4A3 de l'arbre auxiliaire 4 est apte à coulisser en translation dans un élément de guidage 13 qui est fixé sur une face 7B du carter 7, cette face étant opposée à la face qui constitue la paroi 7A traversée par le piston 4A de l'arbre auxiliaire.
  • Ainsi, lors d'un déclenchement du disjoncteur hybride pour interrompre le courant, l'entraînement en translation de l'arbre principal 2 selon l'axe X permet, après une course morte déterminée, d'entraîner en translation l'arbre auxiliaire 4 selon l'axe Y jusqu'à la séparation complète des contacts 5 et 6 de l'interrupteur à vide comme représenté sur la figure 4. La course morte de l'arbre principal 2 est définie ici comme la distance à parcourir par l'arbre, et donc aussi à parcourir par le contact d'arc mobile de l'interrupteur à gaz, pour que la came 30 vienne en contact avec la roulette 31 depuis l'état fermé du disjoncteur. Il est bien connu qu'une telle course morte est généralement nécessaire dans un disjoncteur hybride, afin que les contacts d'arc de l'interrupteur à gaz se séparent avec une certaine vitesse relative sensiblement à l'instant où débute la séparation des contacts de l'interrupteur à vide. La course morte est aussi appelée parfois la distance de mise en vitesse relative des contacts d'arc de l'interrupteur à gaz, et correspond typiquement à la distance de recouvrement mutuel des deux contacts d'arcs de l'interrupteur dans une configuration de contacts dits à tulipe.
  • Le couplage par came et roulette utilisé ici entre l'arbre principal 2 et l'arbre auxiliaire 4 met en oeuvre un principe bien connu dans le domaine des mécanismes de renvoi de mouvement. Un tel couplage est par ailleurs utilisé depuis longtemps pour des systèmes de commande coordonnée de plusieurs commutateurs électriques dont un interrupteur à vide. En particulier, le document de brevet EP0132083 montre un dispositif permettant d'actionner un interrupteur à vide et un sectionneur à partir d'un arbre de manoeuvre du contact mobile du sectionneur déplacé en translation par une commande unique. Une came solidaire en translation de cet arbre est couplée à une roulette solidaire en translation du contact mobile de l'interrupteur à vide, cet interrupteur étant disposé perpendiculairement à l'arbre. Un ressort de pression de contact applique en permanence une poussée sur le contact mobile de l'interrupteur à vide, permettant d'obtenir la pression de contact nécessaire dans l'interrupteur en position fermée.
  • Les moyens de couplage 3 utilisés dans le présent dispositif de commande sont donc analogues à ceux décrits dans EP0132083 . On peut noter que l'invention permet ici de se passer avantageusement du ressort de pression de contact indispensable dans un dispositif de commande classique, ou permet en tout cas de diminuer la force à exercer par un dispositif à ressort mécanique comme montré par la suite aux commentaires des figures 8 et 9. Préférablement, dans le présent dispositif de commande selon l'invention, la roulette 31 et l'arbre principal 2 sont agencés de façon à ce qu'un faible jeu existe entre ces deux éléments dans l'état fermé du disjoncteur hybride représenté sur la figure 3, et aussi durant le parcours de la course morte par l'arbre principal lors d'un déclenchement du disjoncteur. En effet, durant l'exploitation du disjoncteur hybride, il est connu que les contacts de l'interrupteur à vide peuvent s'éroder sous l'action d'arcs électriques lors de leur séparation et entraîner ainsi au fil du temps un léger rapprochement du contact mobile vers le contact fixe dans l'état fermé de l'interrupteur. Le faible jeu mentionné ci-dessus est prévu pour autoriser ce léger rapprochement, ce qui permet aussi qu'aucune contrainte causée par la force de pression de contact sur l'arbre auxiliaire 4 ne soit appliquée sur l'arbre principal 2 dans l'état fermé du disjoncteur hybride.
  • La hauteur de la came 30 selon la direction de l'axe Y de translation de l'arbre auxiliaire 4 est prévue en fonction de l'écartement e souhaité pour les contacts 5 et 6 de l'interrupteur à vide, comme représenté sur la figure 4.
  • Sur la figure 4, le dispositif de commande de la figure 3 est représenté schématiquement dans la position d'ouverture de l'ensemble de commutation. Par souci de simplification, le dispositif facultatif de sécurité contre la surpression de gaz dans l'enveloppe isolante de l'interrupteur à vide 1 n'est pas représenté sur cette figure. A partir de l'état fermé du disjoncteur hybride représenté sur la figure 3, le déclenchement du disjoncteur est effectué par une translation de l'arbre principal 2 selon l'axe X vers la droite de la figure pour séparer les contacts d'arc de l'interrupteur à gaz 10. Après le parcours de la course morte par l'arbre principal 2, la partie principale 30A qui correspond à la pente dite d'ouverture de la came 30 vient en contact avec la roulette 31 pour entraîner en translation l'arbre auxiliaire 4 selon l'axe Y vers le bas de la figure. Le contact mobile 5 de l'interrupteur à vide adopte ainsi un profil de mouvement prédéterminé par la forme de la partie principale 30A. La translation de l'arbre auxiliaire 4 est achevée lorsque le parcours de la roulette 31 quitte la partie principale 30A de la came, c'est à dire lorsque la surface de la came sur laquelle appuie la roulette redevient parallèle à la direction de l'axe X. Il est ainsi possible de poursuivre l'éloignement mutuel des contacts d'arc de l'interrupteur à gaz après que les contacts 5 et 6 de l'interrupteur à vide 1 soient complètement séparés avec l'écartement e souhaité, ceci jusqu'à la fin de la fonction disjoncteur représentée sur la figure 4. On peut noter que durant l'ouverture de l'interrupteur à vide 1, le joint torique qui constitue les moyens d'étanchéité 17 reste en appui permanent contre l'élément annulaire 27 avec lequel il assure l'étanchéité au gaz du piston 4A.
  • Dans la position de fin de la fonction disjoncteur représentée sur la figure 4, la roulette 31 est en appui contre la came 30 en exerçant sur celle-ci une force égale à la force Fp procurée par la différence des pressions respectives des deux gaz de part et d'autre du piston 4A. L'arbre principal 2 et sa came 30 assurent ainsi un rôle de verrouillage du contact mobile 5 de l'interrupteur à vide dans sa position d'ouverture.
  • Sur la figure 5 est représenté schématiquement un dispositif de commande analogue à celui de la figure 3, dans lequel l'interrupteur à vide est refermé après la fin de la fonction disjoncteur assurée par l'interrupteur à gaz. La course supplémentaire effectuée ici par l'arbre principal 2 après la fin de la fonction disjoncteur peut permettre à l'ensemble de commutation d'assurer une fonction de sectionneur en supplément de la fonction disjoncteur, du fait que les contacts d'arc de l'interrupteur à gaz peuvent être suffisamment éloignés entre eux pour assurer une distance de sectionnement dans le fluide isolant gazeux G2 de l'interrupteur. Le tronçon 2A de l'arbre principal 2 sur lequel est formé la came 30 est allongé par rapport au dessin de la came du dispositif des figures 3 et 4, pour permettre de ménager sur la came une partie secondaire 30B avec une pente dite de refermeture. Cette pente de refermeture est inclinée en sens inverse de la pente d'ouverture de la partie principale 30A de la came.
  • Lors de la course supplémentaire effectuée par l'arbre principal 2, le profil de pente de la partie secondaire 30B permet à la roulette 31 et donc à l'arbre auxiliaire 4 de se rapprocher du contact fixe de l'interrupteur à vide pour que le contact mobile vienne appuyer sur ce contact fixe avec une vitesse instantanée quasiment nulle au moment de l'impact. La même force de pression de contact que celle correspondant à l'état fermé du disjoncteur hybride est appliquée sur le contact mobile de l'interrupteur à vide après sa refermeture. La refermeture permet d'éviter que les parties électriquement reliées au contact mobile de l'interrupteur à vide soient à un potentiel flottant lorsque le disjoncteur -sectionneur hybride est en position de sectionnement, car un tel potentiel flottant pourrait endommager l'interrupteur à vide dans certaines configurations de la ligne qui est sectionnée par l'ensemble de commutation.
  • Sur la figure 6 est représenté schématiquement un dispositif de commande analogue à celui de la figure 5, dans une application pour un ensemble de commutation blindé. On peut noter que dans ce type d'application, le carter 7 qui est au potentiel de la haute tension en exploitation doit être électriquement isolé de l'enveloppe métallique étanche 42 qui constitue la cuve blindée de l'ensemble de commutation. Du fait que cette cuve étanche renferme le fluide isolant gazeux G2 du disjoncteur à gaz à une certaine pression P2, il n'est pas indispensable que le carter 7 soit lui aussi étanche au gaz, sauf à prévoir par exemple une pression de gaz plus élevée dans le carter que dans l'espace restant entre ce carter et la cuve. Dans la présente application, le carter 7 est ouvert, et a le même rôle de conducteur électrique et de support mécanique que dans les dispositifs de commande selon l'invention montrés précédemment pour des ensembles de commutation à isolation dans l'air.
  • L'arbre principal 2 et sa came 30 sont prévus pour permettre à l'ensemble de commutation d'assurer une fonction de sectionneur en supplément de la fonction disjoncteur. Facultativement, une partie conductrice de l'arbre principal 2 est électriquement reliée au carter 7 par des contacts glissants et est munie à son extrémité extérieure au carter d'un plot 2B sur lequel est articulée une bielle isolante qui forme une partie 2C de l'arbre 2 et qui traverse avec étanchéité la cuve 42 de l'ensemble blindé pour être reliée à un mécanisme de commande non représenté. Le plot 2B est agencé pour venir en contact électrique avec une borne 43 fixée à la cuve 42 et traversée par la bielle isolante 2C de l'arbre 2, grâce à une course supplémentaire de l'arbre 2 après la fin de la fonction sectionneur. Le carter 7 est ainsi mis au potentiel à la terre de la cuve 42, par l'intermédiaire de la partie conductrice de l'arbre principal 2. Ceci permet de mettre à la terre la ligne blindée qui est raccordée au contact fixe de l'interrupteur à vide, puisque cet interrupteur a été refermé à la fin de la fonction disjoncteur et que par conséquent son contact fixe est électriquement relié au carter 7. Le conducteur central 50 de la ligne blindée est ici immergé dans le gaz G1 qui entoure la chambre étanche de l'interrupteur à vide et dont la pression P1 est inférieure à la pression P2 du gaz G2 qui entoure l'interrupteur à gaz. L'ensemble de commutation ainsi réalisé est un disjoncteur -sectionneur hybride blindé qui peut assurer une fonction supplémentaire de mise à la terre d'un côté de la ligne.
  • La figure 7 représente schématiquement un autre dispositif de commande selon l'invention, représenté dans l'état fermé de l'ensemble de commutation. L'arbre auxiliaire 4 est identique à celui du dispositif de commande de la figure 3. Il porte de la même façon une roulette 31 prévue pour être déplacée par une came, et est de même apte à coulisser en translation dans un élément de guidage 13 fixé sur le carter 7. Les moyens de couplage entre l'arbre principal 2 et l'arbre auxiliaire 4 utilisent ici une came rotative 14' pour agir sur la roulette 31 . L'arbre de rotation 48 de la came 14' est monté sur des paliers fixés au carter 7, et est solidaire en rotation d'une roue 32 qui comprend une denture circulaire engrenant avec une crémaillère 21 portée par l'arbre principal 2. Ainsi, une translation de l'arbre principal provoque la rotation de la came 14' dont le profil est prévu pour agir sur la roulette 31 après une certaine course morte de l'arbre principal, de façon coordonnée avec la séparation des contacts de l'interrupteur à gaz.
  • Le milieu diélectrique autour de la chambre étanche de l'interrupteur à vide est constitué ici par un matériau diélectrique 28 surmoulé autour de cette chambre et contenu dans une enveloppe isolante 11. De façon connue, l'enveloppe isolante 11 pourrait aussi bien être constituée par le matériau diélectrique 28 surmoulé si ce matériau présente une rigidité mécanique suffisante et résiste aux intempéries. Seul un petit volume V1 de fluide gazeux G1 est adjacent à la chambre étanche de l'interrupteur à vide, entre le flasque de la chambre traversé par le contact mobile de l'interrupteur et la pièce d'alésage 8 dans laquelle peut coulisser le piston 4A de l'arbre auxiliaire 4. Le gaz G1 n'est pas nécessairement isolant, puisqu'il n'a pas de rôle d'isolation diélectrique à assurer entre les pôles de l'interrupteur à vide, et il n'est pas nécessaire de contrôler la pression de ce gaz puisque une éventuelle fuite n'aurait pas de conséquences sur l'isolation diélectrique entre les pôles.
  • Des moyens d'étanchéité 26 sont prévus ici pour empêcher toute communication entre le volume V1 et l'atmosphère extérieure, et le gaz G1 est rempli à une pression supérieure à la pression atmosphérique de façon à ce qu'une éventuelle fuite du volume V1 s'effectue en sens unique vers l'atmosphère extérieure. Cette disposition a pour but de conserver un volume V1 exempt notamment de l'humidité et des poussières de l'atmosphère extérieure. De préférence, le gaz G1 est rempli en usine, lors du montage de l'ensemble de commutation, à une pression par exemple de l'ordre de deux fois la pression atmosphérique et qui correspond à la pression de remplissage provisoire du gaz G2 dans le carter 7 pour le transport en sécurité de l'ensemble de commutation avant le remplissage définitif sur site pour l'exploitation. Il n'est donc pas nécessaire de remplir ni de contrôler le volume V1 après que l'ensemble de commutation soit sorti d'usine, ce qui est appréciable pour l'exploitant. On peut noter que les moyens d'étanchéité 26 ne sont pas indispensables, car il serait acceptable que le volume V1 soit rempli d'air en communication avec l'atmosphère extérieure si le flasque qui est traversé par le contact mobile de l'interrupteur à vide est prévu pour fonctionner dans une telle configuration.
  • La pièce d'alésage 8 comporte un orifice radial 24, qui fait communiquer l'atmosphère extérieure avec un espace interstitiel entre le piston 4A et l'alésage 8 et qui débouche dans cet espace interstitiel entre les moyens d'étanchéité 17 et l'interrupteur à vide, de façon à ce qu'une éventuelle fuite du gaz G2 du volume V2 du carter 7 à travers les moyens d'étanchéité 17 soit évacuée vers l'atmosphère extérieure. Ainsi, une telle fuite du gaz G2 ne provoquerait pas une augmentation de la pression de gaz dans le volume V1, et il est donc inutile d'installer entre ce volume et l'atmosphère extérieure un dispositif de sécurité tel une soupape d'évacuation de surpression comme la soupape 23 du dispositif de la figure 3. L'orifice radial 24 constitue en lui-même une évacuation de sécurité en cas de fuite du gaz G2 à travers les moyens d'étanchéité 17.
  • Les figures 7a et 7b représentent très schématiquement le principe de manoeuvre du contact mobile de l'interrupteur à vide grâce à la came tournante 14'. La figure 7a reproduit la configuration de la figure 7, dans laquelle les contacts de l'interrupteur à vide 1 sont fermés. En pratique, on peut noter qu'un faible jeu est nécessaire entre la surface de roulement de la roulette 31 et la surface de la portion en arc de cercle de la came 14' qui correspond au parcours de la course morte.
  • La figure 7b correspond à la configuration de la figure 7 après un déclenchement du disjoncteur hybride et au moment où les contacts de l'interrupteur à vide sont complètement séparés avec l'écartement e souhaité. La came a effectué ici une rotation de presque 180°, qui peut être poursuivie tout en maintenant l'écartement e. On peut noter que le profil de la came permettrait une refermeture de l'interrupteur à vide par une course supplémentaire de l'arbre principal 2 et à condition bien sûr que la crémaillère 21 ait une longueur suffisante.
  • Le couplage par une came rotative permet un résultat analogue à celui procuré par un couplage utilisant une came en translation comme dans le dispositif de commande de la figure 3. Le dispositif de commande de la figure 7 peut présenter comme avantages d'une part de pouvoir diminuer la vitesse relative d'impact entre les surfaces respectives de la came 14'et de la roulette 31 à la fin de la course morte, et d'autre part de réduire fortement les efforts transversaux exercés sur l'arbre principal 2, ce qui permet notamment de limiter l'usure des éléments de guidage longitudinal de l'arbre. Toutefois, un tel couplage est plus coûteux à réaliser qu'un couplage utilisant une came en translation.
  • Le dispositif de commande représenté schématiquement sur la figure 8 constitue un perfectionnement du dispositif de commande de la figure 3. Des moyens mécaniques de compression élastique sont en effet ajoutés pour renforcer la pression de contact en position fermée de passage du courant dans l'ensemble de commutation. Ces moyens de compression élastique comprennent un ressort 35 qui est monté précontraint sur l'arbre auxiliaire 4 selon la direction de l'axe Y de l'arbre. Ce ressort 35 a une extrémité qui est en appui contre un élément poussoir 34 logé dans un organe de butée 34' fixé au berceau 4A3 de l'arbre 4, et a une autre extrémité qui est en appui contre le piston 4A de l'arbre. Cet élément poussoir 34 est apte à être rapproché de l'autre extrémité du ressort 35, en se décollant de sa position de butée maintenue par l'organe 34', lorsqu'une compression de faible amplitude du ressort 35 est effectuée sous l'action d'un doigt 33 qui est fixé à l'arbre principal 2 et qui est ici prévu pour pouvoir glisser en appui contre l'élément poussoir 34.
  • Une telle compression du ressort 35 permet d'appliquer sur l'arbre auxiliaire 4 une force qui s'ajoute à la force de pression différentielle Fp procurée par la différence des pressions respectives des deux fluides isolants gazeux, et qui vient renforcer la force de pression de contact Fc dans la position de fermeture de l'ensemble de commutation, c'est à dire la position de fermeture de l'appareil de commutation dans le gaz. Une telle configuration peut être avantageuse si la force Fp s'avère insuffisante pour assurer à elle seule la force de pression de contact Fc nécessaire pour résister aux efforts électrodynamiques tendant à écarter les contacts de l'interrupteur à vide dans le cas d'un courant de court-circuit. Cette configuration peut en effet être préférée à l'alternative qui consisterait à augmenter le diamètre du piston 4A pour augmenter la force de pression différentielle, car elle permet de conserver une valeur minimale de force de pression de contact même en cas de fuite de gaz importante depuis le volume de l'interrupteur à gaz. Une telle valeur minimale de force de pression de contact assurée par un ressort mécanique permettrait de pouvoir maintenir en exploitation l'ensemble de commutation dans sa position de fermeture pour faire transiter un courant nominal, ceci même dans l'hypothèse très peu probable où le volume de l'interrupteur à gaz serait ramené à la pression atmosphérique suite à une fuite de gaz très importante. Il n'y aurait ainsi pas de répulsion (avec séparation) des contacts de l'interrupteur à vide et d'amorçages d'arcs entre les contacts, dès lors que ladite valeur minimale de force de pression de contact excède la valeur minimale requise pour un courant nominal spécifié.
  • Ainsi, l'adjonction d'un système à ressort mécanique pour renforcer la pression de contact dans un dispositif de commande selon l'invention peut constituer une sécurité appréciable en terme de sûreté et de continuité d'exploitation de l'ensemble de commutation muni du dispositif de commande. D'autres configurations que celle du dispositif de la figure 8 pour de tels systèmes complémentaires à ressorts mécaniques peuvent être envisagées, et l'énergie mécanique du ou des ressorts peut être mise à contribution pour participer au travail de séparation complète des contacts de l'interrupteur à vide, comme montré dans ce qui suit.
  • Un système complémentaire à ressorts mécaniques est représenté schématiquement sur la figure 9, permettant une amélioration du mécanisme d'actionnement du contact mobile de l'appareil de commutation dans le vide tel que représenté sur la figure 3. Ce système complémentaire possède des moyens mécaniques de compression élastique qui comprennent deux ressorts 36 et 37 agissant chacun sur un bras pivotant dont une extrémité comporte une roulette agencée pour appuyer contre une surface de roulement profilée sur le berceau 4A3 de l'arbre auxiliaire 4, du côté de l'extrémité 4B de l'arbre 4 qui peut coulisser en translation dans un élément de guidage 13' fixé au carter.
  • Ce système complémentaire à ressorts est représenté en agrandissement sur la figure 9a. Les deux bras pivotants 38 et 39 portent chacun une roulette respectivement 40 et 41. Les deux surfaces de roulement profilées sur le berceau 4A3 sont ici symétriques, de même que les dispositions des ressorts 36 et 37 et des bras pivotants. Dans la position de fermeture de l'ensemble de commutation, la force résultante Fr exercée par le système à ressorts est dirigée selon l'axe Y de l'arbre auxiliaire 4, du fait de la symétrie de la disposition du système par rapport à cet axe. Le profil des surfaces de roulement sur le berceau 4A3 est prévu pour que la force résultante Fr soit dirigée dans le même sens que la force de pression différentielle Fp, participant ainsi à la force de pression de contact Fc qui est égale à la somme Fp+ Fr. Ce profil est aussi prévu pour que la force Fr change de sens selon l'axe Y, lors d'un déplacement de l'arbre auxiliaire 4 consécutif à une manoeuvre de l'arbre principal 2 pour l'ouverture ou la fermeture de l'ensemble de commutation.
  • Le changement de sens de la force Fr est visible sur la figure 9b qui représente le mécanisme d'actionnement dans la position d'ouverture de l'ensemble de commutation en fin de fonction disjoncteur. Chaque surface de roulement présente un profil avec un bossage latéral, si bien que la composante projetée sur l'axe Y de la force exercée par un ressort 36 ou 37 sur l'arbre auxiliaire 4 s'annule pour changer de sens lorsque le point de contact entre une roulette 40 ou 41 et la surface de roulement passe le sommet du bossage latéral. Le sommet d'un tel bossage est défini comme la zone du bossage la plus éloignée de l'axe Y. Ainsi, lorsque la roulette 31 portée par l'arbre auxiliaire 4 parcourt la partie principale 30A de la came 30 en provoquant le déplacement de l'arbre, lors d'une ouverture ou d'une fermeture de l'ensemble de commutation, la force Fr diminue en valeur absolue pour s'annuler et changer de sens.
  • Au cours de l'ouverture de l'ensemble de commutation, la force Fr change de sens pour s'opposer à la force de pression différentielle Fp. On peut noter qu'un tel changement de sens permet de diminuer quelque peu le travail à exercer par le mécanisme de commande de l'arbre principal 2 pour l'ouverture complète. Il est entendu que les énergies des ressorts ainsi que les profils des bossages latéraux sont prévus pour que la force Fr reste inférieure à Fp en valeur absolue, de façon à ce que l'arbre auxiliaire 4 soit toujours soumis à une force résultante égale à la somme des forces mécaniques et pneumatiques qui soit dirigée vers l'interrupteur à vide pour permettre une fermeture (ou une refermeture) des contacts de l'interrupteur.
  • Sur la figure 9c est représenté schématiquement un autre mécanisme d'actionnement amélioré du contact mobile de l'appareil de commutation dans le vide. Le résultat est analogue à celui procuré par le mécanisme d'actionnement de la figure 9, et permet dans une moindre mesure d'augmenter la pression de contact dans cet appareil sans augmenter l'énergie de manoeuvre nécessaire pour le dispositif de commande. Les deux ressorts identiques 36 et 37, disposés de façon symétrique par rapport à l'axe Y, ont chacun une première extrémité articulée en rotation sur un support fixe, et une seconde extrémité articulée en rotation sur l'arbre auxiliaire. Le changement de sens de la force Fr s'effectue lorsque les deux ressorts sont simultanément orientés selon une même direction perpendiculaire à l'axe Y de l'arbre auxiliaire, ce qui se produit en pratique lorsque l'arbre a parcouru la plupart de la course e pour l'écartement souhaité des contacts de l'interrupteur à vide.
  • Sur la figure 9d est représenté schématiquement un autre mécanisme d'actionnement amélioré du contact mobile de l'appareil de commutation dans le vide, qui combine avantageusement les deux solutions précédentes. Le berceau 4A3 de l'arbre auxiliaire 4 comporte une seule surface de roulement profilée sur laquelle vient appuyer une roulette montée à une extrémité d'un bras pivotant. De même que pour la solution décrite en référence aux figures 9, 9a et 9b, une extrémité d'un ressort 37 agit sur ce bras pivotant, et le profil de la surface de roulement présente un bossage latéral prévu pour que la composante projetée sur l'axe Y de la force exercée par le ressort 37 sur l'arbre auxiliaire 4 puisse s'annuler pour changer de sens. Le berceau 4A3 comporte aussi une articulation pivotante attachée à une extrémité d'un autre ressort 36 comme dans la solution décrite en référence à la figure 9c. Le ressort 36 a une énergie moindre que celle du ressort 37, et la force résultante Fr exercée par les deux ressorts sur l'arbre 4 a une composante FrX qui est orientée vers l'interrupteur à gaz, selon l'axe de translation X de l'arbre principal 2.
  • Cette orientation de la composante FrX permet de diminuer les efforts instantanés au niveau de la surface de contact 13'A entre l'extrémité 4B de l'arbre 4 et l'élément de guidage 13' fixé au carter 7. Ces efforts instantanés sont en effet relativement importants lorsque la came 30 entre en contact avec la roulette 31 lors d'une manoeuvre d'ouverture de l'ensemble de commutation, du fait de la vitesse instantanée de plusieurs mètres par seconde pour la translation de l'arbre principal 2, et à fortiori si la pente d'ouverture de la partie principale 30A de la came 30 est relativement prononcée. On peut noter que la présence du ressort pivotant 36 n'est pas indispensable, et a principalement pour rôle de renforcer si nécessaire la composante FrY de la force résultante Fr selon l'axe Y tout en diminuant la composante FrX.
  • Sur la figure 10 est représentée schématiquement une alternative de réalisation des moyens d'étanchéité au fluide isolant gazeux G2 de l'interrupteur à gaz et dont la pression P2 est utilisée pour le fonctionnement d'un dispositif de commande selon l'invention. Il n'est pas prévu de moyens d'étanchéité au gaz dans l'espace interstitiel 49 entre le piston 4A' et la pièce d'alésage 8' qui porte les contacts glissants 9. Le piston a essentiellement un rôle de guidage mécanique de l'arbre auxiliaire 4 et de conduction électrique entre le contact mobile de l'interrupteur à vide et une plaque conductrice 20 électriquement relié à un pôle de l'interrupteur à gaz, cette plaque 20 pouvant constituer une face d'un carter métallique tel que référencé 7 dans les réalisations précédentes. L'interrupteur à vide est entouré d'un gaz G1 qui est réparti des deux côtés du piston 4A' avec sensiblement la même pression P1. Le piston 4A' peut comporter un passage formé par un petit canal 25, mais un tel canal n'est normalement pas nécessaire car un équilibrage même relativement lent de la pression du gaz G1 entre les deux côtés du piston s'effectue par l'espace interstitiel 49 non étanche au gaz. De préférence, un dispositif 45 de mesure de la pression P1 est prévu notamment pour contrôler que cette pression reste supérieure à la limite basse P1min.
  • La paroi 7' qui sépare les deux fluides isolants gazeux G1 et G2 est scellée avec étanchéité à la plaque conductrice 20, et présente une zone flexible au centre de laquelle est prévue une ouverture qui est traversée avec étanchéité par l'arbre auxiliaire 4. Cette paroi 7' se présente comme un soufflet d'étanchéité, et peut être réalisée à partir d'un métal prévu pour offrir une flexibilité et une résistance mécanique suffisantes. Elle a de préférence la forme d'un disque ouvert en son centre pour le passage de l'arbre 4. Son diamètre peut être bien supérieur au diamètre du piston 4A', ce dernier pouvant par ailleurs être diminué tant que la section de conduction électrique par les contacts glissants 9 reste en adéquation avec le courant à faire transiter par l'ensemble de commutation. En augmentant le diamètre de la paroi 7', il est possible d'obtenir une force de pression différentielle Fp supérieure à celle qui serait obtenue par un dispositif de commande à piston étanche tel que représenté par exemple sur la figure 3, cette comparaison s'entendant pour des masses mobiles sensiblement égales entre les deux dispositifs de commande. En outre, étant donné que dans une solution de type à soufflet d'étanchéité, il n'y a pas de surface mobile relativement à un joint d'étanchéité, il est possible d'obtenir une très bonne étanchéité au niveau du raccordement étanche entre le soufflet et un ensemble mobile tel que constitué ici par l'arbre auxiliaire 4.
  • Le taux de fuite du gaz G2 à la pression P2 vers le volume V1 du gaz G1 à la pression P1 est normalement négligeable, et la quantité de gaz G2 passant dans ce volume V1 sera normalement toujours inférieure à la quantité de gaz G1 pouvant fuir de ce volume vers l'extérieur de l'enveloppe isolante 11. Il n'y a donc en principe pas de risque que la pression P1 augmente jusqu'à dépasser la valeur maximale P1max critique pour la structure mécanique de l'interrupteur à vide, et il n'est à priori pas nécessaire de prévoir un dispositif de sécurité tel une soupape pour l'évacuation du gaz G1 en surpression. Toutefois, pour une sécurité absolue, il peut être prévu entre le volume V1 et l'atmosphère extérieure un dispositif économique d'évacuation de gaz, constitué d'un disque de rupture 46 aussi appelé parfois disque frangible et prévu pour rompre lorsque la différence de pression de gaz entre les deux côtés du disque dépasse une valeur de rupture déterminée. Ce disque de rupture 46 est monté ici sur une pièce annulaire métallique 44 qui relie électriquement la pièce d'alésage 8' à la plaque conductrice 20, et qui participe aussi à l'étanchéité entre le volume V1 et l'atmosphère extérieure.
  • Une variante de réalisation du dispositif de commande précédent de la figure 10 est représentée schématiquement sur la figure 11. Cette variante comporte un espace de sécurité à la pression atmosphérique qui fonctionne sur le principe de sécurité utilisé dans le dispositif de commande de la figure 7. En effet, dans le cas où la paroi 7', qui a un rôle notamment de soufflet d'étanchéité vis à vis du gaz G2 de l'interrupteur à gaz, n'assurerait pas une étanchéité parfaite, toute fuite du gaz G2 à travers ce soufflet serait évacuée vers l'atmosphère extérieure via un canal 24. Le volume V1 qui est compris entre la paroi 7' et le piston 4A de l'arbre auxiliaire communique avec l'atmosphère extérieure par le canal 24, et le gaz G1 contenu dans ce volume V1 est donc ici de l'air atmosphérique.
  • De même que pour l'ensemble de commutation de la figure 7, un matériau diélectrique 28 est surmoulé autour de la chambre étanche de l'interrupteur à vide. Le gaz G0 du volume V0 compris entre le matériau 28 et le piston 4A est analogue au gaz G1 utilisé pour le dispositif de la figure 7, et ce qui a été dit précédemment en rapport avec ce gaz reste valable pour la présente configuration. Le piston 4A n'a pas de rôle ici pour générer la force de pression de contact nécessaire dans l'interrupteur à vide. Au contraire, étant donné que le gaz G0 est à une pression de préférence supérieure à la pression atmosphérique, la pression différentielle entre les deux côtés du piston génère une force qui a tendance à s'opposer (tout en restant de beaucoup inférieure) à la force de pression différentielle générée par le gaz G2 sur la paroi flexible 7'. Préférablement, le diamètre du piston 4A sera prévu aussi petit que possible, à condition que la section de conduction électrique par les contacts glissants 9 reste suffisante. On peut noter que les moyens d'étanchéité 26 et l'élément annulaire d'étanchéité 27 ne sont pas forcément indispensables et que le gaz G0 pourrait alors être de l'air atmosphérique, comme expliqué précédemment en rapport avec le dispositif de la figure 7.
  • Les dispositifs de commandes qui ont été décrits dans ce qui précède ont été montrés dans des applications à des ensembles de commutation comportant à chaque fois un interrupteur à vide associé à un interrupteur à gaz. Toutefois, il est entendu qu'un dispositif de commande selon l'invention peut être appliqué à ensemble de commutation dont un premier et/ou un second appareil de commutation serait constitué de plusieurs interrupteurs arrangés électriquement en série ou en parallèle. Par exemple, il est connu qu'un ensemble de commutation peut comprendre un appareil de commutation dans le vide constitué de plusieurs interrupteurs à vide montés en parallèle avec leurs contacts mobiles solidaires en mouvement en étant reliés à un même arbre auxiliaire déplaçable en translation.

Claims (16)

  1. Dispositif de commande pour l'actionnement coordonné d'au moins deux appareils de commutation qui sont électriquement reliés en série pour constituer un ensemble de commutation dont un premier appareil de commutation (1) dans le vide comporte une paire de contacts (5, 6) séparables pour la commutation entre une position de fermeture et une position d'ouverture, comportant un arbre principal (2) de manoeuvre pour actionner un second appareil de commutation (10) immergé dans un fluide isolant (G2) gazeux contenu dans un certain volume (V2) à une pression (P2) déterminée, comportant en outre un arbre auxiliaire (4) apte à être déplacé par des moyens de couplage (3) pour permettre la manoeuvre d'un contact mobile (5) du premier appareil de commutation (1) lors d'un déplacement dudit arbre principal (2), ledit contact mobile (5) étant maintenu en appui contre l'autre contact (6) dudit premier appareil (1), dans la position de fermeture de cet appareil, par une force (FC) prévue pour produire une pression de contact supérieure à une valeur déterminée, caractérisé en ce que ledit arbre auxiliaire (4) traverse avec étanchéité une paroi (7A, 7') qui sépare ledit volume (V2) de fluide isolant (G2) gazeux d'un autre volume (V1) de fluide (G1) à une pression (P1) inférieure, la différence des pressions respectives (P2, P1) des deux fluides (G2, G1) procurant une certaine force (Fp) qui est appliquée sur ledit arbre auxiliaire (4) et qui participe à ladite force de pression de contact (FC).
  2. Dispositif de commande selon la revendication 1, dans lequel une partie dudit arbre auxiliaire (4) est constituée d'un piston (4A) apte à être déplacé à l'intérieur d'un alésage (8) formé par une pièce qui est montée de façon étanche sur une ouverture de ladite paroi (7A), des moyens d'étanchéité (17) audit fluide isolant (G2) gazeux étant agencés entre ledit piston (4A) et ledit alésage (8).
  3. Dispositif de commande selon la revendication 2, dans lequel ladite paroi (7A) et ledit alésage (8) constituent un assemblage conducteur électriquement relié à un pôle du second appareil de commutation (10), ledit piston (4A) comporte au moins une partie (4A2) conductrice électriquement raccordée au contact mobile (5) du premier appareil de commutation (1), et des contacts glissants (9) sont disposés entre ledit alésage (8) et ladite partie (4A2) conductrice du piston.
  4. Dispositif de commande selon l'une des revendications 1 à 3, dans lequel ladite paroi (7A) est constituée par une face d'un carter (7) qui renferme au moins une partie dudit volume (V2) de fluide isolant (G2) gazeux et dans lequel sont disposés lesdits moyens de couplage (3).
  5. Dispositif de commande selon la revendication 4, dans lequel l'arbre auxiliaire (4) possède une partie d'extrémité (4B) apte à coulisser en translation dans un élément de guidage (13, 13') qui est fixé sur une face (7B) du carter (7) opposée à la face constituant ladite paroi (7A).
  6. Dispositif de commande selon l'une des revendications 1 à 5, dans lequel l'arbre principal (2) possède un tronçon (2A) dont un côté présente une surface agencée pour former une came (30) de guidage d'un élément de roulement (31) qui est solidaire en mouvement de l'arbre auxiliaire (4).
  7. Dispositif de commande selon l'une des revendications 1 à 6, dans lequel lesdits moyens de couplage (3) comprennent des moyens mécaniques de compression élastique aptes à exercer une force sur ledit arbre auxiliaire (4) pour participer à ladite force de pression de contact (FC) en complément de la force (Fp) procurée par la différence des pressions respectives (P2, P1) des deux fluides (G2, G1).
  8. Dispositif de commande selon la revendication 7, dans lequel lesdits moyens de compression élastique comprennent un ressort (35) qui est monté sur l'arbre auxiliaire (4) et dont une extrémité est en appui contre un élément poussoir (34) apte à être comprimé sous l'action d'un doigt (33), ledit doigt étant fixé audit arbre principal (2) et agencé pour appuyer contre ledit élément poussoir (34) dans la position de fermeture du second appareil de commutation (10).
  9. Dispositif de commande selon la revendication 7, dans lequel lesdits moyens de compression élastique comprennent au moins un ressort (36, 37), la force résultante (Fr) exercée par lesdits moyens de compression sur ledit arbre auxiliaire (4) étant prévue pour changer de sens selon la direction de l'axe de translation (Y) dudit arbre, lors d'un déplacement dudit arbre pour l'ouverture du premier appareil de commutation (1), tout en restant inférieure à la force (Fp) procurée par la différence des pressions respectives (P2, P1) des deux fluides (G2, G1).
  10. Dispositif de commande selon la revendication 9, dans lequel ledit ressort (36, 37) agit sur un bras pivotant (38, 39) dont une extrémité comporte une roulette (40, 41) agencée pour appuyer contre une surface de roulement profilée sur ledit arbre auxiliaire (4).
  11. Dispositif de commande selon l'une des revendications 9 et 10, dans lequel ladite force résultante (Fr) a une composante (FrX) qui est orientée en permanence vers le second appareil de commutation (10) selon la direction de l'axe de translation (X) de l'arbre principal (2) de manoeuvre
  12. Dispositif de commande selon la revendication 2, dans lequel ledit alésage (8) comporte un orifice radial (24) qui fait communiquer l'atmosphère extérieure avec un espace interstitiel entre le piston (4A) et l'alésage (8), ledit orifice radial (24) débouchant dans ledit espace interstitiel entre lesdits moyens d'étanchéité (17) et le premier appareil de commutation (1), de façon à ce qu'une éventuelle fuite de gaz (G2) à travers les moyens d'étanchéité (17) soit évacuée vers l'atmosphère extérieure.
  13. Dispositif de commande selon la revendication 1, dans lequel ladite paroi (7') est scellée à une plaque conductrice (20) électriquement relié à un pôle du second appareil de commutation (10) et présente une zone flexible au centre de laquelle est prévue une ouverture qui est traversée avec étanchéité par ledit arbre auxiliaire (4).
  14. Dispositif de commande selon la revendication 13, dans lequel ledit arbre auxiliaire (4) comprend un piston (4A, 4A') apte à être déplacé à l'intérieur d'un alésage (8, 8') relié électriquement à ladite plaque conductrice (20), et dans lequel des contacts glissants (9) sont agencés entre ledit piston et ledit alésage.
  15. Dispositif de commande selon la revendication 14, dans lequel des moyens d'étanchéité (26) sont agencés entre ledit piston (4A) et ledit alésage (8), et dans lequel ledit autre volume (V1) est ménagé entre ledit piston (4A) et ladite paroi (7'), ce volume (V1) étant en communication avec l'atmosphère extérieure pour être rempli d'air sensiblement à la pression atmosphérique.
  16. Dispositif de commande selon l'une des revendications 1 à 11 et 13 à 15, dans lequel ledit fluide (G1) dudit autre volume (V1) est un gaz et dans lequel un dispositif de sécurité constitué d'une soupape (23) ou d'un disque de rupture (46) permet d'évacuer du gaz (G1) vers l'atmosphère extérieure au cas où la pression (P1) de ce gaz dépasse une valeur critique.
EP05102321A 2004-03-25 2005-03-23 Dispositif de commande pour l'actionnement coordonné d'au moins deux appareils de commutation dont un est à coupure le vide Not-in-force EP1580783B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0450589A FR2868197B1 (fr) 2004-03-25 2004-03-25 Dispositif de commande pour l'actionnement coordonne d'au moins deux appareils de commutation dont un est a coupure dans le vide
FR0450589 2004-03-25

Publications (2)

Publication Number Publication Date
EP1580783A1 EP1580783A1 (fr) 2005-09-28
EP1580783B1 true EP1580783B1 (fr) 2012-10-03

Family

ID=34855230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05102321A Not-in-force EP1580783B1 (fr) 2004-03-25 2005-03-23 Dispositif de commande pour l'actionnement coordonné d'au moins deux appareils de commutation dont un est à coupure le vide

Country Status (5)

Country Link
US (1) US7563161B2 (fr)
EP (1) EP1580783B1 (fr)
JP (1) JP4754854B2 (fr)
CN (1) CN100383906C (fr)
FR (1) FR2868197B1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877136B1 (fr) * 2004-10-27 2006-12-15 Areva T & D Sa Cinematique d'entrainement dans un disjoncteur hybride
FR2923661B1 (fr) * 2007-11-13 2010-04-30 Areva T & D Sa Appareil de commutation muni d'un disjoncteur et d'un sectionneur et comprenant des moyens d'entrainement communs
PL2159813T3 (pl) * 2008-09-01 2011-07-29 Abb Technology Ag Zespół niskonapięciowy, średnionapięciowy lub wysokonapięciowy
US8592708B2 (en) * 2009-05-18 2013-11-26 Hitachi, Ltd. Gas-insulated vacuum circuit breaker
ES2545208T3 (es) * 2009-12-29 2015-09-09 Abb Technology Ag Disyuntor de media tensión
EP2341516B1 (fr) 2009-12-29 2013-11-27 ABB Technology AG Disjoncteur moyenne tension
AU2011370756B2 (en) * 2011-06-16 2015-09-24 Abb Schweiz Ag A switching device and a switchgear
JP5872260B2 (ja) * 2011-11-22 2016-03-01 株式会社東芝 電力用ガス絶縁機器およびその製造方法
CN102543561B (zh) * 2012-01-04 2015-01-07 苏州朗格电气有限公司 一种带合闸保持装置的真空断路器
US9216527B2 (en) * 2012-02-09 2015-12-22 G & W Electric Company Solid-dielectric switch including a molded viewing window
CN102810428B (zh) * 2012-07-23 2015-12-16 平高集团有限公司 一种真空断路器
US9054530B2 (en) 2013-04-25 2015-06-09 General Atomics Pulsed interrupter and method of operation
DE102013210136A1 (de) * 2013-05-30 2014-12-04 Siemens Aktiengesellschaft Elektrisches Schaltgerät
US9576757B2 (en) * 2014-04-11 2017-02-21 S&C Electric Company Circuit interrupters with air trap regions in fluid reservoirs
BR112017005217A2 (pt) * 2014-10-24 2018-03-06 Halliburton Energy Services Inc interruptor responsivo à pressão para acionar um dispositivo, e, método para acionar um dispositivo.
DE102015204668A1 (de) * 2015-03-16 2016-09-22 Siemens Aktiengesellschaft Schaltgerät mit einer ersten Schalteinrichtung und einer separat gekapselten zweiten Schalteinrichtung
EP3076420B1 (fr) 2015-03-31 2017-10-04 General Electric Technology GmbH Mise à la terre rapide à pouvoir de coupure pour un poste sous enveloppe metallique
FR3039924B1 (fr) * 2015-08-07 2019-05-10 Supergrid Institute Appareil de coupure mecanique d'un circuit electrique
EP3179583A1 (fr) * 2015-12-11 2017-06-14 ABB Schweiz AG Disjoncteur à vide de moyenne tension dans un boîtier isolé par sf6 pour une utilisation dans des environnements sous haute pression
DE102016205011A1 (de) * 2016-03-24 2017-09-28 Siemens Aktiengesellschaft Leistungsschalter
DE102017222943A1 (de) * 2017-12-15 2019-06-19 Siemens Aktiengesellschaft Anordnung und Verfahren zum Antreiben eines beweglichen Kontakts einer Vakuumschaltröhre in einem Hochspannungsleistungsschalter
CN109326486A (zh) * 2018-11-30 2019-02-12 浙江华仪电器科技有限公司 一种开关用延时控制的简易传动结构
DE102019216663B4 (de) * 2019-10-29 2023-02-02 Siemens Aktiengesellschaft Vakuumschaltvorrichtung für eine Schaltung mit Haupt- und Nebenstrompfad
CN111540639A (zh) * 2020-05-14 2020-08-14 湖南创安防爆电器有限公司 一种真空接触器
CN112002599A (zh) * 2020-09-10 2020-11-27 合肥言臻科技有限公司 一种用于驱动真空断路器的涡流斥力永磁机构
FR3121267A1 (fr) 2021-03-24 2022-09-30 Schneider Electric Industries Sas Système de coupure d’un appareil électrique
CN114093690B (zh) * 2021-11-12 2022-07-15 江苏宏达电气有限公司 一种单端驱动操作的断路器柜及工作方法
KR20240051541A (ko) * 2022-10-13 2024-04-22 효성중공업 주식회사 진공차단기
CN116453881B (zh) * 2023-06-15 2023-08-18 海底鹰深海科技股份有限公司 开关装置
CN117977120A (zh) * 2024-03-28 2024-05-03 广州市凯捷电源实业有限公司 一种蓄电池组接线装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107865A (en) * 1978-02-13 1979-08-24 Soujirou Fujino Periphery formation of cylindrical metal container
JPS5755022A (en) * 1980-09-18 1982-04-01 Tokyo Shibaura Electric Co Composite breaker
JPS58207802A (ja) * 1982-05-27 1983-12-03 株式会社東芝 ハイブリツド形しや断器
DE3300979A1 (de) * 1983-01-12 1984-07-12 Siemens AG, 1000 Berlin und 8000 München Vakuumschalter mit zwei in reihe geschalteten schaltroehren je pol
JPS60189130A (ja) * 1984-03-07 1985-09-26 株式会社日立製作所 複合型遮断装置
DE3743868A1 (de) * 1987-09-30 1989-07-06 Siemens Ag Verfahren und vorrichtung zum vakuumnachweis bei vakuumschaltroehren
JP2521353B2 (ja) * 1989-06-30 1996-08-07 株式会社日立製作所 ガス遮断器
JPH04282521A (ja) * 1991-03-12 1992-10-07 Fuji Electric Co Ltd ガス絶縁電器の放圧装置
FR2684232A1 (fr) * 1991-11-22 1993-05-28 Alsthom Gec Disjoncteur a vide muni de moyens d'autodiagnostic.
DE59604482D1 (de) * 1995-08-10 2000-03-30 Siemens Ag Vorrichtung zur Überwachung des Vakuums eines Vakuumschalters
FR2738389B1 (fr) * 1995-08-31 1997-10-24 Schneider Electric Sa Disjoncteur hybrique a haute tension
JP3799924B2 (ja) * 2000-01-11 2006-07-19 株式会社日立製作所 電力用遮断器および発電所電気回路装置
JP4494673B2 (ja) * 2001-07-12 2010-06-30 三菱電機株式会社 電力用開閉装置
EP1310970B1 (fr) * 2001-11-09 2007-08-01 ABB Schweiz AG Disjoncteur hybride avec transmission
FR2840729B1 (fr) * 2002-06-05 2004-07-16 Alstom Dispositif interrupteur pour haute ou moyenne tension, a coupure mixte par vide et gaz
FR2868199B1 (fr) * 2004-03-25 2006-05-19 Areva T & D Sa Disjoncteur hybride a haute tension.
FR2877136B1 (fr) * 2004-10-27 2006-12-15 Areva T & D Sa Cinematique d'entrainement dans un disjoncteur hybride

Also Published As

Publication number Publication date
US20050247677A1 (en) 2005-11-10
US7563161B2 (en) 2009-07-21
JP2005276839A (ja) 2005-10-06
EP1580783A1 (fr) 2005-09-28
CN100383906C (zh) 2008-04-23
FR2868197A1 (fr) 2005-09-30
FR2868197B1 (fr) 2006-05-19
CN1722332A (zh) 2006-01-18
JP4754854B2 (ja) 2011-08-24

Similar Documents

Publication Publication Date Title
EP1580783B1 (fr) Dispositif de commande pour l'actionnement coordonné d'au moins deux appareils de commutation dont un est à coupure le vide
EP1271590B1 (fr) Dispositif interrupteur pour haute ou moyenne tension à coupure mixte par vide et gaz
EP1369888B1 (fr) Dispositif interrupteur pour haute ou moyenne tension, à coupure mixte par vide et gaz
EP1583124B1 (fr) Disjoncteur hybride à haute tension
EP0517620A1 (fr) Disjoncteur moyenne tension à énergie de commande réduite
EP0540971B1 (fr) Disjoncteur à haute ou moyenne tension à triple mouvement
EP2402969B1 (fr) Chambre de coupure pour disjoncteur à moyenne ou haute tension à énergie de manoeuvre réduite
EP0693763B1 (fr) Interrupteurs électriques moyenne tension
WO2002049053A1 (fr) Appareil de coupure electronique pour installation electrique
EP0785562B1 (fr) Disjoncteur à double mouvement des contacts
EP2237301B1 (fr) Chambre de coupure de courant à contact mobile et buse de soufflage mobile manoeuvrés indépendamment, interrupteur by pass HVDC et sous station de conversion HVDC comprenant une telle chambre
EP2619783B1 (fr) Disjoncteur comportant un dispositif d'insertion de resistance dans une ligne de transport de courant
EP2735012B1 (fr) Sectionneur pour une installation a isolation gazeuse comportant une ampoule a vide
CH688702A5 (fr) Disjoncteur à haute tension ayant une chambre de coupure à volume de soufflage variable.
EP2237300B1 (fr) Chambre de coupure de courant à contact mobile à soufflage d'arc réalisé intégralement par l'intérieur de celui-ci, interrupteur by pass HVDC et sous station de conversion HVDC comprenant une telle chambre
FR2922353A1 (fr) Ensemble de sectionneurs pour poste electrique moyenne et haute tension sous enveloppe metallique
FR2854983A1 (fr) Traversee de mouvement pour l'actionnement d'un appareillage de coupure en moyenne ou haute tension
FR2922356A1 (fr) Interrupteur moyenne ou haute tension et poste electrique sous enveloppe metallique comportant au moins un tel interrupteur
EP2465127A1 (fr) Chambre de coupure pour disjoncteur a moyenne ou haute tension a energie de man uvre reduite
EP3226274A1 (fr) Sectionneur à division d'arc adapté aux moyennes et hautes tensions et méthode de déconnexion au moyen dudit sectionneur
FR2839193A1 (fr) Dispositif interrupteur a haute tension a coupure mixte par vide et gaz
EP2771897B1 (fr) Chambre de coupure dotée d'un tube limitant l'impact de la génération de particules et appareillage électrique de coupure équipé d'une telle chambre de coupure
FR2705494A1 (fr) Disjoncteur à manÓoeuvre assistée par voie électrodynamique.
FR2941558A1 (fr) Dispositif de commande d'appareillage electrique moyenne ou haute tension, notamment de sectionneur de terre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060322

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AREVA T&D SAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AREVA T&D SAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM GRID SAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 578314

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005036356

Country of ref document: DE

Effective date: 20121129

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 578314

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121003

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121003

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121003

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130203

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121003

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121003

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121003

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130204

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130104

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121003

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121003

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121003

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121003

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121003

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121003

26N No opposition filed

Effective date: 20130704

BERE Be: lapsed

Owner name: ALSTOM TECHNOLOGY LTD

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005036356

Country of ref document: DE

Effective date: 20130704

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130323

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130323

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130323

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150311

Year of fee payment: 11

Ref country code: CH

Payment date: 20150311

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150311

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130323

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150331

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005036356

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160324

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331