EP1538232B1 - Korrosionsbeständige, austenitische Stahllegierung - Google Patents

Korrosionsbeständige, austenitische Stahllegierung Download PDF

Info

Publication number
EP1538232B1
EP1538232B1 EP04450211A EP04450211A EP1538232B1 EP 1538232 B1 EP1538232 B1 EP 1538232B1 EP 04450211 A EP04450211 A EP 04450211A EP 04450211 A EP04450211 A EP 04450211A EP 1538232 B1 EP1538232 B1 EP 1538232B1
Authority
EP
European Patent Office
Prior art keywords
weight
steel alloy
alloy according
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04450211A
Other languages
English (en)
French (fr)
Other versions
EP1538232A1 (de
Inventor
Gabriele Dr.-Ing. Saller
Herbert Dipl.-Ing. Aigner
Josef Dipl.Ing. Bernauer
Raimund Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH
Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Original Assignee
Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schoeller Bleckmann Oilfield Technology GmbH and Co KG, Boehler Edelstahl GmbH filed Critical Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Publication of EP1538232A1 publication Critical patent/EP1538232A1/de
Application granted granted Critical
Publication of EP1538232B1 publication Critical patent/EP1538232B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation

Definitions

  • the invention relates to an austenitic, substantially ferrite-free steel alloy.
  • the invention comprises the use of an austenitic, substantially ferrite-free steel alloy.
  • the invention relates to a process for the production of austenitic, substantially ferrite-free components, in particular boring bars, for oil field technology.
  • Austenitic alloys may be essentially ferrite-free, that is to say with a relative magnetic permeability ⁇ r smaller than 1.01. Thus, austenitic alloys can meet the above requirement and therefore be used principally for drill string components.
  • a selected austenitic material reaches minimum mechanical properties, in particular 0.2% proof strength and tensile strength and has grown during drilling operation dynamically changing loads, so in addition has a high fatigue strength. Otherwise, for example, boring bars of corresponding alloys can not withstand the high tensile and compressive stresses and torsional stresses occurring during use, or only for a short service life; undesirable rapid or premature material failure is the result.
  • Austenitic materials for drill string components are typically high alloyed with nitrogen to achieve high levels of yield strength and tensile strength of components such as drill rods.
  • a requirement to be considered is a lack of pores of the material used, which can be influenced by alloy composition and manufacturing process.
  • alloys are economically favorable alloys which lead to non-porous semi-finished product under solidification under atmospheric pressure.
  • austenitic alloys are rather rare because of the high nitrogen content, and solidification under elevated pressure is required throughout to achieve freedom from pores. Melting and solidification under nitrogen pressure may also be necessary to obtain enough nitrogen in the solidified material if insufficient nitrogen solubility is otherwise present.
  • austenitic alloys intended for use as components of drill strings should have good resistance to various types of corrosion.
  • high resistance to pitting corrosion and stress corrosion cracking is desirable, especially in chloride containing media.
  • austenitic alloys are known, each of which meets some of these requirements, namely extensive freedom from ferrite, good mechanical properties, freedom from pores and high corrosion resistance.
  • An austenitic alloy which leads to objects with low magnetic permeability and good mechanical properties when melted under atmospheric pressure is described in AT 407 882 B.
  • Such an alloy has in particular a high 0.2% proof stress, high tensile strength and a high permanent fatigue strength.
  • Alloys according to AT 407 882 B are expediently thermoformed and at temperatures of 350 ° C. subjected to a second deformation to about 600 ° C.
  • the alloys are suitable for the production of boring bars, which in the context of a drill bit in oilfield technology also satisfactorily meet the high demands with regard to static and dynamic load capacity over long periods of use.
  • the invention of the invention and has set itself the task of specifying an austenitic steel alloy which can be melted at atmospheric pressure and porenrud semi-finished and which with good mechanical properties, especially at high 0.2% proof stress, high tensile strength and high fatigue strength, at the same time a high resistance has both against stress corrosion cracking and pitting corrosion.
  • Another object of the invention is to provide uses for an austenitic, substantially ferrite-free alloy.
  • an austenitic, substantially ferrite-free steel alloy is provided, which has good mechanical properties, in particular high values of 0.2% proof stress and tensile strength and which simultaneously has a high resistance to stress corrosion cracking and also to Pitting corrosion has.
  • an at least largely pore-free block of an alloy according to the invention can thus be produced on melting and solidification under atmospheric pressure.
  • a temperature below the recrystallization temperature preferably below 600 ° C, in particular in the range of 300 ° C to 550 ° C.
  • Carbon (C) may be present in a steel alloy of the invention at levels up to 0.35% by weight. Carbon is an austenite former and has a favorable effect in terms of high mechanical properties. With a view to avoiding carbide precipitations, in particular for larger dimensions, it is preferable to adjust the carbon content to 0.01% by weight to 0.06% by weight.
  • Silicon (Si) is provided in amounts up to 0.75% by weight and serves mainly to deoxidize the steel. Higher contents than 0.75% by weight prove to be disadvantageous in terms of formation of intermetallic phases. Moreover, silicon is a ferrite former and therefore a silicon content should be limited to a maximum of 0.75% by weight. It is favorable, and therefore preferred, to provide silicon in contents of from 0.15% by weight to 0.30% by weight, because in this content range a sufficient deoxidizing effect is given with a small contribution of silicon to ferrite formation.
  • Manganese (Mn) is provided at levels of greater than 19.0% by weight to 30.0% by weight. This element contributes significantly to high nitrogen solubility. Non-porous materials from an inventive Steel alloy can therefore be produced even under solidification under atmospheric pressure. With respect to a nitrogen solubility of an alloy in the molten state and during and after solidification, it is preferred to use manganese in contents of more than 20% by weight. Manganese also stabilizes the austenite structure, especially at high degrees of deformation, against the formation of deformed martensite. With regard to a preferably good corrosion resistance, an upper limit of the manganese content has been found to be 25.5% by weight.
  • Chromium (Cr) proves to be high in corrosion resistance at levels of 17.0% by weight or more.
  • chromium allows Zulegieren large amounts of nitrogen.
  • Higher contents than 24.0 wt .-% can adversely affect a magnetic permeability, because chromium is one of the ferrite-stabilizing elements.
  • Molybdenum (Mo) is an element which contributes substantially to corrosion resistance in general and to pitting corrosion resistance in particular in a steel alloy according to the invention, wherein the effect of molybdenum in a content range of more than 1.90 wt% is enhanced by a presence of nickel ,
  • An optimal and therefore preferred range of molybdenum content in terms of corrosion resistance is defined by a lower limit of 2.05% by weight, a particularly preferred range by a lower limit of 2.5% by weight.
  • molybdenum on the one hand is an expensive element and on the other hand increases the tendency to form intermetallic phases at higher levels, a molybdenum content of 5.5 wt .-%, in preferred variants of the invention with 5.0 wt .-%, in particular 4.5 wt. %, limited.
  • Nickel (Ni) has been found to contribute actively and positively to corrosion resistance in a content range greater than 2.50% to 15.0% by weight and in cooperation with the other alloying elements. In particular, and this is considered to be completely surprising from a professional point of view, in the presence of more than 2.50 wt .-% nickel is given a high stress corrosion cracking resistance. Contrary to the opinion outlined in relevant textbooks, with increasing nickel levels, stress corrosion cracking resistance of chromium-containing austenites in chloride-containing media decreases dramatically and is at a minimum at about 20 wt% (see, eg: AJ Sedriks, Corrosion of Stainless Steels, 2 ed. , John Wiley & Sons Inc., 1996, page 276), a high stress crack corrosion resistance can be achieved in a steel alloy according to the invention even with nickel contents of more than 2.50% to 15.0% by weight in chloride-containing media.
  • Nickel contents of at least 2.65% by weight, preferably at least 3.6% by weight, in particular 3.8% by weight to 9.8% by weight, of nickel are particularly preferred in this connection.
  • Co Co
  • Co may be present at levels up to 5.0% by weight for substitution of nickel. Preferably, however, it is because of the high cost of this element due to keep a cobalt content below 0.2 wt .-%.
  • Nickel as stated above, makes a high contribution to corrosion resistance and is a strong austenite former.
  • molybdenum also makes a significant contribution to corrosion resistance, but is a ferrite former. Therefore, it is favorable if the nickel content is equal to or greater than the molybdenum content. In this context, it is particularly favorable if a nickel content is more than 1.3 times, preferably more than 1.5 times, a molybdenum content.
  • Nitrogen (N) is required in amounts of at least 0.35 wt% to 1.05 wt% to ensure high strength. Further, nitrogen contributes to the corrosion resistance and is a strong austenite former, therefore, higher contents than 0.40 wt .-%, especially higher than 0.60 wt .-%, are favorable. On the other hand, as nitrogen content increases, nitrogen-containing precipitate formation tends to increase, for example, Cr 2 N. In advantageous variants of the invention, nitrogen content is therefore limited to 0.95% by weight, preferably 0.90% by weight.
  • Boron (B) can be provided in amounts of up to 0.005% by weight and, in particular in a range from 0.0005% by weight to 0.004% by weight, promotes hot workability of the material composed according to the invention.
  • Copper (Cu) is tolerable in a steel alloy according to the invention in a content of less than 0.5 wt .-%. At levels of 0.04 wt.% To 0.35 wt.%, Copper proves to be quite advantageous in special drill bit applications, for example when boring bars come in contact with media such as hydrogen sulfide, especially H 2 S. Contents higher than 0.5% by weight promote precipitation formation and are disadvantageous for corrosion resistance.
  • Aluminum (Al) contributes to deoxidation of the steel besides silicon, but is a strong nitride former, which limits this element to less than 0.05% by weight.
  • S Sulfur
  • S is provided at levels up to 0.30% by weight. Greater contents than 0.1% by weight have a very favorable effect on the processing of a steel alloy according to the invention, because machining is facilitated. However, if one considers the highest corrosion resistance of the material, a sulfur content of 0.015 wt .-% is limited.
  • the content of phosphorus (P) is less than 0.035% by weight.
  • a phosphorus content is limited to a maximum of 0.02 wt .-%.
  • Vanadium (V), niobium (Nb), titanium (Ti) act in a complementary manner in the steel and can be present for this purpose individually or in any desired combination, with a maximum concentration of the elements present being at most 0.85% by weight. In view of a grain-refining effect and avoidance of coarse precipitations of these strong carbide formers, it is beneficial if a sum concentration of the elements present is more than 0.08% by weight and less than 0.45% by weight.
  • the elements tungsten, molybdenum, manganese, chromium, vanadium, niobium and titanium contribute positively to the solubility of nitrogen.
  • the further object of the invention to provide uses for an austenitic, substantially ferrite-free alloy is achieved by using a steel alloy according to the invention as a material for components for oil field technology.
  • a steel alloy according to the invention as a material for components for oil field technology.
  • the component is a Bohrstrangteil.
  • the further object of the invention is also achieved by using an alloy according to the invention for tensile and compression stressed components, which come into contact with corrosive media, in particular a corrosive liquid such as saline water.
  • the method of the invention is achieved by a method according to claim 26.
  • the semifinished product is expediently a bar which is deformed in the second deformation step with a degree of deformation of 10% to 20%.
  • Such degrees of deformation provide sufficient strength for use and permit turning or peeling machining with reduced tool wear.
  • Rapid and cost effective component manufacturing is enabled when the machining involves turning and / or peeling.
  • blocks were prepared whose chemical compositions correspond to alloys 1 to 5 and 7 in Table 1.
  • An alloy 6 cast in Table 1 was remelted under nitrogen atmosphere at 16 bar pressure and stitched.
  • the semifinished blocks were quenched with water to ambient temperature and finally subjected to a second deformation step at a temperature of 380 ° C to 420 ° C, with a degree of deformation of 13% to 17%.
  • the objects created in this way were examined or further processed into boring bars.
  • Alloys A, B, C, D and E represent products available on the market.
  • the alloys listed in Table 1 were examined for pitting corrosion resistance and stress corrosion cracking.
  • the determination of the pitting corrosion resistance was carried out by measuring the pitting potential against a standard hydrogen electrode according to ASTM G 61.
  • the stress corrosion cracking (SCC) was determined by determining the value of the SCC limit stress according to ATSM G 36.
  • the value of the SCC cut-off voltage represents the externally applied maximum test voltage which a test sample can withstand for more than 720 hours in 155% boiling 45% MgCl 2 solution.
  • Pitting potential E pit or SCC limit stress can even reach values corresponding to those of high alloyed Cr-Ni-Mo steels and nickel base alloys, with better strength properties as shown in Tables 4 and 5 at the same time. It is particularly favorable with respect to an SCC limit voltage, if a sum of molybdenum and nickel 4.7 wt .-% or more, in particular more than 6 wt .-%, is.
  • articles made of the alloys 1 to 7 according to the invention have a relative magnetic permeability of ⁇ r ⁇ 1,005 and at room temperature permanent fatigue strengths of at least 400 MPa at 10 7 load changes.
  • indexable inserts could be used 12% longer when machining Alloys 3 and 4 than when machining Alloy C rods Boring bars, which have high mechanical characteristics and improved corrosion resistance, are produced with less tool wear.
  • an alloy according to the invention is also optimally suitable as a material for fastening or connecting elements, such as Screws, nails, bolts or similar components, if they are exposed to high mechanical loads and aggressive environmental conditions.
  • alloys according to the invention find advantageous use is in the field of corrosion and wear parts such as baffles or parts that are exposed to high loading speeds.
  • components of alloys of the invention due to their combination of properties lowest material wear and thus achieve maximum life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Earth Drilling (AREA)

Description

  • Die Erfindung betrifft eine austenitische, im Wesentlichen ferritfreie Stahllegierung.
  • Weiter umfasst die Erfindung die Verwendung einer austenitischen, im Wesentlichen ferritfreien Stahllegierung.
  • Schließlich bezieht sich die Erfindung auf ein Verfahren zur Herstellung von austenitischen, im Wesentlichen ferritfreien Komponenten, insbesondere Bohrstangen, für die Ölfeldtechnik.
  • Beim Niederbringen von Bohrungen, beispielsweise in der Ölfeldtechnik, ist es notwendig, einen Bohrlochverlauf möglichst exakt festzustellen. Dies erfolgt üblicherweise durch Bestimmung der Lage des Bohrkopfes mit Hilfe von Magnetfeldsonden, bei welchen das magnetische Feld der Erde zur Messung genutzt wird. Teile von Bohrgeräten, insbesondere Bohrstangen, sind deswegen aus nicht-magnetischen Legierungen gefertigt. In diesem Zusammenhang wird heute zumindest für die in unmittelbarer Nähe von Magnetfeldsonden befindlichen Teile von Bohrsträngen eine relative magnetische Permeabilität µr kleiner als 1.01 gefordert.
  • Austenitische Legierungen können im Wesentlichen ferritfrei, das heißt mit einer relativen magnetischen Permeabilität µr kleiner als 1.01, ausgebildet sein. Somit können austenitische Legierungen die vorstehende Forderung erfüllen und daher grundsätzlich für Bohrstrangkomponenten eingesetzt werden.
  • Um für einen Einsatz in der Form von Bohrstrangkomponenten insbesondere für Tieflochbohrungen geeignet zu sein, ist es weiter erforderlich, dass ein gewählter austenitischer Werkstoff Mindestwerte der mechanischen Eigenschaften, insbesondere der 0.2 %-Dehngrenze und Zugfestigkeit, erreicht und den beim Bohrbetrieb auftretenden dynamisch wechselnden Belastungen gewachsen ist, also zusätzlich eine hohe Dauerwechselfestigkeit aufweist. Andernfalls können beispielsweise Bohrstangen aus entsprechenden Legierungen den beim Gebrauch auftretenden hohen Zug- und Druckbeanspruchungen sowie Torsionsbeanspruchungen nicht oder nur für eine kurze Einsatzzeit standhalten; unerwünscht rasches bzw. vorzeitiges Materialversagen ist die Folge.
  • Austenitische Werkstoffe für Bohrstrangkomponenten werden in der Regel hoch mit Stickstoff legiert, um hohe Werte der Streckgrenze und der Zugfestigkeit von Komponenten wie Bohrstangen zu erreichen. Eine zu berücksichtigende Anforderung ist jedoch eine Porenfreiheit des eingesetzten Werkstoffes, welche durch Legierungszusammensetzung und Herstellverfahren beeinflussbar ist.
  • In diesem Bezug stellen sich wirtschaftlich günstig selbstredend Legierungen dar, welche bei Erstarrung unter Atmosphärendruck zu porenfreiem Halbzeug führen. In der Praxis sind solche austenitische Legierungen allerdings des hohen Stickstoffgehaltes wegen eher selten, und es ist durchwegs ein Erstarren unter erhöhtem Druck erforderlich, um eine Porenfreiheit zu erreichen. Ein Erschmelzen und Erstarren unter Stickstoffdruck kann auch notwendig sein, um genügend Stickstoff im erstarrten Material zu erhalten, wenn andernfalls eine unzureichende Stickstofflöslichkeit gegeben ist.
  • Schließlich sollten austenitische Legierungen, welche für einen Einsatz als Komponenten von Bohrsträngen vorgesehen sind, eine gute Beständigkeit gegen verschiedene Arten von Korrosion aufweisen. Insbesondere ist ein hoher Widerstand gegen Lochfraßkorrosion und Spannungsrisskorrosion vor allem in chloridhältigen Medien erwünscht.
  • Gemäß dem Stand der Technik sind austenitische Legierungen bekannt, welche jeweils einige dieser Anforderungen, nämlich weitgehende Ferritfreiheit, gute mechanische Eigenschaften, Porenfreiheit und hohe Korrosionsbeständigkeit, erfüllen.
  • Aus der DE 39 40 438 C1 sind Gegenstände aus einem warm- und kaltverformten und nachfolgend bei Temperaturen von über 300 °C ausgelagerten, austenitischen Werkstoff mit (in Gewichtsprozent) max. 0.12 % Kohlenstoff, 0.20 % bis 1.00 % Silicium, 17.5 % bis 20.0 % Mangan, maximal 0.05 % Phosphor, maximal 0.015 % Schwefel, 17.0 % bis 20.0 % Chrom, maximal 5 % Molybdän, maximal 3.0 % Nickel, 0.8 % bis 1.2 % Stickstoff, bekannt. Diese Gegenstände weisen allerdings, wie in der DE 196 07 828 A1 von einigen derselben Erfinder bemerkt wird, bescheidene Dauerwechselfestigkeiten von bestenfalls 375 MPa auf, welche in aggressiver Umgebung, z.B. in Salzlösung noch deutlich tiefer liegen.
  • Eine andere austenitische Legierung ist aus der nebenbei schon erwähnten DE 196 07 828 A1 bekannt. Gemäß dieser Schrift werden Gegenstände für die offshore-Industrie vorgeschlagen, die aus einer austenitischen Legierung mit (in Gewichtsprozent) 0.1 % Kohlenstoff, 8 % bis 15 % Mangan, 13 % bis 18 % Chrom, 2.5 % bis 6 % Molybdän, 0 % bis 5 % Nickel und 0.55 % bis 1.1 % Stickstoff bestehen. Derartige Gegenstände sollen hohe mechanische Kennwerte und eine höhere Dauerwechselwechselfestigkeit als Gegenstände nach der DE 39 40 438 C1 aufweisen. Nachteilig ist jedoch eine auf die Legierungszusammensetzung zurückführbare geringe Stickstofflöslichkeit, weshalb unter Druck geschmolzen und erstarren gelassen werden muss oder noch aufwändigere pulvermetallurgische Herstellverfahren anzuwenden sind.
  • Eine bei Erschmelzen unter Atmosphärendruck zu Gegenständen mit geringer magnetischer Permeabilität und guten mechanischen Eigenschaften führende austenitische Legierung ist in der AT 407 882 B beschrieben. Eine solche Legierung weist insbesondere eine hohe 0.2 % Dehngrenze, hohe Zugfestigkeit und eine hohe Dauerwechselfestigkeit auf. Legierungen gemäß der AT 407 882 B werden zweckmäßigerweise warmverformt und bei Temperaturen von 350°C bis etwa 600°C einer zweiten Verformung unterworfen. Die Legierungen eigenen sich für eine Herstellung von Bohrstangen, welche im Rahmen eines Bohreinsatzes in der Ölfeldtechnik auch den hohen Anforderungen hinsichtlich statischer und dynamischer Belastbarkeit über lange Einsatzzeiten in zufriedenstellender Weise Rechnung tragen.
  • Dennoch, so wurde festgestellt, kann es zu Materialversagen kommen, weil Bohrstrangkomponenten wie Bohrstangen bei einem Einsatz neben hohen mechanischen Beanspruchungen auch hochkorrosiven Medien bei erhöhten Temperaturen ausgesetzt sind. In der Folge kann es zu Spannungsrisskorrosion kommen. Da Bohrstangen und andere Teile von Bohreinrichtungen auch während Stehzeiten mit korrosiven Medien in Kontakt stehen können, kann Lochfraßkorrosion ebenfalls entscheidend zum Materialversagen beitragen. Beide Korrosionsarten bewirken in der Praxis eine Verkürzung der maximalen theoretischen Gebrauchsdauer bzw. der Einsatzzeit von Bohrstangen, wie sie auf Grund der mechanischen Eigenschaften bzw. Kennwerte zu erwarten wäre.
  • Gemäß dem dargelegten Stand der Technik zeigt sich, dass bei hochstickstoffhältigen austenitischen Legierungen, welche unter Atmosphärendruck zu zumindest weitgehend porenfreien Blöcken erschmelzbar sind, die Anforderungen hinsichtlich guter mechanischer Eigenschaften und gleichzeitig hoher Beständigkeit gegen Korrosion bei Zug- und Druckbelastung als auch gegen Lochfraßkorrosion nicht zufriedenstellend erfüllt sind.
  • Hier knüpft die Erfindung an und stellt sich zur Aufgabe, eine austenitische Stahllegierung anzugeben, welche bei Atmosphärendruck erschmelzbar und zu porenfreiem Halbzeug verarbeitbar ist und welche bei guten mechanischen Eigenschaften, insbesondere bei hoher 0.2 % Dehngrenze, hoher Zugfestigkeit und hoher Dauerwechselfestigkeit, gleichzeitig eine hohe Beständigkeit sowohl gegen Spannungsrisskorrosion als auch gegen Lochfraßkorrosion aufweist.
  • Ein weiteres Ziel der Erfindung ist es, Verwendungen für eine austenitische, im Wesentlichen ferritfreie Legierung anzugeben.
  • Die genannte Aufgabe löst eine Stahllegierung nach Anspruch 1. Vorteilhafte Weiterbildungen einer erfindungsgemäßen Stahllegierung sind Gegenstand der Ansprüche 2 bis 21.
  • Die mit der Erfindung erzielten Vorteile sind insbesondere darin zu sehen, dass eine austenitische, im Wesentlichen ferritfreie Stahllegierung bereitgestellt wird, welche gute mechanische Eigenschaften, insbesondere hohe Werte der 0.2 % Dehngrenze und der Zugfestigkeit aufweist und welche gleichzeitig eine hohe Beständigkeit gegen Spannungsrisskorrosion und auch gegen Lochfraßkorrosion aufweist.
  • Auf Grund einer synergetisch abgestimmten Legierungszusammensetzung ist eine hohe Stickstofflöslichkeit gegeben. In vorteilhafter Weise kann somit ein zumindest weitgehend porenfreier Block aus einer erfindungsgemäßen Legierung bei Schmelzen und Erstarren unter Atmosphärendruck erstellt werden.
  • Nach einer Warmverformung eines Gussstückes in einem oder mehreren Schritten, einem wahlweise darauffolgenden Lösungsglühen des Halbzeuges und einer danach folgenden weiteren Verformung bei einer Temperatur unterhalb der Rekristallisationstemperatur, vorzugsweise unterhalb von 600 °C, insbesondere im Bereich von 300 °C bis 550 °C, liegt ein erfindungsgemäß zusammengesetzter Werkstoff im Wesentlichen frei von stickstoffhältigen und/oder karbidischen Ausscheidungen vor. Dies bewirkt eine hohe Dauerwechselfestigkeit desselben, weil der gesamte Stickstoff in Lösung vorliegt und beispielsweise Karbide, welche als Mikrokerben wirken, stark reduziert sind. Dementsprechend weist ein Gegenstand aus der erfindungsgemäßen Legierung bei Raumtemperatur eine Dauerwechselfestigkeit von mehr als 400 MPa bei 107 Lastwechsel auf.
  • Andererseits bewirkt eine Freiheit von stickstoffhältigen und/oder karbidischen Ausscheidungen allgemein eine hohe Korrosionsbeständigkeit des Stahls, weil vor allem Chrom und Molybdän nicht als Karbide bzw. Nitride gebunden sind und daher in Bezug auf Korrosionsbeständigkeit ihre passivierende Wirkung vollflächig entfalten. So können Teile aus erfindungsgemäßen Stahllegierungen bei besseren mechanischen Eigenschaften Beständigkeiten gegen Spannungsrisskorrosion und Lochfraßkorrosion aufweisen, die jene von hochlegierten Cr-Ni-Mo-Austeniten übertreffen.
  • Im Folgenden sind die Wirkungen der jeweiligen Elemente einzeln und im Zusammenwirken mit den übrigen Legierungsbestandteilen näher beschrieben.
  • Kohlenstoff (C) kann in einer erfindungsgemäßen Stahllegierung in Gehalten bis zu 0.35 Gew.-% vorhanden sein. Kohlenstoff ist ein Austenitbildner und wirkt sich in Bezug auf hohe mechanische Kennwerte günstig aus. Im Hinblick auf eine Vermeidung von karbidischen Ausscheidungen, insbesondere bei größeren Dimensionen, ist es bevorzugt, den Kohlenstoffgehalt auf 0.01 Gew.-% bis 0.06 Gew.-% einzustellen.
  • Silicium (Si) ist in Gehalten bis 0.75 Gew.-% vorgesehen und dient in der Hauptsache einer Desoxidation des Stahls. Höhere Gehalte als 0.75 Gew.-% erweisen sich im Hinblick auf eine Ausbildung intermetallischer Phasen als nachteilig. Silicium ist überdies ein Ferritbildner und auch deswegen sollte ein Siliciumgehalt auf maximal 0.75 Gew.-% begrenzt sein. Günstig und daher bevorzugt ist es, Silicium in Gehalten von 0.15 Gew.-% bis 0.30 Gew.-% vorzusehen, weil in diesem Gehaltsbereich eine ausreichend desoxidierende Wirkung bei geringem Beitrag von Silicium zur Ferritbildung gegeben ist.
  • Mangan (Mn) ist in Gehalten von mehr als 19.0 Gew.-% bis zu 30.0 Gew.-% vorgesehen. Dieses Element trägt wesentlich zu einer hohen Stickstofflöslichkeit bei. Porenfreie Werkstoffe aus einer erfindungsgemäßen Stahllegierung sind deshalb auch bei Erstarren unter Atmosphärendruck herstellbar. Hinsichtlich einer Stickstofflöslichkeit einer Legierung im schmelzflüssigen Zustand sowie während und nach der Erstarrung ist es bevorzugt, Mangan in Gehalten von mehr als 20 Gew.-% einzusetzen. Mangan stabilisiert überdies das Austenitgefüge speziell bei hohen Verformungsgraden gegen die Bildung von Umformmartensit. Mit Bezug auf eine bevorzugt gute Korrosionsbeständigkeit hat sich eine obere Grenze des Mangangehaltes mit 25.5 Gew.-% ergeben.
  • Chrom (Cr) erweist sich in Gehalten von 17.0 Gew.-% oder mehr als notwendig für eine hohe Korrosionsbeständigkeit. Außerdem ermöglicht Chrom ein Zulegieren großer Stickstoffmengen. Höhere Gehalte als 24.0 Gew.-% können sich nachteilig auf eine magnetische Permeabilität auswirken, weil Chrom zu den ferritstabilisierenden Elementen zählt. Besonders vorteilhaft sind Chrom-Gehalte von 19.0 % bis 23.5 %, vorzugsweise 20.0 % bis 23.0 %. Bei diesen Gehalten zeigt eine gemeinsame Betrachtung der Neigung zur Bildung von chromhältigen Ausscheidungen und Beständigkeit gegen Lochfraß- und Spannungsrisskorrosion ein Optimum.
  • Molybdän (Mo) ist ein Element, welches in einer Stahllegierung gemäß der Erfindung wesentlich zur Korrosionsbeständigkeit im allgemeinen und zur Lochfraßkorrosionsbeständigkeit im besonderen beiträgt, wobei die Wirkung von Molybdän in einem Gehaltsbereich von mehr als 1.90 Gew.-% durch eine Anwesenheit von Nickel verstärkt wird. Ein optimaler und daher bevorzugter Bereich des Molybdängehaltes in Bezug auf eine Korrosionsbeständigkeit ist durch eine untere Grenze von 2.05 Gew.-%, ein besonders bevorzugter Bereich durch eine untere Grenze von 2.5 Gew.-%, festgelegt. Da Molybdän zum einen ein teures Element ist und zum anderen bei größeren Gehalten die Tendenz zur Bildung intermetallischer Phasen steigt, ist ein Molybdängehalt mit 5.5 Gew.-%, in bevorzugten Varianten der Erfindung mit 5.0 Gew.-%, insbesondere mit 4.5 Gew.-%, begrenzt.
  • Wolfram (W) kann in Konzentrationen von bis zu 2.0 Gew.-% anwesend sein und zur Steigerung der Korrosionsbeständigkeit beitragen. Wenn eine im Wesentlichen ausscheidungsfreie Legierung gefordert ist, ist es zweckmäßig einen Wolframgehalt zwischen 0.05 Gew.-% und 0.2 Gew.-% zu halten. Um intermetallische bzw. stickstoffhältige und/oder karbidische Ausscheidungen von Wolfram bzw. Wolfram und Molybdän hintan zuhalten, ist es günstig, wenn ein Summengehalt X (in Gew.-%) dieser Elemente, berechnet nach X = (%Molybdän) + 0.5*(% Wolfram), größer als 2 und kleiner als 5.5 ist.
  • Nickel (Ni) trägt, wie gefunden wurde, in einem Gehaltsbereich von mehr als 2.50 Gew.-% bis 15.0 Gew.-% und im Zusammenwirken mit den übrigen Legierungselementen aktiv und positiv zur Korrosionsbeständigkeit bei. Insbesondere, und dies ist aus fachmännischer Sicht als völlig überraschend zu werten, ist bei Anwesenheit von mehr als 2.50 Gew.-% Nickel eine hohe Spannungsrisskorrosionsbeständigkeit gegeben. Entgegen der in einschlägigen Lehr- und Fachbüchem dargelegten Meinung, dass mit steigenden Nickelgehalten die Spannungsrisskorrosionsbeständigkeit von chromhältigen Austeniten in chloridhältigen Medien dramatisch abnimmt und bei etwa 20 Gew.-% ein Minimum einnimmt (siehe, z.B.: A.J. Sedriks, Corrosion of Stainless Steels, 2nd Edition, John Wiley & Sons Inc., 1996, Seite 276), kann in einer erfindungsgemäßen Stahllegierung auch bei Nickelgehalten von mehr als 2.50 Gew.-% bis 15.0 Gew.-% in chloridhältigen Medien eine hohe Spannungsrisskorrosionsbeständigkeit erreicht werden.
  • Eine abgesicherte wissenschaftliche Erklärung dieses Effekts liegt noch nicht vor. Vermutet wird Folgendes: Für eine Entstehung transkristalliner Spannungsrisskorrosion durch Gleitvorgänge ist eine planare Versetzungsanordnung notwendig, welche durch eine niedrige Stapelfehlerenergie begünstigt wird. In einer erfindungsgemäßen Legierung erhöht Nickel die Stapelfehlerenergie. Dies führt bei mehr als 2.50 Gew.-% Nickel zu hohen Stapelfehlerenergien und zu Versetzungsknäuel, wodurch eine Anfälligkeit gegen Spannungsrisskorrosion verringert ist.
  • Besonders bevorzugt sind in diesem Zusammenhang Nickelgehalte von zumindest 2.65 Gew.-%, vorzugsweise zumindest 3.6 Gew.-%, insbesondere 3.8 Gew.-% bis 9.8 Gew.-%, Nickel.
  • Cobalt (Co) kann in Gehalten bis zu 5.0 Gew.-% zur Substitution von Nickel vorgesehen sein. Bevorzugt ist es jedoch schon der hohen Kosten dieses Elementes wegen, einen Cobaltgehalt unter 0.2 Gew.-% zu halten.
  • Nickel leistet, wie oben dargelegt, einen hohen Beitrag zur Korrosionsbeständigkeit und ist ein starker Austenitbildner. Demgegenüber leistet Molybdän zwar auch einen wesentlichen Beitrag zur Korrosionsbeständigkeit, ist aber ein Ferritbildner. Daher ist es günstig, wenn der Nickelgehalt gleich oder größer ist, als der Molybdängehalt. Besonders günstig ist in diesem Zusammenhang, wenn ein Nickelgehalt mehr als das 1.3-fache, vorzugsweise mehr als das 1.5-fache, eines Molybdängehaltes beträgt.
  • Stickstoff (N) ist in Gehalten von zumindest 0.35 Gew.-% bis 1.05 Gew.-% erforderlich, um eine hohe Festigkeit sicherzustellen. Weiter trägt Stickstoff zur Korrosionsbeständigkeit bei und ist ein starker Austenitbildner, weswegen höhere Gehalte als 0.40 Gew.-%, insbesondere höher als 0.60 Gew.-%, günstig sind. Auf der anderen Seite steigt mit zunehmendem Stickstoffgehalt die Neigung zu einer Bildung von stickstoffhältigen Ausscheidungen, beispielsweise Cr2N. In vorteilhaften Varianten der Erfindung ist ein Stickstoffgehalt daher mit 0.95 Gew.-%, vorzugsweise 0.90 Gew.-%, begrenzt.
  • Als vorteilhaft hat sich erwiesen, wenn das Verhältnis der Gewichtsanteile von Stickstoff zu Kohlenstoff größer als 15 ist, weil dann eine Bildung von rein karbidhältigen Ausscheidungen, welche sich äußerst nachteilig auf eine Korrosionsbeständigkeit des Werkstoffes auswirken, zumindest weitgehend ausgeschlossen ist.
  • Bor (B) kann in Gehalten bis zu 0.005 Gew.-% vorgesehen sein und begünstigt insbesondere in einem Bereich von 0.0005 Gew.-% bis 0.004 Gew.-% eine Warmverformbarkeit des erfindungsgemäß zusammensetzten Werkstoffes.
  • Kupfer (Cu) ist in einer erfindungsgemäßen Stahllegierung in einem Gehalt von weniger als 0.5 Gew.-% tolerierbar. In Gehalten von 0.04 Gew.-% bis 0.35 Gew.-% erweist sich Kupfer als durchaus vorteilhaft bei speziellen Einsatzzwecken von Bohrstangen, beispielsweise wenn Bohrstangen bei Bohrungen mit Medien wie Schwefelwasserstoffen, insbesondere H2S, in Kontakt kommen. Gehalte höher als 0.5 Gew.-% fördern eine Ausscheidungsbildung und erweisen sich als nachteilig für die Korrosionsbeständigkeit.
  • Aluminium (Al) trägt neben Silicium zu einer Desoxidation des Stahles bei, ist jedoch ein starker Nitridbildner, weshalb dieses Element gewichtsmäßig auf weniger als 0.05 Gew.-% eingeschränkt wird.
  • Schwefel (S) ist in Gehalten bis zu 0.30 Gew.-% vorgesehen. Größere Gehalte als 0.1 Gew.-% wirken sich sehr günstig auf eine Verarbeitung einer erfindungsgemäßen Stahllegierung aus, weil eine spanabhebende Bearbeitung erleichtert ist. Wenn jedoch ein Augenmerk höchster Korrosionsbeständigkeit des Werkstoffes gilt, ist ein Schwefelgehalt mit 0.015 Gew.-% begrenzt.
  • In einer Stahllegierung gemäß der Erfindung ist der Gehalt an Phosphor (P) geringer als 0.035 Gew.-%. Vorzugsweise ist ein Phosphorgehalt mit maximal 0.02 Gew.-% begrenzt.
  • Vanadium (V), Niob (Nb), Titan (Ti) wirken komfeinend im Stahl und können zu diesem Zweck einzeln oder in beliebiger Kombination vorhanden sein, wobei eine Summenkonzentration der vorhandenen Elemente maximal 0.85 Gew.-% beträgt. Im Hinblick auf eine kornfeinende Wirkung und eine Vermeidung von groben Ausscheidungen dieser starken Karbidbildner, ist es von Vorteil, wenn eine Summenkonzentration der vorhandenen Elemente mehr als 0.08 Gew.-% und weniger als 0.45 Gew.-% beträgt.
  • In einer erfindungsgemäßen Stahllegierung tragen die Elemente Wolfram, Molybdän, Mangan, Chrom, Vanadium, Niob und Titan positiv zur Löslichkeit von Stickstoff bei.
  • Es ist besonders günstig, wenn Halbzeug aus einer erfindungsgemäßen Legierung bei einer Temperatur von mehr als 750 °C warmverformt, wahlweise lösungsgeglüht und abgeschreckt, und anschließend bei einer Temperatur unterhalb der Rekristallisationstemperatur, vorzugsweise unterhalb von 600°C, insbesondere im Temperaturbereich von 300 °C bis 500 °C, verformt ist. In diesem Zustand des Werkstoffes liegt ein Gefüge frei von stickstoffhältigen und/oder karbidischen Ausscheidungen vor. Bei Anwendung der genannten Verfahrensschritte kann ein homogenes, feines austenitisches Gefüge ohne Umformmartensit erreicht werden. Derart behandelte Werkstoffe weisen bei Raumtemperatur eine Dauerwechselfestigkeit von mehr als 400 MPa bei 107 Lastwechseln auf.
  • Das weitere Ziel der Erfindung, Verwendungen für eine austenitische, im Wesentlichen ferritfreie Legierung anzugeben, wird durch Verwendung einer erfindungsgemäßen Stahllegierung als Werkstoff für Komponenten für die Ölfeldtechnik erreicht. Insbesondere als günstig erweist es sich, wenn die Komponente ein Bohrstrangteil ist.
  • Das weitere Ziel der Erfindung wird auch durch Verwendung einer Legierung gemäß der Erfindung für auf Zug und Druck beanspruchte Bauteile, welche mit korrosiven Medien, insbesondere einer korrosiven Flüssigkeit wie salzhältiges Wasser, in Kontakt kommen, erreicht.
  • Die Vorteile einer erfindungsgemäßen Verwendung sind insbesondere darin zu sehen, dass bei Einsatz der genannten Legierungen korrosionschemischer Verschleiß verzögert ist und die Komponenten bzw. Bauteile eine erhöhte Gebrauchsdauer aufweisen.
  • Im Rahmen einer Weiterverarbeitung von stangenförmigem Material aus einer erfindungsgemäßen Legierung zu Bohrstangen durch Drehen und Schälen hat sich überraschenderweise gezeigt, dass ein Verschleiß von Dreh- bzw. Schälwerkzeugen bei Vergleich mit Material gemäß dem Stand der Technik erheblich verringert ist.
  • Zufolge diesem Aspekt stellt es ein verfahrensmäßiges Ziel der Erfindung dar, ein Verfahren zur Herstellung von austenitischen, im Wesentlichen ferritfreien Komponenten für die Ölfeldtechnik anzugeben, mit welchem insbesondere Bohrstangen hoher Korrosionsbeständigkeit mit geringerem Werkzeugverschleiß kostengünstig herstellbar sind.
  • Das verfahrensgemäße Ziel der Erfindung wird durch ein Verfahren nach Anspruch 26 erreicht.
  • Die mit einem derartigen Verfahren erreichten Vorteile sind insbesondere darin zu sehen, dass Komponenten für die Ölfeldtechnik, welche bei für Einsatzzwecke ausreichenden mechanischen Eigenschaften verbesserte Korrosionsbeständigkeit aufweisen, bei einem um bis zu 12 % verringertem Werkzeugverschleiß herstellbar sind. Ein Homogenisieren kann dabei sowohl vor einem ersten Warmverformungsschritt als auch nach einem ersten Warmverformungsschritt, jedoch vor einem zweiten Warmverformungsschritt, vorgenommen werden.
  • Höhere Temperaturen erleichtern eine Verformung im Verformungsschritt nach einer verstärkten Abkühlung und es ist daher günstig, wenn dieser bei einer Temperatur des Halbzeuges von über 350°C durchgeführt wird.
  • Wenn die zu erstellende Komponente eine Bohrstange ist, ist das Halbzeug zweckmäßigerweise eine Stange, welche im zweiten Verformungsschritt mit einem Verformungsgrad von 10 % bis 20 % verformt wird. Derartige Verformungsgrade erbringen eine ausreichende Festigkeit für Einsatzzwecke und erlauben eine Dreh- bzw. Schälbearbeitung bei verringertem Werkzeugverschleiß.
  • In Bezug auf eine Güte von erstellten Komponenten hat es sich als günstig erwiesen, wenn ein Block mittels Elektroschlacke-Umschmelz-Verfahren hergestellt wird.
  • Eine rasche und kostengünstige Fertigung von Komponenten wird ermöglicht, wenn die spanabhebende Bearbeitung ein Drehen und/oder Schälen umfasst.
  • Im Folgenden ist die Erfindung anhand von Beispielen noch weiter erläutert.
  • Durch Schmelzen unter Atmosphärendruck wurden Blöcke erstellt, deren chemische Zusammensetzungen den Legierungen 1 bis 5 sowie 7 in Tabelle 1 entsprechen. Ein Gusstück aus Legierung 6 in Tabelle 1 wurde unter Stickstoffatmosphäre bei 16 bar Druck umgeschmolzen und aufgestickt. Die porenfreien Blöcke wurden anschließend bei 1200 °C homogenisiert und bei 910 °C mit einem Verformungsgrad von 75 % warmverformt [Verformungsgrad = ((Ausgangsquerschnitt - Endquerschnitt) / Ausgangsquerschnitt)* 100]. Danach folgte eine Lösungsglühbehandlung zwischen 1000 °C und 1100 °C. Anschließend wurden die zu Halbzeug verformten Blöcke mit Wasser auf Umgebungstemperatur abgeschreckt und schließlich bei Temperatur von 380 °C bis 420°C einem zweiten Verformungsschritt unterworfen, wobei ein Verformungsgrad 13 % bis 17 % betrug. Die so erstellten Gegenstände wurden untersucht bzw. zu Bohrstangen weiterverarbeitet.
  • Legierungen A, B, C, D und E, deren Zusammensetzungen ebenfalls aus Tabelle 1 ersichtlich sind, stellen am Markt erhältliche Produkte dar.
  • Gegenstände aus diesen Legierungen wurden zu Vergleichszwecken ebenfalls untersucht bzw. bearbeitet.
    Figure imgb0001
  • Die in Tabelle 1 angeführten Legierungen wurden hinsichtlich Lochfraßkorrosionsbeständigkeit und Spannungsrisskorrosion untersucht. Die Bestimmung der Lochfraßkorrosionsbeständigkeit erfolgte durch Messung des Lochkorrosionspotentials gegenüber einer Standard-Wasserstoffelektrode nach ASTM G 61. Die Spannungsrisskorrosion (SCC) wurde durch Ermittlung des Wertes der SCC-Grenzspannung nach ATSM G 36 bestimmt. Der Wert der SCC-Grenzspannung steht für jene außen angelegte maximale Prüfspannung, welche eine Prüfprobe mehr als 720 Stunden in bei 155 °C siedender 45%-MgCl2-Lösung erträgt.
  • Untersuchungen an Gegenständen aus den in Tabelle 1 angeführten Legierungen belegen bei hohen mechanischen Kennwerten eine überragende Korrosionsbeständigkeit von erfindungsgemäßen Werkstoffen. Vor allem im Vergleich mit den aus dem Stand der Technik bekannten Cr-Mn-Austeniten (Legierungen A, B und C) zeigt sich gemäß Tabelle 2 und Tabelle 3, dass erfindungsgemäße Legierungen bei guten mechanischen Eigenschaften deutlich korrosionsbeständiger sind. Dabei zeigt sich eine erhöhte Beständigkeit erfindungsgemäßer Legierungen sowohl gegen Lochfraßkorrosion als auch gegen Spannungsrisskorrosion.
  • Ein Lochkorrosionspotential Epit bzw. eine SCC-Grenzspannung kann sogar Werte entsprechend jenen von hochlegierten Cr-Ni-Mo-Stählen und Nickelbasislegierungen erreichen, wobei gleichzeitig, wie die Tabellen 4 und 5 belegen, bessere Festigkeitseigenschaften gegeben sind. Besonders günstig ist dabei mit Bezug auf eine SCC-Grenzspannung, wenn ein Summengehalt von Molybdän und Nickel 4.7 Gew.-% oder mehr, insbesondere mehr als 6 Gew.-%, beträgt. Tabelle 2: Lochkorrosionspotential Epit (bezogen jeweils auf eine Standard-Wasserstoffelektrode) von Vergleichslegierungen A bis E und erfindungsgemäßen Legierungen 1 bis 7
    Legierung PREN-Wert* Lochkorrosionspotential EPit
    Test A
    (25 °C, 80000 ppm Cl -)
    Test B
    (60°C, synthetisches Meerwasser)
    A 20,0 < 0 < 0
    B 28,8 164 < 0
    C 36,3 527 49
    D 42,5 kein Lochfraß 1142
    E 30,8 kein Lochfraß 733
    1 35,1 558 65
    2 35,0 563 77
    3 41,3 kein Lochfraß 671
    4 45,3 kein Lochfraß 1091
    5 46,9 kein Lochfraß 1188
    6 37,3 kein Lochfraß 645
    * PREN = pitting resistance equivalent number
    (PREN = Gew.-%Cr + 3,3* Gew.-%Mo + 16* Gew.-%N)
    Tabelle 3: Spannungsrisskorrosion(SCC) - Grenzspannung in Magnesiumchlorid (lösungsgeglühter und kaltverformter Zustand der Legierungen)
    Legierung Mo-Gehalt
    [Gew: %]
    Ni-Gehalt
    [Gew.%]
    Σ(%Ni + %Mo)
    [Gew.%]
    SCC- Grenzspannung
    [MPa]
    A 0,5 1,1 1,6 250
    B 0,3 1,0 1,3 325
    C 0,3 1,6 1,9 375
    D 3,2 29,4 32,6 550
    E 3,1 Rest 47,1 850
    1 1,94 3,9 5,8 450
    2 2,13 5,8 7,9 475
    3 2,03 4,5 6,5 500
    4 3,15 6,5 9,7 525
    5 4,11 9,3 13,4 550
    6 2,05 2,7 4,7 450
    Tabelle 4: Mechanische Eigenschaften und Komgröße von Vergleichslegierungen A bis E und erfindungsgemäßen Legierungen 1 bis 7 im lösungsgeglühten Zustand
    Legierung Mechanische Eigenschaften ASTM- Korn- größe
    0,2%- Dehngrenze Rp0,2 [MPa] Zugfestigkeit Rm [MPa] Bruchdehnung A5 [%] Kerbschlagarbeit A v [J]
    A 405 725 55 305 3-6
    B 515 845 52 350
    C 599 942 48 325
    D 445 790 63 390
    E 310 672 75 335
    1 507 843 50 289 4-5
    2 497 829 50 293
    3 598 944 51 303
    4 571 928 53 301
    5 564 903 54 295
    6 582 930 52 355
    Tabelle 5: Mechanische Eigenschaften von Vergleichslegierungen A bis E und erfindungsgemäßen Legierungen 1 bis 7 im lösungsgeglühten und kaltverformten Zustand
    Legierung Mechanische Eigenschaften Kaltver- formungsgrad [%]
    0,2%- Dehngrenze Rp0,2 [MPa] Zugfestigkeit R m [MPa] Bruchdehnung A 5 [%] Kerbschlag- arbeit A v [J]
    A 825 915 30 225 10-30
    B 1015 1120 25 190
    C 1120 1229 23 145
    D 982 1089 21 210 20-30
    E 1015 1190 23 70 nicht bestimmt
    1 1021 1128 24 195 13- 17
    2 996 1097 24 183
    3 1117 1230 22 147
    4 1103 1215 22 152
    5 1077 1192 23 156
    6 1112 1226 22 165
  • Weitere Erprobungen zeigten, dass Gegenstände aus den erfindungsgemäßen Legierungen 1 bis 7 eine relative magnetische Permeabilität von µr < 1.005 und bei Raumtemperatur Dauerwechselfestigkeiten von zumindest 400 MPa bei 107 Lastwechsel aufweisen.
  • Bei einer spanabhebenden Bearbeitung von stangenförmigem Material aus Legierung C sowie Material aus der Legierungen 3 und 4 im Rahmen einer Herstellung von Bohrstangen konnten Wendeschneidplatten bei Bearbeitung der Legierungen 3 und 4 um 12 % länger eingesetzt werden als bei Bearbeitung von Stangen aus Legierung C. Somit können Bohrstangen, welche hohe mechanische Kennwerte und eine verbesserte Korrosionsbeständigkeit aufweisen, mit geringerem Werkzeugverschleiß erzeugt werden.
  • Durch die Kombination aus höchster Festigkeit mit guter Zähigkeit und besten Korrosionseigenschaften eignet sich eine erfindungsgemäße Legierung optimal auch als Werkstoff für Befestigungs- oder Verbindungselemente, wie Schrauben, Nägel, Bolzen oder dergleichen Komponenten, wenn diese hohen mechanischen Belastungen sowie aggressiven Umgebungsbedingungen ausgesetzt sind.
  • Ein weiteres Anwendungsfeld, in dem Legierungen gemäß der Erfindung mit Vorteil Verwendung finden, liegt im Bereich korrosions- und verschleißbeanspruchter Teile wie Prallbleche oder Teilen, die hohen Belastungsgeschwindigkeiten ausgesetzt sind. In diesen Einsatzgebieten können Komponenten aus erfindungsgemäßen Legierungen auf Grund ihrer Eigenschaftskombination geringsten Materialverschleiß und damit eine maximale Lebensdauer erzielen.

Claims (30)

  1. Austenitische, im Wesentlichen ferritfreie Stahllegierung enthaltend (in Gew.-%)
    bis 0.15 % Kohlenstoff
    bis 0.75 % Silicium
    mehr als 19.0 % bis 30.0 % Mangan
    mehr als 17.0 % bis 24.0 % Chrom
    mehr als 1.90 % bis 5.5 % Molybdän
    bis 2.0 % Wolfram
    2.50 % bis 15.0 % Nickel
    bis 5.0 % Cobalt
    0.60% bis 1.05 % Stickstoff
    bis 0.005 % Bor
    bis 0.30 % Schwefel
    weniger als 0.5 % Kupfer
    weniger als 0.05 % Aluminium
    weniger als 0.035 % Phosphor,
    sowie wahlweise ein oder mehrere Element(e) ausgewählt aus der Gruppe bestehend aus Vanadium, Niob und Titan, wobei die Summenkonzentration der gewählten Elemente maximal 0.85 Gew.-% beträgt,
    Rest Eisen und herstellungsbedingte Verunreinigungen.
  2. Stahllegierung nach Anspruch 1, enthaltend (in Gew.-%) zumindest 2.65 %, vorzugsweise zumindest 3.6 %, insbesondere 3.8 % bis 9.8 %, Nickel.
  3. Stahllegierung nach Anspruch 1 oder 2, enthaltend (in Gew.-%) weniger als 0.2 % Cobalt.
  4. Stahllegierung nach einem der Ansprüche 1 bis 3, enthaltend (in Gew.-%) 2.05 % bis 5.0 %, vorzugsweise 2.5 % bis 4.5 %, Molybdän.
  5. Stahllegierung nach einem der Ansprüche 1 bis 4, enthaltend (in Gew.-%) mehr als 20.0 % bis 25.5 % Mangan.
  6. Stahlegierung nach einem der Ansprüche 1 bis 5, enthaltend (in Gew.-%) 19.0 % bis 23.5 %, vorzugsweise 20.0 % bis 23.0 %, Chrom.
  7. Stahllegierung nach einem der Ansprüche 1 bis 6, enthaltend (in Gew.-%) 0.15 % bis 0.30 % Silicium.
  8. Stahllegierung nach einem der Ansprüche 1 bis 7, enthaltend (in Gew.-%) 0.01 % bis 0.06 % Kohlenstoff.
  9. Stahllegierung nach einem der Ansprüche 1 bis 8, enthaltend (in Gew.-%) bis 0.95 %, vorzugsweise bis 0.90 % Stickstoff.
  10. Stahllegierung nach einem der Ansprüche 1 bis 9, wobei das Verhältnis der Gewichtsanteile von Stickstoff zu Kohlenstoff größer als 15 ist.
  11. Stahllegierung nach einem der Ansprüche 1 bis 10, enthaltend (in Gew.-%) 0.04 % bis 0.35 % Kupfer.
  12. Stahllegierung nach einem der Ansprüche 1 bis 11, enthaltend (in Gew.-%) 0.0005 % bis 0.004 % Bor.
  13. Stahllegierung nach einem der Ansprüche 1 bis 12 mit der Maßgabe, dass der Nickelgehalt gleich oder größer als der Molybdängehalt ist.
  14. Stahllegierung nach einem der Ansprüche 1 bis 13, wobei der Nickelgehalt mehr als das 1.3-fache, vorzugsweise mehr als das 1.5-fache, des Molybdängehaltes beträgt.
  15. Stahllegierung nach einem der Ansprüche 1 bis 14, welche zumindest zwei Elemente ausgewählt aus der Gruppe bestehend aus
    Vanadium
    Niob
    Titan,
    enthält, wobei der Gewichtsanteil dieser Elemente in Summe mehr als 0.08 Gew.-% und weniger als 0.45 Gew.-% beträgt.
  16. Stahllegierung nach einem der Ansprüche 1 bis 15, enthaltend (in Gew.-%) maximal 0.015 % Schwefel.
  17. Stahllegierung nach einem der Ansprüche 1 bis 16, enthaltend (in Gew.-%) maximal 0.02 % Phosphor.
  18. Stahllegierung nach einem der Ansprüche 1 bis 17, enthaltend Molybdän und Wolfram, wobei der Summengehalt X (in Gew.-%) berechnet nach
    X = (%Molybdän) + 0.5*(% Wolfram) größer als 2 und kleiner als 5.5 ist.
  19. Stahllegierung nach einem der Ansprüche 1 bis 18, mit einer Dauerwechselfestigkeit bei Raumtemperatur von größer als 400 MPa bei 107 Lastwechsel.
  20. Stahllegierung nach einem der Ansprüche 1 bis 19, welche im Wesentlichen frei von stickstoffhältigen und/oder karbidischen Ausscheidungen vorliegt.
  21. Stahllegierung nach einem der Ansprüche 1 bis 20, welche bei einer Temperatur von mehr als 750 °C warmverformt, danach wahlweise lösungsgeglüht und anschließend bei einer Temperatur unterhalb der Rekristallisationstemperatur, vorzugsweise unterhalb von 600 °C, insbesondere im Temperaturbereich von 300 °C bis 550 °C, verformt ist.
  22. Stahllegierung nach einem der Ansprüche 1 bis 21, welche in Form einer Komponente für die Ölfeldtechnik, insbesondere in Form eines Bohrstrangteils, vorliegt.
  23. Verwendung einer Stahllegierung nach einem der Ansprüche 1 bis 21 als Werkstoff für Komponenten für die Ölfeldtechnik.
  24. Verwendung einer Stahllegierung nach Anspruch 23, wobei die Komponente ein Bohrstrangteil ist.
  25. Verwendung einer Stahllegierung nach einem der Ansprüche 1 bis 21 für auf Zug und Druck beanspruchte Bauteile, welche mit korrosiven Medien, insbesondere einer korrosiven Flüssigkeit wie salzhältiges Wasser, in Kontakt kommen.
  26. Verfahren zur Herstellung von austenitischen, im Wesentlichen ferritfreien Komponenten, insbesondere Bohrstangen, für die Ölfeldtechnik, wobei zuerst ein Gussstück enthaltend (in Gew.-%)
    bis 0.15 % Kohlenstoff
    bis 0.75 % Silicium
    mehr als 19.0 % bis 30.0 % Mangan
    mehr als 17.0 % bis 24.0 % Chrom
    mehr als 1.90 % bis 5.5 % Molybdän
    bis 2.0 % Wolfram
    2.50 % bis 15.0 % Nickel
    bis 5.0 % Cobalt
    0.60 % bis 1.05 % Stickstoff
    bis 0.005 % Bor
    bis 0.30 % Schwefel
    weniger als 0.5 % Kupfer
    weniger als 0.05 % Aluminium
    weniger als 0.035 % Phosphor,
    sowie wahlweise ein oder mehrere Element(e) ausgewählt aus der Gruppe bestehend aus Vanadium, Niob und Titan, wobei die Summenkonzentration der gewählten Elemente maximal 0.85 Gew.-% beträgt,
    Rest Eisen und herstellungsbedingte Verunreinigungen
    erstellt wird,
    worauf das Gussstück bei einer Temperatur von mehr als 750°C in mehreren Warmverformungsteilschritten zu einem Halbzeug verformt wird, wobei wahlweise vor dem ersten Teilschritt oder zwischen den Teilschritten ein Homogenisieren des Halbzeuges bei einer Temperatur von mehr als 1150 °C erfolgt, worauf nach dem letzten Warmverformungsteilschritt und einem darauf wahlweise durchgeführten Lösungsglühen des Halbzeuges bei einer Temperatur von mehr als 900 °C das Halbzeug einer verstärkten Abkühlung unterworfen wird und in einem weiteren Verformungsschritt bei einer Temperatur unterhalb der Rekristallisationstemperatur, insbesondere unter 600 °C, verformt wird, wonach aus dem Halbzeug durch spanabhebende Bearbeitung eine Komponente gefertigt wird.
  27. Verfahren nach Anspruch 26, wobei der Verformungsschritt nach einer verstärkten Abkühlung bei einer Temperatur des Halbzeuges von über 350°C durchgeführt wird.
  28. Verfahren nach Anspruch 26 oder 27, wobei das Halbzeug eine Stange ist und diese im zweiten Verformungsschritt mit einem Verformungsgrad von 10 % bis 20 % verformt wird.
  29. Verfahren nach einem der Ansprüche 26 bis 28, wobei das erstellte Gussstück mittels Elektroschlacke-Umschmelz-Verfahren umgeschmolzen wird.
  30. Verfahren nach einem der Ansprüche 26 bis 29, wobei die spanabhebende Bearbeitung ein Drehen und/oder Schälen umfasst.
EP04450211A 2003-12-03 2004-11-17 Korrosionsbeständige, austenitische Stahllegierung Active EP1538232B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0193803A AT412727B (de) 2003-12-03 2003-12-03 Korrosionsbeständige, austenitische stahllegierung
AT19382003 2003-12-03

Publications (2)

Publication Number Publication Date
EP1538232A1 EP1538232A1 (de) 2005-06-08
EP1538232B1 true EP1538232B1 (de) 2007-01-03

Family

ID=33315002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04450211A Active EP1538232B1 (de) 2003-12-03 2004-11-17 Korrosionsbeständige, austenitische Stahllegierung

Country Status (7)

Country Link
US (3) US7708841B2 (de)
EP (1) EP1538232B1 (de)
AT (2) AT412727B (de)
CA (1) CA2488965C (de)
DE (1) DE502004002524D1 (de)
ES (1) ES2280936T3 (de)
NO (1) NO340359B1 (de)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
AT412727B (de) 2003-12-03 2005-06-27 Boehler Edelstahl Korrosionsbeständige, austenitische stahllegierung
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US10316616B2 (en) 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
US8770261B2 (en) 2006-02-09 2014-07-08 Schlumberger Technology Corporation Methods of manufacturing degradable alloys and products made from degradable alloys
EP2035593B1 (de) * 2006-06-23 2010-08-11 Jorgensen Forge Corporation Austenitischer paramagnetischer korrosionsfreier stahl
US7658883B2 (en) * 2006-12-18 2010-02-09 Schlumberger Technology Corporation Interstitially strengthened high carbon and high nitrogen austenitic alloys, oilfield apparatus comprising same, and methods of making and using same
US8535606B2 (en) * 2008-07-11 2013-09-17 Baker Hughes Incorporated Pitting corrosion resistant non-magnetic stainless steel
JP5526809B2 (ja) 2009-04-27 2014-06-18 大同特殊鋼株式会社 高耐食・高強度・非磁性ステンレス鋼並びに高耐食・高強度・非磁性ステンレス鋼製品及びその製造方法
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9347121B2 (en) 2011-12-20 2016-05-24 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
DE102013003516A1 (de) * 2013-03-04 2014-09-04 Outokumpu Nirosta Gmbh Verfahren zur Herstellung eines ultrahochfesten Werkstoffs mit hoher Dehnung
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
BR102016001063B1 (pt) * 2016-01-18 2021-06-08 Amsted Maxion Fundição E Equipamentos Ferroviários S/A liga de aço para componentes ferroviários, e processo de obtenção de uma liga de aço para componentes ferroviários
GB2546808B (en) * 2016-02-01 2018-09-12 Rolls Royce Plc Low cobalt hard facing alloy
GB2546809B (en) * 2016-02-01 2018-05-09 Rolls Royce Plc Low cobalt hard facing alloy
SG11202101056RA (en) 2018-08-03 2021-03-30 Jfe Steel Corp HIGH-Mn STEEL AND METHOD OF PRODUCING SAME
CA3236316A1 (en) 2018-10-10 2020-04-10 Repeat Precision, Llc Setting tools and assemblies for setting a downhole isolation device such as a frac plug
DE102018133251A1 (de) 2018-12-20 2020-06-25 Schoeller-Bleckmann Oilfield Technology Gmbh Bohrstrangkomponente mit hoher Korrosionsbeständigkeit und Verfahren zu ihrer Herstellung
CN112251686B (zh) * 2020-09-29 2022-03-18 中国科学院金属研究所 一种超高强度纳米晶4Cr5MoWSi模具钢及其制备方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB432434A (en) 1934-01-26 1935-07-26 British Thomson Houston Co Ltd Improvements in and relating to electric discharge devices
US3936297A (en) * 1972-05-08 1976-02-03 Allegheny Ludlum Industries, Inc. Method of producing austenitic stainless steel
US3820980A (en) * 1972-05-08 1974-06-28 Allegheny Ludlum Ind Inc Austenitic stainless steel
US3847599A (en) * 1973-10-04 1974-11-12 Allegheny Ludlum Ind Inc Corrosion resistant austenitic steel
US3880654A (en) * 1973-11-28 1975-04-29 Allegheny Ludlum Ind Inc Corrosion resistant austenitic steel
US3938990A (en) * 1973-11-28 1976-02-17 Allegheny Ludlum Industries, Inc. Method of making corrosion resistant austenitic steel
US4217136A (en) * 1974-05-01 1980-08-12 Allegheny Ludlum Steel Corporation Corrosion resistant austenitic stainless steel
DE2953408C1 (de) 1978-12-22 1993-05-06 Gygli Technik Ag Kragen fuer ein Kleidungsstueck
DE3143096A1 (de) * 1980-11-05 1982-05-19 General Electric Co., Schenectady, N.Y. "legierung auf eisenbasis, verfahren zu ihrer herstellung und damit hergestellte gegenstaende"
CA1205659A (en) * 1981-03-20 1986-06-10 Masao Yamamoto Corrosion-resistant non-magnetic steel and retaining ring for a generator made of it
DE8132785U1 (de) 1981-11-10 1982-04-15 Vorwerk & Co Interholding Gmbh, 5600 Wuppertal Handgriff fuer den fuehrungsstiel eines handstaubsaugers
JPS59205451A (ja) * 1983-05-09 1984-11-21 Nippon Yakin Kogyo Co Ltd 高強度非磁性鋼の製造方法
AT381658B (de) * 1985-06-25 1986-11-10 Ver Edelstahlwerke Ag Verfahren zur herstellung von amagnetischen bohrstrangteilen
JPS62109951A (ja) * 1985-11-07 1987-05-21 Sumitomo Metal Ind Ltd 非磁性ドリルカラ−用鋼
DE3940438C1 (de) * 1989-12-07 1991-05-23 Vereinigte Schmiedewerke Gmbh, 4630 Bochum, De
US5094812A (en) * 1990-04-12 1992-03-10 Carpenter Technology Corporation Austenitic, non-magnetic, stainless steel alloy
JPH06116683A (ja) * 1992-10-01 1994-04-26 Kobe Steel Ltd 被削性および耐食性に優れた高Mn非磁性鋼
JPH0762432A (ja) * 1993-08-27 1995-03-07 Kobe Steel Ltd 耐腐食摩耗性および耐熱摩耗性に優れた高強度非磁性リングチェーンの製造方法
DE19607828C2 (de) * 1995-04-15 2003-06-18 Vsg En Und Schmiedetechnik Gmb Verfahren zum Herstellen eines austenitischen Cv-Mn-Stahls
DE19758613C2 (de) * 1997-04-22 2000-12-07 Krupp Vdm Gmbh Hochfeste und korrosionsbeständige Eisen-Mangan-Chrom-Legierung
AT407882B (de) * 1999-07-15 2001-07-25 Schoeller Bleckmann Oilfield T Verfahren zur herstellung eines paramagnetischen, korrosionsbeständigen werkstoffes u.dgl. werkstoffe mit hoher dehngrenze, festigkeit und zähigkeit
AT412727B (de) 2003-12-03 2005-06-27 Boehler Edelstahl Korrosionsbeständige, austenitische stahllegierung
EP2035593B1 (de) 2006-06-23 2010-08-11 Jorgensen Forge Corporation Austenitischer paramagnetischer korrosionsfreier stahl

Also Published As

Publication number Publication date
US7947136B2 (en) 2011-05-24
ES2280936T3 (es) 2007-09-16
US7708841B2 (en) 2010-05-04
NO20045271L (no) 2005-06-06
US8454765B2 (en) 2013-06-04
US20050145308A1 (en) 2005-07-07
US20110253262A1 (en) 2011-10-20
AT412727B (de) 2005-06-27
ATE350505T1 (de) 2007-01-15
CA2488965C (en) 2013-04-09
DE502004002524D1 (de) 2007-02-15
EP1538232A1 (de) 2005-06-08
US20100170596A1 (en) 2010-07-08
NO340359B1 (no) 2017-04-10
CA2488965A1 (en) 2005-06-03
ATA19382003A (de) 2004-11-15

Similar Documents

Publication Publication Date Title
EP1538232B1 (de) Korrosionsbeständige, austenitische Stahllegierung
DE602004000140T2 (de) Rostfreier austenitischer Stahl
DE60214456T2 (de) Martensitischer rostfreier Stahl mit hoher Härte und guter Korrosionsbeständigkeit
DE69019578T2 (de) Baustahl mit hoher Festigkeit und guter Bruchzähigkeit.
DE69421281T2 (de) Ferritisch-austenitischer rostfreier stahl und seine verwendung
DE69429610T2 (de) Hochfester martensitischer rostfreier Stahl und Verfahren zu seiner Herstellung
DE69423930T2 (de) Martensitisches rostfreies Stahl mit verbesserter Bearbeitbarkeit
DE69706224T2 (de) Wärmebeständiger Stahl und Dampfturbinenrotor
DE60124227T2 (de) Duplex rostfreier stahl
DE69003202T2 (de) Hochfeste, hitzebeständige, niedrig legierte Stähle.
EP3899063B1 (de) Superaustenitischer werkstoff
DE69601340T2 (de) Hochfester, hochzaher warmebestandiger stahl und verfahren zu seiner herstellung
DE2927091A1 (de) Nichtmagnetischer manganhartstahl mit ausgezeichneter schweissbarkeit und verarbeitbarkeit und verwendung dieses stahls
EP0455625B1 (de) Hochfeste korrosionsbeständige Duplexlegierung
EP2221393B1 (de) Schweisszusatzwerkstoff auf der Basis von legiertem Stahl
DE10244972A1 (de) Wärmefester Stahl und Verfahren zur Herstellung desselben
EP1647606A1 (de) Hochharte Nickelbasislegierung für verschleissfeste Hochtemperaturwerkzeuge
DE2331134A1 (de) Walzplattierte werkstoffe aus einem grundwerkstoff aus stahl und aus plattierauflagen aus korrosionsbestaendigen, austenitischen staehlen und legierungen
DE60014331T2 (de) Ausscheidungshätbarer und rostfreier stahl mit verbesserter verarbeitbarkeit für besonderen einsatzzwecke
DE60201984T2 (de) Werkzeugstahl von hoher zähigkeit, verfahren zum herstellen von teilen aus diesem stahl und so hergestellte teile
DE102018133251A1 (de) Bohrstrangkomponente mit hoher Korrosionsbeständigkeit und Verfahren zu ihrer Herstellung
DE69201981T2 (de) Ausscheidungshärtbarer, austenitischer Warmarbeitsstahl und Verfahren zur Behandlung desselben.
EP3225702B1 (de) Stahl mit reduzierter dichte und verfahren zur herstellung eines stahlflach- oder -langprodukts aus einem solchen stahl
EP3458623B1 (de) Verfahren zum herstellen eines stahlwerkstoffs und stahlwerksstoff
AT414341B (de) Stahl für chemie - anlagen - komponenten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

RTI1 Title (correction)

Free format text: CORROSION RESISTANT AUSTENITIC STEEL

17P Request for examination filed

Effective date: 20050715

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004002524

Country of ref document: DE

Date of ref document: 20070215

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070403

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070604

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2280936

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

26N No opposition filed

Effective date: 20071005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

BERE Be: lapsed

Owner name: SCHOELLER-BLECKMANN OILFIELD TECHNOLOGY GMBH & CO

Effective date: 20071130

Owner name: BOHLER EDELSTAHL GMBH

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231126

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231127

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231201

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231127

Year of fee payment: 20

Ref country code: IT

Payment date: 20231122

Year of fee payment: 20

Ref country code: FR

Payment date: 20231127

Year of fee payment: 20

Ref country code: FI

Payment date: 20231127

Year of fee payment: 20

Ref country code: DE

Payment date: 20231129

Year of fee payment: 20