EP1520056B1 - Hard metal in particular for cutting stone, concrete and asphalt - Google Patents

Hard metal in particular for cutting stone, concrete and asphalt Download PDF

Info

Publication number
EP1520056B1
EP1520056B1 EP03763783A EP03763783A EP1520056B1 EP 1520056 B1 EP1520056 B1 EP 1520056B1 EP 03763783 A EP03763783 A EP 03763783A EP 03763783 A EP03763783 A EP 03763783A EP 1520056 B1 EP1520056 B1 EP 1520056B1
Authority
EP
European Patent Office
Prior art keywords
hard metal
metal according
binder
nanoparticles
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP03763783A
Other languages
German (de)
French (fr)
Other versions
EP1520056A2 (en
Inventor
Igor Konyashin
Bernd Ries
Roy Cooper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Element Six Holding GmbH
Original Assignee
Barat Carbide Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=30118720&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1520056(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE10258537A external-priority patent/DE10258537B4/en
Application filed by Barat Carbide Holding GmbH filed Critical Barat Carbide Holding GmbH
Publication of EP1520056A2 publication Critical patent/EP1520056A2/en
Application granted granted Critical
Publication of EP1520056B1 publication Critical patent/EP1520056B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the invention relates to a hard metal for tools for the mechanical processing of particular rock, concrete and asphalt and a tool equipped with such a carbide.
  • tungsten carbide-cobalt hard metals For rock, concrete and asphalt cutting, coarse-grained tungsten carbide-cobalt hard metals (WC-Co hard metals) with a mean WC grain size of approx. 2 to 10 ⁇ m are used in practice.
  • the WC medium grain size in hard metals can be determined, for example, by the line cutting method.
  • WC hard metals mentioned here can have any desired combinations and ratios of tungsten and carbon (carbide).
  • the entirety of these combinations of tungsten carbide is abbreviated to WC in the following description as well as in the claims.
  • the coercitive field strength values of the hard metal indicate how thick the co-intermediate layers are.
  • the coercive force values of the coarse-grained hard metals are in a range up to 17.0 kA / m.
  • the carbon content of hard metals should be approximately in the middle of the two-phase field (without free carbon and ⁇ -phase) ( H. Suzuki, H. Kubota, "Plansee Reports Powder Metallurgy", 1966, Vol. 14, 2, pp. 96-109 ).
  • the best values of bending strength in combination with high hardness should be achievable.
  • the concentration of tungsten in the co-binder of the WC-Co hard metal depends on the carbon content. Thus, the tungsten concentration at low carbon content is much higher.
  • the W concentration or the carbon content in a WC-Co hard metal with a certain Co content can be defined by the value of the magnetic saturation.
  • the magnetic saturation of a hard metal is defined both as a magnetic moment per unit of weight ⁇ (magnetic moment / unit wt.) And as an inductance of saturation per unit weight 4 ⁇ (in English "saturation induction / unit wt.") (B. Roebuck. "Magnetic Moment (Saturation) Measurements on Hardmetals", Int. J. Refr. Met. Hard Mater., 14 (1996) 419).
  • the magnetic moment must be multiplied by 4 ⁇ to obtain the inductance of saturation, so that the magnetic moment ⁇ of pure Co is 16.1 ⁇ Tm 3 / kg and the inductance of the saturation 4 ⁇ of pure Co is 201, 9 ⁇ Tm 3 / kg ,
  • the EP 1 205 569 A2 and EP 1 043 415 A2 refer to carbides for metal cutting with low carbon content or low values of magnetic saturation. Both publications describe hard metals containing more than 1% by weight of cubic carbides (TaC, TiC and NbC). The use and said minimum amount of these cubic carbides is imperative for the application of hard metals for metal cutting tools.
  • cemented carbides for tools for the construction or mining industry must not contain such appreciable constituents of Ta, Ti or Nb, since their cubic carbides have a negative effect on the fracture toughness of the WC-Co hard metals.
  • the hard metals commonly used in mining are, without exception, tungsten carbide-cobalt alloys (H. Kolaska, "Pulvermetallurgie der Hartmetalle", Hagen, 1992, p.15 / 3).
  • the DE 198 10 533 A1 describes hard metals for milling titanium and titanium alloys with a Co-containing binder having relatively low levels of magnetic saturation. Here, however, there is no significant reinforcement of the binder.
  • the invention has for its object to provide a hard metal or carbide-tipped tool with improved properties and performance.
  • the WC medium grain size is preferably to be selected from a range of 0.2 ⁇ m to 20 ⁇ m, more preferably from a range of 2 ⁇ m to 20 ⁇ m, and particularly preferably from a range of 4 to 20 ⁇ m.
  • the condition of the binder plays a crucial role in the performance of coarse-grained hard metals.
  • the general view is that the WC or W concentration in the binder can not be higher than 20% by weight (about 9 atomic%) ( J. Willbrand, U. Wieland, "Techn.Mitt.Krupp.Forsch.-Ber.”, 1975, Vol. 33, 1, pp. 41-44 ), can be significantly strengthened in the carbide according to the invention by a high concentration of tungsten of 10 to 30 atomic% in the binder, the Co.
  • the largest value of the lattice constant of Co in WC-Co hard metals described in the literature is normally not higher than 0.357 nm (about 1% higher than the value of pure Co) ( H. Suzuki, H. Kubota, "Planseeberichte Pulvermetallurgie", 1966, Vol. 14, 2, pp. 96-109 ).
  • the lattice constant of the cobalt in the binder is greater than that of pure cobalt (0.3545 nm) by the higher concentration of tungsten over 1 to 5%.
  • the hard metal according to the invention can be further enhanced by nano-particles (particles finer than 100 nm) of tungsten and cobalt and / or carbon being embedded in the binder in the co-matrix.
  • nano-particles particles finer than 100 nm
  • the wear resistance and bending strength of the cemented carbide are substantially increased compared to conventional hard metals.
  • the bending strength of such hard metals is up to 30% higher than the conventional hard metals with similar WC grain size and the same Co content.
  • a cemented carbide according to the invention having at least 5% by volume of nanoparticles in the binder may preferably comprise up to 40% by weight of carbides, nitrides and / or carbonitrides of Ta, Nb, Ti, V, Cr, Mo, B, Zr and / or Hf included.
  • the nano-particles preferably furthermore contain Ni, Fe, Ta, Nb, Ti, V, Cr, Mo, Zr and / or Hf.
  • the nano-particles coherent with the cobalt matrix ensure stabilization of the binder and thus of those already described Improvements in the carbide properties and a tool provided with it.
  • the nano-particles have a hexagonal or cubic lattice structure, wherein the nano-particles are composed of one or more of the phases Co x W y C z with values X from 1 to 7, y is from 1 to 10, and Z from 0 to 4
  • the nano-particles may consist of a phase Co 2 W 4 C. It is also possible that the nano-particles consist of one or more intermetallic phases of tungsten and cobalt and thus contribute to a further improvement of the binder in the sense of the above object.
  • Reinforcing the binder can also have an effect if it has fcc-Co and / or hcp-Co in the form of a solid solution of W and / or C in Co.
  • the lattice constants of this solid solution are on the order of 1 to 5% greater than those of pure Co.
  • the binder may further contain up to 30% by weight of iron.
  • the hard metals according to the invention with a low carbon content or high concentration of W in the binder are also proportionally or all round toilet grains, which has a very positive effect on the life.
  • Round WC grains here are not only circular shapes, but even mostly irregular grain shapes with rounded corners, without sharp faceting.
  • fractions of up to 1.5% by weight each of Cr, No, V, Zr and / or Hf in the form of carbides and / or solid solutions in the binder lead to an improvement in the service life.
  • the high-W content carbides according to the invention in the binder can bring about a marked improvement in performance with the incorporation of coated diamond grains even in the group of the ultra-hard carbide materials and can be used successfully, since the combination of the high tungsten concentration in the binder at low magnetic saturation, a dissolution process of the coating Diamond grains significantly suppressed.
  • the hard metal 3 vol .-% to 60 vol .-% diamond grains having a coating of carbides, carbonitrides and / or nitrides of Ti, Ta, Nb, W, Co, Mo, V, Zr , Hf and / or Si.
  • a WC-Co cemented carbide was prepared with 6.5% by weight Co and low carbon content.
  • the coercitive field strength of this hard metal is 7.0 kA / m
  • the bending strength is 2400 MPa
  • TEM Transmission Electron Microscopy
  • Sample measured with EDX energy-dispersive X-ray microanalysis
  • the Co lattice constant was determined by TEM and X-ray studies.
  • the W concentration in the binder of the sample is 18 to 19 at.%
  • the binder contains nano-particles, which are shown in FIG.
  • the electron diffraction of the binder shows reflections of the tungsten-containing cubic cobalt matrix with fcc structure and the lattice constant of 0.366 nm as well as reflections of the intervening nano-particles, which are about 3 to 10 nm in size ( Figure 3).
  • the largest measurable D hkl value of the nanoparticles is 0.215 nm.
  • Mud-intensive asphalt was milled on average 20 cm above the concrete surface, with an average of 10 meters of feed per minute.
  • the milling cutter was half equipped with the chisels of the new carbide and the other half with those of conventional carbide. Results of the 1st field test: hard metal Chisel wear that made a turn, in mm Proportion of chisels that did not rotate (possible breaks) and wear, in mm Conventional 6.9 30% 8.6 New 3.4 6% 3.8
  • Fig. 4 shows the worn bits after the field test in comparison.
  • a WC-Co cemented carbide of 9.5% by weight Co and low carbon content was produced.
  • the coercive field strength is 6.1 kA / m
  • hardness HV30 990
  • flexural strength 2720 MPa.
  • the carbide contains round WC grains, co-binders and no ⁇ phase.
  • the TEM investigations of the new cemented carbide show that the W concentration in the binder is 19 to 21 atomic% and the binder contains nano-particles.
  • the lattice constant of fcc-Co in the binder is 0.368 nm.
  • Chisels with cutting elements made of the two hard metals were produced and tested in the laboratory for cutting abrasive concrete and granite.
  • the chisels were also tested in a coal mine when cutting high sandstone coal / sandstone. With the chisels with cutting elements made of the new carbide cutting performance of 700 m concrete could be achieved to wear of 1 mm, while in the chisels with conventional carbide with the same wear, the cutting performance was only 100 m.
  • the lifetime of the chisel in the granite cutting with the new carbide was about 2.5 times larger than that of the conventional hard metal chisel.
  • a WC-Co cemented carbide was prepared with 6.5% wt.% Co and low carbon content.
  • the coercitive field strength of this hard metal is 31.2 kA / m
  • the flexural strength is 2900 MPa
  • the fracture toughness K 1c 12.4 MPam 1/2 .
  • the W concentration in the binder of the sample is 17 to 18 at.%
  • the binder contains nano-particles embedded in fcc-Co.
  • the concentration of nano-particles in the binder was determined by the line-cut method.
  • the concentration of nano-particles is 7.0 ⁇ 0.5 vol.%.
  • the Dhkl value of the ordered phases is up to 0.215 nm ⁇ 0.007 nm.
  • the coarse-grained hard metals according to the invention have an improved combination of flexural strength, fracture toughness and wear resistance.
  • Tools with these hard metals have a very high performance in the field of rock and asphalt cutting and have a significantly extended service life as wearing parts.

Abstract

A hard metal of WC for tools for mechanical working of stone, concrete, and asphalt conatins 5 to 25% by weight of a binder based on Co or Co and Ni. The hard metal has a coercive field strength up to 17.0 kA/m, and the binder contains up to 30% of Fe. The hard metal has a magnetic saturation (sigma or 4pisigma, in units of microtesla times cubic meter per kilogram, respectively) as a function of the Co proportion (X) in % by weight of the hard metal in a range of sigma=0.11 X to sigma=0.137 X or 4pisigma=0.44 pi X to 4pisigma=0.548 pi X.

Description

Die Erfindung bezieht sich auf ein Hartmetall für Werkzeuge zum mechanischen Bearbeiten von insbesondere Gestein, Beton und Asphalt sowie auf ein mit einem solchen Hartmetall ausgestattetes Werkzeug.The invention relates to a hard metal for tools for the mechanical processing of particular rock, concrete and asphalt and a tool equipped with such a carbide.

Für das Gestein-, Beton- und Asphaltschneiden werden in der Praxis grobkörnige Wolframkarbid-Kobalt-Hartmetalle (WC-Co-Hartmetalle) mit mittlerer WC-Korngröße von ca. 2 bis 10 µm verwendet. Die WC-Mittelkorngröße in Hartmetallen kann beispielsweise durch das Linienschnittverfahren bestimmt werden.For rock, concrete and asphalt cutting, coarse-grained tungsten carbide-cobalt hard metals (WC-Co hard metals) with a mean WC grain size of approx. 2 to 10 μm are used in practice. The WC medium grain size in hard metals can be determined, for example, by the line cutting method.

Es versteht sich, dass die hier genannten WC-Hartmetalle beliebige Kombinationen und Verhältnisse von Wolfram und Kohlenstoff (Karbid) aufweisen können. Die Gesamtheit dieser Kombinationen von Wolframkarbid ist sowohl in der folgenden Beschreibung als auch in den Ansprüchen mit WC abgekürzt.It is understood that the WC hard metals mentioned here can have any desired combinations and ratios of tungsten and carbon (carbide). The entirety of these combinations of tungsten carbide is abbreviated to WC in the following description as well as in the claims.

Im Hartmetall-Gefüge zwischen grobkörnigen WC-Körnern befinden sich relativ dikke Zwischenschichten des Co-Binders. Die Koerzitivfeldstärkewerte des Hartmetalls zeigen dabei an, wie dick die Co-Zwischenschichten sind. Normalerweise liegen die Koerzitivfeldstärkewerte der grobkörnigen Hartmetalle in einem Bereich bis17,0 kA/m.In the hard metal structure between coarse-grained WC grains are relatively thick intermediate layers of the co-binder. The coercitive field strength values of the hard metal indicate how thick the co-intermediate layers are. Normally, the coercive force values of the coarse-grained hard metals are in a range up to 17.0 kA / m.

Nach dem allgemeinen Stand der Hartmetallforschung soll der Kohlenstoffgehalt von Hartmetallen etwa in der Mitte des zweiphasigen Feldes (ohne freien Kohlenstoff und η-Phase) liegen ( H. Suzuki, H. Kubota,"Planseeberichte Pulvermetallurgie", 1966, Bd. 14, 2, S. 96-109 ). Hierbei sollen die besten Werte von Biegebruchfestigkeit in Kombination mit hoher Härte erreichbar sein.According to the general state of carbide research, the carbon content of hard metals should be approximately in the middle of the two-phase field (without free carbon and η-phase) ( H. Suzuki, H. Kubota, "Plansee Reports Powder Metallurgy", 1966, Vol. 14, 2, pp. 96-109 ). Here, the best values of bending strength in combination with high hardness should be achievable.

Die Konzentration des Wolframs im Co-Binder des WC-Co-Hartmetalls ist dabei vom Kohlenstoffgehalt abhängig. So ist die Wolfram-Konzentration bei niedrigem Kohlenstoffgehalt wesentlich höher. Die W-Konzentration bzw. der Kohlenstoffgehalt in einem WC-Co-Hartmetall mit einem bestimmten Co-Gehalt kann durch den Wert der magnetischen Sättigung definiert werden. Die magnetische Sättigung eines Hartmetalls wird sowohl als magnetisches Moment pro Gewichtseinheit σ (auf Englisch "magnetic moment/ unit wt.") als auch als Induktivität der Sättigung pro Gewichtseinheit 4πσ (auf Englisch "saturation induction/ unit wt.") definiert (B.Roebuck. "Magnetic Moment (Saturation) Measurements on Hardmetals", Int. J. Refr. Met. Hard Mater., 14(1996) 419). Das magnetische Moment muss mit 4π multipliziert werden, um die Induktivität der Sättigung zu erhalten, so dass das magnetische Moment σ von reinem Co 16,1 µTm3/kg und die Induktivität der Sättigung 4πσ von reinem Co 201, 9 µTm3/kg beträgt.The concentration of tungsten in the co-binder of the WC-Co hard metal depends on the carbon content. Thus, the tungsten concentration at low carbon content is much higher. The W concentration or the carbon content in a WC-Co hard metal with a certain Co content can be defined by the value of the magnetic saturation. The magnetic saturation of a hard metal is defined both as a magnetic moment per unit of weight σ (magnetic moment / unit wt.) And as an inductance of saturation per unit weight 4πσ (in English "saturation induction / unit wt.") (B. Roebuck. "Magnetic Moment (Saturation) Measurements on Hardmetals", Int. J. Refr. Met. Hard Mater., 14 (1996) 419). The magnetic moment must be multiplied by 4π to obtain the inductance of saturation, so that the magnetic moment σ of pure Co is 16.1 μTm 3 / kg and the inductance of the saturation 4πσ of pure Co is 201, 9 μTm 3 / kg ,

Ein Hartmetall für Werkzeuge zum Schneiden von Gestein, Beton und Asphalt wird beispielsweise in der US-PS 4,859,543 beschrieben. Dieses Patent beansprucht Hartmetalle mit einem Verhältnis zwischen Härte (Y, Rockwell A) und Co-Gehalt (X, Gew.-%) im Bereich von X= 4,2 - 12 und Y = 91 - 0.62 X.A cemented carbide for tools for cutting rocks, concrete and asphalt, for example, in the U.S. Patent 4,859,543 described. This patent claims carbides with a ratio between hardness (Y, Rockwell A) and Co content (X, wt.%) In the range of X = 4.2-12 and Y = 91-0.62 X.

Die EP 1 205 569 A2 und EP 1 043 415 A2 betreffen Hartmetalle für die Metallzerspanung mit niedrigem Kohlenstoffgehalt bzw. niedrigen Werten der magnetischen Sättigung. Beide Offenlegungsschriften beschreiben jeweils Hartmetalle, die über 1 Gew.-% kubische Karbide (TaC, TiC und NbC) enthalten. Der Einsatz und die genannte Mindestmenge dieser kubischen Karbide ist für die Anwendung der Hartmetalle für Metallschneidwerkzeuge zwingend notwendig.The EP 1 205 569 A2 and EP 1 043 415 A2 refer to carbides for metal cutting with low carbon content or low values of magnetic saturation. Both publications describe hard metals containing more than 1% by weight of cubic carbides (TaC, TiC and NbC). The use and said minimum amount of these cubic carbides is imperative for the application of hard metals for metal cutting tools.

Hartmetalle für Werkzeuge für die Bau- oder Bergbauindustrie dürfen jedoch keine derart nennenswerten Bestandteile von Ta, Ti oder Nb enthalten, da deren kubische Karbide einen negativen Effekt auf die Bruchzähigkeit der WC-Co-Hartmetalle haben. Die im Bergbau gebräuchlichen Hartmetalle sind ausnahmslos Wolframkarbid-Kobalt-Legierungen (H. Kolaska, "Pulvermetallurgie der Hartmetalle", Hagen, 1992, S.15/3).However, cemented carbides for tools for the construction or mining industry must not contain such appreciable constituents of Ta, Ti or Nb, since their cubic carbides have a negative effect on the fracture toughness of the WC-Co hard metals. The hard metals commonly used in mining are, without exception, tungsten carbide-cobalt alloys (H. Kolaska, "Pulvermetallurgie der Hartmetalle", Hagen, 1992, p.15 / 3).

Die DE 198 10 533 A1 beschreibt Hartmetalle zum Fräsen von Titan und Titanlegierungen mit einem Co-haltigen Binder mit relativ niedrigen Werten der magnetischen Sättigung. Hier liegt allerdings keine signifikante Verstärkung des Binders vor.The DE 198 10 533 A1 describes hard metals for milling titanium and titanium alloys with a Co-containing binder having relatively low levels of magnetic saturation. Here, however, there is no significant reinforcement of the binder.

Ein Artikel von K.H. Cho, I.S. Chung, J.W. Lee, "The Influence of Carbon Content on the Properties of Binder and Carbide Phase of Cemented Carbide", Interceram, Vol. 48, No. 1, 1999, Seiten 30 bis 35 zeigt in Fig. 4, daß eine Erhöhung der Wolfram.Konzentration im Co des Binders eine Verringerung der spezifischen magnetischen Sättigung bewirkt. Weitere Funktionalitäten der spezifischen magnetischen Sättigung sind jedoch nicht angegeben.An article by KH Cho, IS Chung, JW Lee, "The Influence of Carbon Content on the Properties of Binder and Carbide Phase of Cemented Carbide", Interceram, Vol. 1, 1999, pages 30-35 In Fig. 4, it is shown that increasing the tungsten concentration in the Co of the binder causes a decrease in specific magnetic saturation. However, other functionalities of the specific magnetic saturation are not specified.

In einem Artikel von L. BARTHA L et al. "Investigation of Hip-Sintering of Nanocrystalline WC/Co Powder", Proceedings of the International Congress on High Speed Photograhy, Vol. 32, No. 3, Juli/2000, Seiten 23 bis 26 wird der Einfluß der Sintertemperatur auf die relative Dichte eines gesinterten Hartmetalls beschrieben. Weitere Einflußfaktoren werden dabei nicht genannt.In an article by L. BARTHA L et al. "Investigation of Hip Sintering of Nanocrystalline WC / Co Powder", Proceedings of the International Congress on High Speed Photograhy, Vol. 3, July / 2000, pages 23 to 26 the influence of the sintering temperature on the relative density of a sintered cemented carbide is described. Other influencing factors are not mentioned.

Schließlich beschreibt die US-Patentschrift 5,723,177 Hartmetalle, die 3 bis 60 Vol.% Diamantkörner mit einer Beschichtung aus Karbiden, Nitriden und/oder Karbonitriden der chemischen Elemente der Gruppen IV, V und VI des Periodensystems enthalten. Durch diese Beschichtung wird das direkte Auflösen der Diamantkörner im flüssigen Binder während des Sinterns vermieden. Allerdings wird die Beschichtung selbst relativ schnell im flüssigen Binder gelöst.Finally, that describes U.S. Patent 5,723,177 Hard metals containing 3 to 60 vol.% Of diamond grains with a coating of carbides, nitrides and / or carbonitrides of the chemical elements of Groups IV, V and VI of the Periodic Table. This coating causes the direct dissolution of the diamond grains avoided in the liquid binder during sintering. However, the coating itself is relatively quickly dissolved in the liquid binder.

Der Erfindung liegt die Aufgabe zugrunde, ein Hartmetall bzw. ein hartmetallbestücktes Werkzeug mit verbesserten Eigenschaften und Leistungen zu schaffen.The invention has for its object to provide a hard metal or carbide-tipped tool with improved properties and performance.

Diese Aufgabe wird durch ein Hartmetall mit den Merkmalen des Anspruchs 1 sowie ein Werkzeug nach Anspruch 25 gelöst.This object is achieved by a hard metal with the features of claim 1 and a tool according to claim 25.

Durch die Absenkung der magnetischen Sättigung in den in Anspruch 1 angegebenen Bereich wird bei gatungsgemäßen, insbesondere grobkörnigen Hartmetallen entgegen herkömmlichem Forschungsstand eine Erhöhung der Biegebruchfestigkeit erreicht. Trotz des niedrigen Kohlenstoffgehaltes bilden sich dabei keine Makrobereiche von η-Phasen aus. Die Leistungsverbesserung wirkt sich insbesondere bei Hartmetallen mit Koerzitivfeldstärkewerten von bis zu 9,5 kA/m, besser noch bis 8 kA/m, vorzugsweise aber im Bereich von 1,6 - 6,4 kA/m aus. Dabei ist die WC-Mittelkorngröße vorzugsweise aus einem Bereich von 0,2 µm bis 20 µm, besser aus einem Bereich von 2 µm bis 20 µm, und besonders bevorzugt aus einem Bereich von 4 bis 20 µm zu wählen.By lowering the magnetic saturation in the range specified in claim 1, an increase in the transverse rupture strength is achieved in accordance with conventional research, especially coarse-grained hard metals. Despite the low carbon content, no macro-regions of η-phases are formed. The improvement in performance has an effect especially on hard metals with coercive force values of up to 9.5 kA / m, better still up to 8 kA / m, but preferably in the range of 1.6-6.4 kA / m. In this case, the WC medium grain size is preferably to be selected from a range of 0.2 μm to 20 μm, more preferably from a range of 2 μm to 20 μm, and particularly preferably from a range of 4 to 20 μm.

Es ist bekannt, daß der Zustand des Binders eine entscheidende Rolle für die Leistungsfähigkeit grobkörniger Hartmetalle spielt. Obschon in der derzeitigen Forschung der allgemeine Standpunkt vertreten wird, daß die WC- bzw. W-Konzentration im Binder nicht höher als 20 Gew.-% (ca. 9 Atom-%) sein kann ( J. Willbrand, U. Wieland, "Techn.Mitt.Krupp.Forsch.-Ber.", 1975, Bd. 33, 1, S. 41 - 44 ), läßt sich bei dem erfindungsgemäßen Hartmetall durch eine hohe Konzentration des Wolframs von 10 bis 30 Atom-% im Binder das Co wesentlich verstärken. Der in der Literatur beschriebene größte Wert der Gitterkonstante von Co in WC-Co-Hartmetallen ist normalerweise nicht höher als 0,357 nm (ca. 1% höher als der Wert von reinem Co) ( H.Suzuki, H. Kubota, "Planseeberichte Pulvermetallurgie", 1966, Bd. 14, 2, S. 96 - 109 ). Bei dem erfindungsgemäßen Hartmetall ist die Gitterkonstante des Kobalts im Binder durch die höhere Konzentration des Wolframs jedoch über 1 bis 5% größer als die von reinem Kobalt (0,3545 nm).It is known that the condition of the binder plays a crucial role in the performance of coarse-grained hard metals. Although in the current research the general view is that the WC or W concentration in the binder can not be higher than 20% by weight (about 9 atomic%) ( J. Willbrand, U. Wieland, "Techn.Mitt.Krupp.Forsch.-Ber.", 1975, Vol. 33, 1, pp. 41-44 ), can be significantly strengthened in the carbide according to the invention by a high concentration of tungsten of 10 to 30 atomic% in the binder, the Co. The largest value of the lattice constant of Co in WC-Co hard metals described in the literature is normally not higher than 0.357 nm (about 1% higher than the value of pure Co) ( H. Suzuki, H. Kubota, "Planseeberichte Pulvermetallurgie", 1966, Vol. 14, 2, pp. 96-109 ). In the cemented carbide according to the invention, however, the lattice constant of the cobalt in the binder is greater than that of pure cobalt (0.3545 nm) by the higher concentration of tungsten over 1 to 5%.

Das erfindungsgemäße Hartmetall läßt sich noch weiter verstärken, indem in dem Binder Nano-Partikel (Partikel feiner als 100 nm) aus Wolfram und Kobalt und/oder Kohlenstoff in der Co-Matrix eingebettet sind. Dadurch sind im Vergleich zu herkömmlichen Hartmetallen die Verschleißfestigkeit und Biegebruchfestigkeit des Hartmetalls wesentlich erhöht. Die Biegebruchfestigkeit derartiger Hartmetalle ist bis zu 30% höher als die konventioneller Hartmetalle mit ähnlicher WC-Korngröße und gleichem Co-Gehalt.The hard metal according to the invention can be further enhanced by nano-particles (particles finer than 100 nm) of tungsten and cobalt and / or carbon being embedded in the binder in the co-matrix. As a result, the wear resistance and bending strength of the cemented carbide are substantially increased compared to conventional hard metals. The bending strength of such hard metals is up to 30% higher than the conventional hard metals with similar WC grain size and the same Co content.

Erreicht die Einlagerung von Nano-Partikeln im Binder in Hartmetallen mit einer magnetischen Sättigung in dem in Anspruch 1 angegebenen Bereich eine Größenordnung von mindestens 5 Vol.-% des Binders, so sind völlig unerwartet viele mechanische Eigenschaften wie Härte, Bruchzähigkeit, Bruchfestigkeit signifikant höher als die von konventionellen Hartmetallen und zwar wider Erwarten unabhängig von den Koerzitivfeldstärkewerten. Das gilt sowohl für grobkörnige als auch für feinkörnige Hartmetalle und sogar für solche zum Schneiden von Metallen.If the incorporation of nano-particles in the binder in hard metals having a magnetic saturation in the range specified in claim 1 reaches an order of at least 5 vol.% Of the binder, completely unexpectedly many mechanical properties such as hardness, fracture toughness, breaking strength are significantly higher than that of conventional cemented carbide, contrary to expectations, independent of the coercitive field strength values. This applies both to coarse-grained and fine-grained hard metals and even to those for cutting metals.

Ein mindestens 5 Vol.-% Nano-Partikel im Binder aufweisendes erfindungsgemäßes Hartmetall kann bevorzugt bis zu 40 Gew.-% Karbide, Nitride und/oder Karbonitride von Ta, Nb, Ti, V, Cr, Mo, B, Zr und/oder Hf enthalten.
Vorzugsweise enthalten die Nano-Partikel dabei weiterhin Ni, Fe, Ta, Nb, Ti, V, Cr, Mo, Zr und/oder Hf. Die mit der Kobaltmatrix kohärenten Nano-Partikel sorgen für eine Stabilisierung des Binders und somit für die bereits beschriebenen Verbesserungen der Hartmetalleigenschaften sowie eines damit versehenen Werkzeugs.
A cemented carbide according to the invention having at least 5% by volume of nanoparticles in the binder may preferably comprise up to 40% by weight of carbides, nitrides and / or carbonitrides of Ta, Nb, Ti, V, Cr, Mo, B, Zr and / or Hf included.
The nano-particles preferably furthermore contain Ni, Fe, Ta, Nb, Ti, V, Cr, Mo, Zr and / or Hf. The nano-particles coherent with the cobalt matrix ensure stabilization of the binder and thus of those already described Improvements in the carbide properties and a tool provided with it.

Vorteilhafterweise weisen die Nano-Partikel eine hexagonale oder kubische Gitterstruktur auf, wobei die Nano-Partikel aus einer oder mehrerer der Phasen CoXWYCz bestehen mit Werten X von 1 bis 7, Y von 1 bis 10 und Z von 0 bis 4. Insbesondere können die Nano-Partikel aus einer Phase Co2W4C bestehen. Auch ist es möglich, daß die Nano-Partikel aus einer oder mehreren intermetallischen Phasen von Wolfram und Kobalt bestehen und so zu einer weiteren Verbesserung des Binders im Sinne der obengenannten Aufgabe beitragen.Advantageously, the nano-particles have a hexagonal or cubic lattice structure, wherein the nano-particles are composed of one or more of the phases Co x W y C z with values X from 1 to 7, y is from 1 to 10, and Z from 0 to 4 In particular, the nano-particles may consist of a phase Co 2 W 4 C. It is also possible that the nano-particles consist of one or more intermetallic phases of tungsten and cobalt and thus contribute to a further improvement of the binder in the sense of the above object.

Den Binder verstärkend kann sich auch auswirken, wenn dieser fcc-Co und/oder hcp-Co in Form einer festen Lösung von W und/oder C in Co aufweist. Die Gitterkonstanten dieser festen Lösung sind dabei größenordnungsmäßig 1 bis 5 % größer als die von reinem Co.Reinforcing the binder can also have an effect if it has fcc-Co and / or hcp-Co in the form of a solid solution of W and / or C in Co. The lattice constants of this solid solution are on the order of 1 to 5% greater than those of pure Co.

Auch kann der Binder weiterhin bis zu 30 Gew.-% Eisen enthalten.Also, the binder may further contain up to 30% by weight of iron.

Die erfindungsgemäßen Hartmetalle mit niedrigem Kohlenstoffgehalt bzw. hoher Konzentration von W im Binder erhalten außerdem anteilig oder sämtlich runde WC-Körner, was eine sehr positive Wirkung auf die Standzeit hat. Unter runden WC-Körnern sind dabei nicht nur kreisrunde Formen, sondern sogar meist unregelmäßige Kornformen mit gerundeten Ecken, ohne scharfe Facettierungen zu verstehen.The hard metals according to the invention with a low carbon content or high concentration of W in the binder are also proportionally or all round toilet grains, which has a very positive effect on the life. Round WC grains here are not only circular shapes, but even mostly irregular grain shapes with rounded corners, without sharp faceting.

Ebenso führen Anteile von jeweils bis zu 1,5 Gew.-% Cr, No, V, Zr und/oder Hf in Form von Karbiden und/oder festen Lösungen im Binder zu einer Verbesserung der Standzeit.Likewise, fractions of up to 1.5% by weight each of Cr, No, V, Zr and / or Hf in the form of carbides and / or solid solutions in the binder lead to an improvement in the service life.

Die erfindungsgemäßen Hartmetalle mit hohem W-Gehalt im Binder können unter Einbindung beschichteter Diamantkörner sogar in der Gruppe der ultraharten Hartmetall-Materialen eine deutliche Leistungsverbesserung bewirken und erfolgreich verwendet werden, da die Kombination der hohen Wolframkonzentration im Binder bei niedriger magnetischer Sättigung einen Auflösungsprozeß der Beschichtung der Diamantkörner wesentlich unterdrückt. Bei einer vorteilhaften Ausführungsform der Erfindung weist das Hartmetall 3 Vol.-% bis 60 Vol.-% Diamant-Körner mit einer Beschichtung aus Karbiden, Karbonitriden und/oder Nitriden von Ti, Ta, Nb, W, Co, Mo, V, Zr, Hf und/oder Si auf.The high-W content carbides according to the invention in the binder can bring about a marked improvement in performance with the incorporation of coated diamond grains even in the group of the ultra-hard carbide materials and can be used successfully, since the combination of the high tungsten concentration in the binder at low magnetic saturation, a dissolution process of the coating Diamond grains significantly suppressed. In an advantageous embodiment of the invention, the hard metal 3 vol .-% to 60 vol .-% diamond grains having a coating of carbides, carbonitrides and / or nitrides of Ti, Ta, Nb, W, Co, Mo, V, Zr , Hf and / or Si.

Weitere Vorteile und Einzelheiten sind anhand der nachfolgend ausgeführten Beispiele 1 bis 4 und Abbildungen 1 bis 4 näher erläutert:

  • Abbildung 1 zeigt die Grenzwerte der magnetischen Sättigung für den in Anspruch 1 definierten Bereich.
Further advantages and details are explained in more detail with reference to Examples 1 to 4 and FIGS. 1 to 4, which are explained below:
  • Figure 1 shows the limits of magnetic saturation for the range defined in claim 1.

Beispiel 1:Example 1:

Es wurde ein WC-Co-Hartmetall mit 6,5% Gew.-% Co und niedrigem Kohlenstoffgehalt hergestellt. Die Koerzitivfeldstärke dieses Hartmetalls beträgt 7,0 kA/m, die magnetische Sättigung ist σ"= 0,8 µTm3/kg bzw. 4πσ=10,0 µTm3/kg, die Härte beträgt HV30 = 1100, die Biegebruchfestigkeit beträgt 2400 MPa. Im Makrobereich (am Lichtmikroskop) ist erkennbar, daß das Hartmetall runde WC-Körner, Co-Binder und keine η-Phase enthält. Zur Untersuchung durch TEM (Transmissionselektronenmikroskopie) wurde eine foliendünne Probe hergestellt. Die W-Konzentration im Binder wurde an der Probe mit EDX (energy-dispersive X-ray microanalysis) gemessen. Die Co-Gitterkonstante wurde durch TEM und Röntgenuntersuchungen bestimmt.A WC-Co cemented carbide was prepared with 6.5% by weight Co and low carbon content. The coercitive field strength of this hard metal is 7.0 kA / m, the magnetic saturation is σ "= 0.8 μTm 3 / kg or 4πσ = 10.0 μTm 3 / kg, the hardness is HV30 = 1100, the bending strength is 2400 MPa In the macroscope (light microscope) it can be seen that the cemented carbide contains round WC grains, co-binders and no η-phase A thin film sample was prepared for examination by TEM (Transmission Electron Microscopy) Sample measured with EDX (energy-dispersive X-ray microanalysis) The Co lattice constant was determined by TEM and X-ray studies.

Die W-Konzentration im Binder der Probe beträgt 18 bis 19 Atom-% und der Binder enthält Nano-Partikel, die in Abb. 2 dargestellt sind. Die Elektronenbeugungen des Binders zeigen Reflexe der wolframhaltigen kubischen Kobaltmatrix mit fcc-Struktur und der Gitterkonstante von 0,366 nm sowie Reflexe der dazwischen liegenden Nano-Partikel, die ca. 3 bis 10 nm groß sind (Abb. 3). Der größte messbare Dhkl-Wert der Nano-Partikel (Elektronenbeugungsaufnahme mit Zonenachsenorientierung der Kobaltmatrix entlang [111]) ist 0,215 nm.The W concentration in the binder of the sample is 18 to 19 at.% And the binder contains nano-particles, which are shown in FIG. The electron diffraction of the binder shows reflections of the tungsten-containing cubic cobalt matrix with fcc structure and the lattice constant of 0.366 nm as well as reflections of the intervening nano-particles, which are about 3 to 10 nm in size (Figure 3). The largest measurable D hkl value of the nanoparticles (electron diffraction with zonal axis orientation of the cobalt matrix along [111]) is 0.215 nm.

Als Referenz wurde ein konventionelles Hartmetall mit 6,5% Co und normalem Kohlenstoffgehalt hergestellt. Die Koerzitivfeldstärke des Referenzhartmetalls beträgt 6,4 kA/m, die magnetische Sättigung ist σ = 0,95 µTm3/kg bzw. 4πσ = 11,9 µTm3/kg, Härte HV30 = 1140 und Biegebruchfestigkeit = 1950 MPa. Es wurden Straßenmeißel mit Schneidelementen aus beiden Hartmetallen hergestellt und an Straßenfräsen getestet.As a reference, a conventional carbide of 6.5% Co and normal carbon content was prepared. The coercive field strength of the reference hard metal is 6.4 kA / m, the magnetic saturation is σ = 0.95 μTm 3 / kg or 4πσ = 11.9 μTm 3 / kg, hardness HV30 = 1140 and flexural strength = 1950 MPa. Road chisels with cutting elements made of both hard metals were produced and tested on road milling machines.

Gefräst wurde verschleißintensiver Asphalt, im Mittel 20 cm über Betondecke, mit im Mittel 10 Metern Vorschub pro Minute. Die Fräse wurde zur Hälfte mit den Meißeln des neuen Hartmetalls und zur anderen Hälfte mit denen des konventionellen Hartmetalls bestückt. Ergebnisse des 1. Feldtests: Hartmetall Verschleiß der Meißel, die eine Drehung ausführten, in mm Anteil der Meißel, die keine Drehung vollführten (eventuelle Brüche) und Verschleiß, in mm Konventionell 6,9 30% 8,6 Neu 3,4 6% 3,8 Mud-intensive asphalt was milled on average 20 cm above the concrete surface, with an average of 10 meters of feed per minute. The milling cutter was half equipped with the chisels of the new carbide and the other half with those of conventional carbide. Results of the 1st field test: hard metal Chisel wear that made a turn, in mm Proportion of chisels that did not rotate (possible breaks) and wear, in mm Conventional 6.9 30% 8.6 New 3.4 6% 3.8

Die Ergebnisse des 1. Feldtests zeigen, daß die Verbesserung der Verschleißfestigkeit des neuen Hartmetalls ca. 50% beträgt. Von den Meißeln, die keine Drehung vollführten, ist der Anteil an Meißeln mit dem neuen Hartmetall wesentlich niedriger als bei dem konventionellen Hartmetall. Hieraus ergibt sich, daß es bei dem neuen Hartmetall signifikant weniger Brüche und/oder zerstörerischen Verschleiß während des Schneidens gibt.The results of the first field test show that the improvement of the wear resistance of the new carbide is about 50%. Of the chisels that did not rotate, the proportion of chisels with the new carbide is much lower than that of conventional carbide. As a result, there are significantly fewer breaks and / or destructive wear during cutting in the new cemented carbide.

Abb. 4 zeigt die verschlissenen Meißel nach dem Feldtest im Vergleich.Fig. 4 shows the worn bits after the field test in comparison.

Beispiel 2:Example 2:

Straßenmeißel mit Schneidelementen aus dem Hartmetall aus Beispiel 1 wurden beim Fräsen von im Mittel 30 cm dickem Zement mit im Mittel 8 Metern Vorschub pro Minute untersucht. Ergebnisse des 2. Feldtests: Hartmetall Verschleiß, in mm Anteil der gebrochenen Meißel konventionell 9,7 13,6% neue 2,8 2,4% Road chisels with cutting elements made of the hard metal from Example 1 were investigated during the milling of an average of 30 cm thick cement with an average of 8 meters feed per minute. Results of the 2nd field test: hard metal Wear, in mm Proportion of broken chisels conventional 9.7 13.6% new 2.8 2.4%

Die Ergebnisse des 2. Feldtests zeigen, daß die Verschleißfestigkeit des neuen Hartmetalls ca. 3 mal höher ist als die des konventionellen. Die Bruchzähigkeit des neuen Hartmetalls ist auch signifikant besser als die des konventionellen. Nach dem 2. Feldtest wurde festgestellt, dass sowohl die Schneidelemente aus dem neuen als auch diejenigen aus konventionellem Hartmetall thermische Risse (sogenannte "snake skin") aufwiesen. Die Risse in den Schneidelementen aus dem neuen Hartmetalls waren aber ungleich schmaler und kürzer als die im konventionellen Hartmetall.The results of the 2nd field test show that the wear resistance of the new carbide is about 3 times higher than that of the conventional one. The fracture toughness of the new carbide is also significantly better than that of the conventional carbide. After the second field test, it was found that both the cutting elements of the new and those of conventional hard metal had thermal cracks (so-called "snake skin"). However, the cracks in the cutting elements made of the new carbide were much smaller and shorter than those in conventional tungsten carbide.

Beispiel 3:Example 3:

Es wurde ein WC-Co-Hartmetall mit 9,5% Gew.-% Co und niedrigem Kohlenstoffgehalt hergestellt. Die Koerzitivfeldstärke beträgt 6,1 kA/m, die magnetische Sättigung ist σ = 1,18 µTm3 /kg bzw. 4πσ =14,8 µTm3/kg, Härte HV30 = 990, Biegebruchfestigkeit = 2720 MPa. Im Makrobereich enthält das Hartmetall runde WC-Körner, Co-Binder und keine η-Phase.A WC-Co cemented carbide of 9.5% by weight Co and low carbon content was produced. The coercive field strength is 6.1 kA / m, the magnetic saturation is σ = 1.18 μTm 3 / kg or 4πσ = 14.8 μTm 3 / kg, hardness HV30 = 990, flexural strength = 2720 MPa. In the macro region, the carbide contains round WC grains, co-binders and no η phase.

Als Referenz wurde ein konventionelles Hartmetall mit 9,5% Co und normalem Kohlenstoffgehalt hergestellt. Die Koerzitivfeldstärke beträgt 4,3 kA/m, magnetische Sättigung σ = 1,42 µTm3/kg bzw. 4πσ = 17,8 µTm3/kg, Härte HV30 = 1020, Biegebruchfestigkeit = 2010 MPa.As a reference, a conventional carbide metal of 9.5% Co and normal carbon content was prepared. The coercive field strength is 4.3 kA / m, magnetic saturation σ = 1.42 μTm 3 / kg or 4πσ = 17.8 μTm 3 / kg, hardness HV30 = 1020, flexural strength = 2010 MPa.

Die TEM-Untersuchungen des neuen Hartmetalls zeigen, daß die W-Konzentration im Binder 19 bis 21 Atom-% betragen und der Binder Nano-Partikel enthält. Die Gitterkonstante von fcc-Co im Binder beträgt 0,368 nm.The TEM investigations of the new cemented carbide show that the W concentration in the binder is 19 to 21 atomic% and the binder contains nano-particles. The lattice constant of fcc-Co in the binder is 0.368 nm.

Es wurden Meißel mit Schneidelementen aus den beiden Hartmetallen hergestellt und im Labor beim Schneiden von abrasivem Beton sowie Granit getestet. Die Meißel wurden auch in einer Kohlemine beim Schneiden von Kohle/Sandstein mit hohem Sandsteingehalt getestet. Mit den Meißeln mit Schneidelementen aus dem neuen Hartmetall konnten Schneidleistungen von 700 m Beton bis zum Verschleiß von 1 mm erreicht werden, während bei den Meißeln mit konventionellem Hartmetall bei gleichem Verschleiß die Schneidleistung nur 100 m betrug. Die Standzeit der Meißel beim Granitschneiden mit dem neuen Hartmetall war ca. 2,5 mal größer als die der Meißel mit konventionellem Hartmetall.Chisels with cutting elements made of the two hard metals were produced and tested in the laboratory for cutting abrasive concrete and granite. The chisels were also tested in a coal mine when cutting high sandstone coal / sandstone. With the chisels with cutting elements made of the new carbide cutting performance of 700 m concrete could be achieved to wear of 1 mm, while in the chisels with conventional carbide with the same wear, the cutting performance was only 100 m. The lifetime of the chisel in the granite cutting with the new carbide was about 2.5 times larger than that of the conventional hard metal chisel.

Beim 3. Feldtest wurden zwei Schneidköpfe mit den Schneidelementen der beiden Hartmetalle bestückt. Die beiden Schneidköpfe mit den Meißeln mit dem neuen Hartmetall erreichten eine Schneidleistung von 3000 m3 Kohle/Sandstein. Sie übertrafen damit die Schneidleistung der Schneidköpfe der Meißel mit konventionellem Hartmetall um etwa das Doppelte. Der Feldtest zeigte auch, daß sich in dem neuen Hartmetall signifikant weniger thermische Risse gebildet hatten als in dem konventionellen Hartmetall.In the third field test, two cutting heads were equipped with the cutting elements of the two hard metals. The two cutting heads with the chisels with the new carbide reached a cutting capacity of 3000 m 3 coal / sandstone. They exceeded the cutting performance of the cutting heads of the Chisel with conventional carbide about twice. The field test also showed that significantly fewer thermal cracks had formed in the new cemented carbide than in the conventional cemented carbide.

Beispiel 4: (nicht Teil der Erfindung) Example 4: (not part of the invention)

Es wurde ein WC-Co-Hartmetall mit 6,5% Gew.% Co und niedrigem Kohlenstoffgehalt hergestellt. Die Koerzitivfeldstärke dieses Hartmetalls beträgt 31,2 kA/m, die magnetische Sättigung ist σ = 0,75 µTm3/kg bzw. 4πσ = 9,4 µTm3/kg, die Härte beträgt HV30 = 2020, die Biegebruchfestigkeit beträgt 2900 MPa und die Bruchzähigkeit K1c= 12,4 MPam1/2. Die W-Konzentration im Binder der Probe beträgt 17 bis 18 Atom-% und der Binder enthält Nano-Partikel, die in fcc-Co eingebettet sind. Die Konzentration der Nano-Partikel im Binder wurde durch das Linienschnittverfahren bestimmt. Die Konzentration der Nano-Partikel beträgt 7,0 ± 0,5 Vol.-%. Als Referenz wurde ein konventionelles Hartmetall ohne Nano-Partikel mit 6,5% Co und normalem Kohlenstoffgehalt hergestellt. Die Koerzitivfeldstärke des Referenzhartmetalls beträgt 31,0 kA/m, magnetische Sättigung σ = 0,97 µTm3/kg bzw. 4πσ = 12,2 µTm3/kg, Härte HV30 = 1810, Biegebruchfestigkeit = 1900 Mpa, Bruchzähigkeit K1c= 9,3 MPam 1/2. Somit besitzt auch in diesem Fall das neue Hartmetall erkennbar eine bessere Kombination aus Härte, Biegebruchfestigkeit und Bruchzähigkeit.A WC-Co cemented carbide was prepared with 6.5% wt.% Co and low carbon content. The coercitive field strength of this hard metal is 31.2 kA / m, the magnetic saturation is σ = 0.75 μTm 3 / kg or 4πσ = 9.4 μTm 3 / kg, the hardness is HV30 = 2020, the flexural strength is 2900 MPa and the fracture toughness K 1c = 12.4 MPam 1/2 . The W concentration in the binder of the sample is 17 to 18 at.% And the binder contains nano-particles embedded in fcc-Co. The concentration of nano-particles in the binder was determined by the line-cut method. The concentration of nano-particles is 7.0 ± 0.5 vol.%. As a reference, a conventional cemented carbide without nano-particles of 6.5% Co and normal carbon content was prepared. The coercive field strength of the reference hard metal is 31.0 kA / m, magnetic saturation σ = 0.97 μTm 3 / kg or 4πσ = 12.2 μTm 3 / kg, hardness HV30 = 1810, flexural strength = 1900 Mpa, fracture toughness K 1c = 9 , 3 MPam 1/2 . Thus, also in this case, the new carbide recognizably has a better combination of hardness, bending strength and fracture toughness.

Erfindungsgemäß werden insoweit nach den durchgeführten Untersuchungen Hartmetalle bevorzugt, deren Dhkl-Wert der geordneten Phasen bis zu 0,215 nm ± 0,007 nm beträgt.According to the invention, hard metals are preferred according to the investigations carried out, the Dhkl value of the ordered phases is up to 0.215 nm ± 0.007 nm.

Durch den oben beschriebenen Binder weisen die erfindungsgemäßen Hartmetalle mit grobkörnigem Gefüge eine verbesserte Kombination von Biegebruchfestigkeit, Bruchzähigkeit und Verschleißfestigkeit auf. Werkzeuge mit diesen Hartmetallen besitzen eine sehr hohe Leistung im Bereich des Gestein- und Asphaltschneidens und haben als Verschleißteile eine erheblich verlängerte Standzeit.As a result of the binder described above, the coarse-grained hard metals according to the invention have an improved combination of flexural strength, fracture toughness and wear resistance. Tools with these hard metals have a very high performance in the field of rock and asphalt cutting and have a significantly extended service life as wearing parts.

Claims (25)

  1. A hard metal of tungsten carbide for tools for the mechanical working of in particular stone, concrete and asphalt, with 5 to 25 wt.% binder based on Co or Co and Ni, whereby the coercive field strength of the hard metal amounts to a maximum of 9.5 kA/m, the binder contains up to 30 wt.% Fe and the hard metal has a magnetic saturation (σ or 4πσ, in each case in units of microtesla times cubic metre per kilogram) as a function of the Co component (X) in wt.% of the hard metal in a range from σ = 0.11 X to σ = 0.137 X
    Figure imgb0003

    or 4 πσ = 0.44 πX to 4 πσ = 0.548 πX .
    Figure imgb0004
  2. The hard metal according to claim 1, characterised in that its coercive field strength amounts to a maximum of 8.0 kA/m.
  3. The hard metal according to any one of claims 1 or 2, characterised in that its coercive field strength amounts to a maximum of 7.2 kA/m.
  4. The hard metal according to any one of claims 1 to 3, characterised in that its coercive field strength lies in a range from 1.6 kA/m to 6.4 kA/m.
  5. The hard metal according to any one of claims 1 to 4, characterised in that the binder contains nanoparticles, which are finer than 100 nm and comprise one or more of the ordered phases CoxWyCz with x = 1 to 7, y = 1 to 10 and z = 0 to 4.
  6. The hard metal according to any one of claims 1 to 5, characterised in that its tungsten carbide average grain size lies in a range from 0.2 µm to 20 µm.
  7. The hard metal according to any one of claims 1 to 6, characterised in that its tungsten carbide average grain size lies in a range from 2 µm to 20 µm.
  8. The hard metal according to any one of claims 1 to 7, characterised in that its tungsten carbide average grain size lies in a range from 4 µm to 20 µm.
  9. The hard metal according to any one of claims 1 to 8, characterised in that it contains up to a total of 0.4 wt.% Ta, Nb and/or Ti in the form of cubic carbides and/or solid solution in the binder.
  10. The hard metal according to any one of claims 1 to 9, characterised in that it contains up to, respectively, 1.5 wt.% Cr, Mo, V, Zr and/or Hf in the form of carbides and/or solid solutions in the binder.
  11. The hard metal according to claim 5, characterised in that the binder contains at least 5 vol.% nanoparticles, which are finer than 100 nm and comprise one or more of the phases CoxWyCz with x = 1 to 7, y = 1 to 10 and z = 0 to 4.
  12. The hard metal according to claim 11, characterised in that it contains up to 40 wt.% carbides, nitrides and/or carbonitrides of Ta, Nb, Ti, V, Cr, Mo, B, Zr and/or Hf.
  13. The hard metal according to claim 11 or 12, characterised in that the nanoparticles contain Ni, Fe, Ta, Nb, Ti, V, Cr, Mo, Zr and/or Hf.
  14. The hard metal according to any one of claims 5 to 13, characterised in that the nanoparticles are coherent with the cobalt matrix.
  15. The hard metal according to any one of claims 5 to 14, characterised in that the largest measurable Dhkl value of the ordered phases of the nanoparticles amounts to 0.215 nm ± 0.007 nm.
  16. The hard metal according to any one of claims 5 to 15, characterised in that at least parts of the nanoparticles have a hexagonal lattice structure.
  17. The hard metal according to any one of claims 5 to 16, characterised in that at least parts of the nanoparticles have a cubic lattice structure.
  18. The hard metal according to any one of claims 5 to 17, characterised in that the nanoparticles comprise a Co2W4C phase.
  19. The hard metal according to any one of claims 5 to 18, characterised in that the nanoparticles comprise one or more intermetallic phases of W and Co.
  20. The hard metal according to any one of claims 1 to 19, characterised in that the tungsten carbide grains are partially or totally round.
  21. The hard metal according to any one of claims 1 to 20, characterised in that the W concentration in the binder lies in a range from 10 to 30 atomic %.
  22. The hard metal according to any one of claims 1 to 21, characterised in that it contains 3 to 60 vol.% diamond grains with a coating of carbides, carbonitrides and/or nitrides of Ti, Ta, Nb, W, Cr, Mo, V, Zr, Hf and/or Si.
  23. The hard metal according to any one of claims 1 to 22, characterised in that the binder comprises fcc-Co and/or hcp-Co in the form of a solid solution of W and/or C in Co.
  24. The hard metal according to claim 10 or 23, characterised in that the lattice constants of the solid solution are 1% to 5% greater than those of pure Co.
  25. A tool for the mechanical working of in particular stone, concrete and asphalt, with at least one cutting element, characterised in that the cutting element is made from a hard metal according to any one of claims 1 to 24.
EP03763783A 2002-07-10 2003-07-10 Hard metal in particular for cutting stone, concrete and asphalt Revoked EP1520056B1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE10231303 2002-07-10
DE10231303 2002-07-10
DE10248898 2002-10-18
DE10248898 2002-10-18
DE10258537 2002-12-14
DE10258537A DE10258537B4 (en) 2002-07-10 2002-12-14 Hard metal made from tungsten carbide with a binder based on cobalt or cobalt and nickel has a magnetic saturation depending on the cobalt amount of the hard metal
PCT/EP2003/007462 WO2004007784A2 (en) 2002-07-10 2003-07-10 Hard metal in particular for cutting stone, concrete and asphalt

Publications (2)

Publication Number Publication Date
EP1520056A2 EP1520056A2 (en) 2005-04-06
EP1520056B1 true EP1520056B1 (en) 2008-01-30

Family

ID=30118720

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03763783A Revoked EP1520056B1 (en) 2002-07-10 2003-07-10 Hard metal in particular for cutting stone, concrete and asphalt

Country Status (7)

Country Link
US (1) US20060093859A1 (en)
EP (1) EP1520056B1 (en)
AT (1) ATE385262T1 (en)
AU (1) AU2003250024A1 (en)
DE (1) DE50309106D1 (en)
ES (1) ES2300616T3 (en)
WO (1) WO2004007784A2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055616A1 (en) * 2005-11-14 2007-05-18 Evgeny Aleksandrovich Levashov Binder for the fabrication of diamond tools
US7275566B2 (en) * 2006-02-27 2007-10-02 Weavexx Corporation Warped stitched papermaker's forming fabric with fewer effective top MD yarns than bottom MD yarns
DE102006018947A1 (en) * 2006-04-24 2007-10-25 Tutec Gmbh Process for producing a cemented carbide body, powder for producing a cemented carbide and cemented carbide bodies
US9015051B2 (en) 2007-03-21 2015-04-21 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Reconstruction of audio channels with direction parameters indicating direction of origin
GB0816837D0 (en) * 2008-09-15 2008-10-22 Element Six Holding Gmbh A Hard-Metal
DE112009002204T5 (en) * 2008-09-24 2011-07-07 Smith International, Inc., Tex. Novel carbide for use in oil and gas wells
GB0903322D0 (en) * 2009-02-27 2009-04-22 Element Six Holding Gmbh Hard-metal substrate with graded microstructure
US20110061944A1 (en) 2009-09-11 2011-03-17 Danny Eugene Scott Polycrystalline diamond composite compact
GB0915971D0 (en) * 2009-09-11 2009-10-28 Element Six Ltd Polycrysalline diamond composite compact elements, tools incorporating same, method for making same and method for using same
GB201105150D0 (en) 2011-03-28 2011-05-11 Element Six Holding Gmbh Cemented carbide material and tools comprising same
GB201209482D0 (en) * 2012-05-29 2012-07-11 Element Six Gmbh Polycrystalline material,bodies comprising same,tools comprising same and method for making same
DE102014204277B4 (en) 2014-03-07 2023-06-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. WEAR-RESISTANT TUNGSTEN CARBIDE CERAMICS AND PROCESSES FOR THEIR MANUFACTURE
PL3274482T3 (en) * 2015-03-26 2020-06-15 Sandvik Intellectual Property Ab A rock drill button
EP3519371B1 (en) 2016-09-28 2021-01-27 Sandvik Intellectual Property AB A rock drill insert
GB201713532D0 (en) * 2017-08-23 2017-10-04 Element Six Gmbh Cemented carbide material
JP7087596B2 (en) * 2018-04-04 2022-06-21 住友電気工業株式会社 Cutting tools

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9004123D0 (en) * 1990-12-21 1990-12-21 Sandvik Ab DIAMOND IMPREGNERATED HARD MATERIAL
US5992546A (en) * 1997-08-27 1999-11-30 Kennametal Inc. Rotary earth strata penetrating tool with a cermet insert having a co-ni-fe-binder

Also Published As

Publication number Publication date
WO2004007784A3 (en) 2004-04-08
US20060093859A1 (en) 2006-05-04
DE50309106D1 (en) 2008-03-20
AU2003250024A8 (en) 2004-02-02
AU2003250024A1 (en) 2004-02-02
WO2004007784A2 (en) 2004-01-22
ES2300616T3 (en) 2008-06-16
ATE385262T1 (en) 2008-02-15
EP1520056A2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
EP1520056B1 (en) Hard metal in particular for cutting stone, concrete and asphalt
DE602004012147T2 (en) HYBRID CARBIDE COMPOSITES
DE10135790B4 (en) Fine grained cemented carbide and its use
EP2337874B1 (en) Metal powder containing molybdenum for producing hard metals based on tungstene carbide
DE10356470B4 (en) Zirconium and niobium-containing cemented carbide bodies and process for its preparation and its use
AT15143U1 (en) cutting tool
EP3247813B1 (en) Hard metal-cermet composite material and method for the production thereof
EP0330913B1 (en) Process for preparing a sintered hard metal, and sintered hard metal obtained thereby
EP3448603A1 (en) Carbide with toughness-increasing structure
DE102016115784A1 (en) Carbide with a cobalt-molybdenum alloy as a binder
EP0214679B2 (en) Oxidation-resistant hard metal alloy
WO2017152197A1 (en) Machining tool
DE2652392A1 (en) SINTER CARBIDE AND METHOD FOR ITS PRODUCTION
DE2560567C2 (en)
DE112006000635B4 (en) TiCN based cermet and cutting tool and method of cutting an article using the same
WO2020074241A1 (en) Hard metal having toughness-increasing microstructure
DE10258537B4 (en) Hard metal made from tungsten carbide with a binder based on cobalt or cobalt and nickel has a magnetic saturation depending on the cobalt amount of the hard metal
DE102004051288B4 (en) Polycrystalline hard material powder, composite material with a polycrystalline hard material powder and method for producing a polycrystalline hard material powder
EP0425061B1 (en) Hard metal based on titaniumcarbonitride
DE102021111371A1 (en) Cemented Carbide Material
DE202022102141U1 (en) Cemented Carbide Material
DE102021006541A1 (en) Cemented Carbide Material
WO2024047007A1 (en) Cemented carbide material
DE102022122317A1 (en) Cemented carbide material
DE202022002948U1 (en) Cemented carbide material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050112

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050511

RAX Requested extension states of the european patent have changed

Extension state: LT

Payment date: 20050112

Extension state: LV

Payment date: 20050112

RIN1 Information on inventor provided before grant (corrected)

Inventor name: COOPER, ROY

Inventor name: RIES, BERND

Inventor name: KONYASHIN, IGOR

17Q First examination report despatched

Effective date: 20050511

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BARAT CARBIDE HOLDING GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: LT LV

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50309106

Country of ref document: DE

Date of ref document: 20080320

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2300616

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E003632

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SANDVIK INTELLECTUAL PROPERTY AB

Effective date: 20081030

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: ELEMENT SIX HOLDING GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090722

Year of fee payment: 7

Ref country code: FR

Payment date: 20090727

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090728

Year of fee payment: 7

Ref country code: DE

Payment date: 20090529

Year of fee payment: 7

Ref country code: GB

Payment date: 20090518

Year of fee payment: 7

Ref country code: HU

Payment date: 20090619

Year of fee payment: 7

Ref country code: NL

Payment date: 20090731

Year of fee payment: 7

Ref country code: SE

Payment date: 20090730

Year of fee payment: 7

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ELEMENT SIX HOLDING GMBH

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080501

27W Patent revoked

Effective date: 20100719

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20100719

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100711