EP0330913B1 - Process for preparing a sintered hard metal, and sintered hard metal obtained thereby - Google Patents

Process for preparing a sintered hard metal, and sintered hard metal obtained thereby Download PDF

Info

Publication number
EP0330913B1
EP0330913B1 EP89102623A EP89102623A EP0330913B1 EP 0330913 B1 EP0330913 B1 EP 0330913B1 EP 89102623 A EP89102623 A EP 89102623A EP 89102623 A EP89102623 A EP 89102623A EP 0330913 B1 EP0330913 B1 EP 0330913B1
Authority
EP
European Patent Office
Prior art keywords
nitride
carbide
aluminium
process according
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89102623A
Other languages
German (de)
French (fr)
Other versions
EP0330913A3 (en
EP0330913A2 (en
Inventor
Hans Kolaska
P. Prof. Dr. Ettmayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Widia GmbH
Original Assignee
Krupp Widia GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Widia GmbH filed Critical Krupp Widia GmbH
Priority to AT89102623T priority Critical patent/ATE89329T1/en
Publication of EP0330913A2 publication Critical patent/EP0330913A2/en
Publication of EP0330913A3 publication Critical patent/EP0330913A3/en
Application granted granted Critical
Publication of EP0330913B1 publication Critical patent/EP0330913B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the invention relates to a method for producing a sintered hard metal body, which consists of at least one hard material from the field of carbides, nitrides and / or carbonitrides of the transition metals of groups 4, 5 and / or 6 of the periodic table and at least one of the binder metals iron, nickel and Contains cobalt, the hard material being present as carbide and / or mixed carbide and / or nitride and / or mixed nitride in the form of cubic crystals or mixed crystals, and is produced by mixing and grinding powdered starting materials and by pressing and subsequent sintering of the starting powder mixture.
  • the invention also relates to a sintered hard metal body which can be produced by means of the method according to the invention.
  • a sintered body for a processing tool which consists of 80 to 95% by volume boron nitride and, moreover, a binder, the aluminum components and a carbide, nitride and / or carbonitride of IVa or Va transition metals of the periodic system, which may contain a complex nitride such as Ti2 AlN. Copper and / or metals of the iron group are proposed as binders.
  • Processes for the production of sintered hard metal bodies are basically from e.g. Kieffer-Benesovsky, "Hartmetall”, 1965, Springer-Verlag, as well as “Hartmetall für die Praktiker, build, manufacture, properties and industrial application of a modern material group", VDI-Verlag GmbH, 1988, as well as the possible compositions of the carbide body .
  • the proportion of binder is between 3 and 30% by mass.
  • Sintered hard metals based on titanium carbide (US Pat. No. 2,967,349) or titanium carbonitride as hard material phase (AT-PS 2 99 561, US Pat. No. 3,994,692) - which are each bound by a nickel-molybdenum binder - are known to be distinguished compared to conventional hard metal with tungsten carbide as the one hard material phase and cubic titanium mixed carbides - in which some of the titanium atoms are replaced by tantalum, niobium, tungsten - as the second hard material phase and cobalt as binder metal due to increased wear resistance.
  • titanium carbide and titanium carbonitride hard metal can only be used to a limited extent as cutting tools, especially at high cutting speeds and with cyclical thermal loads (such as during milling); under the effect of the high temperatures occurring at the cutting edge, the binder metal loses its strength and tends to undergo plastic deformation under the influence of the cutting forces.
  • the significantly lower thermal conductivity of TiC-Mo, Ni and Ti (C, N) -Mo, Ni hard metals compared to tungsten carbide leads to heat build-up, especially at the most stressed point.
  • US Pat. No. 3,971,656 describes a hard metal in which the hard material particles consist of two phases, namely a titanium and nitrogen-rich carbonitride mixed phase inside the hard material particle and another phase which is rich in metals of the 6th group in the periodic table and is low in nitrogen and which envelops the carbonitride mixed phase. It is known that titanium nitride increases the crust resistance of hard metals during cutting operations compared to titanium carbide. According to the teaching of US Pat. No. 3,971,656, it is assumed that the equilibrium is established within the hard material particle consisting of two mixed phases.
  • the core of the hard material particle therefore consists of relatively carbon-rich carbonitride, since unalloyed titanium nitride cannot be in equilibrium with the required second (Mo, W) -rich phase. According to US Pat. No. 3,971,656, a hard metal is thus created whose wear resistance is not yet optimal.
  • Another way to create cemented carbide with improved high temperature strength is to increase the heat resistance of the binder metal.
  • the binder metal in addition to molybdenum, which nickel can harden through solid solution hardening, the binder metal was additionally alloyed with aluminum in order to emulate the effect of ⁇ ′-hardening (hardening by precipitation of coherent particles with a car structure) known from the superalloys in the binder phase.
  • ⁇ ′-hardening hardening by precipitation of coherent particles with a car structure
  • the occurrence of ⁇ ′-phases was demonstrated by electron microscopic investigations of aluminum alloy binder phases in Ti (C, N) -Mo, Ni hard metals.
  • the addition of aluminum resulted in an increase in the hardness measured at room temperature, which, however, is associated with a decrease in the bending strength (H. Doi and K.
  • the The prescribed carbon content of the sintered alloy is strictly observed so that the amount of titanium required for a coherent elimination of the ⁇ ′ phase from the hard material dissolves. Only when the ratio of the proportion of aluminum and titanium dissolved in the binder metal is approximately the same is a noticeable influence on the properties of the binder metal to be expected. If the titanium content is too high, the ⁇ ′ excretion becomes metastable; in the absence of titanium, the coherence voltage becomes too low, which reduces the hardening effect at medium temperatures.
  • AlN is added to the binder described in DE-PS 28 30 010 to improve the heat resistance; this remains in the structure as a "dispersed phase" and improves hardness.
  • AlN forms neither with TiC nor with TiN mixed crystals, is a non-metallic hard material that does not have good wetting properties, is also non-resistant to atmospheric moisture in finely divided form and decomposes under the action of it to Al (OH) 3 and NH3. This has a particularly disadvantageous effect when grinding with grinding liquids that are not entirely free of water.
  • the object of the invention is to enable the production of a sintered hard metal which, while avoiding the disadvantages described above, has increased wear resistance even at higher temperatures.
  • the sintered hard metal should in particular also be usable as a cutting tool or cutting plate and, particularly in the machining of short and long-chipping workpiece materials, should have significantly improved cutting performance.
  • the task related to the method is achieved by the measures listed in claim 1.
  • the object related to the product is achieved by the features of claim 15.
  • Subclaims 2 to 14 describe further developments of this method.
  • Aluminum-containing complex carbides or complex nitrides should preferably be used, furthermore those complex carbides or complex nitrides which contain substances which have the same or similar effects to aluminum.
  • the substances NbCrN, TaCrN, V5Si3N 1-x , Mo5Si3C 0.6 offer.
  • aluminum-containing complex carbides and / or nitrides from the family of the H phases and / or Chi phases and / or Kappa phases are used.
  • the following compounds are suitable as aluminum-containing complex carbides or complex nitrides from the family of the H, Chi and Kappa phases: Ti2AlN, Ti2AlC, V2AlC, V2AlN, Nb2AlC, Ta2AlC, Cr2AlC, Nb3Al2C, Ta3Al2C, Nb3AlN, Mo3Al2C, MoCr2Al2C, Mo-Ni-Al-C, Mo-Co-Al-C, Mo-Mn-Al-C, W- Mn-Al-C, W-Fe-Al-C.
  • the aluminum-containing complex carbides and nitrides are produced by reacting the nitride or carbide of aluminum with the powdery transition metals or by reacting the nitrides or carbides of the transition metals with aluminum. They are made according to the usual in the carbide industry Crushing methods are pulverized and processed with the other alloy components of the hard metal in a manner known per se to form a sintered hard metal body - in particular cutting tools or cutting plates.
  • the relative proportions between the aluminum-containing complex carbide or nitride and binder metal are selected so as to achieve optimal properties so that - assuming that the entire aluminum content of the complex carbide or nitride remains in the sintered (i.e. finished) hard metal body - the aluminum content of the binder metal 20 Mass%, preferably 10 mass%, does not exceed; in the sintered hard metal body, the minimum aluminum content in the binder metal should be in the order of 1% by mass.
  • the aluminum content of the binder metal is between 2 and 8% by mass.
  • the complex carbides and nitrides are largely resistant to the commonly used grinding aids. A chemical attack on the complex carbides and nitrides or hydrolysis of these compounds is not to be feared.
  • the complex carbides and nitrides in question decompose in the presence of nickel and / or cobalt at the sintering temperatures usually used (about 1350 to 1550 ° C.), the monocarbides or mononitrides of the transition metals of the 4th to 4th 6.
  • Eliminate group of the periodic table while aluminum is dissolved in excess of the nickel cobalt, solidifies the binder by solid solution hardening and, if a minimum content of aluminum in the binder metal is exceeded, is excreted as a ⁇ '-phase when cooling (e.g. H. Nowotny et al : Montash. Chem. 114 (1985), 127-135).
  • part of the transition metal diffuses into the hard material particles; another part remains dissolved in the binder metal and strengthens the binder metal by means of mixed crystal hardening.
  • the monocarbides and nitrides of the transition metals which form during the reaction of the complex carbides and nitrides with the liquid binder metal are epitaxially deposited on the surface of the hard material particles and completely envelop the hard material particle.
  • sintering temperatures between 1350 ° C and 1550 ° C and sintering times of up to 2 hours, the diffusion rates in the hard material particles are not sufficient to bring about a metallurgical equilibrium between the hard material particle in question and its shell made of monocarbides or nitrides of the transition metals.
  • the shell made of monocarbides or nitrides of the transition metals forms a diffusion-inhibiting barrier layer, which also prevents further material exchange between the hard material particle in question and the binder metal.
  • the chemical composition of the core of the coated hard material particle in the sintered hard metal is thus essentially identical to the chemical composition of the corresponding hard material particle in the starting powder mixture from which the hard metal body was produced by pressing and sintering.
  • the cubic mixed crystal forming the coated hard material particle also remains in an imbalance state in the sintered hard metal body. This phenomenon is noticeable in metallographic grinding in that even fine-grained hard material particles have a clearly recognizable edge zone.
  • this edge zone made of monocarbides and nitrides of the transition metals can be clearly distinguished both with regard to their metal components (generally: transition metals of the 4th and 6th group of the periodic table) and their non-metal components (carbon and nitrogen).
  • the sintered hard metal according to the invention combines the favorable properties of the carbides of the transition metals in the peripheral zone, which are readily wettable by the conventional binder metals, with the high wear resistance of the nitrides in the core and, due to the content of titanium and aluminum in the binder metal, has such a high wear resistance that the cutting tools produced therefrom or cutting inserts have significantly improved cutting performance.
  • Another advantage of the hard metal according to the invention is that during the implementation of the complex carbides and -ni tride with the liquid binder metal forming monocarbides and nitrides of the transition metals are epitaxially deposited on the surface of the hard material particles and thus prevent a further change in the hard material core under the effect of the liquid binder metal.
  • the sintered hard metal body which can be produced by means of the method according to the invention, is essentially characterized in that hard materials forming the starting powder mixture are essentially present in their original composition in the sintered hard metal body (i.e. after completion of the manufacturing process):
  • the existing carbides and / or mixed carbides and / or nitrides and / or mixed nitrides encased with a diffusion-inhibiting layer thus indicate from their structure that an equilibrium in the metallurgical sense has been avoided between the different hard materials within the hard material particle. This deliberately created imbalance condition results in the abovementioned improved wear resistance - even under extreme working conditions.
  • the conventional hard metal used for comparison (see FIG. 1, left blocks) consists of 57% Tic, 10% TiN, 10% WC, 2% VC, 10% Mo as well as 5.5% Ni and 5.5% Co.
  • the hard metals according to the invention with complex nitride-modified binder metal (cf. the blocks in the middle and on the right-hand side of FIG. 1) were made from the same base material with the addition of 0.6% or 2.2% Ti2AlN while simultaneously reducing the nickel and Cobalt content to 5.2% and 4.4% in a manner known per se; in the sintered hard metal, the associated aluminum content in the binder is about 2 or slightly more than 7%.
  • the scour depth KT for cutting tests on the workpiece material Cm45N is at a cutting speed of 355 m / min, a cutting time of 12.5 min and a product of cutting depth and feed in the order of magnitude of 1.0 x 0, 1 mm2 / rev for the hard metals to be compared with one another in the range between approximately 30 to 35 ⁇ m.
  • the open area wear VB for the conventional hard metal (left) is 450 ⁇ m and becomes smaller with increasing content of Ti2AlN (middle and right side of the illustration). While the crater depth KT could not be improved by the addition of Ti2AlN, the detected open area wear VB decreases with increasing Ti2AlN content from about 450 to 280 ⁇ m.
  • FIG. 2 shows the number of strokes of 10 cutting edges for the three previously mentioned hard metals.
  • the cutting test was carried out on a shaft made of workpiece material Ck45N, at a cutting speed of 200 m / min with a product of cutting depth and feed of 2.5 x 0.2 mm2 / rev.
  • the conventional hard metal (left) only achieves a stroke rate of around 10,000, the addition of 0.6% Ti2AlN already doubles the number of strokes to 20,000; on the other hand, the hard metal, the starting mixture of which 2.2% Ti2AlN has been added (right block in the illustration), even withstands 160,000 blows.
  • the hard metals designed according to the invention are clearly superior to the conventional hard metal.
  • a tool or a cutting insert made of a hard metal designed according to the invention can achieve a considerably greater cutting performance than a tool made of conventional hard metal: by adding 0.6 or 2.2% Ti2AlN the milling path achieved increases from approximately 800 mm to 1200 mm or 1600 mm.
  • the milling tests were carried out on a shaft made of tempered steel 42CrMo4 at a cutting speed of 250 m / min; the associated product of depth of cut, chip cross-section and feed per tooth is 1.0 x 120 x 0.1 mm / tooth.
  • Tools or cutting inserts made of hard metal, to which aluminum-containing complex nitrides have been added, are - as the test results prove - clear in terms of cutting performance, especially when turning in interrupted cuts and when milling the tools or cutting inserts that have been made from conventional hard metals think.
  • the improved wear resistance - which makes the hard metals according to the invention also interesting for other areas of application - is based on the fact that the starting mixture for producing the hard metal or hard metal body is composed in such a way that certain chemical reactions are initiated very quickly at the beginning of the melting of the binding phase, which result in the formation of a diffusion-inhibiting layer around the surface of the hard material particles of the starting mixture.
  • the deliberate selection of the constituents forming the starting powder mixture therefore means that no metallurgical equilibrium can be established in the finished hard metal or hard metal body. This ensures that the optimum properties of the different hard material particles for the intended applications - such as the known wear resistance of the titanium nitride and the known excellent hardness of the titanium carbide - are retained in the finished hard metal.
  • the metallurgical equilibrium which is usually given according to the prior art, these individual properties of the hard material particles according to the invention would at least partially be lost.
  • the invention consists in the fact that no metallurgical equilibrium is expressly sought and is present.
  • FIG. 4 shows a table with eight exemplary embodiments for the composition of the starting powder mixture of the hard metal body according to the invention.

Abstract

To improve the heat resistant properties of sintered hard metals, in particular with a view to achieving greater cutting powers during use as the cutting tool, it is proposed to alloy aluminium-containing complex nitrides and/or aluminium-containing complex carbides, in particular from the family comprising the H, chi or kappa phases, with the binder metal to which at least one hard material phase has been added.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines gesinterten Hartmetallkörpers, der aus zumindest einem Hartstoff aus dem Bereich der Carbide, Nitride und/oder Carbonitride der Übergangsmetalle der Gruppen 4, 5 und/oder 6 des Periodensystems besteht und wenigstens eines der Bindermetalle Eisen, Nickel und Cobalt enthält, wobei der Hartstoff als Carbid und/oder Mischcarbid und/oder Nitrid und/oder Mischnitrid in Form kubischer Kristalle bzw. Mischkristalle vorliegt, und durch Mischen sowie Mahlen pulverförmiger Ausgangsstoffe und durch Verpressen und anschließendes Sintern der Ausgangspulvermischung hergestellt wird. Gegenstand der Erfindung ist außerdem ein gesinterter Hartmetallkörper, der mittels des erfindungsgemäßen Verfahrens herstellbar ist.The invention relates to a method for producing a sintered hard metal body, which consists of at least one hard material from the field of carbides, nitrides and / or carbonitrides of the transition metals of groups 4, 5 and / or 6 of the periodic table and at least one of the binder metals iron, nickel and Contains cobalt, the hard material being present as carbide and / or mixed carbide and / or nitride and / or mixed nitride in the form of cubic crystals or mixed crystals, and is produced by mixing and grinding powdered starting materials and by pressing and subsequent sintering of the starting powder mixture. The invention also relates to a sintered hard metal body which can be produced by means of the method according to the invention.

Aus der GB-A-2 048 956 ist ein Sinterkörper für ein Bearbeitungswerkzeug bekannt, das aus 80 bis 95 Vol.-% Bornitrid und im übrigen einem Binder besteht, der Aluminiumkomponenten sowie ein Carbid, Nitrid und/oder Carbonitrid der IVa oder Va Übergangsmetalle des periodischen Systems aufweist, welche ein Komplexnitrid wie z.B. Ti₂ AlN enthalten können. Als Binder werden Kupfer und/oder Metalle der Eisengruppe vorgeschlagen.From GB-A-2 048 956 a sintered body for a processing tool is known which consists of 80 to 95% by volume boron nitride and, moreover, a binder, the aluminum components and a carbide, nitride and / or carbonitride of IVa or Va transition metals of the periodic system, which may contain a complex nitride such as Ti₂ AlN. Copper and / or metals of the iron group are proposed as binders.

Verfahren zur Herstellung gesinterter Hartmetallkörper sind grundsätzlich aus z.B. Kieffer-Benesovsky, "Hartmetall", 1965, Springer-Verlag, sowie "Hartmetall für den Praktiker, Aufbau, Herstellung, Eigenschaften und industrielle Anwendung einer modernen Werkstoffgruppe", VDI-Verlag GmbH, 1988, ebenso bekannt, wie die möglichen Zusammensetzungen der Hartmetallkörper. Insbesondere ist es bekannt, daß der Binderanteil zwischen 3 und 30 Massen-% liegt.Processes for the production of sintered hard metal bodies are basically from e.g. Kieffer-Benesovsky, "Hartmetall", 1965, Springer-Verlag, as well as "Hartmetall für die Praktiker, build, manufacture, properties and industrial application of a modern material group", VDI-Verlag GmbH, 1988, as well as the possible compositions of the carbide body . In particular, it is known that the proportion of binder is between 3 and 30% by mass.

Gesinterte Hartmetalle auf der Basis von Titancarbid (US-PS 29 67 349) oder Titancarbonitrid als Hartstoffphase (AT-PS 2 99 561, US-PS 39 94 692) - die jeweils durch einen Nickel-Molybdän-Binder gebunden ist - zeichnen sich bekanntlich gegenüber herkömmlichen Hartmetall mit Wolframcarbid als der einen Hartstoffphase sowie kubischen Titan-Mischcarbiden - in denen ein Teil der Titanatome durch Tantal, Niob, Wolfram ersetzt ist - als der zweiten Hartstoffphase und Cobalt als Bindermetall durch erhöhte Verschleißfestigkeit aus. Als Schneidwerkzeuge, insbesondere bei hohen Schnittgeschwindigkeiten und bei zyklischer thermischer Belastung (wie beim Fräsen) sind Titancarbid- und Titancarbonitridhartmetall allerdings nur beschränkt einsetzbar; unter der Wirkung der an der Schneidkante auftretenden hohen Temperaturen verliert das Bindermetall nämlich seine Festigkeit und neigt unter dem Einfluß der Schnittkräfte zu plastischer Verformung. Die im Vergleich zu Wolframcarbid deutlich geringere Wärmeleitfähigkeit der TiC-Mo, Ni- und Ti(C,N)-Mo, Ni-Hartmetalle führt gerade an der höchst beanspruchten Stelle zu einem Hitzestau.Sintered hard metals based on titanium carbide (US Pat. No. 2,967,349) or titanium carbonitride as hard material phase (AT-PS 2 99 561, US Pat. No. 3,994,692) - which are each bound by a nickel-molybdenum binder - are known to be distinguished compared to conventional hard metal with tungsten carbide as the one hard material phase and cubic titanium mixed carbides - in which some of the titanium atoms are replaced by tantalum, niobium, tungsten - as the second hard material phase and cobalt as binder metal due to increased wear resistance. However, titanium carbide and titanium carbonitride hard metal can only be used to a limited extent as cutting tools, especially at high cutting speeds and with cyclical thermal loads (such as during milling); under the effect of the high temperatures occurring at the cutting edge, the binder metal loses its strength and tends to undergo plastic deformation under the influence of the cutting forces. The significantly lower thermal conductivity of TiC-Mo, Ni and Ti (C, N) -Mo, Ni hard metals compared to tungsten carbide leads to heat build-up, especially at the most stressed point.

Um diesen Nachteil der hinsichtlich ihrer Verschleißfestigkeit überlegenen TiC-Mo, Ni- und Ti(C,N)-Mo, Ni-Hartmetalle zu beseitigen, wurde bereits der Vorschlag unterbreitet, Carbonitridhartmetalle unter Zusatz von Wolframcarbid und einem legierten Nickel- oder Cobaltbinder zu sintern (US-PS 38 40 367, DE-OS 25 46 623). Wegen der Reaktionsbereitschaft von Ti(C,N) mit Wolframcarbid muß der Hartmetallkörper allerdings unter einem von der Zusammensetzung und der Sintertemperatur abhängigen Stickstoffpartialdruck gesintert werden, wodurch im Gefüge Mikroporosität entsteht und somit eine Qualitätsminderung des Hartmetalls verursacht wird.In order to eliminate this disadvantage of the TiC-Mo, Ni and Ti (C, N) -Mo, Ni hard metals, which are superior in terms of their wear resistance, the proposal has already been made to sinter carbonitride hard metals with the addition of tungsten carbide and an alloyed nickel or cobalt binder (US-PS 38 40 367, DE-OS 25 46 623). Because of the willingness of Ti (C, N) to react with tungsten carbide, the hard metal body has to be sintered under a nitrogen partial pressure depending on the composition and the sintering temperature, which causes microporosity in the structure and thus causes a reduction in quality of the hard metal.

In der US-PS 39 71 656 wird ein Hartmetall beschrieben, in dem die Hartstoffteilchen aus zwei Phasen bestehen, nämlich aus einer titan- und stickstoffreichen Carbonitridmischphase im Inneren des Hartstoffteilchens und einer anderen Phase, die reich an Metallen der 6. Gruppe des Periodensystems und arm an Stickstoff ist und welche die Carbonitridmischphase umhüllt. Es ist bekannt, daß Titannitrid gegenüber Titancarbid die Kolkfestigkeit von Hartmetallen bei Spanungsoperationen erhöht. Nach der Lehre der US-PS 39 71 656 wird vorausgesetzt, daß sich innerhalb des aus zwei Mischphasen bestehenden Hartstoffteilchens das Gleichgewicht einstellt. Der Kern des Hartstoffteilchens besteht demnach aus relativ kohlenstoffreichem Carbonitrid, da unlegiertes Titannitrid mit der geforderten zweiten (Mo,W)-reichen Phase nicht im Gleichgewicht stehen kann. Nach der US-PS 39 71 656 wird somit ein Hartmetall geschaffen, dessen Verschleißfestigkeit noch nicht optimal ist.US Pat. No. 3,971,656 describes a hard metal in which the hard material particles consist of two phases, namely a titanium and nitrogen-rich carbonitride mixed phase inside the hard material particle and another phase which is rich in metals of the 6th group in the periodic table and is low in nitrogen and which envelops the carbonitride mixed phase. It is known that titanium nitride increases the crust resistance of hard metals during cutting operations compared to titanium carbide. According to the teaching of US Pat. No. 3,971,656, it is assumed that the equilibrium is established within the hard material particle consisting of two mixed phases. The core of the hard material particle therefore consists of relatively carbon-rich carbonitride, since unalloyed titanium nitride cannot be in equilibrium with the required second (Mo, W) -rich phase. According to US Pat. No. 3,971,656, a hard metal is thus created whose wear resistance is not yet optimal.

Eine andere Möglichkeit, Sinterhartmetalle mit verbesserter Hochtemperaturfestigkeit zu schaffen, besteht in der Erhöhung der Warmfestigkeit des Bindermetalls. Beispielsweise wurde dem Bindermetall außer Molybdän, das Nickel durch Mischkristallverfestigung zu härten vermag, zusätzlich Aluminium zulegiert, um den von den Superlegierungen her bekannten Effekt der γ′-Härtung (Härtung durch Ausscheidung kohärenter Partikel mit kfz-Struktur) in der Binderphase nachzubilden. Durch elektronenmikroskopische Untersuchungen von aluminiumlegierten Binderphasen in Ti(C,N)-Mo, Ni-Hartmetallen konnte das Auftreten von γ′-Phasen nachgewiesen werden. Der Aluminiumzusatz hatte eine Erhöhung der bei Raumtemperatur gemessenen Härte zur Folge, mit der allerdings eine Abnahme der Biegefestigkeit verbunden ist (H. Doi und K. Nishigaki: in H. H. Hausner (ed.) Modern Development in P/M 10, 525-542; (D. Moskowitz und M. Humenik; in H. H. Hausner (ed.) Modern Development in P/M 14, 307, 1980). Bei dem in Rede stehenden Verfahren wurde der Aluminiumanteil dem Hartmetallansatz in Form gepulverter, d.h. sehr feinkörniger Ni-Al-Legierungen mit Korngrößen im µm-Bereich zugesetzt, deren Herstellung wegen der sehr großen Plastizität der intermetallischen Legierungen im System Ni-Al außerordentlich schwierig und aufwendig ist. Zur Erzielung optimaler Eigenschaften des Bindermetalls muß außerdem der vorgeschriebene Kohlenstoffgehalt der gesinterten Legierung genau eingehalten werden, damit die für eine kohärente Ausscheidung von γ ′-Phase notwendige Menge an Titan aus dem Hartstoff in Lösung geht. Nur dann, wenn das Verhältnis des im Bindermetall gelösten Anteils an Aluminium und an Titan etwa gleich groß ist, ist eine merkliche Beeinflussung der Eigenschaften des Bindermetalls zu erwarten. Bei zu hohem Titangehalt wird die γ ′-Aus scheidung metastabil; bei Abwesenheit von Titan wird die Kohärenzspannung zu klein, wodurch der Härtungseffekt bei mittleren Temperaturen absinkt.Another way to create cemented carbide with improved high temperature strength is to increase the heat resistance of the binder metal. For example, in addition to molybdenum, which nickel can harden through solid solution hardening, the binder metal was additionally alloyed with aluminum in order to emulate the effect of γ′-hardening (hardening by precipitation of coherent particles with a car structure) known from the superalloys in the binder phase. The occurrence of γ′-phases was demonstrated by electron microscopic investigations of aluminum alloy binder phases in Ti (C, N) -Mo, Ni hard metals. The addition of aluminum resulted in an increase in the hardness measured at room temperature, which, however, is associated with a decrease in the bending strength (H. Doi and K. Nishigaki: in HH Hausner (ed.) Modern Development in P / M 10, 525-542; (D. Moskowitz and M. Humenik; in HH Hausner (ed.) Modern Development in P / M 14, 307, 1980). In the process in question, the aluminum portion of the carbide approach was powdered in the form of very fine-grained Ni-Al Alloys with grain sizes in the µm range are added, the production of which is extremely difficult and complex because of the very high plasticity of the intermetallic alloys in the Ni-Al system. In order to achieve optimum properties of the binder metal, the The prescribed carbon content of the sintered alloy is strictly observed so that the amount of titanium required for a coherent elimination of the γ ′ phase from the hard material dissolves. Only when the ratio of the proportion of aluminum and titanium dissolved in the binder metal is approximately the same is a noticeable influence on the properties of the binder metal to be expected. If the titanium content is too high, the γ ′ excretion becomes metastable; in the absence of titanium, the coherence voltage becomes too low, which reduces the hardening effect at medium temperatures.

Dem in der DE-PS 28 30 010 beschriebenen Binder wird zur Verbesserung der Warmfestigkeit AlN zugesetzt; dieses verbleibt als "dispergierte Phase" im Gefüge und verbessert die Härte. AlN bildet jedoch unter Sinterbedingungen weder mit TiC noch mit TiN Mischkristalle, stellt einen nichtmetallischen Hartstoff dar, der keine guten Benetzungseigenschaften besitzt, ist außerdem in feinverteilter Form unbeständig gegen Luftfeuchtigkeit und zersetzt sich unter deren Einwirkung zu Al(OH)₃ und NH₃. Dies wirkt sich vor allem bei der Mahlung mit nicht gänzlich wasserfreien Mahlflüssigkeiten sehr nachteilig aus.AlN is added to the binder described in DE-PS 28 30 010 to improve the heat resistance; this remains in the structure as a "dispersed phase" and improves hardness. However, under sintering conditions, AlN forms neither with TiC nor with TiN mixed crystals, is a non-metallic hard material that does not have good wetting properties, is also non-resistant to atmospheric moisture in finely divided form and decomposes under the action of it to Al (OH) ₃ and NH₃. This has a particularly disadvantageous effect when grinding with grinding liquids that are not entirely free of water.

Der Erfindung liegt die Aufgabe zugrunde, die Herstellung eines gesinterten Hartmetalls zu ermöglichen, welches unter Vermeidung der zuvor geschilderten Nachteile eine erhöhte Verschleißfestigkeit auch bei höheren Temperaturen aufweist. Das gesinterte Hartmetall soll insbesondere auch als Schneidwerkzeug bzw. Schneidplatte einsetzbar sein und vor allem bei der spanenden Bearbeitung kurz- und langspanender Werkstückstoffe deutlich verbesserte Schnittleistungen aufweisen.The object of the invention is to enable the production of a sintered hard metal which, while avoiding the disadvantages described above, has increased wear resistance even at higher temperatures. The sintered hard metal should in particular also be usable as a cutting tool or cutting plate and, particularly in the machining of short and long-chipping workpiece materials, should have significantly improved cutting performance.

Die auf das Verfahren bezogene Aufgabe wird durch die im Anspruch 1 aufgeführten Maßnahmen gelöst. Die auf das Produkt bezogene Aufgabe wird durch die Merkmale von Anspruch 15 gelöst. Die Unteransprüche 2 bis 14 beschreiben Weiterentwicklungen dieses Verfahrens. Vorzugsweise sollen aluminiumhaltige Komplexcarbide bzw. Komplexnitride verwendet werden, ferner solche Komplexcarbide bzw. Komplexnitride, die dem Aluminium wirkungsgleich bzw. wirkungsähnliche Stoffe enthalten. Insbesondere bieten sich die Stoffe NbCrN, TaCrN, V₅Si₃N1-x, Mo₅Si₃C0,6, an.The task related to the method is achieved by the measures listed in claim 1. The object related to the product is achieved by the features of claim 15. Subclaims 2 to 14 describe further developments of this method. Aluminum-containing complex carbides or complex nitrides should preferably be used, furthermore those complex carbides or complex nitrides which contain substances which have the same or similar effects to aluminum. In particular, the substances NbCrN, TaCrN, V₅Si₃N 1-x , Mo₅Si₃C 0.6 offer.

Bei einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens kommen aluminiumhaltige Komplexcarbide und/oder -nitride aus der Familie der H-Phasen und/oder Chi-Phasen und/oder Kappa-Phasen zur Anwendung.In an advantageous development of the method according to the invention, aluminum-containing complex carbides and / or nitrides from the family of the H phases and / or Chi phases and / or Kappa phases are used.

Der Begriff Komplexcarbide wird u.a. in "Angew. Chem.", 84ster Jahrgang, 1972, Nr. 20, S. 973 ff., erläutert. Weitere Informationen über die Kristallchemie werden z.B. in Peter S. Rudman, John Stringer, Robert I. Jaffee: "Phase Stability in Metals and Alloys", Mc-Graw-Hill Book Company, New York, 1967, S. 319 bis 336, und "Journal of the Institute of Metals", 1969, Vol. 97, S. 180 bis 186, gegeben.The term complex carbides is used inter alia. in "Angew. Chem.", 84th year, 1972, No. 20, pp. 973 ff. Further information about crystal chemistry is e.g. in Peter S. Rudman, John Stringer, Robert I. Jaffee: "Phase Stability in Metals and Alloys", Mc-Graw-Hill Book Company, New York, 1967, pp. 319 to 336, and "Journal of the Institute of Metals ", 1969, Vol. 97, pp. 180 to 186.

Beim Sintern einer durch Pressen verdichteten Ausgangspulvermischung aus den harten und verschleißfesten Carbiden und/oder Nitriden der Übergangsmetalle unter Zusatz zumindest eines Komplexcarbids und/oder -nitrids (insbesondere aus der Familie der H-, Chi- oder Kappa-Phasen) und Nickel und/oder Cobalt und/oder Eisen bilden sich nämlich in überraschender Weise besonders harte und verschleißfeste Legierungen aus, die vor allem bei der Bearbeitung kurz- und langspanender Werkstoffe im kontinuierlichen und unterbrochenen Schnitt sowie beim Fräsen den herkömmlichen Hartmetallen überlegen sind.When sintering a starting powder mixture compressed by pressing from the hard and wear-resistant carbides and / or nitrides of the transition metals with addition of at least one complex carbide and / or nitride (in particular from the family of the H, Chi or Kappa phases) and nickel and / or Cobalt and / or iron surprisingly form particularly hard and wear-resistant alloys, which are superior to conventional hard metals, especially when machining short and long-chipping materials in a continuous and interrupted cut and when milling.

Als aluminiumhaltige Komplexcarbide oder Komplexnitride aus der Familie der H-, Chi- und Kappa-Phasen kommen beispielsweise folgende Verbindungen in Frage:



        Ti₂AlN, Ti₂AlC, V₂AlC, V₂AlN, Nb₂AlC, Ta₂AlC, Cr₂AlC, Nb₃Al₂C, Ta₃Al₂C, Nb₃AlN, Mo₃Al₂C, MoCr₂Al₂C, Mo-Ni-Al-C, Mo-Co-Al-C, Mo-Mn-Al-C, W-Mn-Al- C, W-Fe-Al-C.


The following compounds are suitable as aluminum-containing complex carbides or complex nitrides from the family of the H, Chi and Kappa phases:



Ti₂AlN, Ti₂AlC, V₂AlC, V₂AlN, Nb₂AlC, Ta₂AlC, Cr₂AlC, Nb₃Al₂C, Ta₃Al₂C, Nb₃AlN, Mo₃Al₂C, MoCr₂Al₂C, Mo-Ni-Al-C, Mo-Co-Al-C, Mo-Mn-Al-C, W- Mn-Al-C, W-Fe-Al-C.


Die aluminiumhaltigen Komplexcarbide und -nitride werden durch Reaktion des Nitrids oder Carbids des Aluminiums mit den pulverförmigen Übergangsmetallen oder durch Reaktion der Nitride oder Carbide der Übergangsmetalle mit Aluminium hergestellt. Sie werden nach den in der Hartmetallindustrie üblichen Zerkleinerungsmethoden pulverisiert und mit den übrigen Legierungsbestandteilen des Hartmetalls in an sich bekannter Weise zu einem gesinterten Hartmetallkörper - insbesondere zu Schneidwerkzeugen bzw. Schneidplatten - verarbeitet.The aluminum-containing complex carbides and nitrides are produced by reacting the nitride or carbide of aluminum with the powdery transition metals or by reacting the nitrides or carbides of the transition metals with aluminum. They are made according to the usual in the carbide industry Crushing methods are pulverized and processed with the other alloy components of the hard metal in a manner known per se to form a sintered hard metal body - in particular cutting tools or cutting plates.

Die relativen Mengenverhältnisse zwischen dem aluminiumhaltigen Komplexcarbid oder -nitrid und Bindermetall werden dabei zur Erzielung optimaler Eigenschaften so gewählt, daß - unter der Annahme, daß der gesamte Aluminiumgehalt des Komplexcarbides oder -nitrides im gesinterten (also fertiggestellten) Hartmetallkörper verbleibt - der Aluminiumgehalt des Bindermetalls 20 Massen-%, vorzugsweise 10 Massen-%, nicht übersteigt; im gesinterten Hartmetallkörper sollte der Mindestgehalt an Aluminium im Bindermetall dabei in der Größenordnung um 1 Massen-% liegen.The relative proportions between the aluminum-containing complex carbide or nitride and binder metal are selected so as to achieve optimal properties so that - assuming that the entire aluminum content of the complex carbide or nitride remains in the sintered (i.e. finished) hard metal body - the aluminum content of the binder metal 20 Mass%, preferably 10 mass%, does not exceed; in the sintered hard metal body, the minimum aluminum content in the binder metal should be in the order of 1% by mass.

Besonders günstige Ergebnisse sind erzielbar, wenn der Aluminiumgehalt des Bindermetalls zwischen 2 und 8 Massen-% beträgt.Particularly favorable results can be achieved if the aluminum content of the binder metal is between 2 and 8% by mass.

Die Komplexcarbide und -nitride sind gegen die üblicherweise verwendeten Mahlhilfsmittel weitgehend resistent. Ein chemischer Angriff auf die Komplexcarbide und -nitride oder eine Hydrolyse dieser Verbindungen ist nicht zu befürchten.The complex carbides and nitrides are largely resistant to the commonly used grinding aids. A chemical attack on the complex carbides and nitrides or hydrolysis of these compounds is not to be feared.

Die in Rede stehenden Komplexcarbide und -nitride zersetzen sich in Gegenwart von Nickel und/oder Cobalt bei den üblicherweise angewendeten Sintertemperaturen (etwa 1350 bis 1550 °C), wobei sich aus ihnen in der Regel die Monocarbide bzw. Mononitride der Übergangsmetalle der 4. bis 6. Gruppe des Periodensystems ausscheiden, während Aluminium im Überschuß des Nickel-Cobalts gelöst wird, durch Mischkristallhärtung den Binder verfestigt und sich bei Überschreiten eines Mindestgehaltes an Aluminium im Bindermetall beim Abkühlen ggf. als γ′-Phase ausscheidet (z.B. H. Nowotny et al : Montash. Chem. 114 (1985), 127-135). Bei Komplexcarbiden mit Chrom, Molybdän und Wolfram als Übergangsmetallkomponenten diffundiert ein Teil des Übergangsmetalls in die Hartstoffteilchen; ein anderer Teil bleibt im Bindermetall gelöst und festigt das Bindermetall durch Mischkristallhärtung.The complex carbides and nitrides in question decompose in the presence of nickel and / or cobalt at the sintering temperatures usually used (about 1350 to 1550 ° C.), the monocarbides or mononitrides of the transition metals of the 4th to 4th 6. Eliminate group of the periodic table, while aluminum is dissolved in excess of the nickel cobalt, solidifies the binder by solid solution hardening and, if a minimum content of aluminum in the binder metal is exceeded, is excreted as a γ'-phase when cooling (e.g. H. Nowotny et al : Montash. Chem. 114 (1985), 127-135). In the case of complex carbides with chromium, molybdenum and tungsten as transition metal components, part of the transition metal diffuses into the hard material particles; another part remains dissolved in the binder metal and strengthens the binder metal by means of mixed crystal hardening.

Die während der Umsetzung der Komplexcarbide und -nitride mit dem flüssigen Bindermetall sich bildenden Monocarbide und -nitride der Übergangsmetalle schlagen sich epitaktisch an der Oberfläche der Hartstoffteilchen nieder und umhüllen das Hartstoffteilchen vollständig. Bei Sintertemperaturen zwischen 1350 °C und 1550 °C sowie Sinterzeiten bis zu 2 Stunden reichen die Diffusionsgeschwindigkeiten in den Hartstoffteilchen nicht aus, um ein metallurgisches Gleichgewicht zwischen dem betreffenden Hartstoffteilchen und seiner Hülle aus Monocarbiden bzw. -nitriden der Übergangsmetalle herbeizuführen. Vielmehr bildet die Hülle aus Monocarbiden bzw. -nitriden der Übergangsmetalle eine diffusionshemmende Sperrschicht, die auch den weiteren Stoffaustausch zwischen dem betreffenden Hartstoffteilchen und dem Bindermetall verhindert. Die chemische Zusammensetzung des Kerns des umhüllten Hartstoffteilchens im gesinterten Hartmetall ist somit im wesentlichen mit der chemischen Zusammensetzung des entsprechenden Hartstoffteilchens in der Ausgangspulvermischung, aus welcher der Hartmetallkörper durch Verpressen und Sintern hergestellt worden ist, identisch. Der das umhüllte Hartstoffteilchen bildende kubische Mischkristall verbleibt auch im gesinterten Hartmetallkörper in einem Ungleichgewichtszustand. Im metallographischen Schliff macht sich diese Erscheinung dadurch bemerkbar, daß auch feinkörnige Hartstoffteilchen eine deutlich erkennbare Randzone aufweisen. Von der Kernzone des Hartmetallteilchens ist diese Randzone aus Monocarbiden und - nitriden der Übergangsmetalle sowohl hinsichtlich ihrer Metallkomponenten (allgemein: Übergangsmetalle der 4. und 6. Gruppe des Periodensystems) als auch ihrer Nichtmetallkomponenten (Kohlenstoff und Stickstoff) deutlich zu unterscheiden.The monocarbides and nitrides of the transition metals which form during the reaction of the complex carbides and nitrides with the liquid binder metal are epitaxially deposited on the surface of the hard material particles and completely envelop the hard material particle. At sintering temperatures between 1350 ° C and 1550 ° C and sintering times of up to 2 hours, the diffusion rates in the hard material particles are not sufficient to bring about a metallurgical equilibrium between the hard material particle in question and its shell made of monocarbides or nitrides of the transition metals. Rather, the shell made of monocarbides or nitrides of the transition metals forms a diffusion-inhibiting barrier layer, which also prevents further material exchange between the hard material particle in question and the binder metal. The chemical composition of the core of the coated hard material particle in the sintered hard metal is thus essentially identical to the chemical composition of the corresponding hard material particle in the starting powder mixture from which the hard metal body was produced by pressing and sintering. The cubic mixed crystal forming the coated hard material particle also remains in an imbalance state in the sintered hard metal body. This phenomenon is noticeable in metallographic grinding in that even fine-grained hard material particles have a clearly recognizable edge zone. From the core zone of the hard metal particle, this edge zone made of monocarbides and nitrides of the transition metals can be clearly distinguished both with regard to their metal components (generally: transition metals of the 4th and 6th group of the periodic table) and their non-metal components (carbon and nitrogen).

Das erfindungsgemäße gesinterte Hartmetall vereint die günstigen Eigenschaften der von den üblichen Bindermetallen gut benetzbaren Carbide der Übergangsmetalle in der Randzone mit der hohen Verschleißfestigkeit der Nitride im Kern und besitzt aufgrund des Gehalts an Titan und Aluminium im Bindermetall eine so hohe Verschleißfestigkeit, daß die daraus hergestellten Schneidwerkzeuge bzw. Schneidplatten deutlich verbesserte Schnittleistungen aufweisen. Ein weiterer Vorteil des erfindungsgemäßen Hartmetalls besteht darin, daß die während der Umsetzung der Komplexcarbide und -ni tride mit dem flüssigen Bindermetall sich bildenden Monocarbide und -nitride der übergangsmetalle sich an der Oberfläche der Hartstoffteilchen epitaktisch niederschlagen und damit eine weitere Veränderung des Hartstoffkerns unter der Wirkung des flüssigen Bindermetalls verhindern. Auf diese Weise ist es z.B. möglich, den Stickstoffgehalt eines feinkörnigen Titannitrids im Kern der Hartstoffteilchen auch bei Sinterung im Vakuum weitgehend zu erhalten, beispielsweise wenn Titannitrid mit Ti₂AlC oder V₂AlC und Nickel zur Anwendung kommen.The sintered hard metal according to the invention combines the favorable properties of the carbides of the transition metals in the peripheral zone, which are readily wettable by the conventional binder metals, with the high wear resistance of the nitrides in the core and, due to the content of titanium and aluminum in the binder metal, has such a high wear resistance that the cutting tools produced therefrom or cutting inserts have significantly improved cutting performance. Another advantage of the hard metal according to the invention is that during the implementation of the complex carbides and -ni tride with the liquid binder metal forming monocarbides and nitrides of the transition metals are epitaxially deposited on the surface of the hard material particles and thus prevent a further change in the hard material core under the effect of the liquid binder metal. In this way it is possible, for example, to largely maintain the nitrogen content of a fine-grained titanium nitride in the core of the hard material particles even when sintered in a vacuum, for example if titanium nitride with Ti₂AlC or V₂AlC and nickel are used.

Der gesinterte Hartmetallkörper, der sich mittels des erfindungsgemäßen Verfahrens herstellen läßt, ist im wesentlichen dadurch gekennzeichnet, daß die Ausgangspulvermischung mitbildenden Hartstoffe im gesinterten Hartmetallkörper (d.h. nach Abschluß des Herstellvorgangs) im wesentlichen in ihrer ursprünglichen Zusammensetzung vorliegen:The sintered hard metal body, which can be produced by means of the method according to the invention, is essentially characterized in that hard materials forming the starting powder mixture are essentially present in their original composition in the sintered hard metal body (i.e. after completion of the manufacturing process):

Die vorhandenen, mit einer diffusionshemmenden Schicht umhüllten Carbide und/oder Mischcarbide und/oder Nitride und/oder Mischnitride lassen also an ihrem Aufbau erkennen, daß zwischen den verschiedenen Hartstoffen innerhalb des Hartstoffteilchens eine Gleichgewichtseinstellung im metallurgischen Sinne vermieden worden ist. Dieser bewußt herbeigeführte Ungleichgewichtszustand hat die bereits erwähnte verbesserte Verschleißfestigkeit - auch unter extremen Arbeitsbedingungen - zur Folge.The existing carbides and / or mixed carbides and / or nitrides and / or mixed nitrides encased with a diffusion-inhibiting layer thus indicate from their structure that an equilibrium in the metallurgical sense has been avoided between the different hard materials within the hard material particle. This deliberately created imbalance condition results in the abovementioned improved wear resistance - even under extreme working conditions.

Weitere wesentliche Merkmale des gesinterten Hartmetallkörpers sind in den Ansprüchen 16 bis 19 beschrieben.Further essential features of the sintered hard metal body are described in claims 16 to 19.

Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnungen anhand von Ausführungsbeispielen im einzelnen erläutert. Es zeigt.

Fig. 1
im Vergleich der Werte der Kolktiefe und des Freiflächenverschleißes für eine Schneidplatte aus einem herkömmlichen Hartmetall bzw. aus zwei Hartmetallen, denen unterschiedliche Gehalte an Komplexnitrid aus der Familie der H-Phasen - nämlich Ti₂AlN - zugesetzt worden sind, und zwar beim Drehen von Stahl Cm45N im kontinuierlichen Schnitt,
Fig. 2
im Vergleich die Werte für die Schlagzahlen, welche die im Zusammenhang mit Fig. 1 beschriebenen Hartmetalle beim Drehen von Stahl CK45N im unterbrochenen Schnitt erreichen.
Fig. 3
im Vergleich die Werte der Fräslänge der im Zusammenhang mit Fig. 1 beschriebenen Hartmetall und
Fig. 4
eine Tabelle mit acht Ausführungsbeispielen für die Zusammensetzung der Ausgangspulvermischung und des erfindungsgemäßen Hartmetallkörpers.
The invention is explained in detail below with reference to the drawings using exemplary embodiments. It shows.
Fig. 1
in comparison of the values of the crater depth and the flank wear for a cutting insert made of a conventional hard metal or of two hard metals, to which different contents of complex nitride from the family of the H phases - namely Ti₂AlN - have been added, namely when turning steel Cm45N in continuous cut,
Fig. 2
in comparison, the values for the number of blows which the hard metals described in connection with FIG. 1 achieve when turning steel CK45N in an interrupted cut.
Fig. 3
in comparison the values of the milling length of the hard metal and described in connection with FIG. 1
Fig. 4
a table with eight embodiments for the composition of the starting powder mixture and the hard metal body according to the invention.

Das zum Vergleich herangezogene herkömmliche Hartmetall (vgl. Fig. 1, linke Blöcke) besteht aus 57 % Tic, 10 % TiN, 10 % WC, 2 % VC, 10 % Mo sowie 5,5 % Ni und 5,5 % Co. Die erfindungsgemäßen Hartmetalle mit komplexnitridmodifiziertem Bindermetall (vgl. die Blöcke in der Mitte und auf der rechten Seite der Fig. 1) wurden aus dem gleichen Grundwerkstoff unter Zusatz von 0,6 % bzw. 2,2 % Ti₂AlN unter gleichzeitiger Verminderung des Nickel-und Cobaltgehalts auf 5,2 % bzw. 4,4 % auf an sich bekannte Weise hergestellt; im gesinterten Hartmetall beträgt der zugehörige Aluminiumgehalt im Binder etwa 2 bzw. etwas mehr als 7 %.The conventional hard metal used for comparison (see FIG. 1, left blocks) consists of 57% Tic, 10% TiN, 10% WC, 2% VC, 10% Mo as well as 5.5% Ni and 5.5% Co. The hard metals according to the invention with complex nitride-modified binder metal (cf. the blocks in the middle and on the right-hand side of FIG. 1) were made from the same base material with the addition of 0.6% or 2.2% Ti₂AlN while simultaneously reducing the nickel and Cobalt content to 5.2% and 4.4% in a manner known per se; in the sintered hard metal, the associated aluminum content in the binder is about 2 or slightly more than 7%.

Wie die in Rede stehenden Darstellung zeigt, liegt die Kolktiefe KT bei Schneidversuchen am Werkstückstoff Cm45N bei einer Schnittgeschwindigkeit von 355 m/min, einer Schnittzeit von 12,5 min sowie einem Produkt aus Schnittiefe und Vorschub in der Größenordnung von 1,0 x 0,1 mm²/U bei den miteinander zu vergleichenden Hartmetallen im Bereich zwischen etwa 30 bis 35 µm.As the illustration in question shows, the scour depth KT for cutting tests on the workpiece material Cm45N is at a cutting speed of 355 m / min, a cutting time of 12.5 min and a product of cutting depth and feed in the order of magnitude of 1.0 x 0, 1 mm² / rev for the hard metals to be compared with one another in the range between approximately 30 to 35 μm.

Der Freiflächenverschleiß VB beträgt für das herkömmliche Hartmetall (links) 450 µm und wird mit zunehmendem Gehalt an Ti₂AlN geringer (Mitte und rechte Seite der Darstellung). Während die Kolktiefe KT durch das Zusetzen von Ti₂AlN nicht verbessert werden konnte, nimmt der festgestellte Freiflächenverschleiß VB mit zunehmendem Ti₂AlN-Gehalt von etwa 450 auf 280 µm ab.The open area wear VB for the conventional hard metal (left) is 450 µm and becomes smaller with increasing content of Ti₂AlN (middle and right side of the illustration). While the crater depth KT could not be improved by the addition of Ti₂AlN, the detected open area wear VB decreases with increasing Ti₂AlN content from about 450 to 280 µm.

In Fig. 2 ist die Schlagzahl von 10 Schneiden für die drei zuvor erwähnten Hartmetalle dargestellt. Der Schneidversuch wurde an einer Welle aus dem Werkstückstoff Ck45N durchgeführt, und zwar mit einer Schnittgeschwindigkeit von 200 m/min bei einem Produkt aus Schnittiefe und Vorschub von 2,5 x 0,2 mm²/U.FIG. 2 shows the number of strokes of 10 cutting edges for the three previously mentioned hard metals. The cutting test was carried out on a shaft made of workpiece material Ck45N, at a cutting speed of 200 m / min with a product of cutting depth and feed of 2.5 x 0.2 mm² / rev.

Während das herkömmliche Hartmetall (links) nur eine Schlagzahl von etwa 10 000 erreicht, wird durch das Zusetzen von 0,6 % Ti₂AlN bereits eine Verdoppelung der Schlagzahl auf 20 000 erzielt; demgegenüber hält das Hartmetall, dessen Ausgangsmischung 2,2 % Ti₂AlN zugesetzt worden ist (rechter Block in der Darstellung) sogar 160 000 Schlägen stand. Beim Drehen im unterbrochenen Schnitt sind die erfindungsgemäß ausgebildeten Hartmetalle dem herkömmlichen Hartmetall also deutlich überlegen.While the conventional hard metal (left) only achieves a stroke rate of around 10,000, the addition of 0.6% Ti₂AlN already doubles the number of strokes to 20,000; on the other hand, the hard metal, the starting mixture of which 2.2% Ti₂AlN has been added (right block in the illustration), even withstands 160,000 blows. When turning in an interrupted cut, the hard metals designed according to the invention are clearly superior to the conventional hard metal.

Beim Fräsen (vgl. Fig. 3) kann mit einem Werkzeug bzw. einer Schneidplatte aus einem erfindungsgemäß ausgebildeten Hartmetall im Vergleich zu einem Werkzeug aus herkömmlichem Hartmetall eine erheblich größere Schnittleistung erbracht werden: Durch Zusatz von 0,6 bzw. 2,2 % Ti₂AlN erhöht sich der erzielte Fräsweg von etwa 800 mm auf 1200 mm bzw. 1600 mm.When milling (cf. Fig. 3), a tool or a cutting insert made of a hard metal designed according to the invention can achieve a considerably greater cutting performance than a tool made of conventional hard metal: by adding 0.6 or 2.2% Ti₂AlN the milling path achieved increases from approximately 800 mm to 1200 mm or 1600 mm.

Die Fräsversuche, deren Ergebnis in der Zeichnung in Form des Fräsweges LF (in mm) festgehalten ist, wurden an einer Welle aus vergütetem Stahl 42CrMo4 bei einer Schnittgeschwindigkeit von 250 m/min durchgeführt; das zugehörige Produkt aus Schnittiefe, Spanungsquerschnitt und Vorschub pro Zahn liegt bei 1,0 x 120 x 0,1 mm/Zahn.The milling tests, the result of which is shown in the drawing in the form of the milling path LF (in mm), were carried out on a shaft made of tempered steel 42CrMo4 at a cutting speed of 250 m / min; the associated product of depth of cut, chip cross-section and feed per tooth is 1.0 x 120 x 0.1 mm / tooth.

Werkzeuge bzw. Schneidplatten aus Hartmetall, dessen Ausgangsmischung aluminiumhaltige Komplexnitride zugesetzt worden sind, sind somit - wie die Versuchsergebnisse belegen - bezüglich der Schnittleistung insbesondere beim Drehen im unterbrochenen Schnitt und beim Fräsen den Werkzeugen bzw. Schneidplatten, die aus herkömmlichen Hartmetallen hergestellt worden sind, deutlich überlegen.Tools or cutting inserts made of hard metal, to which aluminum-containing complex nitrides have been added, are - as the test results prove - clear in terms of cutting performance, especially when turning in interrupted cuts and when milling the tools or cutting inserts that have been made from conventional hard metals think.

Die verbesserte Verschleißfestigkeit - welche die erfindungsgemäßen Hartmetalle auch für andere Anwendungsbereiche interessant macht - beruht darauf, daß die Ausgangsmischung zur Herstellung des Hartmetalls bzw. Hartmetallkörpers in der Weise zusammengestellt ist, daß zu Beginn des Aufschmelzens der Bindephase sehr rasch bestimmte chemische Reaktionen eingeleitet werden, welche die Bildung einer diffusionshemmenden Schicht um die Oberfläche der Hartstoffteilchen der Ausgangsmischung zur Folge haben. Die bewußte Auswahl der die Ausgangspulvermischung bildenden Bestandteile führt also dazu, daß sich im fertigen Hartmetall bzw. Hartmetallkörper kein metallurgisches Gleichgewicht einstellen kann. Dadurch wird erreicht, daß die für die vorgesehenen Anwendungen jeweils optimalen Eigenschaften der unterschiedlichen Hartstoffteilchen - wie etwa die bekannte Verschleißfestigkeit des Titannitrids und die bekannte hervorragende Härte des Titancarbids - im fertigen Hartmetall erhalten bleiben. Durch die Einstellung des metallurgischen Gleichgewichts, die nach dem Stand der Technik üblicherweise gegeben ist, würden diese individuellen Eigenschaften der erfindungsgemäßen Hartstoffteilchen zumindest teilweise verloren gehen.The improved wear resistance - which makes the hard metals according to the invention also interesting for other areas of application - is based on the fact that the starting mixture for producing the hard metal or hard metal body is composed in such a way that certain chemical reactions are initiated very quickly at the beginning of the melting of the binding phase, which result in the formation of a diffusion-inhibiting layer around the surface of the hard material particles of the starting mixture. The deliberate selection of the constituents forming the starting powder mixture therefore means that no metallurgical equilibrium can be established in the finished hard metal or hard metal body. This ensures that the optimum properties of the different hard material particles for the intended applications - such as the known wear resistance of the titanium nitride and the known excellent hardness of the titanium carbide - are retained in the finished hard metal. By setting the metallurgical equilibrium, which is usually given according to the prior art, these individual properties of the hard material particles according to the invention would at least partially be lost.

Die Erfindung besteht also im Gegensatz zum bekannten Stand der Technik darin, daß ausdrücklich kein metallurgisches Gleichgewicht angestrebt wird und vorliegt.In contrast to the known prior art, the invention consists in the fact that no metallurgical equilibrium is expressly sought and is present.

Fig. 4 zeigt eine Tabelle mit acht Ausführungsbeispielen für die Zusammensetzung der Ausgangspulvermischung des erfindungsgemäßen Hartmetallkörpers.4 shows a table with eight exemplary embodiments for the composition of the starting powder mixture of the hard metal body according to the invention.

Bei den Hartmetallen Nr. 1 bis 4 werden - mit Ausnahme des Komplexcarbids/nitrids - zur Herstellung des gesinterten Hartmetallkörpers ausschließlich Pulver in Form der reinen Komponenten (z.B. TiC, TiN, WC usw.) verwendet. Für die Herstellung der Hartmetalle Nr. 5 bis 8 wurden pulverförmige Vorlegierungen (z.B. Ti(N, C), (W, Ti, Ta,Nb)C) eingesetzt. Diese Herstellungsvariante hat den Vorteil, daß, im Vergleich zur Herstellung des gesinterten Hartmetalls aus den reinen Komponenten, infolge eines geringeren Bedarfs an chemischen Reaktionen zwischen den einzelnen Bestandteilen der Ausgangspulvermischung, ein Produkt mit deutlich verbesserter Qualität geschaffen werden kann.With the hard metals No. 1 to 4 - with the exception of the complex carbide / nitride - only powders in the form of the pure components (eg TiC, TiN, WC etc.) are used to manufacture the sintered hard metal body. Powdered master alloys (eg Ti (N, C), (W, Ti, Ta, Nb) C) were used for the production of hard metals No. 5 to 8. This production variant has the advantage that, compared to the production of the sintered hard metal from the pure components, due to a lower need chemical reactions between the individual components of the starting powder mixture, a product with significantly improved quality can be created.

Bei allen Prozentangaben handelt es sich um Massengehalts-%.All percentages are percentages by mass.

Claims (19)

  1. A process for the production of a sintered hard metal body, wherein an initial pulverulent mixture consisting of a hard substance from the range formed by the carbides, nitrides and/or carbonitrides of the transition metals of Groups IV, V and/or VI of the Periodic Table of Elements, present as a carbide and/or mixed carbide and/or nitride and/or mixed nitride in the form of cubic crystals or mixed crystals, at least one binding metal, namely nickel and/or cobalt and/or iron, and a complex carbide and/or nitride is mixed, ground, pressed and then sintered, the complex carbide and nitride decomposing at the start of the melting of the binding phase with the formation of a transition metal carbide and/or nitride and then growing epitaxially on to the surface of the hard substance particles of the initial pulverulent mixture with the formation of a diffusion-inhibiting layer.
  2. A process according to claim 1, characterized in that up to 3% by weight of complex carbide and/or nitride are added, referred to the total initial pulverulent mixture.
  3. A process according to claims 1 or 2, characterized in that an aluminium-containing complex nitride or an aluminium-containing complex carbide is added to the initial pulverulent mixture.
  4. A process according to at least one of claims 1 to 3, characterized in that an aluminium-containing complex nitride or an aluminium-containing complex carbide from the family of the H phases is added to the initial pulverulent mixture.
  5. A process according to claim 4, characterized in that Ti₂AlN, Ti₂AlC, V₂AlC, Nb₂AlC, Ta₂AlC or Cr₂AlC is added.
  6. A process according to at least one of claims 1 to 3, characterized in that an aluminium-containing complex nitride or aluminium-containing complex carbide from the family of the Chi phases is added to the initial pulverulent mixture.
  7. A process according to claim 6, characterized in that Nb₃Al₂C, Ta₃Al₂C, Nb₃AlN or Mo₃Al₂C is added.
  8. A process according to at least one of claims 1 to 3, characterized in that an aluminium-containing complex nitride or aluminium containing complex carbide from the family of the Kappa phases is added to the initial pulverulent mixture.
  9. A process according to claim 8, characterized in that Mo-Ni-Al-C, Mo-Co-Al-C, Mo-Mn-Al-C, W-Mn-Al-C or W-Fe-Al-C is added.
  10. A process according to at least one of claims 1 to 9, characterized in that the aluminium-containing complex carbide or aluminium-containing complex nitride is added in a quantity such that in the sintered hard metal body the aluminium content of the binding metal does not exceed 20% by weight, preferably 10% by weight.
  11. A process according to at least one of claims 1 to 10, characterized in that aluminium-containing complex carbide or aluminium-containing complex nitride is added in a quantity such that in the sintered hard metal body the aluminium content of the binding metal does not exceed 2 to 8% by weight.
  12. A process according to one of claims 1 to 11, characterized in that one or more of the following complex carbides or nitrides is or are added to the initial pulverulent mixture: Ti₂AlN, Ti₂AlC, V₂AlC, Nb₂AlC, Ta₂AlC, Cr₂AlC, Nb₃Al₂C, Ta₃Al₂C, Nb₃AlN, Mo₃Al₂C, MoCr₂Al₂C,Mo-Ni-Al-C, Mo-Co-Al-C, Mo-Mn-Al-C, W-Mn-Al-C, W-Fe-Al-C, NbCrN, TaCrN, V₅Si₃N1-x, Mo₅Si₃C0.6, Ni-Mo-N.
  13. A process according to one of claims 1 to 12, characterized in that one or more of the following complex carbides or nitrides is or are added: Ti₂AlC, Ti₂AlN, V₂AlC, Nb₂AlC, Ta₂AlC, NbCrN, TaCrN.
  14. A process according to one of claims 1 to 13, characterized in that one or more of the following complex carbides or nitrides is or are added: Ti₂AlC, Ti₂AlN, V₂AlC, Ta₂AlC.
  15. A sintered hard metal body which is produced by a process according to at least one of claims 1 to 14 and which consists of a hard substance from the range formed by the carbides, nitrides and/or carbonitrides of the transition metals of Groups IV, V and/or VI of the Periodic Table of Elements and is present as a carbide and/or mixed carbide and/or nitride and/or mixed nitride in the form of cubic crystals or mixed crystals, at least one of the binding metals iron, nickel and cobalt and at least one complex carbide and/or nitride, the hard substances of the initial pulverulent mixture being contained substantially in their original composition.
  16. A sintered hard metal body according to claim 15, characterized in that the hard substances of the initial pulverulent mixture are enclosed with a diffusion-inhibiting envelope of monocarbides and/or mononitrides and/or mixed carbides and/or mixed nitrides deposited epitaxially on their surface.
  17. A sintered hard metal body according to claims 15 or 16, characterized in that prior to sintering the proportion of the complex carbide and/or complex nitride in the total initial mixture is 3% at the most.
  18. A sintered hard metal body according to one of claims 11 to 17, characterized in that in the sintered hard metal body the aluminium content of the binding metal does not exceed 20% by weight, preferably 10% by weight.
  19. A sintered hard metal body according to one of claims 15 to 18, characterized in that in the sintered hard metal body the aluminium content of the binding material does not exceed 2 to 8% by weight.
EP89102623A 1988-03-02 1989-02-16 Process for preparing a sintered hard metal, and sintered hard metal obtained thereby Expired - Lifetime EP0330913B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89102623T ATE89329T1 (en) 1988-03-02 1989-02-16 METHOD FOR PRODUCTION OF A SINTERED CARBIDE BODY AND SINTERED CARBIDE BODY.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3806602 1988-03-02
DE3806602A DE3806602A1 (en) 1988-03-02 1988-03-02 CARBIDE BODY

Publications (3)

Publication Number Publication Date
EP0330913A2 EP0330913A2 (en) 1989-09-06
EP0330913A3 EP0330913A3 (en) 1990-06-13
EP0330913B1 true EP0330913B1 (en) 1993-05-12

Family

ID=6348548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89102623A Expired - Lifetime EP0330913B1 (en) 1988-03-02 1989-02-16 Process for preparing a sintered hard metal, and sintered hard metal obtained thereby

Country Status (7)

Country Link
US (1) US4944800A (en)
EP (1) EP0330913B1 (en)
JP (1) JPH0711042B2 (en)
AT (1) ATE89329T1 (en)
DD (1) DD279031A5 (en)
DE (2) DE3806602A1 (en)
ES (1) ES2054893T3 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT392929B (en) * 1989-03-06 1991-07-10 Boehler Gmbh METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF WORKPIECES OR TOOLS
SE467257B (en) * 1989-06-26 1992-06-22 Sandvik Ab SINTRAD TITAN-BASED CARBON Nitride Alloy with DUPLEX STRUCTURES
US5552108A (en) * 1990-12-21 1996-09-03 Sandvik Ab Method of producing a sintered carbonitride alloy for extremely fine machining when turning with high cutting rates
SE469386B (en) * 1990-12-21 1993-06-28 Sandvik Ab MADE TO MAKE A SINTERED CARBON NITROGEN ALLOY FOR CUTTING PROCESSING
SE469384B (en) * 1990-12-21 1993-06-28 Sandvik Ab MADE TO MAKE A SINTERED CARBON NITROGEN ALLOY BEFORE MILLING
US5581798A (en) * 1990-12-21 1996-12-03 Sandvik Ab Method of producing a sintered carbonitride alloy for intermittent machining of materials difficult to machine
SE9004118D0 (en) * 1990-12-21 1990-12-21 Sandvik Ab PREPARED FOR PREPARATION OF A SINTERED CARBON NITROGEN ALLOY BEFORE FINALLY FOR MEDIUM COAT
SE9101385D0 (en) * 1991-05-07 1991-05-07 Sandvik Ab SINTRAD CARBON Nitride alloy with controlled grain size
US5447549A (en) * 1992-02-20 1995-09-05 Mitsubishi Materials Corporation Hard alloy
US5451365A (en) * 1993-05-24 1995-09-19 Drexel University Methods for densifying and strengthening ceramic-ceramic composites by transient plastic phase processing
JPH06346184A (en) * 1993-06-11 1994-12-20 Hitachi Metals Ltd Vane material and its production
DE9402109U1 (en) * 1994-02-09 1994-03-31 Krupp Widia Gmbh Rotary cutting tool
WO1997027965A1 (en) * 1996-01-16 1997-08-07 Drexel University Synthesis of h-phase products
US6228484B1 (en) 1999-05-26 2001-05-08 Widia Gmbh Composite body, especially for a cutting tool
US7572313B2 (en) * 2004-05-26 2009-08-11 Drexel University Ternary carbide and nitride composites having tribological applications and methods of making same
US20080035567A1 (en) * 2006-08-08 2008-02-14 Sabottke Craig Y Enhanced membrane separation system
US8778259B2 (en) 2011-05-25 2014-07-15 Gerhard B. Beckmann Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
JP6649876B2 (en) 2013-03-14 2020-02-19 マサチューセッツ インスティテュート オブ テクノロジー Sintered nanocrystalline alloy
US10794210B2 (en) 2014-06-09 2020-10-06 Raytheon Technologies Corporation Stiffness controlled abradeable seal system and methods of making same
US11644288B2 (en) 2015-09-17 2023-05-09 Massachusetts Institute Of Technology Nanocrystalline alloy penetrators
CN114150176A (en) * 2021-12-02 2022-03-08 常州市博斯特精密机械有限公司 Drill bit production process with good impact resistance

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2967349A (en) * 1959-06-22 1961-01-10 Ford Motor Co Metallic compositions
US3507682A (en) * 1967-06-19 1970-04-21 Ncr Co Process and apparatus for coating thin film substrates
BE756565A (en) * 1969-09-30 1971-03-01 Ugine Carbone HARD ALLOYS BASED ON NITRIDES
BE794383A (en) * 1972-02-14 1973-07-23 Teledyne Ind CARBIDE ALLOYS FOR CUTTING TOOLS
US4402744A (en) * 1973-03-12 1983-09-06 Union Carbide Corporation Chemically bonded aluminum coating for carbon via monocarbides
US4347083A (en) * 1973-03-12 1982-08-31 Union Carbide Corporation Chemically bonded aluminum coating for carbon via monocarbides
US3971656A (en) * 1973-06-18 1976-07-27 Erwin Rudy Spinodal carbonitride alloys for tool and wear applications
US3994692A (en) * 1974-05-29 1976-11-30 Erwin Rudy Sintered carbonitride tool materials
US4049876A (en) * 1974-10-18 1977-09-20 Sumitomo Electric Industries, Ltd. Cemented carbonitride alloys
AU501073B2 (en) * 1974-10-18 1979-06-07 Sumitomo Electric Industries, Ltd. Cemented carbonitride alloys
US4019874A (en) * 1975-11-24 1977-04-26 Ford Motor Company Cemented titanium carbide tool for intermittent cutting application
JPS5823457B2 (en) * 1977-08-11 1983-05-16 三菱マテリアル株式会社 Tough cermet
SE451730B (en) * 1979-03-29 1987-10-26 Sumitomo Electric Industries SINTRAD PRESS BODY FOR WORKING TOOLS
GB2063922A (en) * 1979-11-20 1981-06-10 Metallurg Inc Sintered hard metals
GB2070646B (en) * 1980-03-04 1985-04-03 Metallurg Inc Sintered hardmetals
JPS60176973A (en) * 1984-02-22 1985-09-11 三菱マテリアル株式会社 Manufacture of cubic boron nitride base super high pressure sintering material for cutting tool
JPS6177670A (en) * 1984-09-25 1986-04-21 三菱マテリアル株式会社 Manufacture of cubic boron nitride base sintered body for cutting tool
JPS6183681A (en) * 1984-09-27 1986-04-28 三菱マテリアル株式会社 Manufacture of cubic boron nitride base sintered body for cutting tool

Also Published As

Publication number Publication date
ATE89329T1 (en) 1993-05-15
US4944800A (en) 1990-07-31
DE58904302D1 (en) 1993-06-17
DE3806602C2 (en) 1991-04-04
JPH0711042B2 (en) 1995-02-08
DE3806602A1 (en) 1988-07-07
EP0330913A3 (en) 1990-06-13
DD279031A5 (en) 1990-05-23
JPH01294842A (en) 1989-11-28
ES2054893T3 (en) 1994-08-16
EP0330913A2 (en) 1989-09-06

Similar Documents

Publication Publication Date Title
EP0330913B1 (en) Process for preparing a sintered hard metal, and sintered hard metal obtained thereby
DE3346873C2 (en)
DE3211047C2 (en)
DE3232869C2 (en)
DE4100706C2 (en) Process for producing a sintered article from high pressure phase boron nitride for use in cutting tools
DE69334012T2 (en) CEMENTED CARBIDE WITH BINDER PHASE OF ENRICHED SURFACE ZONE
DE10135790B4 (en) Fine grained cemented carbide and its use
DE3012199C2 (en) Boron nitride sintered body having a matrix of MC? X?, MN? X? and / or M (CN)? x? and Al and its uses
DE3418403C2 (en) A method of making a high toughness cermet for use in cutting tools
DE3016971C2 (en)
DE602004012521T2 (en) Cemented carbide insert and method for its production.
DE2407410B2 (en) Carbide hard metal with precipitation hardenable metallic matrix
DE3932992A1 (en) HARD METAL COMPOSITES BY DISPERSION ALLOY
DE3607037C2 (en)
DE69915304T2 (en) CEMENTED CARBIDE INSERT WITH BIN-ENRICHED SURFACE ZONE
DE2556102C3 (en) Process for the production of highly wear-resistant cemented carbides based on titanium nitride
DE2407411B2 (en) Heat-resistant and wear-resistant nickel-based alloy
EP0214679B1 (en) Oxidation-resistant hard metal alloy
DE2546623C2 (en)
DE3335341C2 (en)
DE3100926A1 (en) "Sintered-metal hard alloys and method for preparing them"
DE10102706B4 (en) Cubic boron nitride based sintered material and process for its preparation
DE2317447C2 (en) Cutting inserts
DE19845376C5 (en) Hard metal or cermet body
DE3301839A1 (en) METAL CERAMICS WITH HIGH TOUGHNESS ON A TITANIUM NITRIDE BASE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900720

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 89329

Country of ref document: AT

Date of ref document: 19930515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58904302

Country of ref document: DE

Date of ref document: 19930617

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930607

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

EAL Se: european patent in force in sweden

Ref document number: 89102623.9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: WIDIA GMBH

ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;WIDIA GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: WIDIA GMBH

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: WIDIA GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050208

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050210

Year of fee payment: 17

Ref country code: FR

Payment date: 20050210

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050211

Year of fee payment: 17

Ref country code: NL

Payment date: 20050211

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050217

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060216

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060228

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060216

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080214

Year of fee payment: 20

Ref country code: DE

Payment date: 20080319

Year of fee payment: 20

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT