EP1561028B1 - Kraftstoffhochdruckpumpe mit kugelventil im niederdruck-einlass - Google Patents

Kraftstoffhochdruckpumpe mit kugelventil im niederdruck-einlass Download PDF

Info

Publication number
EP1561028B1
EP1561028B1 EP03779679A EP03779679A EP1561028B1 EP 1561028 B1 EP1561028 B1 EP 1561028B1 EP 03779679 A EP03779679 A EP 03779679A EP 03779679 A EP03779679 A EP 03779679A EP 1561028 B1 EP1561028 B1 EP 1561028B1
Authority
EP
European Patent Office
Prior art keywords
pressure
fuel pump
ball
pressure fuel
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03779679A
Other languages
English (en)
French (fr)
Other versions
EP1561028A1 (de
Inventor
Burkhard Boos
Stefan Kieferle
Matthias Distel
Achim Koehler
Sascha Ambrock
Karsten Ruth
Jaroslav Zivny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10302043A external-priority patent/DE10302043A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1561028A1 publication Critical patent/EP1561028A1/de
Application granted granted Critical
Publication of EP1561028B1 publication Critical patent/EP1561028B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1002Ball valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/04Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by special arrangement of cylinders with respect to piston-driving shaft, e.g. arranged parallel to that shaft or swash-plate type pumps
    • F02M59/06Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by special arrangement of cylinders with respect to piston-driving shaft, e.g. arranged parallel to that shaft or swash-plate type pumps with cylinders arranged radially to driving shaft, e.g. in V or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/08Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by two or more pumping elements with conjoint outlet or several pumping elements feeding one engine cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/464Inlet valves of the check valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0452Distribution members, e.g. valves

Definitions

  • the invention is based on one of the German patent DE 101 17 600 known high-pressure fuel pump for a fuel injection system having a housing, with a low-pressure inlet, with a delivery chamber in which the fuel is compressed, with a suction valve between the delivery chamber and low-pressure inlet, wherein a valve member of the suction valve is supported against a pressure spring arranged in the delivery chamber.
  • valve member of the suction valve is designed as a valve cone.
  • a high-pressure fuel pump according to the invention with the features of claim 1 has a small number of acted upon by high pressure sealing surfaces, so that inter alia, the number of components compared to the known from the prior art high-pressure fuel pump is reduced. This increases the reliability of the high-pressure fuel pump according to the invention and reduces the manufacturing and assembly costs of the same.
  • the production of the high-pressure fuel pump is simplified because a ball is cheaper to manufacture than a valve member with a sealing cone and a shaft, as is known in the prior art.
  • the efficiency of the high-pressure fuel pump according to the invention is improved because a ball forms a well-defined circular sealing line together with the sealing seat, which seals very well despite the unavoidable manufacturing tolerances in the manufacture of the valve seat with respect to the valve seat.
  • the suction valve according to the invention seals well, even if the angle or the position of the valve seat were not manufactured with the highest precision.
  • a spring plate is arranged between the compression spring and ball, so that the fixation of the ball is improved relative to the sealing seat and also a buckling of the compression spring is avoided.
  • the use of a spring plate allows that the diameter of compression spring and ball can be different. It has become especially as proven advantageous when the diameter of the ball is smaller than the diameter of the compression spring, since in this case the buckling of the compression spring is effectively avoided and the diameter of the ball corresponds to the hydraulic requirements of the high-pressure fuel pump in an optimal manner.
  • valve seat has a seat angle between 30 ° and 150 °, in particular between 80 ° and 100 °.
  • FIG. 1 shows an embodiment of a high-pressure fuel pump 10 according to the invention in cross section.
  • the high-pressure fuel pump 10 is designed as a radial piston pump with three pump elements 11.
  • the pump elements 11 comprise a piston 13, which is guided in a cylinder bore 15.
  • the cylinder bore 15 is executed in a housing 17 of the high-pressure fuel pump 10 as a blind hole.
  • the cylinder bore 15 can be made. After assembly of the high-pressure fuel pump according to the invention, the mounting holes 19 are closed by plugs 21.
  • the pistons 13 are driven by a drive shaft with an eccentric portion 22 via a polygon ring 23 with flats 25.
  • a Kolbenfußplatte 27 On the flats 25 is a Kolbenfußplatte 27, which puts the piston 13 in an oscillating motion when the drive shaft is driven and the polygon ring 23rd as a result performs a circular motion.
  • the oscillating movement of the pistons 13 is indicated in one of the pump element 11 by a double arrow 29.
  • the cylinder bore 15 and the piston 13 define a delivery chamber 31 per pump element 11, wherein the volume of the delivery chamber 31 depends on the position of the drive shaft.
  • the piston 13 is near its top dead center (TDC), the volume of the delivery chamber 31 is minimal, while it is at the other pump elements 11th has almost a maximum.
  • TDC top dead center
  • the Kolbenfußplatten 27 and with her the piston 13 are always held in contact with the flats 25 of the polygon ring 23.
  • the cylinder bore 15 is, as already mentioned, designed as a blind hole.
  • a suction valve 35 with a sealing seat 37 and a cooperating with the sealing seat 37 ball 39 is provided at the end of the cylinder bore 15.
  • the ball 39 is pressed against the valve seat 37 via a spring plate 41 by a compression spring 43 which is supported on the piston 13 at the other end.
  • the compression spring 43 is dimensioned so that fuel is not sucked in the lower dead center automatically. If a not shown, arranged on the suction side of the high-pressure fuel pump 10 metering unit is closed, the high-pressure fuel pump 10 promotes no fuel. When the metering unit is fully or partially opened, a positive pressure generated by a prefeed pump (not shown) builds up in front of the suction valve 35 and is pressed by the fuel against the compression spring 43 into the delivery chamber 31. The metering unit has the task to adjust the pressure in front of the suction chamber so that the desired flow rate is promoted by the high-pressure fuel pump 10.
  • the compression spring 43 can also be dimensioned so that the ball 39 is still slightly pressed against the sealing seat 37 in the bottom dead center (UT) of the piston 13. Only if on the in Fig. 1 not shown low pressure side of the high-pressure fuel pump 10, a sufficient pressure over the pressure prevails in the delivery chamber 31, fuel flows into the delivery chamber 31 a.
  • the pressure on the low pressure side of the high-pressure fuel pump 10, or the suction side of the delivery chamber 31 and thus the delivery rate of the high-pressure fuel pump 10 is characterized by a in Fig. 1 Not shown metering unit of a control unit (not shown) set depending on the operating condition of the internal combustion engine.
  • each of the pump element 11 draws approximately the same amount of fuel and thus a uniform torque and power consumption of the high-pressure fuel pump 10th results. This improves the smoothness of the internal combustion engine, especially at idle.
  • a high-pressure outlet and the associated pressure valve are in FIG. 1 not shown, since the high-pressure outlet and the associated pressure valve are arranged perpendicular to the plane of the drawing behind the pump elements 11.
  • the arrangement of these components can from the DE-PS 101 17 600 , which is incorporated herein by reference.
  • the leadership of the ball 39 is improved.
  • the diameter of the ball 39 can be selected independently of the diameter of the compression spring 43, which may be advantageous in the optimization of the high-pressure fuel pump 10.
  • Fig. 1 illustrated embodiment of a high-pressure fuel pump 10 according to the invention
  • This small number of high pressure sealing points justifies in many cases the slightly higher production cost in the production of the cylinder bore 15, if this is designed as a blind hole.
  • FIG. 2 is one of the post-published EP 1 357 283 A2 known high-pressure pump 10 also shown in section.
  • the same components are provided with the same reference numerals and it is the respect FIG. 1 Said accordingly.
  • the essential difference from the first embodiment is that the cylinder bore 15 is not designed as a blind hole, but as a through hole.
  • the cylinder bore 15 is closed by a screw 47.
  • the sealing seat 37 of the suction valve 35 is incorporated.
  • FIG. 3 which shows an enlarged detail A of the FIG. 2 shows the function of the suction valve 35 explained in detail.
  • the piston 13 is at top dead center. Accordingly, the delivery chamber 31 has its minimum volume and the ball 39 seals the delivery chamber 31 against the low-pressure inlet 45 of the high-pressure fuel pump 10 from. This sealing takes place along a circular sealing line (not shown), which results from the contact line between the ball 39 and the sealing seat 37.
  • the tightness of this trained as a ball valve suction valve 35 is very high, since there is only a linear contact between the ball 39 and sealing seat 37, resulting in a correspondingly high surface pressure on the sealing line.
  • the accuracy requirements in the production of a tightly closing ball valve are lower than with cone valves.
  • the diameter of the sealing line between the ball 39 and the sealing seat 37 can be varied with a constant ball diameter. It has been found that sealing angle ⁇ between 30 ° and 150 ° are possible and usually a sealing angle ⁇ of 90 ° leads to very good results.
  • the sealing seat 37 is adjoined by an axial bore 48 and a transverse bore 49.
  • a plurality of transverse bores 49 may be provided.
  • the transverse bore 49 opens into an annular space 50, which is bounded by the housing 17 and a reduced diameter portion 50 of the screw 47.
  • a biting edge 53 is formed, which seals the annular space 51 from the delivery chamber 31.
  • the annular space 51 communicates hydraulically with the low-pressure inlet 45, which is not visible in this illustration, of the high-pressure fuel pump 10. Because the annular space surrounds the screw 47 on all sides, fuel can be drawn into the delivery chamber 31 via the transverse bore 49 and the axial bore 48, regardless of how deep the screw 47 was screwed into the housing 17.
  • the efficiency of the high-pressure fuel pump is increased because the ball 39 releases a large flow area as soon as it lifts off the sealing seat 37, so that the fuel can be sucked in quickly and without large flow losses.
  • the annular cross-sectional area between the sealing seat 37 and the ball 39 is approximately up to 20 times greater than the cross-section of the transverse bore 49.
  • an internal combustion engine 54 is shown schematically. It comprises a fuel injection system 56. This in turn has a fuel tank 58, from which a low-pressure electric fuel pump 60 delivers fuel.
  • the low-pressure electric fuel pump 60 delivers fuel to the high-pressure fuel pump 10, which is formed as in the FIGS. 1 and 2 shown.
  • the high pressure outlet 18 of the high pressure fuel pump 10 is connected to a fuel rail 62. This is generally referred to as "common rail”.
  • a total of four injectors 64 are connected to the fuel manifold 62 . These each inject the fuel directly into combustion chambers 66 of the internal combustion engine 54.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Check Valves (AREA)

Abstract

Es wird eine Kraftstoffhochdruckpumpe (10), insbesondere eine Radialkolbenpumpe, vorgeschlagen, bei der die Saugventile (35) als Kugelventile ausgebildet sind, was sich vorteilhaft auf den Wirkungsgrad der Kraftstoffhochdruckpumpe (10) auswirkt. Ausserdem wird die Herstellung und Montage der erfindungsgemässen Kraftstoffhochdruckpumpe (10) durch die Verwendung von Kugelventilen vereinfacht.

Description

    Stand der Technik
  • Die Erfindung geht aus von einer aus dem deutschen Patent DE 101 17 600 bekannten Kraftstoffhochdruckpumpe für ein Kraftstoffeinspritzsystem mit einem Gehäuse, mit einem Niederdruck-Einlass, mit einem Förderraum, in dem der Kraftstoff komprimiert wird, mit einem Saugventil zwischen Förderraum und Niederdruck-Einlass, wobei ein Ventilglied des Saugventils sich gegen eine im Förderraum angeordnete Druckfeder abstützt.
  • Bei dieser Kraftstoffhochdruckpumpe ist das Ventilglied des Saugventils als Ventilkegel ausgebildet.
  • Aus der DE 100 39 169 A1 und der US 6,435,609 B1 sind Kraftstoffhochdruckpumpen bekannt, bei den das Saugventil, umfassend einen Dichtsitz, einen Druckfeder und ein Widerlager für die Druckfeder, vollständig in den Kolben integriert ist.
  • Aus der nachveröffentlichten EP 1 357 283 A2 ist eine Kraftstoffhochdruckpumpe bekannt, bei der der ventilsitz in einer Schraube angeordnet ist.
  • Vorteile der Erfindung
  • Eine erfindungsgemäße Kraftstoffhochdruckpumpe mit den Merkmalen des Anspruchs 1 weist eine geringe Zahl der mit Hochdruck beaufschlagten Dichtflächen auf, so dass unter anderem die Zahl der Bauteile gegenüber der aus dem Stand der Technik bekannten Kraftstoffhochdruckpumpe reduziert wird. Dies erhöht die Zuverlässigkeit der erfindungsgemäßen Kraftstoffhochdruckpumpe und senkt die Herstellungs- und Montagekosten derselben. Durch das kugelförmige Ventilglied wird die Herstellung der Kraftstoffhochdruckpumpe vereinfacht, da eine Kugel billiger herzustellen ist als ein Ventilglied mit einem Dichtkegel und einem Schaft, wie es aus dem Stand der Technik bekannt ist. Außerdem wird der Wirkungsgrad der erfindungsgemäßen Kraftstoffhochdruckpumpe verbessert, da eine Kugel zusammen mit dem Dichtsitz eine genau definierte kreisförmige Dichtlinie bildet, die trotz der unvermeidbaren Fertigungstoleranzen bei der Herstellung des Ventilsitzes hinsichtlich des Ventilsitzes sehr gut abdichtet. Wenn der mit der Kugel zusammenwirkende Ventilsitz rund ist, dichtet das erfindungsgemäße Saugventil gut ab, auch wenn der Winkel oder die Lage des Ventilsitzes nicht mit höchster Präzision hergestellt wurden.
  • Weiterhin ist mit dem erfindungsgemäßen Saugventil sichergestellt, dass alle Saugventile einer in Serie hergestellten Kraftstoffhochdruckpumpen nahezu identische hydraulische Eigenschaften haben und somit die Optimierung der in Serie gefertigten Kraftstoffhochdruckpumpe vereinfacht wird.
  • Bei einer Variante der Erfindung ist vorgesehen, dass zwischen Druckfeder und Kugel ein Federteller angeordnet ist, so dass die Fixierung der Kugel relativ zum Dichtsitz verbessert wird und außerdem ein Ausknicken der Druckfeder vermieden wird. Außerdem ermöglicht der Einsatz eines Federtellers, dass die Durchmesser von Druckfeder und Kugel verschieden sein können. Es hat sich insbesondere als vorteilhaft erwiesen, wenn der Durchmesser der Kugel kleiner als der Durchmesser der Druckfeder ist, da in diesem Fall das Ausknicken der Druckfeder wirkungsvoll vermieden wird und der Durchmesser der Kugel den hydraulischen Erfordernissen der Kraftstoffhochdruckpumpe in optimaler Weise entspricht.
  • Es hat sich als vorteilhaft erwiesen, wenn der Ventilsitz einen Sitzwinkel zwischen 30° und 150°, insbesondere zwischen 80° und 100° aufweist.
  • Die erfindungsgemäßen Vorteile kommen selbstverständlich in einem Kraftstoffsystem mit einem Kraftstoffbehälter, mit einem Einspritzventil, welches den Kraftstoff direkt in den Brennraum einer Brennkraftmaschine einspritzt, mit einer Hochdruckkraftstoffpumpe und mit einer Kraftstoffsammelleitung, an die das mindestens eine Einspritzventil angeschlossen ist, zum Tragen, wenn die Kraftstoffhochdruckpumpe nach einem der vorhergehenden Ansprüche ausgebildet ist.
  • Weitere Vorteile und vorteilhafte Ausgestaltungen sind der nachfolgenden Zeichnung, deren Beschreibung und den Patentansprüchen entnehmbar.
  • Zeichnung
  • Es zeigen:
  • Figur 1
    ein Ausführungsbeispiel einer erfindungsgemäßen Radialkolbenpumpe,
    Figur 2
    ein Ausführungsbeispiel einer Radialkolbenpumpe für die kein Schutz beansprucht wird,
    Figur 3
    ein vergrößerter Ausschnitt A der Figur 2, und
    Figur 4
    eine schematische Darstellung einer mit einer erfindungsgemäßen Kraftstoffhochdruckpumpe ausgerüsteten Brennkraftmaschine.
    Beschreibung der Ausführungsbeispiel
  • Figur 1 zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Kraftstoffhochdruckpumpe 10 im Querschnitt. Die Kraftstoffhochdruckpumpe 10 ist als Radialkolbenpumpe mit drei Pumpenelementen 11 ausgeführt. Die Pumpenelemente 11 umfassen einen Kolben 13, der in einer Zylinderbohrung 15 geführt wird. Die Zylinderbohrung 15 ist in einem Gehäuse 17 der Kraftstoffhochdruckpumpe 10 als Sacklochbohrung ausgeführt. über Fertigungs- und Montagebohrungen 19 kann die Zylinderbohrung 15 hergestellt werden. Nach der Montage der erfindungsgemäßen Kraftstoffhochdruckpumpe werden die Montagebohrungen 19 durch Stopfen 21 verschlossen.
  • Angetrieben werden die Kolben 13 von einer Antriebswelle mit einem exzentrischen Abschnitt 22 über einen Polygonring 23 mit Abflachungen 25. Auf den Abflachungen 25 liegt eine Kolbenfußplatte 27 auf, welche den Kolben 13 in eine oszillierende Bewegung versetzt, wenn die Antriebswelle angetrieben wird und der Polygonring 23 infolgedessen eine kreisförmige Bewegung ausführt. Die oszillierende Bewegung der Kolben 13 ist in einem der Pumpenelement 11 durch einen Doppelpfeil 29 angedeutet.
  • Die Zylinderbohrung 15 und der Kolben 13 begrenzen einen Förderraum 31 je Pumpenelement 11, wobei das Volumen des Förderraums 31 von der Stellung der Antriebswelle abhängt. Bei dem in Figur 1 senkrecht nach oben ausgerichteten Pumpenelement 11, dessen Kolben 13 sich nahe seines oberen Totpunkts (OT) befindet, ist das Volumen des Förderraums 31 minimal, während es bei den anderen Pumpenelementen 11 nahezu ein Maximum hat. Durch eine Druckfeder 33 werden die Kolbenfußplatten 27 und mit ihr die Kolben 13 stets in Anlage an den Abflachungen 25 des Polygonrings 23 gehalten.
  • Aus Gründen der Übersichtlichkeit sind nicht bei allen Pumpenelementen 11 alle Bauteile mit Bezugszeichen versehen. Es sind jedoch alle drei Pumpenelement 11 gleich aufgebaut und verfügen über die gleichen Bauteile.
  • Die Zylinderbohrung 15 ist, wie bereits erwähnt, als Sackloch ausgeführt. Am Ende der Zylinderbohrung 15 ist ein Saugventil 35 mit einem Dichtsitz 37 und einer mit dem Dichtsitz 37 zusammenwirkenden Kugel 39 vorgesehen. Die Kugel 39 wird über einen Federteller 41 von einer Druckfeder 43, die sich anderenends am Kolben 13 abstützt, gegen den Ventilsitz 37 gepresst.
  • Dabei ist die Druckfeder 43 so dimensioniert, dass im Unteren Totpunkt Kraftstoff nicht selbsttätig angesaugt wird. Wenn eine nicht dargestellte, auf der Saugseite der Kraftstoffhochdruckpumpe 10 angeordnete Zumesseinheit geschlossen ist, fördert die Kraftstoffhochdruckpumpe 10 keinen Kraftstoff. Wenn die Zumesseinheit ganz oder teilweise geöffnet wird, baut sich vor dem Saugventil 35 ein von einer Vorförderpumpe (nicht dargestellt) erzeugter Überdruck auf durch den Kraftstoff gegen die Druckfeder 43 in den Förderraum 31 gedrückt wird. Die Zumesseinheit hat die Aufgabe, den Überdruck vor dem Saugraum so einzustellen, dass die gewünschte Fördermenge von der Kraftstoffhochdruckpumpe 10 gefördert wird.
  • Wenn der Kolben 13 sich in Richtung seines oberen Totpunkts bewegt hat, nimmt die Vorspannung der Druckfeder 33 so stark zu, dass die Kugel 39 gegen den Dichtsitz 37 gepresst wird und somit die Verbindung zwischen Förderraum 31 und Niederdruck-Einlass 45 unterbrochen wird. Verstärkt wird dieser Effekt ganz wesentlich durch den zunehmend höheren Druck im Förderraum 31.
  • Alternativ kann die Druckfeder 43 auch so dimensioniert werden, dass die Kugel 39 auch im unteren Totpunkt (UT) des Kolbens 13 noch leicht gegen den Dichtsitz 37 gepresst wird. Nur wenn auf der in Fig. 1 nicht dargestellten Niederdruckseite der Kraftstoffhochdruckpumpe 10 ein ausreichender Überdruck gegenüber dem Druck im Förderraum 31 herrscht, strömt Kraftstoff in den Förderraum 31 ein. Der Druck auf der Niederdruckseite der Kraftstoffhochdruckpumpe 10, bzw. der Saugseite des Förderraums 31 und damit die Fördermenge der Kraftstoffhochdruckpumpe 10 wird durch eine in Fig. 1 nicht dargestellte Zumesseinheit von einem Steuergerät (nicht dargestellt) in Abhängigkeit des Betriebszustands der Brennkraftmaschine eingestellt.
  • Durch diese Maßnahmen ist gewährleistet, dass auch wenn durch die nicht dargestellte Zumesseinheit der Kraftstoffzufluss über den Niederdruck-Einlass 45 in die Pumpenelemente 11 gedrosselt wird, jedes der Pumpenelement 11 annähernd die gleiche Kraftstoffmenge ansaugt und sich somit ein gleichmäßiger Drehmoment- und Leistungsbedarf der Kraftstoffhochdruckpumpe 10 ergibt. Dies verbessert die Laufruhe der Brennkraftmaschine insbesondere im Leerlauf.
  • Dadurch, dass der Kolben 13 auch in seinem oberen Totpunkt nicht über seine ganze Länge in der Zylinderbohrung 15 geführt wird, ist ein ausreichender "Überlauf" für Honwerkzeuge oder dergleichen vorhanden. Dieser Überlauf erleichtert die Herstellung der als Sackloch ausgeführten Zylinderbohrung 15.
  • Ein Hochdruck-Auslass sowie das zugehörige Druckventil sind in Figur 1 nicht dargestellt, da sich der Hochdruck-Auslass und das zugehörige Druckventil senkrecht zur Zeichnungsebene hinter den Pumpenelementen 11 angeordnet sind. Die Anordnung dieser Bauelemente kann aus der DE-PS 101 17 600 , auf die hiermit Bezug genommen wird, entnommen werden.
  • Durch die Verwendung eines Federtellers 41 zwischen Kugel 39 und Druckfeder 43 wird die Führung der Kugel 39 verbessert. Außerdem kann, wegen der verbesserten Auflagefläche der Druckfeder 43 auf dem Federteller 41 ein Ausknicken der Druckfeder 43 verhindert werden. Schließlich kann der Durchmesser der Kugel 39 unabhängig vom Durchmesser der Druckfeder 43 gewählt werden, was bei der Optimierung der Kraftstoffhochdruckpumpe 10 von Vorteil sein kann.
  • Es ist jedoch auch ohne weiteres denkbar und möglich, auf den Federteller 41 zu verzichten (nicht dargestellt), so dass die Druckfeder 43 direkt auf der Kugel 39 aufliegt.
  • Bei dem in Fig. 1 dargestellten Ausführungsbeispiel einer erfindungsgemäßen Kraftstoffhochdruckpumpe 10 gibt es nur eine sehr geringe Zahl von Hochdruckdichtstellen. Dies ist insbesondere der Dichtsitz 37 in Verbindung mit der Kugel 39 sowie der Ringspalt zwischen Kolben 13 und Zylinderbohrung 15. Diese geringe Zahl von Hochdruckdichtstellen rechtfertigt in vielen Fällen den etwas höheren Herstellungsaufwand bei der Herstellung der Zylinderbohrung 15, wenn diese als Sackloch ausgeführt ist.
  • Auf die spezifischen Vorteile eines als Kugelventil ausgebildeten Saugventils 35 wird nachfolgend im Zusammenhang mit der Figur 3 noch im Detail eingegangen werden.
  • In Figur 2 ist eine aus der nachveröffentlichten EP 1 357 283 A2 bekannte Hochdruckpumpe 10 ebenfalls im Schnitt dargestellt. Gleiche Bauteile werden mit gleichen Bezugszeichen versehen und es gilt das bezüglich Figur 1 Gesagte entsprechend. Der wesentliche Unterschied zu dem ersten Ausführungsbeispiel besteht darin, dass die Zylinderbohrung 15 nicht als Sacklochbohrung, sondern als Durchgangsbohrung ausgeführt ist. Bei diesem Ausführungsbeispiel wird die Zylinderbohrung 15 durch eine Schraube 47 verschlossen. In der Schraube 47 ist der Dichtsitz 37 des Saugventils 35 eingearbeitet.
  • Nachfolgend wird an Hand der Figur 3, welche einen vergrößerten Ausschnitt A der Figur 2 zeigt, die Funktion des Saugventils 35 noch detailliert erläutert.
  • In Figur 3 ist der Kolben 13 im oberen Totpunkt. Demzufolge hat der Förderraum 31 sein minimales Volumen und die Kugel 39 dichtet den Förderraum 31 gegen den Niederdruck-Einlaß 45 der Kraftstoffhochdruckpumpe 10 ab. Diese Abdichtung erfolgt entlang einer kreisförmigen Dichtlinie (nicht gezeichnet), welche sich aus der Berührlinie zwischen der Kugel 39 und dem Dichtsitz 37 ergibt. Die Dichtheit dieses als Kugelventil ausgebildeten Saugventils 35 ist sehr hoch, da es nur eine linienförmige Berührung zwischen Kugel 39 und Dichtsitz 37 gibt, was zu einer entsprechend hohen Flächenpressung auf der Dichtlinie führt. Außerdem sind die Genauigkeitsanforderungen bei der Herstellung eines dicht schließenden Kugelventils geringer als bei Kegelventilen. Je nachdem wie der Winkel α des Dichtsitzes 37 gewählt wird, kann der Durchmesser der Dichtlinie zwischen Kugel 39 und Dichtsitz 37 bei konstantem Kugeldurchmesser variiert werden. Es hat sich herausgestellt, dass Dichtwinkel α zwischen 30° und 150° möglich sind und in der Regel ein Dichtwinkel α von 90° zu sehr guten Ergebnissen führt.
  • An den Dichtsitz 37 schließen eine Axialbohrung 48 sowie eine Querbohrung 49 an. Alternativ können auch mehrere Querbohrungen 49 (nicht dargestellt) vorgesehen sein. Die Querbohrung 49 mündet in einen Ringraum 50, welcher vom Gehäuse 17 und einem im Durchmesser reduzierten Bereich 50 der Schraube 47 begrenzt wird. An einer Stirnseite 52 der Schraube 47 ist eine Beißkante 53 ausgebildet, welche den Ringraum 51 vom Förderraum 31 abdichtet.
  • Der Ringraum 51 steht mit dem in dieser Darstellung nicht sichtbaren Niederdruck-Einlaß 45 der Kraftstoffhochdruckpumpe 10 hydraulisch in Verbindung. Dadurch, dass der Ringraum die Schraube 47 allseitig umgibt, kann über die Querbohrung 49 und die Axialbohrung 48 Kraftstoff in den Förderraum 31 angesaugt werden unabhängig davon, wie tief die Schraube 47 in das Gehäuse 17 eingeschraubt wurde.
  • Durch die Verwendung eines als Kugelventil ausgebildeten Saugventils 35 wird der Wirkungsgrad der Kraftstoffhochdruckpumpe erhöht, da die Kugel 39 einen großen Strömungsquerschnitt freigibt sobald sie vom Dichtsitz 37 abhebt, so dass der Kraftstoff schnell und ohne große Strömungsverluste angesaugt werden kann. Dazu ist es auch vorteilhaft, wenn bei geöffnetem Saugventil 35 die ringförmige Querschnittsfläche zwischen Dichtsitz 37 und Kugel 39 etwa bis zu 20mal größer ist als der Querschnitt der Querbohrung 49.
  • Außerdem wird wegen der guten Dichteigenschaften des als Kugelventil ausgebildeten Saugventils 35 während des Förderhubs des Kolbens 13 kein Kraftstoff aus dem Förderraum 31 in den Niederdruck-Einlass 45 zurückgedrückt.
  • In Figur 4 ist eine Brennkraftmaschine 54 schematisch dargestellt. Sie umfasst ein Kraftstoffeinspritzsystem 56. Dieses wiederum weist einen Kraftstoffbehälter 58 auf, aus dem eine elektrische Niederdruck-Kraftstoffpumpe 60 Kraftstoff fördert.
  • Die elektrische Niederdruck-Kraftstoffpumpe 60 fördert Kraftstoff zu der Kraftstoffhochdruckpumpe 10, welche so ausgebildet ist, wie in den Figuren 1 und 2 dargestellt. Der Hochdruck-Auslass 18 der Kraftstoffhochdruckpumpe 10 ist mit einer Kraftstoff-Sammelleitung 62 verbunden. Diese wird im allgemeinen auch als "Common-Rail" bezeichnet. An die Kraftstoff-Sammelleitung 62 sind insgesamt vier Einspritzventile 64 angeschlossen. Diese spritzen jeweils den Kraftstoff direkt in Brennräume 66 der Brennkraftmaschine 54 ein.

Claims (6)

  1. Kraftstoffhochdruckpumpe (10) für ein Kraftstoffeinspritzanlage (56), mit einem Gehäuse (17), mit einem Niederdruck-Einlass (45), mit einem Förderraum (31), in dem der Kraftstoff mittels eines oszillierenden Kolbens (13) komprimiert wird, mit einem Saugventil (35) zwischen Förderraum (31) und Niederdruck-Einlass (45), wobei ein Ventilglied des Saugventils (35) sich über eine im Förderraum (31) angeordnete Druckfeder (43) gegen den Kolben (13) abstützt, und mit einem Hochdruck-Auslass, wobei das Ventilglied des Saugventils (35) als Kugel (39) ausgebildet ist, dadurch gekennzeichnet, dass in dem Gehäuse (17) ein mit der Kugel (39) zusammenwirkender Dichtsitz (37) eingearbeitet ist.
  2. Kraftstoffhochdruckpumpe nach Anspruch 1, dadurch gekennzeichnet, dass zwischen Druckfeder (43) und Kugel (39) ein Federteller (41) vorgesehen ist.
  3. Kraftstoffhochdruckpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Durchmesser der Kugel (39) kleiner als der Durchmesser der Druckfeder (43) ist.
  4. Kraftstoffhochdruckpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Dichtsitz (37) einen Sitzwinkel (α) zwischen 30° und 150°, insbesondere von 90°, aufweist.
  5. Kraftstoffeinspritzanlage (56) mit einem Kraftstoffbehälter (58), mit mindestens einem Einspritzventil (64), welches den Kraftstoff direkt in den Brennraum (66) einer Brennkraftmaschine (54) einspritzt, mit mindestens einer Hochdruck-Kraftstoffpumpe (10), und mit einer Kraftstoff-Sammelleitung (62), an die das mindestens eine Einspritzventil (64) angeschlossen ist, dadurch gekennzeichnet, dass die Kraftstoffhochdruckpumpe (10) nach einem der vorhergehenden Ansprüche ausgebildet ist.
  6. Brennkraftmaschine (54) mit mindestens einem Brennraum (66), in den der Kraftstoff direkt eingespritzt wird, dadurch gekennzeichnet, dass sie eine Kraftstoffeinspritzanlage (56) nach Anspruch 5 aufweist.
EP03779679A 2002-10-31 2003-10-31 Kraftstoffhochdruckpumpe mit kugelventil im niederdruck-einlass Expired - Lifetime EP1561028B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10250661 2002-10-31
DE10250661 2002-10-31
DE10302043 2003-01-21
DE10302043A DE10302043A1 (de) 2002-10-31 2003-01-21 Kraftstoffhochdruckpumpe mit Kugelventil im Niederdruck-Einlass
PCT/DE2003/003627 WO2004040128A1 (de) 2002-10-31 2003-10-31 Kraftstoffhochdruckpumpe mit kugelventil im niederdruck-einlass

Publications (2)

Publication Number Publication Date
EP1561028A1 EP1561028A1 (de) 2005-08-10
EP1561028B1 true EP1561028B1 (de) 2008-07-23

Family

ID=32231867

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03779679A Expired - Lifetime EP1561028B1 (de) 2002-10-31 2003-10-31 Kraftstoffhochdruckpumpe mit kugelventil im niederdruck-einlass

Country Status (4)

Country Link
US (1) US7273036B2 (de)
EP (1) EP1561028B1 (de)
JP (1) JP2006504904A (de)
WO (1) WO2004040128A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501668B1 (de) * 2004-08-24 2007-03-15 Bosch Gmbh Robert Steuerventil für eine einspritzdüse
JP4650629B2 (ja) * 2004-11-16 2011-03-16 株式会社アドヴィックス ラジアルプランジャポンプ
JP2006242019A (ja) * 2005-03-01 2006-09-14 Jtekt Corp 燃料ポンプ用チェック弁
DE102007016134A1 (de) * 2006-04-25 2007-11-08 Robert Bosch Gmbh Kraftstoff-Hochdruckpumpe
AT503697B1 (de) * 2006-06-02 2008-06-15 Bosch Gmbh Robert Pumpenelement für eine hochdruckpumpe
ATE434724T1 (de) * 2006-07-14 2009-07-15 Bosch Gmbh Robert Hochdruck-kolbenpumpe für die brennstoffeinspritzung einer brennkraftmaschine
DE102007004605B4 (de) * 2007-01-30 2009-08-13 Continental Automotive Gmbh Hochdruckpumpe und Einspritzanlage für eine Brennkraftmaschine mit einer Hochdruckpumpe
DE102008043993B3 (de) * 2008-11-21 2010-04-29 Thielert Aircraft Engines Gmbh Common-Rail-Hochdruckpumpe
DE102010041310A1 (de) * 2010-09-24 2012-03-29 Robert Bosch Gmbh Pumpe und Verfahren zu deren Herstellung
DK2543812T3 (en) * 2011-07-08 2015-01-26 Welltec As Hydraulic well pump
ITMI20130023A1 (it) * 2013-01-09 2014-07-10 Bosch Gmbh Robert Gruppo di pompaggio per alimentare combustibile, preferibilmente gasolio, ad un motore a combustione interna
US9470320B1 (en) 2013-06-03 2016-10-18 Kelso Technologies Inc. Ball valve assembly
GB201503556D0 (en) * 2015-03-03 2015-04-15 Delphi International Operations Luxembourg S.�.R.L. High temperature fuel deflector for a fuel pump drive assembly
ITUA20161817A1 (it) * 2016-03-18 2017-09-18 Bosch Gmbh Robert Gruppo di pompaggio per alimentare combustibile, preferibilmente gasolio, ad un motore a combustione interna
WO2019161262A1 (en) * 2018-02-15 2019-08-22 Jacobsen Innovations, Inc. Pump

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3682572A (en) * 1970-07-27 1972-08-08 Donald L Yarger Piston type pump
DE4027794C2 (de) * 1990-09-01 2002-06-20 Continental Teves Ag & Co Ohg Hydraulische Radialkolbenpumpe
DE4307651C2 (de) * 1993-03-11 1996-05-09 Hatz Motoren Verbrennungsmotor mit Kraftstoffeinspritzung, insbesondere Einzylinder-Dieselmotor
DE19523283B4 (de) * 1995-06-27 2006-01-19 Robert Bosch Gmbh Pumpe, insbesondere Hochdruckpumpe für eine Kraftstoffeinspritzvorrichtung eines Verbrennungsmotors
EP0979353B1 (de) 1998-02-27 2004-09-29 Stanadyne Corporation Brennstoffzufuhrpumpe für benzineinspritzanlagen
US6694950B2 (en) * 1999-02-17 2004-02-24 Stanadyne Corporation Hybrid control method for fuel pump using intermittent recirculation at low and high engine speeds
DE19924774A1 (de) * 1999-05-29 2000-11-30 Bosch Gmbh Robert Kolbenpumpe
JP3924999B2 (ja) * 1999-08-12 2007-06-06 株式会社日立製作所 燃料ポンプ及びそれを用いた筒内噴射エンジン
DE10015295A1 (de) * 2000-03-28 2001-10-04 Bosch Gmbh Robert Kolbenpumpe
DE10057244A1 (de) 2000-11-18 2002-06-06 Bosch Gmbh Robert Kraftstoffeinspritzanlage für Brennkraftmaschinen mit verbessertem Startverhalten
DE10117600C1 (de) * 2001-04-07 2002-08-22 Bosch Gmbh Robert Hochdruck-Kraftstoffpumpe für ein Kraftstoffsystem einer direkteinspritzenden Brennkraftmaschine, Kraftstoffsystem sowie Brennkraftmaschine
US6764286B2 (en) * 2001-10-29 2004-07-20 Kelsey-Hayes Company Piston pump with pump inlet check valve
WO2003048564A1 (de) * 2001-12-01 2003-06-12 Robert Bosch Gmbh Radialkolbenpumpe mit zwangsschmierung
DE10218022A1 (de) * 2002-04-23 2003-11-06 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine

Also Published As

Publication number Publication date
US20060013701A1 (en) 2006-01-19
WO2004040128A1 (de) 2004-05-13
JP2006504904A (ja) 2006-02-09
EP1561028A1 (de) 2005-08-10
US7273036B2 (en) 2007-09-25

Similar Documents

Publication Publication Date Title
EP1727983B1 (de) Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
EP1671031B1 (de) Fluidpumpe, insbesondere kraftstoffhochdruckpumpe, mit druckdämpfer
EP1561028B1 (de) Kraftstoffhochdruckpumpe mit kugelventil im niederdruck-einlass
EP2798191B1 (de) Kraftstoffüberströmventil für eine kraftstoffeinspritzeinrichtung und kraftstoffeinspritzeinrichtung mit kraftstoffüberströmventil
DE19541507A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE102010063363A1 (de) Hochdruckpumpe
EP1714030B1 (de) Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
EP1141539B1 (de) Kolbenpumpe zur kraftstoffhochdruckerzeugung
EP2725226A1 (de) Kolbenpumpe
WO2010055100A1 (de) Pumpeneinheit für eine hochdruckpumpe
DE102009001433A1 (de) Saugventil für eine Kraftstoffhochdruckpumpe
DE10117600C1 (de) Hochdruck-Kraftstoffpumpe für ein Kraftstoffsystem einer direkteinspritzenden Brennkraftmaschine, Kraftstoffsystem sowie Brennkraftmaschine
DE10129449A1 (de) Kraftstoffhochdruckpumpe für Brennkraftmaschine mit verbessertem Teillastverhalten
DE102006017037B4 (de) Radialkolbenpumpe zur Kraftstoffhochdruckversorgung bei einer Brennkraftmaschine
EP1395753B1 (de) Hochdruckpumpe für ein kraftstoffsystem einer brennkraftmaschine
EP3894687B1 (de) Kraftstoff-hochdruckpumpe
DE102008041594A1 (de) Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine
DE10302043A1 (de) Kraftstoffhochdruckpumpe mit Kugelventil im Niederdruck-Einlass
DE10153189A1 (de) Kraftstoffpumpe, Kraftstoffsystem, Verfahren zum Betreiben eines Kraftstoffsystems sowie Brennkraftmaschine
EP2134966B1 (de) Pumpe, insbesondere kraftstoffhochdruckpumpe
EP1413756B1 (de) Kraftstoffpumpe
DE102014225642B4 (de) Ventilanordnung und Hochdruckpumpe für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE19959006C1 (de) Radialkolbenpumpe
DE102020206034A1 (de) Kraftstoffhochdruckpumpe
DE10115856C1 (de) Hochdruck-Kraftstoffpumpe für eine direkteinspritzende Brennkraftmaschine, Kraftstoffsystem für eine direkteinspritzende Brennkraftmaschine, sowie direkteinspritzende Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050531

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20070925

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50310206

Country of ref document: DE

Date of ref document: 20080904

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121113

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20121025

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121217

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50310206

Country of ref document: DE

Effective date: 20140501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031