EP1514282A1 - Weichmagnetischer pulververbundwerkstoff, verfahren zu dessen hersellung und dessen verwendung - Google Patents

Weichmagnetischer pulververbundwerkstoff, verfahren zu dessen hersellung und dessen verwendung

Info

Publication number
EP1514282A1
EP1514282A1 EP03704253A EP03704253A EP1514282A1 EP 1514282 A1 EP1514282 A1 EP 1514282A1 EP 03704253 A EP03704253 A EP 03704253A EP 03704253 A EP03704253 A EP 03704253A EP 1514282 A1 EP1514282 A1 EP 1514282A1
Authority
EP
European Patent Office
Prior art keywords
powder
composite material
soft magnetic
starting mixture
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03704253A
Other languages
English (en)
French (fr)
Other versions
EP1514282B1 (de
Inventor
Adnan Okumus
Waldemar Draxler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1514282A1 publication Critical patent/EP1514282A1/de
Application granted granted Critical
Publication of EP1514282B1 publication Critical patent/EP1514282B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Definitions

  • the invention relates to a soft magnetic powder composite material, a method for producing such a material and its use according to the type of the independent claims.
  • DE 199 60 095 AI describes a sintered soft magnetic composite and a method for its production, in which a ferromagnetic starting component is used as the main component and a ferritic starting component as a secondary component in a starting mixture from which a soft magnetic composite is formed after heat treatment.
  • the second starting component forms a grain boundary phase after the heat treatment of the starting mixture to form the composite material.
  • the first starting component is, for example, a pure iron powder or a phosphated iron powder
  • the second starting component is, for example, a ferrite powder, in particular a soft ferritic powder such as MnZn ferrite or NiZn ferrite.
  • the proportion of iron powder in the starting mixture is 95 to 99 percent by weight, the proportion of ferrite powder 1 to 25 percent by weight.
  • the object of the present invention was to provide a soft magnetic powder composite material which has the highest possible magnetic saturation polarization and magnetic permeability in combination with the highest possible specific electrical resistance and which in particular improves the properties of the composite material according to DE 199 60 095 AI.
  • the soft-magnetic powder composite material according to the invention has the advantage over the prior art that it has a magnetic saturation polarization of more than 1.85 Tesla, in particular 1.90 Tesla to 2.05 Tesla, and that it has one over the prior art has significantly increased specific electrical resistance of more than 1 ⁇ m, in particular from 5 ⁇ m to 15 ⁇ . As a rule, the specific electrical resistance is approx. 10 ⁇ m.
  • the soft magnetic powder composite material according to the invention has a bending strength of more than 120 MPa, measured on cylindrical samples.
  • the edge breaking strength of components made from this material in the form of magnetic pots for injection valves is over 45 kN, and the soft magnetic powder composite obtained is also temperature-resistant and fuel-resistant up to at least 400 ° C. In this respect, it is very well suited for the production of fast-switching solenoid valves, as are required for diesel injection in motor vehicle engines.
  • the pressing can be facilitated by adding a pressing aid to the starting mixture, for example a micro wax, and that the properties of the powder composite material obtained are very simple via the gas atmosphere and the temperature program during debinding or the heat treatment can be adjusted.
  • a pressing aid for example a micro wax
  • the soft ferrite powder used is a MnZn ferrite powder, a NiZn ferrite powder or a mixture of both powders.
  • the pure iron powder, iron alloy powder or the preferred phosphated iron powder used further advantageously have an average grain size of the powder particles between 30 ⁇ m and 150 ⁇ m, while the grain size of the one used In contrast, soft ferrite powder is advantageously significantly smaller and is less than 20 ⁇ m on average.
  • the average grain size of the soft ferrite powder particles used is preferably less than 5 ⁇ m, in particular less than 1 ⁇ m.
  • the soft magnetic powder composite material To produce the soft magnetic powder composite material, one starts with a starting mixture consisting of a pure iron powder or a phosphated iron powder and a soft ferrite powder.
  • iron alloy powders such as FeCr powder or FeCo powder can also be used.
  • Phosphated iron powder is preferably used, since it achieves the best electrical properties of the powder composite.
  • a pressing aid such as a micro wax
  • the proportion of the pressing aid in the starting mixture is 0% by mass to a maximum of 0.8% by mass.
  • the starting mixture consists of at least 99.4 pounds of pure iron powder or a phosphated iron powder and 0.1 mass% to 0.6 mass% of a soft ferrite powder.
  • the proportion of pure iron powder or of the phosphated iron powder is preferably more than 99.5% by mass, in particular 99.7% by mass to 99.8% by mass.
  • the proportion of the soft ferrite powder is preferably less than 0.5% by mass, in particular 0.1% by mass to 0.3% by mass.
  • the soft ferrite powder used is preferably a manganese-zinc ferrite (MnZnOFe 2 0 3 ) or a nickel-zinc ferrite (NiZnO-Fe 2 0 3 ) or a mixture of both powders. Phosphated iron powder or phosphated pure iron powder and one of these two soft ferritic powders are preferably used.
  • the pure iron powder or the phosphated iron powder has an average particle size of the powder particles of 50 ⁇ m to 100 ⁇ m.
  • the grain size of the soft ferritic powder used is preferably well below 20 ⁇ m, preferably below 5 ⁇ m. For example, it is in the range between 0.5 ⁇ m to 2 ⁇ m, in particular 1 ⁇ m.
  • the composition of the starting mixture which essentially consists of pure iron powder or the phosphated iron powder and the soft ferrite powder, depending on the intended use of the material obtained, on the one hand, by varying the composition of the material, adding more weight to the highest possible magnetic Saturation polarization and the highest possible magnetic permeability, ie f a -> - greater than 800, or on the other hand more weight can be placed on the highest possible specific electrical resistance.
  • the powders explained above are first prepared as explained in the form of a starting mixture, this is mixed and then compressed with the aid of a press under increased pressure and shaped into the desired shape. introduced.
  • the green bodies produced in this way are then debindered in an oven in an inert gas atmosphere, for example a nitrogen atmosphere, or in an oxygen-containing gas atmosphere.
  • the compressed starting mixture is heated in the oven to a temperature of 400 ° C to 500 ° C and held there for a period of 10 minutes to 1 hour.
  • the temperature during debinding depends primarily on the pressing aid used, ie the micro wax used. In this respect, it can also be below the 400 ° C. explained, for example in the range from 220 ° C. to 300 ° C.
  • the debindered, compressed starting mixture is subjected to a further heat treatment in an oxidizing gas atmosphere at a temperature of 410 ° C. to 500 ° C. in an oven.
  • the pressure in the oven is heated to this temperature and held there for a period of 20 minutes to 400 minutes, for example 200 minutes.
  • the gas atmosphere in the furnace is, for example, air.
  • a soft magnetic powder composite material is obtained in which the soft ferrite powder used is at least largely present as a grain boundary phase, i.e. the soft ferritic powder particles surround the iron powder particles used in the powder composite.
  • the pressing aid used in the course of the manufacturing process facilitates the compression and shaping of the starting mixture during pressing.
  • the pressing aid should be completely removed or evaporated again during debinding, so that it has no direct influence on the achievable material characteristics of the soft magnetic powder composite material obtained. This is especially lem achieved by using micro wax as a pressing aid.
  • the starting mixture is compacted in the die under increased pressure, preferably by uniaxial pressing at a pressure of preferably 500 MPa to 1000 MPa.
  • solenoid valves produced with the soft magnetic powder composite material according to the invention are unrestrictedly resistant to fuel and temperature under typical operating conditions in the diesel injection of motor vehicles. They also have a very good mechanical strength, both in terms of bending strength and edge breaking strength.

Description

Weichmagnetischer Pulververbundwerkstoff, Verfahren zu dessen Herstellung und dessen Verwendung
Die Erfindung betrifft einen weichmagnetischen Pulververbundwerkstoff, ein Verfahren zur Herstellung eines solchen Werkstoffes sowie dessen Verwendung nach der Gattung der unabhängigen Ansprüche.
Stand der Technik
Moderne Benzin- und Dieselmotoren benötigen immer leistungsfähigere Magnet-Einspritzventile, um beispielsweise den Forderungen nach Verbrauchsreduzierung und Schadstoffreduzierung nachzukommen. Bekannte schnell schaltende Magneteinspritzventile werden aus weichmagnetischen Werkstoffen wie beispielsweise FeCr- oder FeCo-Legierungen oder aus Pulververbundwerkstoffen mit möglichst hohem spezifischen elektrischem Widerstand hergestellt. Durch legierungstechnische Maßnahmen ist bei metallischen Werkstoffen jedoch nur ein spezifischer elektrischer Widerstand von maximal 1 μΩm erreichbar .
Weiterhin ist auch bereits bekannt, einen Magnetwerkstoff aus Eisenpulver und organischem Binder in Ventilen für die Dieseleinspritzung (Common Rail System) einzusetzen. Diese Werkstoffe weisen zwar höhere spezifische elektrische Widerstände als die vorgenannten weichmagnetischen Legierungswerkstoffe auf, sie sind jedoch vielfach nur eingeschränkt treibstoff- und temperaturbeständig und zudem schlecht bear- beitbar .
In DE 199 60 095 AI ist ein gesinterter weichmagnetischer Verbundwerkstoff und ein Verfahren zu dessen Herstellung beschrieben, bei dem in einer Ausgangsmischung aus der sich nach einer Wärmebehandlung ein weichmagnetischer Verbundwerkstoff bildet, eine ferromagnetische Ausgangskomponente als Hauptbestandteil und eine ferritische Ausgangskomponente als Nebenbestandteil eingesetzt werden. Die zweite Ausgangskomponente bildet nach der Wärmebehandlung der Ausgangsmischung zu dem Verbundwerkstoff eine Korngrenzenphase. Die erste Ausgangskomponente ist beispielsweise ein Reineisenpulver oder ein phosphatiertes Eisenpulver, die zweite Ausgangskomponente beispielsweise ein Ferrit-Pulver, insbesondere ein weichferritisches Pulver wie MnZn-Ferrit oder NiZn- Ferrit. Der Anteil des Eisenpulvers in der Ausgangsmischung beträgt 95 bis 99 Gewichtsprozent, der Anteil des Ferritpulvers 1 bis 25 Gewichtsprozent.
Aufgabe der vorliegenden Erfindung war die Bereitstellung eines weichmagnetischen Pulververbundwerkstoffes, der eine möglichst hohe magnetische Sättigungspolarisation und magnetische Permeabilität in Kombination mit einem möglichst hohen spezifischen elektrischen Widerstand aufweist, und der insbesondere die Eigenschaften des Verbundwerkstoffes gemäß DE 199 60 095 AI verbessert.
Vorteile der Erfindung
Der erfindungsgemäße weichmagnetische Pulververbundwerkstoff hat gegenüber dem Stand der Technik den Vorteil, dass er eine magnetische Sättigungspolarisation von mehr als 1,85 Tesla, insbesondere 1,90 Tesla bis 2,05 Tesla, aufweist, und dass er einen gegenüber dem Stand der Technik deutlich erhöhten spezifischen elektrischen Widerstand von mehr als 1 μΩm, insbesondere von 5 μΩm bis 15 μΩ besitzt. In der Regel liegt der spezifische elektrische Widerstand bei ca. 10 μΩm. Darüber hinaus ist vorteilhaft, dass der erfindungsgemäße weichmagnetische Pulververbundwerkstoff eine Biegefestigkeit von mehr als 120 MPa, gemessen an zylindrischen Proben, aufweist. Die Kantenbruchfestigkeit von aus diesem Werkstoff hergestellten Bauteilen in Form von Magnettöpfen für Einspritzventile liegt bei über 45 kN, und der erhaltene weichmagnetische Pulververbundwerkstoff ist darüber hinaus bis mindestens 400°C temperaturbeständig und kraftstoffbeständig. Insofern eignet er sich sehr gut zur Herstellung schnell schaltender Magnetventile, wie sie bei der Dieseleinspritzung in Kraftfahrzeugmotoren benötigt werden.
Bei dem erfindungsgemäßen Verfahren zur Herstellung des weichmagnetischen Pulverwerkstoffes ist vorteilhaft, dass das Pressen durch Zusetzen eines Presshilfsmittels zu der Ausgangsmischung, beispielsweise ein Microwachs, erleichtert werden kann, und dass die Eigenschaften des erhaltenen Pulververbundwerkstoffes sehr einfach über die Gasatmosphäre und das Temperaturprogramm beim Entbindern bzw. der Wärmebehandlung eingestellt werden können.
Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Maßnahmen.
So ist es besonders vorteilhaft, wenn das eingesetzte Weichferritpulver ein MnZn-Ferritpulver, ein NiZn-Ferritpulver o- der eine Mischung aus beiden Pulvern ist. Das eingesetzte Reineisenpulver, Eisenlegierungspulver oder das bevorzugt eingesetzte phosphatierte Eisenpulver weisen weiter vorteilhaft eine mittlere Korngröße der Pulverteilchen zwischen 30 μm und 150 μm auf, während die Korngröße des eingesetzten Weichferritpulvers demgegenüber vorteilhaft deutlich kleiner ist und im Mittel weniger als 20 μm beträgt. Bevorzugt beträgt die mittlere Korngröße der eingesetzten Weichferritpulverteilchen weniger als 5 μm, insbesondere weniger als 1 μm.
Ausführungsbeispiele
Zur Herstellung des weichmagnetischen Pulververbundwerkstoffes geht man zunächst von einer Ausgangsmischung aus, die aus einem Reineisenpulver oder einem phosphatierten Eisenpulver und einem Weichferritpulver besteht. Alternativ zu dem Eisenpulver können auch Eisenlegierungspulver wie FeCr- Pulver oder FeCo-Pulver eingesetzt werden.
Bevorzugt wird phosphatiertes Eisenpulver eingesetzt, da damit die besten elektrischen Eigenschaften des Pulververbundwerkstoffes erzielt werden.
Weiter kann der Ausgangsmischung auch ein Presshilfsmittel, wie ein Microwachs, zugesetzt sein, das im Laufe einer nachfolgenden Wärmebehandlung der Ausgangsmischung zur Herstellung des weichmagnetischen Pulververbundwerkstoffes wieder entfernt wird. Der Anteil des Presshilfsmittels in der Ausgangsmischung beträgt 0 Masse% bis maximal 0,8 Masse%. Abgesehen von dem Presshilfsmittel besteht die Ausgangsmischung aus mindestens 99,4 Massel eines Reineisenpulvers oder eines phosphatierten Eisenpulvers und 0,1 Masse% bis 0,6 Masse% eines Weichferritpulvers . Bevorzugt beträgt der Anteil des Reineisenpulvers oder des phosphatierten Eisenpulvers mehr als 99,5 Masse%, insbesondere 99,7 Masse% bis 99,8 Masse% . Der Anteil des Weichferritpulvers beträgt bevorzugt weniger als 0,5 Masse%, insbesondere 0,1 Masse% bis 0,3 Masse% . Bei dieser Berechnung der Zusammensetzung des erhaltenen weichmagnetischen Verbundwerkstoffes, die sich nach einem Mi- sehen, einem Verdichten, einem Entbindern und der Wärmebehandlung der zunächst hergestellten Ausgangsmischung einstellt, wurden unvermeidbare Verunreinigungen bzw. geringfügige Reste des zunächst zugesetzten Presshilfsmittels, die möglicherweise noch vorhanden sind, vernachlässigt.
Das eingesetzte Weichferritpulver ist bevorzugt ein Mangan- Zink-Ferrit (MnZnOFe203) oder ein Nickel-Zink-Ferrit (NiZnO- Fe203) oder eine Mischung aus beiden Pulvern. Bevorzugt wird phosphatiertes Eisenpulver oder phosphatiertes Reineisenpulver und eines dieser beiden weichferritischen Pulver eingesetzt .
Das Reineisenpulver oder das phosphatierte Eisenpulver weist eine mittlere Korngröße der Pulverteilchen von 50 μm bis 100 μm auf. Die Korngröße des eingesetzten weichferritischen Pulvers liegt bevorzugt deutlich unter 20 μm, vorzugsweise unter 5 μm. Beispielsweise liegt sie im Bereich zwischen 0,5 μm bis 2 μm, insbesondere bei 1 μm.
Im Übrigen sei noch betont, dass bei der Zusammensetzung der Ausgangsmischung, die im Wesentlichen aus dem Reineisenpulver oder dem phosphatierten Eisenpulver und dem Weichferritpulver besteht, je nach beabsichtigter Verwendung des erhaltenen Werkstoffes über eine Variation der Zusammensetzung des Werkstoffes einerseits mehr Gewicht auf eine möglichst hohe magnetische Sättigungspolarisation und eine möglichst hohe magnetische Permeabilität, d.h. f a-»- größer 800, oder andererseits mehr Gewicht auf einen möglichst hohen spezifischen elektrischen Widerstand gelegt werden kann.
Die vorstehend erläuterten Pulver werden zunächst wie erläutert in Form einer Ausgangsmischung bereitgestellt, diese wird vermischt und anschließend mit Hilfe einer Presse unter erhöhtem Druck verdichtet und in die gewünschte Form ge- bracht. Anschließend werden die derart hergestellten Grünkörper in einem Ofen in einer Inertgasatmosphäre, beispielsweise einer Stickstoffatmosphäre, oder einer sauerstoffhal- tigen Gasatmosphäre entbindert. Dazu wird die verdichtete Ausgangsmischung in dem Ofen auf eine Temperatur von 400°C bis 500°C aufgeheizt und dort über eine Zeitdauer von 10 Minuten bis 1 Stunde gehalten. Die Temperatur beim Entbindern hängt vor allem von dem eingesetzten Presshilfsmittel, d.h. dem verwendeten Microwachs, ab. Insofern kann sie auch unterhalb den erläuterten 400°C, beispielsweise im Bereich von 220°C bis 300°C liegen.
Nach dem Entbindern erfolgt eine weitere Wärmebehandlung der entbinderten, verdichteten Ausgangsmischung in einer oxidie- renden Gasatmosphäre bei einer Temperatur von 410°C bis 500°C in einem Ofen. Dabei wird der Pressung in dem Ofen auf diese Temperatur aufgeheizt und dort über eine Zeitdauer von 20 Minuten bis 400 Minuten, beispielsweise 200 Minuten, gehalten. Die Gasatmosphäre in dem Ofen ist beispielsweise Luft.
Nach Abschluss dieses Verfahrens wird ein weichmagnetischer Pulververbundwerkstoff erhalten, bei dem das eingesetzte Weichferritpulver zumindest weitgehend als Korngrenzenphase vorliegt, d.h. die weichferritischen Pulverteilchen umgeben die in dem Pulververbundwerkstoff eingesetzten Eisenpulverteilchen.
Das im Laufe des Herstellungsverfahrens eingesetzte Presshilfsmittel erleichtert die Verdichtung und Formgebung der Ausgangsmischung beim Pressen. Andererseits sollte das Presshilfsmittel beim Entbindern wieder vollständig entfernt bzw. verdampft werden, so dass es keinen direkten Einfluss auf die erreichbaren Materialkennwerte des erhaltenen weichmagnetische Pulververbundwerkstoffes hat. Dies wird vor al- lem durch Verwendung von Microwachs als Presshilfsmittel erreicht.
Das Verdichten der Ausgangsmischung in der Matrize unter erhöhtem Druck erfolgt bevorzugt durch uniaxiales Pressen bei einem Druck von bevorzugt 500 MPa bis 1000 MPa.
Abschließend sei noch erwähnt, dass mit dem erfindungsgemäßen weichmagnetische Pulververbundwerkstoff hergestellte Magnetventile bei typischen Einsatzbedingungen in der Diesel-Einspritzung von Kraftfahrzeugen uneingeschränkt treib- stoff- und temperaturbeständig sind. Weiter weisen sie eine sehr gute mechanische Belastbarkeit sowohl hinsichtlich Biegefestigkeit wie auch Kantenbruchfestigkeit auf.

Claims

Patentansprüche
1. Weichmagnetischer Pulververbundwerkstoff, der aus mindestens 99,4 Masse% eines Reineisenpulvers, eines phosphatierten Eisenpulvers oder eines Eisenlegierungspulvers und 0,05 Masse% bis 0,6 Massel eines Weichferritpulvers besteht.
2. Weichmagnetischer Pulververbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, dass das Weichferritpulver ein M Zn- Ferritpulver, ein NiZn-Ferritpulver oder eine Mischung aus beiden ist.
3. Weichmagnetischer Pulververbundwerkstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Reineisenpulver oder das phosphatierte Eisenpulver eine mittlere Korngröße der Pulverteilchen zwischen 30 μm und 150 μm aufweist.
4. Weichmagnetischer Pulververbundwerkstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Weichferritpulver eine mittlere Korngröße der Pulverteilchen von weniger als 20 μm aufweist.
5. Weichmagnetischer Pulververbundwerkstoff nach Anspruch 4, dadurch gekennzeichnet, dass die mittlere Korngröße der Pulverteilchen unter 5 μm, insbesondere unter 1 μm, liegt.
6. Weichmagnetischer Pulververbundwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass er eine Sättigungspolarisation von mehr als 1,85 Tesla, insbesondere 1,90 Tesla bis 2,05 Tesla, aufweist.
7. Weichmagnetischer Pulververbundwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass er einen spezifischen elektrischen Widerstand von mehr als 1 μΩm, insbesondere 5 μΩm bis 15 μΩm, aufweist.
8. Verfahren zur Herstellung eines weichmagnetischen Pulververbundwerkstoffes, insbesondere nach einem der vorangehenden Ansprüche, mit den Verfahrensschritten: a) Bereitstellen einer Ausgangsmischung mit einem Reineisenpulver, einem phosphatierten Eisenpulver oder einem Eisenlegierungspulver und einem Weichferritpulver, b) Mischen der Ausgangsmischung, c) Verdichten, der Ausgangsmischung in einer Presse unter erhöhtem Druck, d) Entbindern der verdichteten Ausgangsmischung in einer Inertgasatmosphäre oder einer sauerstoffhaltigen Gasatmosphäre, und e) Wärmebehandlung der verdichteten Ausgangsmischung in einer oxi- dierenden Gasatmosphäre bei einer Temperatur von 410°C bis
500 C.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Ausgangsmischung vor dem Mischen ein Presshilfsmittel, insbesondere ein Microwachs, zugesetzt wird.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Entbindern bei einer Temperatur von 400°C bis 520°C über eine Zeitdauer von 10 Minuten bis 1 h erfolgt.
11. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Wärmebehandlung über eine Zeitdauer von 20 min bis 400 min erfolgt.
12. Verfahren nach Anspruch 8 oder 10, dadurch gekennzeichnet, dass das Entbindern in einer Stickstoffatmosphäre oder ei- nem Sauerstoff-Stickstoff-Gemisch, insbesondere mit 5 Vol% bis 30 Vol% Sauerstoff, oder an Luft über eine Zeitdauer von 10 min bis 70 min erfolgt.
13. Verwendung eines weichmagnetischen Pulververbundwerkstoffes nach einem der vorangehenden Ansprüche in schnell schaltenden Magnetventilen, insbesondere bei der Dieseleinspritzung in Kraftfahrzeugmotoren.
EP03704253A 2002-06-06 2003-01-27 Weichmagnetischer pulververbundwerkstoff; verfahren zu dessen hersellung und dessen verwendung Expired - Lifetime EP1514282B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10225154A DE10225154B4 (de) 2002-06-06 2002-06-06 Weichmagnetischer Pulververbundwerkstoff, Verfahren zu dessen Herstellung und dessen Verwendung
DE10225154 2002-06-06
PCT/DE2003/000211 WO2003105161A1 (de) 2002-06-06 2003-01-27 Weichmagnetischer pulververbundwerkstoff, verfahren zu dessen hersellung und dessen verwendung

Publications (2)

Publication Number Publication Date
EP1514282A1 true EP1514282A1 (de) 2005-03-16
EP1514282B1 EP1514282B1 (de) 2009-04-15

Family

ID=29723091

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03704253A Expired - Lifetime EP1514282B1 (de) 2002-06-06 2003-01-27 Weichmagnetischer pulververbundwerkstoff; verfahren zu dessen hersellung und dessen verwendung

Country Status (8)

Country Link
US (1) US7686894B2 (de)
EP (1) EP1514282B1 (de)
JP (1) JP2005536036A (de)
CN (1) CN1331169C (de)
AT (1) ATE429020T1 (de)
AU (1) AU2003206641A1 (de)
DE (2) DE10225154B4 (de)
WO (1) WO2003105161A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100380537C (zh) * 2005-05-27 2008-04-09 罗计添 一种软磁复合材料及由其制造导磁构件的方法
CN100594565C (zh) * 2008-01-25 2010-03-17 华中科技大学 一种铁氧体纳米颗粒嵌入反铁磁氧化物母体的复合材料及制备方法
CN101777407B (zh) * 2010-03-26 2012-12-26 北京科源科金属材料有限公司 一种改进非晶粉芯导磁率及损耗的方法及依据此方法制备的复合粉芯
CN102528024B (zh) * 2012-01-20 2013-06-26 钢铁研究总院 一种软磁复合材料用绝缘铁粉的制备方法
CN103664159A (zh) * 2012-09-26 2014-03-26 比亚迪股份有限公司 一种镍锌铁氧体软磁材料及其制备方法
TWI518713B (zh) * 2012-12-06 2016-01-21 China Steel Corp Soft magnetic powder and its making method and composite material sheet body which can suppress electromagnetic interference
DE102013200229A1 (de) 2013-01-10 2014-07-10 Robert Bosch Gmbh Weichmagnetischer Verbundwerkstoff und Verfahren zum Herstellen eines solchen
DE102013215520A1 (de) 2013-08-07 2015-02-12 Robert Bosch Gmbh Weichmagnetischer Metallpulver-Verbundwerkstoff und Verfahren zur Herstellung eines solchen
CN103426584B (zh) * 2013-09-11 2016-04-13 中国计量学院 一种铁氧体复合磁粉芯及其制备方法
WO2015100244A1 (en) * 2013-12-26 2015-07-02 Drexel University Soft magnetic composites for electric motors
CN104332266A (zh) * 2014-10-30 2015-02-04 安徽首文高新材料有限公司 一种耐高温铁粉芯的制备方法
DE102015209970A1 (de) 2015-05-29 2016-12-01 Robert Bosch Gmbh Weichmagnetischer Pulververbundwerkstoff und Verfahren zu seiner Herstellung
CN105565392B (zh) * 2015-12-23 2017-07-14 苏州冠达磁业有限公司 一种高磁导率镍锌铁软磁体及其制备方法
JP6459986B2 (ja) * 2016-01-08 2019-01-30 株式会社村田製作所 金属磁性粉含有シート、インダクタの製造方法及びインダクタ
EP3354437A1 (de) * 2017-01-25 2018-08-01 Continental Automotive GmbH Elektromagnetisches schaltventil sowie kraftstoffhochdruckpumpe
KR102311667B1 (ko) 2017-07-26 2021-10-13 현대자동차주식회사 Fe-Si 연자성 분말을 이용한 연자성체 제조방법
CN107818855A (zh) * 2017-10-31 2018-03-20 桂林市漓江机电制造有限公司 一种细晶粒软磁体复合材料及其制造方法
CN107799261A (zh) * 2017-10-31 2018-03-13 桂林市漓江机电制造有限公司 一种软磁体复合材料及其制造方法
CN107818856A (zh) * 2017-10-31 2018-03-20 桂林市漓江机电制造有限公司 一种软磁粉末冶金材料及其制造方法
CN111243813B (zh) * 2020-03-12 2021-10-15 钢铁研究总院 高电阻率钕铁硼永磁合金及其制备方法
EP3937347A1 (de) * 2020-07-08 2022-01-12 Siemens Aktiengesellschaft Materiallage für ein blechpaket einer elektrischen maschine
KR20220167986A (ko) 2021-06-15 2022-12-22 현대자동차주식회사 철계 혼합분말 제조장치 및 제조방법
CN113658768A (zh) * 2021-08-27 2021-11-16 西安交通大学 稳定磁导率低损耗FeSiAl/MnZn铁氧体软磁复合磁粉芯及其制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR984544A (fr) * 1949-02-11 1951-07-06 Telecommunications Sa Noyau en poudre magnétique comprimée
GB805710A (en) 1955-05-31 1958-12-10 Siemens Ag Improvements in or relating to magnetically soft sintered bodies
GB805110A (en) * 1956-05-22 1958-11-26 Distillers Co Yeast Ltd Process for the oxidation of paraffins
JPS5391397A (en) * 1977-01-21 1978-08-11 Hitachi Ltd Material with high permeability
JPS6413705A (en) * 1987-07-08 1989-01-18 Matsushita Electric Ind Co Ltd Compound magnetic material of high flux density
DE69028360T2 (de) * 1989-06-09 1997-01-23 Matsushita Electric Ind Co Ltd Verbundmaterial sowie Verfahren zu seiner Herstellung
JPH03180434A (ja) 1989-12-09 1991-08-06 Fuji Elelctrochem Co Ltd サーメット型フェライトの製造方法
JPH04352403A (ja) 1991-05-30 1992-12-07 Tokin Corp 複合型圧粉磁芯
JPH05251224A (ja) * 1992-03-09 1993-09-28 Sony Corp 複合磁性材料
JPH05267036A (ja) * 1992-03-23 1993-10-15 Sony Corp 複合磁性材料
JP3180434B2 (ja) 1992-04-28 2001-06-25 ダイキン工業株式会社 フィン・チューブ型熱交換器
JPH06236808A (ja) * 1993-02-10 1994-08-23 Kawasaki Steel Corp 複合磁性材料およびその製造方法
JPH09134522A (ja) * 1995-11-08 1997-05-20 Kao Corp 磁気記録媒体
US5796018A (en) * 1997-01-29 1998-08-18 Procedyne Corp. Process for coating iron particles with phosphorus and forming compacted articles
JPH111702A (ja) * 1997-06-11 1999-01-06 Kawasaki Steel Corp 鉄基金属−フェライト酸化物複合粉末の製造方法
CN100392944C (zh) * 1997-10-17 2008-06-04 精工爱普生株式会社 电机叠片铁心、其制造方法、电机以及喷墨记录装置
US5982073A (en) * 1997-12-16 1999-11-09 Materials Innovation, Inc. Low core loss, well-bonded soft magnetic parts
DE19960095A1 (de) 1999-12-14 2001-07-05 Bosch Gmbh Robert Gesinterter weichmagnetischer Verbundwerkstoff und Verfahren zu dessen Herstellung
DE10031923A1 (de) * 2000-06-30 2002-01-17 Bosch Gmbh Robert Weichmagnetischer Werkstoff mit heterogenem Gefügebau und Verfahren zu dessen Herstellung
JP4352403B2 (ja) 2004-09-14 2009-10-28 横河電機株式会社 Xyステージ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03105161A1 *

Also Published As

Publication number Publication date
US7686894B2 (en) 2010-03-30
DE10225154A1 (de) 2004-01-15
WO2003105161A1 (de) 2003-12-18
US20050217759A1 (en) 2005-10-06
DE50311421D1 (de) 2009-05-28
CN1656575A (zh) 2005-08-17
AU2003206641A1 (en) 2003-12-22
DE10225154B4 (de) 2012-06-06
EP1514282B1 (de) 2009-04-15
JP2005536036A (ja) 2005-11-24
ATE429020T1 (de) 2009-05-15
CN1331169C (zh) 2007-08-08

Similar Documents

Publication Publication Date Title
EP1514282B1 (de) Weichmagnetischer pulververbundwerkstoff; verfahren zu dessen hersellung und dessen verwendung
DE69821278T2 (de) Magnetkern und Herstellungsverfahren
DE10314564B4 (de) Weichmagnetisches Pulvermaterial, weichmagnetischer Grünling und Herstellungsverfahren für einen weichmagnetischen Grünling
DE102005036858A1 (de) Verfahren zur Herstellung eines weichmagnetischen Materials
DE102006027851B3 (de) Pulver für die Sinterhärtung und deren Sinterteile
DE112016006051T5 (de) Pulver für Massekerne, Verfahren zum Herstellen desselben, Massekern und Verfahren zum Herstellen des Massekerns
DE102006032517A1 (de) Verfahren zur Herstellung von Pulververbundkernen und Pulververbundkern
EP1166290A1 (de) Gesinterter weichmagnetischer verbundwerkstoff und verfahren zu dessen herstellung
DE112013003539T5 (de) Hartpartikel zum Einbau in Sinterlegierung und verschleißbeständige Sinterlegierung auf Eisenbasis und Herstellungsverfahren dafür
WO2011153573A2 (de) Bauelement mit reduzierter metallhaftung
EP1231003B1 (de) Verfahren zur Herstellung eines Formteils aus einem weichmagnetischen Verbundwerkstoff
WO2001022439A1 (de) Weichmagnetischer werkstoff und verfahren zu dessen herstellung
DE102006032520B4 (de) Verfahren zur Herstellung von Magnetkernen, Magnetkern und induktives Bauelement mit einem Magnetkern
DE2122977A1 (en) Sintered iron - silicon switching magnet - having superior mech strength - prepn
WO2010066529A1 (de) Vorprodukt für die herstellung gesinterter metallischer bauteile, ein verfahren zur herstellung des vorprodukts sowie die herstellung der bauteile
WO2014000916A1 (de) Weichmagnetische komponente und verfahren zur herstellung einer solchen
EP1148520B1 (de) Gesinterter weichmagnetischer Werkstoff und Verfahren zu dessen Herstellung
DE19751367C2 (de) Verfahren zur Herstellung eines hartmagnetischen, aus einer Samarium-Kobalt-Basis-Legierung bestehenden Pulvers
DE2807602C2 (de) Pulvermischung für weichmagnetische Sinterkörper
WO2017080935A1 (de) Verfahren zur herstellung eines magnetischen materials und elektrische maschine
DE102015206396A1 (de) Verfahren zum Herstellen eines Verbundwerkstoff-Bauteils
DE102012216052A1 (de) Sinterpressteil und Verfahren zum Herstellen eines solchen
AT511919B1 (de) Verfahren zur herstellung eines sinterbauteils
DD286987A5 (de) Verfahren zur herstellung von sintermagneten
DE102015209970A1 (de) Weichmagnetischer Pulververbundwerkstoff und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50311421

Country of ref document: DE

Date of ref document: 20090528

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090915

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090726

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

26N No opposition filed

Effective date: 20100118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100127

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140124

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140123

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150127

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160322

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50311421

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801