EP1501953B1 - Thermostable and corrosion-resistant cast nickel-chromium alloy - Google Patents

Thermostable and corrosion-resistant cast nickel-chromium alloy Download PDF

Info

Publication number
EP1501953B1
EP1501953B1 EP04704238A EP04704238A EP1501953B1 EP 1501953 B1 EP1501953 B1 EP 1501953B1 EP 04704238 A EP04704238 A EP 04704238A EP 04704238 A EP04704238 A EP 04704238A EP 1501953 B1 EP1501953 B1 EP 1501953B1
Authority
EP
European Patent Office
Prior art keywords
nickel
chromium
alloy
aluminum
chromium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04704238A
Other languages
German (de)
French (fr)
Other versions
EP1501953A1 (en
EP1501953B8 (en
Inventor
Rolf Kirchheiner
Dietlinde Jakobi
Petra Becker
Ricky Durham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schmidt and Clemens GmbH and Co KG
Original Assignee
Schmidt and Clemens GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schmidt and Clemens GmbH and Co KG filed Critical Schmidt and Clemens GmbH and Co KG
Publication of EP1501953A1 publication Critical patent/EP1501953A1/en
Publication of EP1501953B1 publication Critical patent/EP1501953B1/en
Application granted granted Critical
Publication of EP1501953B8 publication Critical patent/EP1501953B8/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W

Definitions

  • High-temperature processes for example in petroleum chemistry, require materials that are not only heat-resistant, but also sufficiently resistant to corrosion and, in particular, that are subject to the stresses of hot product and combustion gases.
  • the coils of cracking and reforming furnaces outside of highly oxidizing combustion gases with a temperature up to 1100 ° C and more applied, while in the Inhern of cracking tubes at temperatures up to 1100 ° C a strong carburizing and in the interior of reformer tubes at temperatures up to 900 ° C and high pressure a weak carburizing and different oxidizing atmosphere prevails.
  • the contact with the hot combustion gases also leads to a nitriding of the pipe material and the formation of a scale layer, which is associated with an increase in the pipe outside diameter by a few percent and a reduction in the wall thickness by up to 10%.
  • the carburizing atmosphere in the tube interior causes carbon diffuses into the pipe material and it comes there at temperatures above 900 ° C for the formation of carbides such as M 23 C 6 and with increasing carburization to the emergence of the carbon-rich carbide M 7 C 3 .
  • carbides such as M 23 C 6
  • M 7 C 3 the carbon-rich carbide
  • the consequence of this is internal stress due to the increase in volume associated with carbide formation or conversion as well as a decrease in strength and toughness of the pipe material.
  • graphite or split carbon can be produced and, in conjunction with internal stresses, cracking can occur, through which carbon is increasingly introduced into the pipe material.
  • High-temperature processes therefore require materials with high creep rupture strength, microstructural stability and carburization and oxidation resistance. These requirements are met, within limits, by alloys containing, in addition to iron, 20 to 35% nickel, 20 to 25% chromium and for improving carburization resistance up to 1.5% silicon, for example the nickel-chromium steel alloy 35Ni25Cr-1, which is suitable for centrifugally cast tubes. 5Si, which is resistant to oxidation and carburization even at temperatures of 1100 ° C. The high nickel content reduces the rate of diffusion and the solubility of the carbon and thus increases the carburization resistance.
  • the alloys form at elevated temperatures under oxidizing conditions a cover layer of Cr 2 O 3 , which acts as a barrier against penetration of oxygen and carbon into the underlying tube material.
  • a cover layer of Cr 2 O 3 acts as a barrier against penetration of oxygen and carbon into the underlying tube material.
  • the Cr 2 O 3 becomes volatile, so that the protective effect of the cover layer is rapidly lost.
  • a series of high-heat, oxidation and carburization resistant nickel-base alloys are known, including the alloy 6125 Gt / alloy 603 GT with 62% nickel, 25% chromium, 0.22% carbon, 2.8% aluminum, 0.2% titanium and 9% iron, as well as 0.1% yttrium and 0.1% Zr a further development of the also described largely matching alloy 6025HT / alloy 602 CA, but with 0.18% carbon and only 2.3% aluminum, but 9.5% iron.
  • the alloy 602 CA also includes an alloy comprising 25% chromium, 9.5% iron, 2.2% aluminum, 0.18% carbon, 0.15% titanium, 0.06% zirconium and 0.08% Yttrium, rest nickel described.
  • the invention pursues the objective of damaging the mechanism of damage: carburizing - reducing the creep strength - to curb internal oxidation with the further consequence of increased carburization and oxidation, and to provide a cast alloy that can be used even at extremely high operating temperatures in carburizing and / or still has an adequate life span in an oxidizing atmosphere.
  • the invention achieves this with the aid of a nickel-chromium casting alloy with specific contents of carbon, aluminum and yttrium.
  • the invention consists in using a casting alloy up to 0.8% carbon up to 0.2% silicon up to 0.2% manganese 15 up to 40% chrome 0.5 up to 13% iron 1.5 up to 7% aluminum 0.1 up to 2.5% niobium up to 1.5% titanium 0.01 up to 0.4% zirconium up to 0.06% nitrogen until 12 % cobalt until 5 % molybdenum until 6 % tungsten 0.01 up to 0.1% Yttrium, rest nickel and usual impurities.
  • the total content of the alloy of nickel, chromium and aluminum should be 80 to 90%.
  • the alloy individually or side by side, contains at most 0.7% carbon, up to 30% chromium, up to 12% iron, 2.2 to 6% aluminum, 0.1 to 2.0% niobium, 0.01 to 1.0% Titanium, up to 0.15% zirconium and - for high creep resistance - up to 10% cobalt, at least 3% molybdenum and up to 5% tungsten, for example 4 to 8% cobalt, up to 4% molybdenum and 2 to 4% tungsten, if it is does not primarily depend on the high oxidation resistance. Depending on the stress in the individual case, therefore, the contents of cobalt, molybdenum and tungsten must be selected within the content limits according to the invention.
  • Particularly suitable is an alloy with at most 0.7% carbon, at most 0.2, more preferably at most 0.1% silicon, up to 0.2% manganese, 18 to 30% chromium, 0.5 to 12% iron, 2, 2 to 5% aluminum, 0.4 to 1.6% niobium, 0.01 to 0.6% titanium, 0.01 to 0.15% zirconium, at most 0.06% nitrogen, at most 10% cobalt and at most 5 % Tungsten.
  • Optimum results can be achieved if the chromium content is not more than 26.5%, the iron content is not more than 11%, the aluminum content is 3 to 6%, the titanium content is more than 0.15%, the zirconium content is more than 0.05% Cobalt content at least 0.2%, the tungsten content above 0.05% and the yttrium content is 0.019 to 0.089%.
  • the high creep strength of the alloy according to the invention for example a service life of 2000 hours at a load of 4 to 6 MPa and a temperature of 1200 ° C, guarantees the maintenance of a closed and firmly adhering oxidic barrier layer in the form of a high aluminum content of the alloy self-supplementing or renewable, against carburization and oxidation effective Al 2 O 3 layer.
  • This layer consists, as investigations have shown, of ⁇ -Al 2 O 3 and contains at best selective mixed oxides which do not change the character of the ⁇ -Al 2 O 3 layer; this assumes at higher temperatures, especially above 1050 ° C in view of the rapidly decreasing at these temperatures resistance of the Cr 2 O 3 layer of conventional materials increasingly the protection of the alloy according to the invention against carburization and oxidation.
  • On the Al 2 O 3 barrier layer can - at least partially - still a cover layer of nickel oxide (NiO) and mixed oxides (Ni (Cr, Al) 2 O 4 ) are located, their nature and extent
  • NiO nickel oxide
  • Ni (Cr, Al) 2 O 4 ) mixed oxides
  • the structure of the alloy according to the invention above 4% aluminum inevitably contains ⁇ '-phase, which acts as a solidifying agent at low and medium temperatures, but also reduces the toughness or elongation at break. In individual cases, it may therefore be necessary to draw a compromise between toughness and oxidation / carburization resistance based on the intended use.
  • the barrier layer according to the invention from ⁇ -Al 2 O 3, the stable Al 2 O 3 modification, is stable at all oxygen concentrations.
  • the table contains, as an example of two not falling under the invention wrought alloys with a comparatively low carbon content and very fine-grained microstructure of a particle size ⁇ 10 ⁇ m the comparison alloy 5 and 7, while all other trial alloys are cast alloys.
  • Yttrium is a strong oxide former, whose effect in the alloy according to the invention is that the conditions of formation and the adhesion of the ⁇ -Al 2 O 3 layer improve significantly.
  • the aluminum content of the alloy according to the invention has an important role to play in that aluminum leads to the formation of a ⁇ '-precipitation phase which causes a considerable increase in tensile strength.
  • the yield strength and the tensile strength of the three alloys 13, 19, 20 to 900 ° C. according to the invention are considerably above the strength values of the four comparative alloys.
  • the elongation at break of the alloys according to the invention essentially corresponds to that of the comparative alloys; It increases sharply above about 900 ° C, as is apparent from the diagram of Fig. 3, while the strength reaches the level of the comparative alloys (Fig. 1, 2). This is explained by the fact that from about 900 ° C, the ⁇ '-phase goes into solution and above about 1000 ° C is completely dissolved.
  • the creep behavior of inventive alloys with different contents of aluminum is shown in the Larson-Miller diagram of FIG. 4.
  • the graph of FIG. 13 shows that the contents of the alloy according to the invention should be matched to one another in such a way that the condition 9 % al ⁇ % Cr is satisfied.
  • the straight line in the diagram of Fig. 13 separates the region of the alloys with a sufficiently protective ⁇ -alumina layer above the straight line from the range of alloys with mixed oxide impaired carburization or catalytic coking.
  • Fig. 14 illustrates the superiority of the steel alloy according to the invention with reference to six embodiments 21 to 26 compared to the conventional comparative alloys 1, 3, 4 6 and 7.
  • the compositions of the experimental alloys 21 to 26 are shown in the table.
  • the graph of FIG. 15 shows that alloy 19 with an average aluminum content of 3.3% increases the reduction in service life with increasing load, while alloy 20 with its high aluminum content of 4.8% strengthens for all load cases results in a strong, but approximately equal reduction in the relative service life. From the diagram for 1200 ° C, a reduction in the service life with an increase in the aluminum content of 2.4% (Alloy 13) to 3.3% (Alloy 19) for all three load cases, a decrease in the relative life to about two-thirds. A further increase of the aluminum content to 4.8% (alloy 20) again shows a load-dependent reduction in the relative service life.
  • the two diagrams show that with increasing aluminum content, the service life before breakage in the creep test decreases. Furthermore, with increasing temperature and increasing duration of use or with decreasing stress, the negative influence of the aluminum on the creep life decreases.
  • the high aluminum alloys are particularly suitable for long-term use at temperatures for which no cast or centrifugally cast materials could be used so far.
  • cast alloy according to the invention is particularly suitable as a material for furnace parts, blasting furnaces for heating ovens, rollers for annealing, parts of strand and strip casting plants, hoods and muffles for annealing, parts of large diesel engines, containers for catalysts and for cracking and reformer tubes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Mold Materials And Core Materials (AREA)
  • Laminated Bodies (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Powder Metallurgy (AREA)
  • Catalysts (AREA)
  • Exhaust Silencers (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Supercharger (AREA)
  • Soft Magnetic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

A nickel-chromium casting alloy comprising, in weight percent, up to 0.8% of carbon, up to 1% of silicon, up to 0.2% of manganese, 15 to 40% of chromium, 0.5 to 13% of iron, 1.5 to 7% of aluminum, up to 2.5% of niobium, up to 1.5% of titanium, 0.01 to 0.4% of zirconium, up to 0.06% of nitrogen, up to 12% of cobalt, up to 5% of molybdenum, up to 6% of tungsten and from 0.01 to 0.1% of yttrium, remainder nickel, has a high resistance to carburization and oxidation even at temperatures of over 1130° C. in a carburizing and oxidizing atmosphere, as well as a high thermal stability, in particular creep rupture strength.

Description

Hochtemperatur-Verfahren beispielsweise der Erdölchemie erfordern Werkstoffe, die nicht nur hitze-, sondern auch hinreichend korrosionsbeständig und insbesondere der Beanspruchung durch heiße Produkt- und Verbrennungsgase gewachsen sind. So werden beispielsweise die Rohrschlangen von Crack- und Reformeröfen außen von stark oxidierenden Verbrennungsgasen mit einer Temperatur bis 1100 °C und mehr beaufschlagt, während im Inhern von Crackrohren bei Temperaturen bis 1100 °C eine in starkem Maße aufkohlende und im Innern von Reformerrohren bei Temperaturen bis 900 °C und hohem Druck eine schwach aufkohlende und unterschiedlich oxidierende Atmosphäre herrscht. Der Kontakt mit den heißen Verbrennungsgasen führt zudem zu einer Aufstickung des Rohrwerkstoffs und zum Entstehen einer Zunderschicht, die mit einer Zunahme des Rohraußendurchmessers um einige Prozent und einer Verringerung der Wanddicke um bis zu 10% verbunden ist.High-temperature processes, for example in petroleum chemistry, require materials that are not only heat-resistant, but also sufficiently resistant to corrosion and, in particular, that are subject to the stresses of hot product and combustion gases. Thus, for example, the coils of cracking and reforming furnaces outside of highly oxidizing combustion gases with a temperature up to 1100 ° C and more applied, while in the Inhern of cracking tubes at temperatures up to 1100 ° C a strong carburizing and in the interior of reformer tubes at temperatures up to 900 ° C and high pressure a weak carburizing and different oxidizing atmosphere prevails. The contact with the hot combustion gases also leads to a nitriding of the pipe material and the formation of a scale layer, which is associated with an increase in the pipe outside diameter by a few percent and a reduction in the wall thickness by up to 10%.

Die aufkohlende Atmosphäre im Rohrinnern bewirkt hingegen, daß Kohlenstoff in den Rohrwerkstoff diffundiert und es dort bei Temperaturen über 900 °C zum Entstehen von Karbiden wie M23C6 und mit zunehmender Aufkohlung zum Entstehen des kohlenstoffreichen Karbids M7C3 kommt. Die Folge davon sind innere Spannungen infolge der mit der Karbidbildung bzw. -umwandlung verbundenen Volumenzunahme sowie eine Abnahme der Festigkeit und Zähigkeit des Rohrwerkstoffs. Des weiteren kann es im Innern des Rohrwerkstoffs zum Entstehen von Graphit bzw. Spaltkohlenstoff und dadurch in Verbindung mit inneren Spannungen zum Entstehen von Rissen kommen, durch die wiederum vermehrt Kohlenstoff in den Rohrwerkstoff gelangt.The carburizing atmosphere in the tube interior, however, causes carbon diffuses into the pipe material and it comes there at temperatures above 900 ° C for the formation of carbides such as M 23 C 6 and with increasing carburization to the emergence of the carbon-rich carbide M 7 C 3 . The consequence of this is internal stress due to the increase in volume associated with carbide formation or conversion as well as a decrease in strength and toughness of the pipe material. Furthermore, in the interior of the pipe material, graphite or split carbon can be produced and, in conjunction with internal stresses, cracking can occur, through which carbon is increasingly introduced into the pipe material.

Hochtemperatur-Verfahren erfordern daher Werkstoffe mit hoher Zeitstand- bzw. Kriechfestigkeit, Gefügestabilität sowie Aufkohlungs- und Oxidationsbeständigkeit. Dieser Forderung genügen - in Grenzen - Legierungen, die neben Eisen 20 bis 35% Nickel, 20 bis 25% Chrom und zur Verbesserung der Aufkohlungsbeständigkeit bis 1,5% Silizium enthalten wie beispielsweise die für Schleudergußrohre geeignete Nickel-Chrom-Stahllegierung 35Ni25Cr-1,5Si, die auch bei Temperaturen von 1100 °C noch oxidations-und aufkohlungsbeständig ist. Der hohe Nickelgehalt verringert dabei die Diffusionsgeschwindigkeit und die Löslichkeit des Kohlenstoffs und erhöht damit die Aufkohlungsbeständigkeit.High-temperature processes therefore require materials with high creep rupture strength, microstructural stability and carburization and oxidation resistance. These requirements are met, within limits, by alloys containing, in addition to iron, 20 to 35% nickel, 20 to 25% chromium and for improving carburization resistance up to 1.5% silicon, for example the nickel-chromium steel alloy 35Ni25Cr-1, which is suitable for centrifugally cast tubes. 5Si, which is resistant to oxidation and carburization even at temperatures of 1100 ° C. The high nickel content reduces the rate of diffusion and the solubility of the carbon and thus increases the carburization resistance.

Infolge ihres Chromgehaltes bilden die Legierungen bei höheren Temperaturen unter oxidierenden Bedingungen eine Deckschicht aus Cr2O3, die als Sperrschicht gegen ein Eindringen von Sauerstoff und Kohlenstoff in den darunter befindlichen Rohrwerkstoff wirkt. Bei Temperaturen über 1050 °C wird das Cr2O3 jedoch flüchtig, so daß die Schutzwirkung der Deckschicht rasch verlorengeht.As a result of their chromium content, the alloys form at elevated temperatures under oxidizing conditions a cover layer of Cr 2 O 3 , which acts as a barrier against penetration of oxygen and carbon into the underlying tube material. At temperatures above 1050 ° C, however, the Cr 2 O 3 becomes volatile, so that the protective effect of the cover layer is rapidly lost.

Unter den Bedingungen des Crackens kommt es unvermeidbar auch zu Ablagerungen von Kohlenstoff an der Rohrinnenwand bzw. auf der Cr2O3-Deckschicht und bei Temperaturen über 1050 °C in Anwesenheit von Kohlenstoff und Wasserdampf zur Umwandlung des Chromoxyds zu Chromkarbid. Um die damit verbundene Beeinträchtigung der Aufkohlungsbeständigkeit zu verringern, müssen die Kohlenstoffablagerungen im Rohr von Zeit zu Zeit mit Hilfe eines Wasserdampf/Luftgemischs verbrannt und die Betriebstemperaturen generell unter 1050 °C gehalten werden.Under the conditions of cracking inevitably deposits of carbon on the pipe inner wall or on the Cr 2 O 3 cover layer and at temperatures above 1050 ° C in the presence of carbon and water vapor to convert the chromium oxide to chromium carbide. In order to reduce the consequent deterioration in carburization resistance, the carbon deposits in the pipe must be occasionally burned with the aid of a water vapor / air mixture and the operating temperatures generally kept below 1050 ° C.

Eine weitere Gefährdung der Aufkohlungs- und Oxidationsbeständigkeit resultiert aus der begrenzten Kriechfestigkeit und Duktilität der herkömmlichen Nickel-Chrom-Legierungen, die zum Entstehen von Zeitstandrissen in der Chromoxid-Deckschicht und zum Eindringen von Kohlenstoff und Sauerstoff über die Risse in den Rohrwerkstoff führen. Insbesondere bei einer zyklischen Temperaturbeanspruchung kann es zum Entstehen von Deckschichtrissen und auch zum partiellen Ablösen der Deckschicht kommen.Another threat to carburization and oxidation resistance results from the limited creep strength and ductility of conventional nickel-chromium alloys, which results in the formation of creep ruptures in the chromium oxide topcoat and the penetration of carbon and oxygen through the cracks in the pipe material. In particular, in the case of a cyclic temperature stress, it can lead to the formation of cover layer cracks and also to the partial detachment of the cover layer.

Aus Nickel alloys, U. Heubner Ed., Expert Verlag, 1998, Seiten 16 bis 23, U.Brill - Eigenschaften und Einsatzgebiete der neuen warmfesten Legierung Nicrofer 6025 HT, Stahl, Bd. 3, 1994, Seiten 32 bis 35 und D.C. Agarwal, U. Brill - High-temperature-strength Nickel Alloy, Advanced Mat. and Proc., Okt. 2000, Seiten 31 bis 34 sind eine Reihe hoch warmfester, oxidations- und aufkohlungsbeständiger Nickelbasis-Legierungen bekannt, darunter die Legierung 6125 Gt/alloy 603 GT mit 62% Nickel, 25% Chrom, 0,22% Kohlenstoff, 2,8% Aluminium, 0,2% Titan und 9% Eisen sowie 0,1 % Yttrium und 0,1 % Zr, bei der es sich um eine Weiterentwicklung der ebenfalls beschriebenen weitgehend übereinstimmenden Legierung 6025HT/alloy 602 CA, jedoch mit 0,18% Kohlenstoff und nur 2,3% Aluminium, aber 9,5% Eisen handelt. Unter der Bezeichnung alloy 602 CA ist des weiteren eine Legierung mit 25% Chrom, 9,5% Eisen, 2,2% Aluminium, 0,18% Kohlenstoff, 0,15% Titan, 0,06% Zirkonium und 0,08% Yttrium, Rest Nickel beschrieben.From Nickel alloys, U. Heubner Ed., Expert Verlag, 1998, pages 16 to 23, U.Brill - Properties and applications of the new heat-resistant alloy Nicrofer 6025 HT, steel, Vol. 3, 1994, pages 32 to 35 and DC Agarwal , U. Brill - High-temperature-strength Nickel Alloy, Advanced Mat. And Proc., Oct. 2000, pages 31 to 34, a series of high-heat, oxidation and carburization resistant nickel-base alloys are known, including the alloy 6125 Gt / alloy 603 GT with 62% nickel, 25% chromium, 0.22% carbon, 2.8% aluminum, 0.2% titanium and 9% iron, as well as 0.1% yttrium and 0.1% Zr a further development of the also described largely matching alloy 6025HT / alloy 602 CA, but with 0.18% carbon and only 2.3% aluminum, but 9.5% iron. The alloy 602 CA also includes an alloy comprising 25% chromium, 9.5% iron, 2.2% aluminum, 0.18% carbon, 0.15% titanium, 0.06% zirconium and 0.08% Yttrium, rest nickel described.

Versuche haben ergeben, daß offensichtlich Gefügephasenreaktionen insbesondere bei höheren Siliziumgehalten beispielsweise über 2,5% zu einem Duktilitätsverlust und zu einer Verringerung der Kurzzeitfestigkeit führen.Experiments have shown that apparent structural phase reactions, especially at higher silicon contents, for example above 2.5%, lead to a loss of ductility and to a reduction in short-term strength.

Des weiteren ist aus C.W. Wegst "STAHLSCHLÜSSEL" 19. Aufl. 2001, Seiten 548, 595, 601 mit der Werkstoff Nr. 2.4633 eine Nickellegierung mit 0,15 bis 0,25% Kohlenstoff, bis 0,50% Silizium, bis 0,50% Mangan, 0,020% Phosphor, 0,010% Schwefel, 24,0 bis 26,0% Chrom, Rest Nickel, bekannt, die noch 0,10 bis 0,20% Titan, 8,00 bis 11,0% Eisen, bis 0,10% Kupfer, 1,80 bis 2,40% Aluminium, 0,05 bis 0,12% Yttrium und 0,01 bis 0,10% Zirkonium enthalten kann und sich als Werkstoff zum Herstellen von Stahlformguß und Präzisionsguß eignet.Furthermore, C.W. "STAHLSCHLÜSSEL" 19th edition 2001, pages 548, 595, 601 with the material no. 2.4633 a nickel alloy with 0.15 to 0.25% carbon, to 0.50% silicon, to 0.50% manganese, 0.020 % Phosphorus, 0.010% sulfur, 24.0 to 26.0% chromium, balance nickel, known to contain 0.10 to 0.20% titanium, 8.00 to 11.0% iron, to 0.10% copper , 1.80 to 2.40% aluminum, 0.05 to 0.12% yttrium, and 0.01 to 0.10% zirconium, and is useful as a material for making cast steel and precision casting.

Hiervon ausgehend verfolgt die Erfindung das Ziel, den Schädigungsmechanismus: Aufkohlung - Verringerung der Zeitstand- bzw. Kriechfestigkeit - innere Oxidation mit der weiteren Folge einer verstärkten Aufkohlung und Oxidation einzudämmen sowie eine Gußlegierung zu schaffen, die auch bei extrem hohen Betriebstemperaturen in aufkohlender und/oder oxidierender Atmosphäre noch eine angemessene Lebensdauer aufweist.On this basis, the invention pursues the objective of damaging the mechanism of damage: carburizing - reducing the creep strength - to curb internal oxidation with the further consequence of increased carburization and oxidation, and to provide a cast alloy that can be used even at extremely high operating temperatures in carburizing and / or still has an adequate life span in an oxidizing atmosphere.

Die Erfindung erreicht das mit Hilfe einer Nickel-Chrom-Gußlegierung mit bestimmten Gehalten an Kohlenstoff, Aluminium und Yttrium. Im einzelnen besteht die Erfindung in Verwendung einer Gußlegierung mit bis 0,8 % Kohlenstoff bis 0,2 % Silizium bis 0,2 % Mangan 15 bis 40 % Chrom 0,5 bis 13 % Eisen 1,5 bis 7 % Aluminium 0,1 bis 2,5 % Niob bis 1,5 % Titan 0,01 bis 0,4 % Zirkonium bis 0,06 % Stickstoff bis 12 % Kobalt bis 5 % Molybdän bis 6 % Wolfram 0,01 bis 0,1 % Yttrium, Rest Nickel und übliche Verunreinigungen. The invention achieves this with the aid of a nickel-chromium casting alloy with specific contents of carbon, aluminum and yttrium. In particular, the invention consists in using a casting alloy up to 0.8% carbon up to 0.2% silicon up to 0.2% manganese 15 up to 40% chrome 0.5 up to 13% iron 1.5 up to 7% aluminum 0.1 up to 2.5% niobium up to 1.5% titanium 0.01 up to 0.4% zirconium up to 0.06% nitrogen until 12 % cobalt until 5 % molybdenum until 6 % tungsten 0.01 up to 0.1% Yttrium, rest nickel and usual impurities.

Der Gesamtgehalt der Legierung an Nickel, Chrom und Aluminium sollte 80 bis 90 % betragen.The total content of the alloy of nickel, chromium and aluminum should be 80 to 90%.

Vorzugsweise enthält die Legierung einzeln oder nebeneinander höchstens 0,7% Kohlenstoff, bis 30% Chrom, bis 12% Eisen, 2,2 bis 6% Aluminium, 0,1 bis 2,0% Niob, 0,01 bis 1,0% Titan, bis 0,15% Zirkonium und - für eine hohe Kriechbeständigkeit - bis 10% Kobalt, mindestens 3 % Molybdän und bis 5% Wolfram, beispielsweise 4 bis 8% Kobalt, bis 4 % Molybdän und 2 bis 4% Wolfram, wenn es nicht vorrangig auf die hohe Oxidationsbeständigkeit ankommt. Je nach der Beanspruchung im Einzelfall müssen daher die Gehalte an Kobalt, Molybdän und Wolfram innerhalb der erfindungsgemäßen Gehaltsgrenzen gewählt werden.Preferably, the alloy, individually or side by side, contains at most 0.7% carbon, up to 30% chromium, up to 12% iron, 2.2 to 6% aluminum, 0.1 to 2.0% niobium, 0.01 to 1.0% Titanium, up to 0.15% zirconium and - for high creep resistance - up to 10% cobalt, at least 3% molybdenum and up to 5% tungsten, for example 4 to 8% cobalt, up to 4% molybdenum and 2 to 4% tungsten, if it is does not primarily depend on the high oxidation resistance. Depending on the stress in the individual case, therefore, the contents of cobalt, molybdenum and tungsten must be selected within the content limits according to the invention.

Besonders geeignet ist eine Legierung mit höchstens 0,7% Kohlenstoff, höchstens 0,2, besser noch höchstens 0,1% Silizium, bis 0,2% Mangan, 18 bis 30% Chrom, 0,5 bis 12% Eisen, 2,2 bis 5% Aluminium, 0,4 bis 1,6% Niob, 0,01 bis 0,6% Titan, 0,01 bis 0,15% Zirkonium, höchstens 0,06% Stickstoff, höchstens 10% Kobalt und höchstens 5% Wolfram.Particularly suitable is an alloy with at most 0.7% carbon, at most 0.2, more preferably at most 0.1% silicon, up to 0.2% manganese, 18 to 30% chromium, 0.5 to 12% iron, 2, 2 to 5% aluminum, 0.4 to 1.6% niobium, 0.01 to 0.6% titanium, 0.01 to 0.15% zirconium, at most 0.06% nitrogen, at most 10% cobalt and at most 5 % Tungsten.

Optimale Ergebnisse lassen sich erzielen, wenn jeweils für sich oder nebeneinander der Chromgehalt höchstens 26,5%, der Eisengehalt höchstens 11%, der Aluminiumgehalt 3 bis 6%, der Titangehalt über 0,15%, der Zirkoniumgehalt über 0,05%, der Kobaltgehalt mindestens 0,2%, der Wolframgehalt über 0,05% und der Yttriumgehalt 0,019 bis 0,089% beträgt.Optimum results can be achieved if the chromium content is not more than 26.5%, the iron content is not more than 11%, the aluminum content is 3 to 6%, the titanium content is more than 0.15%, the zirconium content is more than 0.05% Cobalt content at least 0.2%, the tungsten content above 0.05% and the yttrium content is 0.019 to 0.089%.

Die hohe Kriechfestigkeit der erfindungsgemäßen Legierung, beispielsweise eine Standzeit von 2000 Stunden bei einer Belastung von 4 bis 6 MPa und einer Temperatur von 1200 °C, garantiert den Erhalt einer geschlossenen und festhaftenden oxidischen Sperrschicht in Gestalt einer durch den hohen Aluminiumgehalt der Legierung bedingten, sich selbst ergänzenden bzw. nachwachsenden, gegen eine Aufkohlung und Oxidation wirksamen Al2O3-Schicht. Diese Schicht besteht, wie Untersuchungen gezeigt haben aus α-Al2O3 und enthält allenfalls punktuell Mischoxide, die den Charakter der α-Al2O3-Schicht nicht verändern; diese übernimmt bei höheren Temperaturen, insbesondere oberhalb 1050 °C angesichts der bei diesen Temperaturen rapide abnehmenden Beständigkeit der Cr2O3-Schicht herkömmlicher Werkstoffe in zunehmendem Maße den Schutz der erfindungsgemäßen Legierung gegen Aufkohlung und Oxidation. Auf der Al2O3-Sperrschicht kann sich - zumindest teilweise - noch eine Deckschicht aus Nickeloxid (NiO) und Mischoxiden (Ni(Cr,Al)2O4) befinden, deren Beschaffenheit und Ausdehnung jedoch ohne wesentliche Bedeutung ist, weil die darunter befindliche Al2O3-Sperrschicht den Schutz der Legierung gegen Oxidation und Aufkohlung übernimmt. Risse in der Deckschicht und deren bei höheren Temperaturen stattfindendes (teilweises) Abplatzen sind daher unschädlich.The high creep strength of the alloy according to the invention, for example a service life of 2000 hours at a load of 4 to 6 MPa and a temperature of 1200 ° C, guarantees the maintenance of a closed and firmly adhering oxidic barrier layer in the form of a high aluminum content of the alloy self-supplementing or renewable, against carburization and oxidation effective Al 2 O 3 layer. This layer consists, as investigations have shown, of α-Al 2 O 3 and contains at best selective mixed oxides which do not change the character of the α-Al 2 O 3 layer; this assumes at higher temperatures, especially above 1050 ° C in view of the rapidly decreasing at these temperatures resistance of the Cr 2 O 3 layer of conventional materials increasingly the protection of the alloy according to the invention against carburization and oxidation. On the Al 2 O 3 barrier layer can - at least partially - still a cover layer of nickel oxide (NiO) and mixed oxides (Ni (Cr, Al) 2 O 4 ) are located, their nature and extent However, without significant importance, because the underlying Al 2 O 3 barrier layer takes over the protection of the alloy against oxidation and carburization. Cracks in the surface layer and their (partial) flaking occurring at higher temperatures are therefore harmless.

Um eine möglichst reine α-Aluminiumoxidschicht zu gewährleisten, die im wesentlichen frei von Mischoxiden ist, sollte die Bedingung 9 % Al % Cr

Figure imgb0001

erfüllt sein.In order to ensure the purest possible α-alumina layer, which is substantially free of mixed oxides, the condition 9 % al % Cr
Figure imgb0001

be fulfilled.

Wegen ihres hohen Aluminiumgehalts enthält das Gefüge der erfindungsgemäßen Legierung oberhalb 4% Aluminium zwangsläufig γ'-Phase, die bei niedrigen und mittleren Temperaturen verfestigend wirkt, jedoch auch die Zähigkeit bzw. Bruchdehnung verringert. Im Einzelfall kann es daher erforderlich sein, zwischen Zähigkeit und Oxidations/Aufkohlungsbeständigkeit einen am Verwendungszweck orientierten Kompromiss zu schließen.Because of their high aluminum content, the structure of the alloy according to the invention above 4% aluminum inevitably contains γ'-phase, which acts as a solidifying agent at low and medium temperatures, but also reduces the toughness or elongation at break. In individual cases, it may therefore be necessary to draw a compromise between toughness and oxidation / carburization resistance based on the intended use.

Die erfindungsgemäße Sperrschicht aus α-Al2O3, der stabilsten Al2O3-Modifikation, ist bei allen Sauerstoffkonzentrationen beständig.The barrier layer according to the invention from α-Al 2 O 3, the stable Al 2 O 3 modification, is stable at all oxygen concentrations.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und der in der nachfolgenden Tabelle aufgeführten sieben Vergleichslegierungen 1 bis 7, 10, 14, 26 und erfindungsgemäßen Legierungen 8, 9, 11-13, 15-25 sowie der Diagramme der Fig. 1 bis 16 des näheren erläutert.

Figure imgb0002
The invention will be described below with reference to exemplary embodiments and the seven comparative alloys 1 to 7, 10, 14, 26 and alloys according to the invention listed in the following table 8, 9, 11-13, 15-25 and the diagrams of FIGS. 1 to 16 of the closer explained.
Figure imgb0002

Die Tabelle enthält als Beispiel für zwei nicht unter die Erfindung fallende Knetlegierungen mit vergleichsweise niedrigem Kohlenstoffgehalt und sehr feinkörnigem Gefüge einer Korngröße ≤ 10µm die Vergleichslegierung 5 und 7, während es sich bei allen anderen Versuchslegierungen um Gußlegierungen handelt.The table contains, as an example of two not falling under the invention wrought alloys with a comparatively low carbon content and very fine-grained microstructure of a particle size ≤ 10μm the comparison alloy 5 and 7, while all other trial alloys are cast alloys.

Yttrium ist ein starker Oxidbildner, dessen Wirkung in der erfindungsgemäßen Legierung darin besteht, daß sich die Entstehungsbedingungen und das Haftvermögen der α-Al2O3-Schicht deutlich verbessern.Yttrium is a strong oxide former, whose effect in the alloy according to the invention is that the conditions of formation and the adhesion of the α-Al 2 O 3 layer improve significantly.

Dem Aluminiumgehalt der erfindungsgemäße Legierung kommt insofern eine wichtige Aufgabe zu, als Aluminium zur Bildung einer γ'-Ausscheidungsphase führt, die eine beträchtliche Erhöhung der Zugfestigkeit bewirkt. Wie sich aus den Diagrammen der Fig. 1 und 2 ergibt, liegen die Streckgrenze und die Zugfestigkeit der drei erfindungsgemäßen Legierungen 13, 19, 20 bis 900 °C erheblich über den Festigkeitswerten der vier Vergleichslegierungen. Die Bruchdehnung der erfindungsgemäßen Legierungen entspricht im wesentlichen derjenigen der Vergleichslegierungen; Sie nimmt oberhalb etwa 900 °C stark zu, wie sich aus dem Diagramm der Fig. 3 ergibt, während die Festigkeit das Niveau der Vergleichslegierungen erreicht (Fig. 1, 2). Dies erklärt sich dadurch, daß ab etwa 900 °C die γ'-Phase in Lösung geht und oberhalb etwa 1000 °C vollständig gelöst ist.The aluminum content of the alloy according to the invention has an important role to play in that aluminum leads to the formation of a γ'-precipitation phase which causes a considerable increase in tensile strength. As can be seen from the diagrams of FIGS. 1 and 2, the yield strength and the tensile strength of the three alloys 13, 19, 20 to 900 ° C. according to the invention are considerably above the strength values of the four comparative alloys. The elongation at break of the alloys according to the invention essentially corresponds to that of the comparative alloys; It increases sharply above about 900 ° C, as is apparent from the diagram of Fig. 3, while the strength reaches the level of the comparative alloys (Fig. 1, 2). This is explained by the fact that from about 900 ° C, the γ'-phase goes into solution and above about 1000 ° C is completely dissolved.

Das Zeitstandverhalten erfindungsgemäßer Legierungen mit unterschiedlichen Gehalten an Aluminium ist im Larson-Miller-Diagramm der Fig. 4 dargestellt. Durch den Larson-Miller-Parameter LMP werden absolute Temperaturen (T in °K) und Standzeit bis zum Bruch (tB in h) miteinander verknüpft: LMP = T C + log 10 t B .

Figure imgb0003
The creep behavior of inventive alloys with different contents of aluminum is shown in the Larson-Miller diagram of FIG. 4. The Larson-Miller parameter LMP links absolute temperatures (T in ° K) and tool life to break (t B in h): LMP = T C + log 10 t B ,
Figure imgb0003

Gemäß der Darstellung in Fig. 4 führen unterschiedliche Aluminium-Gehalte zu unterschiedlichen Standzeiten bis zum Bruch. Die erfindungsgemäßen Legierungen sind in ihrem Zeitstandverhalten gebräuchlichen oxidationsbeständigen Knetlegierungen deutlich überlegen (Fig. 5). Beim Vergleich von erfindungsgemäßen Legierungen mit gebräuchlichen Schleudergußwerkstoffen beobachtet man im Temperaturbereich von 1100 °C ähnliche Standzeiten bis zum Bruch.As shown in FIG. 4, different aluminum contents lead to different service lives until breakage. The alloys according to the invention are clearly superior in their creep resistance to conventional oxidation-resistant wrought alloys (FIG. 5). When comparing alloys according to the invention with conventional centrifugally cast materials, similar service lives are observed until breakage in the temperature range of 1100 ° C.

Im Bereich von 1200 °C, d.h. bei größeren Larson-Miller-Parametern, sind für konventionelle Schleudergußwerkstoffe keine Zeitstanddaten bekannt, während für die erfindungsgemäßen Legierungen, in Abhängigkeit von der Zusammensetzung, für Standzeiten von 1000 h durchaus noch Zeitstandfestigkeiten von 5,5 bis 8,5 MPa beobachtet werden.In the range of 1200 ° C, i. for larger Larson-Miller parameters, no creep data are known for conventional centrifugally cast materials, while for the alloys according to the invention, depending on the composition, creep strengths of 5.5 to 8.5 MPa are still observed for a service life of 1000 h.

Weitere Versuche, bei denen verschiedene Proben in einer leicht oxidierenden Atmosphäre aus Wasserstoff und 5 Vol.-% CH4 hinsichtlich ihrer Aufkohlungsbeständigkeit untersucht wurden, zeigen die Überlegenheit der erfindungsgemäßen Legierung im Vergleich zu vier Standard-Legierungen bei einer Temperatur von 1100 °C. Von besonderer Bedeutung ist das Langzeitverhalten. Die Versuchsergebnisse sind im Diagramm der Fig. 7 grafisch dargestellt. Daraus ergibt sich, daß die erfindungsgemäße Legierung 8 eine über die Zeit konstante Aufkohlungsbeständigkeit besitzt und daß diese bei der Legierung 14 mit 3,55% Aluminium noch besser ist als bei der Legierung 8 mit einem Aluminiumgehalt von nur 2,30%. Im Diagramm der Fig. 8 ist die Aufkohlung über die Zeit als Gewichtszunahme für die erfindungsgemäße Legierung 11 mit 2,40% Aluminium im Vergleich zu den vier Standard-Legierungen 1, 3, 4, 6 mit weitaus geringeren Aluminiumgehalten dargestellt. Auch hier zeigt sich die Überlegenheit der erfindungsgemäßen Legierung.Further experiments in which various samples were tested for their carburization resistance in a slightly oxidizing atmosphere of hydrogen and 5 vol.% CH 4 show the superiority of the alloy of the present invention compared to four standard alloys at a temperature of 1100 ° C. Of particular importance is the long-term behavior. The test results are shown graphically in the diagram of FIG. It follows that the alloy 8 according to the invention has a carburization resistance which is constant over time and that this is even better in alloy 14 with 3.55% aluminum than in alloy 8 with an aluminum content of only 2.30%. In the graph of Fig. 8, the carburization over time as a weight gain for the inventive alloy 11 with 2.40% aluminum in comparison to the four standard alloys 1, 3, 4, 6 represented with much lower aluminum contents. Again, the superiority of the alloy of the invention shows.

Um Praxisbedingungen zu simulieren, wurden zyklische Aufkohlungsversuche durchgeführt, bei denen die Proben in einer Atmosphäre aus Wasserstoff mit 4,7 Vol.-% CH4 und 6 Vol.-% Wasserdampf jeweils abwechselnd 45 min. auf einer Temperatur von 1100 °C und 15 min. auf Raumtemperatur gehalten wurden. Die Ergebnisse der jeweils 500 Zyklen umfassenden Versuche sind in dem Diagramm der Fig 9 dargestellt. Während die erfindungsgemäße Probe 8 keiner oder nur einer geringen Änderung des Gewichts unterlagen, kam es bei den Vergleichsproben 1, 3, 4, 6 infolge von Zunderbildung und einer Abblätterung des Zunders zu erheblichen Gewichtsverlusten, bei der Vergleichsprobe 1 allerdings erst nach etwa 300 Zyklen. Des weiteren zeigt die Legierung 14 mit ihrem höheren Aluminiumgehalt wiederum ein besseres Korrosionsverhalten als die ebenfalls unter die Erfindung fallende Legierung 8.In order to simulate practical conditions, cyclic carburizing experiments were carried out in which the samples were alternately taken in an atmosphere of hydrogen with 4.7% by volume of CH 4 and 6% by volume of steam for 45 min. at a temperature of 1100 ° C and 15 min. kept at room temperature. The results of each 500 cycles comprehensive tests are shown in the diagram of FIG. While the sample 8 of the invention underwent no or only a slight change in weight, it came in the comparative samples 1, 3, 4, 6 due to scale formation and delamination of the scale to significant weight losses, in the comparative sample 1, however, only after about 300 cycles. Furthermore, the alloy 14 with its higher aluminum content again shows a better corrosion behavior than the alloy 8, which is also covered by the invention.

Die Ergebnisse weiterer Versuche, bei denen die Proben in trockener Luft einer zyklischen Temperaturbeanspruchung bei 1150 °C unterworfen wurden, gibt das Diagramm der Fig. 10 wieder. Der Kurvenverlauf zeigt die Überlegenheit der Versuchslegierungen (obere Kurvenschar) im Vergleich zu den herkömmlichen Legierungen (untere Kurvenschar), die schon nach wenigen Zyklen einem starken Gewichtsverlust unterlagen. Die Ergebnisse sprechen für eine stabile und fest haftende Oxidschicht bei den erfindungsgemäßen Legierungen. Um den Einfluß einer Voroxidation auf das Aufkohlungsverhalten festzustellen, wurden zehn Proben der erfindungsgemäßen Legierung 24 Stunden bei 1240 °C einer Atmosphäre aus Argon mit geringem Sauerstoffgehalt ausgesetzt und anschließend 16 Stunden bei einer Temperatur von 1100 °C in einer Atmosphäre aus Wasserstoff mit 5 Vol.-% CH4 aufgekohlt. Die Versuchsergebnisse sind im Diagramm der Fig. 11 grafisch dargestellt, das auch die jeweiligen Aluminiumgehalte wiedergibt. Danach vermindert eine leicht oxidierende Glühbehandlung die Aufkohlungsbeständigkeit der Proben bis zu einem Aluminiumgehalt von 3,25% (Probe 14); mit weiter steigendem Aluminiumgehalt verbessert sich die Aufkohlungsbeständigkeit der erfindungsgemäß geglühten Legierung (Proben 16 bis 19), während das Diagramm gleichzeitig das schlechte Aufkohlungsverhalten der Vergleichsproben 1 (0,128% Aluminium) und 4 (0,003% Aluminium) deutlich macht. Die Verschlechterung der Aufkohlungsbeständigkeit bei niedrigeren Aluminiumgehalten erklärt sich dadurch, dass die an sich schützende Oxidschicht beim Abkühlen nach dem Glühen aufreisst oder auch (teilweise) abplatzt, so dass es im Bereich der Risse und Abplatzungen zu einer Aufkohlung kommt. Bei höheren Aluminiumgehalten bildet sich unter der Oxidschicht (Deckschicht) die erwähnte Al2O3-Sperrschicht.The results of further experiments, in which the samples were subjected to a cyclic temperature stress at 1150 ° C. in dry air, reproduce the diagram of FIG. 10. The curve shows the superiority of the experimental alloys (upper set of curves) compared to the conventional alloys (lower set of curves), which were subject to heavy weight loss after only a few cycles. The results speak for a stable and firmly adhering oxide layer in the alloys according to the invention. In order to determine the influence of pre-oxidation on the carburization behavior, ten samples of the alloy according to the invention were heated for 24 hours at 1240 ° C of an atmosphere from argon with low oxygen content and then carburized for 16 hours at a temperature of 1100 ° C in an atmosphere of hydrogen with 5 vol .-% CH 4 . The test results are shown graphically in the diagram of FIG. 11, which also shows the respective aluminum contents. Thereafter, a mildly oxidizing annealing treatment reduces the carburization resistance of the samples to an aluminum content of 3.25% (Sample 14); As the aluminum content continues to increase, the carburization resistance of the alloy annealed according to the present invention (Samples 16-19) improves while the graph simultaneously highlights the poor carburizing behavior of Comparative Samples 1 (0.128% aluminum) and 4 (0.003% aluminum). The deterioration of the carburization resistance at lower aluminum contents is explained by the fact that the self-protecting oxide layer on cooling after annealing bursts open or even flakes off, causing carburization in the area of the cracks and spalling. At higher aluminum contents, the mentioned Al 2 O 3 barrier layer forms under the oxide layer (cover layer).

Bei einem praxisnahen Versuch wurden mehrere Proben entsprechend dem NACE-Standard einer zyklischen Aufkohlung und Entkohlung unterworfen. Jeder Zyklus bestand aus einem dreihundertstündigen Aufkohlen in einer Atmosphäre aus Wasserstoff und 2 Vol.-% CH4 und einem anschließenden vierundzwanzigstündigen Entkohlen mit Luft und 20 Vol.-% Wasserdampf bei 770 °C. Der Versuch bestand aus vier Zyklen. Aus dem Diagramm der Fig. 12 ergibt sich, daß die Probe 14 praktisch keiner Gewichtsänderung unterlag, während bei den Vergleichsproben 1, 3, 4, 6 eine erhebliche Gewichtszunahme bzw. Aufkohlung stattfand und auch beim Entkohlen nicht mehr rückgängig zu machen war.In a practical experiment, several samples were cycled and decarburized according to the NACE standard. Each cycle consisted of a three hundred hour carburization in an atmosphere of hydrogen and 2% by volume of CH 4 followed by decarburization with air for 24 hours and water vapor at 770 ° C. for 20% by volume. The experiment consisted of four cycles. From the diagram of Fig. 12 it follows that the sample 14 was subjected to virtually no change in weight, while in the comparative samples 1, 3, 4, 6 a significant increase in weight or carburization took place and was not to undo the decarburization.

Das Diagramm der Fig. 13 zeigt, dass die Gehalte der erfindungsgemäßen Legierung in der Weise aufeinander abgestimmt sein sollten, dass die Bedingung 9 % Al % Cr

Figure imgb0004

erfüllt ist. Die Gerade im Diagramm der Fig. 13 scheidet den Bereich der Legierungen mit einer ausreichend schützenden α-Aluminiumoxidschicht oberhalb der Geraden von dem Bereich der Legierungen mit einer durch Mischoxide beeinträchtigten Beständigkeit gegen Aufkohlung bzw. katalytische Verkokung.The graph of FIG. 13 shows that the contents of the alloy according to the invention should be matched to one another in such a way that the condition 9 % al % Cr
Figure imgb0004

is satisfied. The straight line in the diagram of Fig. 13 separates the region of the alloys with a sufficiently protective α-alumina layer above the straight line from the range of alloys with mixed oxide impaired carburization or catalytic coking.

Das Diagramm der Fig. 14 veranschaulicht die Überlegenheit der erfindungsgemäßen Stahllegierung anhand von sechs Ausführungsbeispielen 21 bis 26 im Vergleich zu den herkömmlichen Vergleichslegierungen 1, 3, 4 6 und 7. Die Zusammensetzungen der Versuchslegierungen 21 bis 26 ergeben sich aus der Tabelle.The diagram of Fig. 14 illustrates the superiority of the steel alloy according to the invention with reference to six embodiments 21 to 26 compared to the conventional comparative alloys 1, 3, 4 6 and 7. The compositions of the experimental alloys 21 to 26 are shown in the table.

Um den Einfluss des Aluminiums innerhalb der erfindungsgemäßen Gehaltsgrenzen zu veranschaulichen, sind in den Diagrammen der Fig. 15 und 16 die der Standzeit der erfindungsgemäßen Legierung 13 mit 2,4% Aluminium als Bezugsgröße mit der Standzeit 1 jeweils bei 1100 °C (Fig. 15) und 1200 °C (Fig. 16) für drei Belastungsfälle (15,9 MPa; 13,5 MPa; 10,5 MPa) die darauf bezogenen Standzeiten der erfindungsgemäßen Legierungen 19 (3,3% Aluminium) und 20 (4,8% Aluminium) gegenüber gestellt.In order to illustrate the influence of the aluminum within the content limits of the invention, in the diagrams of FIGS. 15 and 16 the life of the alloy 13 according to the invention with 2.4% aluminum as a reference with a service life of 1 respectively at 1100 ° C. (FIG ) and 1200 ° C (Fig. 16) for three load cases (15.9 MPa, 13.5 MPa, 10.5 MPa), the related lives of the inventive alloys 19 (3.3% aluminum) and 20 (4.8 % Aluminum) compared.

Das Diagramm der Fig. 15 zeigt, dass sich bei der Legierung 19 mit einem mittleren Aluminiumgehalt von 3,3% die Verringerung der Standzeit mit zunehmender Belastung verstärkt, während sich bei der Legierung 20 mit ihrem hohen Aluminiumgehalt von 4,8% für alle Belastungsfälle eine starke, aber in etwa gleiche Verringerung der relativen Standzeit ergibt. Aus dem Diagramm für 1200 °C ergibt sich eine Verringerung der Standzeit bei einer Erhöhung des Aluminiumgehalts von 2,4% (Legierung 13) auf 3,3% (Legierung 19) für alle drei Belastungsfälle ein Rückgang der relativen Standzeit auf etwa zwei Drittel. Eine weitere Erhöhung des Aluminiumgehalts auf 4,8% (Legierung 20) zeigt wiederum eine belastungsabhängige Verringerung der relativen Standzeit.The graph of FIG. 15 shows that alloy 19 with an average aluminum content of 3.3% increases the reduction in service life with increasing load, while alloy 20 with its high aluminum content of 4.8% strengthens for all load cases results in a strong, but approximately equal reduction in the relative service life. From the diagram for 1200 ° C, a reduction in the service life with an increase in the aluminum content of 2.4% (Alloy 13) to 3.3% (Alloy 19) for all three load cases, a decrease in the relative life to about two-thirds. A further increase of the aluminum content to 4.8% (alloy 20) again shows a load-dependent reduction in the relative service life.

Insgesamt zeigen die beiden Diagramme, dass sich mit zunehmendem Aluminiumgehalt die Standzeit bis zum Bruch im Zeitstandversuch verringert. Des weiteren nimmt mit zunehmender Temperatur und zunehmender Beanspruchungsdauer bzw. mit abnehmender Beanspruchung der negative Einfluss des Aluminiums auf die Zeitstandlebensdauer ab. Anders formuliert: Die hoch.aluminiumhaltigen Legierungen eignen sich insbesondere für den Langzeiteinsatz bei Temperaturen, für die bislang keine Guss- bzw. Schleudergusswerkstoffe verwendet werden konnten.Overall, the two diagrams show that with increasing aluminum content, the service life before breakage in the creep test decreases. Furthermore, with increasing temperature and increasing duration of use or with decreasing stress, the negative influence of the aluminum on the creep life decreases. In other words, the high aluminum alloys are particularly suitable for long-term use at temperatures for which no cast or centrifugally cast materials could be used so far.

Angesichts ihrer überlegenen Festigkeitseigenschaften sowie ihrer hervorragenden Aufkohlungs- und Oxidationsbeständigkeit eignet sich die erfindungsgemäße Gußlegierung insbesondere als Werkstoff für Ofenteile, Strahlrohre zum Beheizen von Öfen, Rollen für Glühöfen, Teile von Strang-und Bandgußanlagen, Hauben und Muffeln für Glühöfen, Teile von Großdieselmotoren, Behälter für Katalysatoren sowie für Crack- und Reformerrohre. In view of its superior strength properties as well as its excellent carburization and oxidation resistance cast alloy according to the invention is particularly suitable as a material for furnace parts, blasting furnaces for heating ovens, rollers for annealing, parts of strand and strip casting plants, hoods and muffles for annealing, parts of large diesel engines, containers for catalysts and for cracking and reformer tubes.

Claims (7)

  1. Use of a nickel-chromium alloy, comprising
    up to 0.8% carbon
    up to 0.2% silicon
    up to 0.2% manganese
    15 to 40% chromium
    0.5 to 13% iron
    1.5 to 7% aluminium
    0.1 to 2.5% niobium
    up to 1.5% titanium
    0.01 to 0.4% zirconium
    up to 0.06% nitrogen
    up to 12% cobalt
    up to 5% molybdenum
    up to 6% tungsten
    0.019 to 0.089% yttrium
    remainder nickel and conventional impurities,
    as a material for producing castings.
  2. Use of a nickel-chromium alloy according to claim 1, comprising at most 0.7% carbon, up to 0.2% manganese, 18 to 30% chromium, 0.5 to 12% iron, 2.2 to 5% aluminium, 0.4 to 1.6% niobium, 0.01 to 0.6% titanium, 0.01 to 0.15% zirconium, at most 0.06% nitrogen, at most 10% cobalt, at least 3% molybdenum and at most 5% tungsten, individually or side by side for the purpose according to claim 1.
  3. Use of a nickel-chromium alloy according to claim 1, or 2 comprising at most 0.7% carbon, at most 0.1% silicon, up to 0.2% manganese, 18 to 30% chromium, 0.5 to 12% iron, 2.2 to 5% aluminium, 0.4 to 1.6% niobium, 0.01 to 0.6% titanium, 0.01 to 0.15% zirconium, at most 0.06% nitrogen, at most 10% cobalt, up to 4% molybdenum and at most 5% tungsten, for the purpose according to claim 1.
  4. Use of a nickel-chromium alloy according to any one of claims 1 to 3, comprising at most 26.5% chromium, at most 11% iron, 3 to 6% aluminium, more than 0.15% titanium, more than 0.05% zirconium at least 0.2% cobalt, up to 4% molybdenum and more than 0.05% tungsten, individually or side by side for the purpose according to claim 1.
  5. Use of a nickel-chromium alloy according to any one of claims 1 to 4, of which the aluminium and chromium contents satisfy the condition 9 % Al % Cr
    Figure imgb0006

    for the purpose according to claim 1.
  6. Use of a nickel-chromium alloy according to any one of claims 1 to 5, wherein the total nickel, chromium and aluminium content is 80 to 90%, for the purpose according to claim 1.
  7. Use of a nickel-chromium alloy according to any one of claims 1 to 6 as a material for producing furnace parts, steel pipes for heating furnaces, rollers for annealing furnaces, continuous casting and tape casting machine parts, hoods and muffles for annealing furnaces, large diesel engine parts, mould parts for catalyst fillings and crack and reformer pipes.
EP04704238A 2003-01-25 2004-01-22 Thermostable and corrosion-resistant cast nickel-chromium alloy Expired - Lifetime EP1501953B8 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10302989 2003-01-25
DE10302989A DE10302989B4 (en) 2003-01-25 2003-01-25 Use of a heat and corrosion resistant nickel-chromium steel alloy
PCT/EP2004/000504 WO2004067788A1 (en) 2003-01-25 2004-01-22 Thermostable and corrosion-resistant cast nickel-chromium alloy

Publications (3)

Publication Number Publication Date
EP1501953A1 EP1501953A1 (en) 2005-02-02
EP1501953B1 true EP1501953B1 (en) 2007-05-23
EP1501953B8 EP1501953B8 (en) 2008-01-23

Family

ID=32667854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04704238A Expired - Lifetime EP1501953B8 (en) 2003-01-25 2004-01-22 Thermostable and corrosion-resistant cast nickel-chromium alloy

Country Status (27)

Country Link
US (3) US20050129567A1 (en)
EP (1) EP1501953B8 (en)
JP (1) JP4607092B2 (en)
KR (1) KR20050092452A (en)
CN (1) CN100351412C (en)
AT (1) ATE362997T1 (en)
AU (1) AU2004207921A1 (en)
BR (1) BRPI0406570B1 (en)
CA (1) CA2513830C (en)
DE (2) DE10302989B4 (en)
EA (1) EA008522B1 (en)
EG (1) EG23864A (en)
ES (1) ES2287692T3 (en)
HK (1) HK1075679A1 (en)
HR (1) HRP20050728A2 (en)
IL (1) IL169579A0 (en)
MA (1) MA27650A1 (en)
MX (1) MXPA05007806A (en)
NO (1) NO20053617L (en)
NZ (1) NZ541874A (en)
PL (1) PL377496A1 (en)
PT (1) PT1501953E (en)
RS (1) RS20050552A (en)
TR (1) TR200502892T1 (en)
UA (1) UA80319C2 (en)
WO (1) WO2004067788A1 (en)
ZA (1) ZA200505714B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019034845A1 (en) 2017-08-15 2019-02-21 Paralloy Limited Oxidation resistent alloy

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10302989B4 (en) * 2003-01-25 2005-03-03 Schmidt + Clemens Gmbh & Co. Kg Use of a heat and corrosion resistant nickel-chromium steel alloy
US20070104974A1 (en) * 2005-06-01 2007-05-10 University Of Chicago Nickel based alloys to prevent metal dusting degradation
JP4773773B2 (en) * 2005-08-25 2011-09-14 東京電波株式会社 Corrosion-resistant material for supercritical ammonia reaction equipment
WO2008021650A2 (en) * 2006-08-08 2008-02-21 Huntington Alloys Corporation Welding alloy and articles for use in welding, weldments and method for producing weldments
PL2198065T3 (en) 2007-10-05 2018-08-31 Sandvik Intellectual Property Ab A dispersion strengthened steel as material in a roller for a roller hearth furnace
CN101260487B (en) * 2008-04-17 2010-06-02 攀钢集团攀枝花钢铁研究院有限公司 Spray coating material prepared by titanium-containing high-chromium-nickel alloy, preparation method and use thereof
DE102008051014A1 (en) 2008-10-13 2010-04-22 Schmidt + Clemens Gmbh + Co. Kg Nickel-chromium alloy
US20100272597A1 (en) * 2009-04-24 2010-10-28 L. E. Jones Company Nickel based alloy useful for valve seat inserts
KR20120053645A (en) * 2010-11-18 2012-05-29 한국기계연구원 Polycrystal ni base superalloy with good mechanical properties at high temperature
DE102012011162B4 (en) 2012-06-05 2014-05-22 Outokumpu Vdm Gmbh Nickel-chromium alloy with good processability, creep resistance and corrosion resistance
DE102012011161B4 (en) 2012-06-05 2014-06-18 Outokumpu Vdm Gmbh Nickel-chromium-aluminum alloy with good processability, creep resistance and corrosion resistance
CN102828070B (en) * 2012-08-24 2014-05-07 宁波市阳光汽车配件有限公司 Protective coating material for boiler pipeline
CN104745884A (en) * 2013-12-27 2015-07-01 新奥科技发展有限公司 Nickel-based alloy and application thereof
DE102014001329B4 (en) 2014-02-04 2016-04-28 VDM Metals GmbH Use of a thermosetting nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
DE102014001330B4 (en) 2014-02-04 2016-05-12 VDM Metals GmbH Curing nickel-chromium-cobalt-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
JP6358503B2 (en) * 2014-05-28 2018-07-18 大同特殊鋼株式会社 Consumable electrode manufacturing method
JP6434306B2 (en) * 2014-12-26 2018-12-05 株式会社クボタ Heat resistant tube with an alumina barrier layer
CN104862535A (en) * 2015-05-15 2015-08-26 新奥科技发展有限公司 Nickel-based alloy and preparation method and application thereof
CN105463288B (en) * 2016-01-27 2017-10-17 大连理工大学 Casting alloy of high-strength high-plastic anti-chlorine ion corrosion and preparation method thereof
CN109415786A (en) 2016-06-29 2019-03-01 新日铁住金株式会社 Austenite stainless steel
JP6842316B2 (en) * 2017-02-17 2021-03-17 日本製鋼所M&E株式会社 Manufacturing method of Ni-based alloy, gas turbine material and Ni-based alloy with excellent creep characteristics
RU2672647C1 (en) * 2017-08-01 2018-11-16 Акционерное общество "Чепецкий механический завод" Corrosive-resistant alloy
WO2019055060A1 (en) 2017-09-12 2019-03-21 Exxonmobil Chemical Patents Inc. Aluminum oxide forming heat transfer tube for thermal cracking
KR101998979B1 (en) * 2017-12-07 2019-07-10 주식회사 포스코 Cr-Ni BASED ALLOY FOR RADIANT TUBE HAVING SUPERIOR DEFORMATION RESISTANCE IN HIGH TEMPERATURE AND CRACK RESISTANCE AND METHOD OF MANUFACTURING THE SAME
CN108285998A (en) * 2018-03-29 2018-07-17 冯满 A kind of high-temperature alloy steel
JP7131318B2 (en) * 2018-11-14 2022-09-06 日本製鉄株式会社 austenitic stainless steel
SG11202106212UA (en) 2018-12-20 2021-07-29 Exxonmobil Chemical Patents Inc Erosion resistant alloy for thermal cracking reactors
CA3122539C (en) 2018-12-20 2023-06-20 Exxonmobil Chemical Patents Inc. High pressure ethane cracking with small diameter furnace tubes
CN110527911B (en) * 2019-09-16 2020-12-18 北京航空航天大学 Low-density high-strength high-corrosion-resistance gear bearing steel and preparation method thereof
JP7476668B2 (en) * 2020-05-26 2024-05-01 大同特殊鋼株式会社 Ni-based alloy, Ni-based alloy product and manufacturing method thereof
CN112733321B (en) * 2020-12-08 2024-05-10 中国科学院金属研究所 Evaluation method for high-speed forming performance of pipe
US11866809B2 (en) 2021-01-29 2024-01-09 Ut-Battelle, Llc Creep and corrosion-resistant cast alumina-forming alloys for high temperature service in industrial and petrochemical applications
US11479836B2 (en) 2021-01-29 2022-10-25 Ut-Battelle, Llc Low-cost, high-strength, cast creep-resistant alumina-forming alloys for heat-exchangers, supercritical CO2 systems and industrial applications
CN113481419A (en) * 2021-06-30 2021-10-08 南京欣灿奇冶金设备有限公司 Never-falling walking beam roller for charging and discharging of walking beam furnace and processing technology thereof
CN115449670B (en) * 2022-09-14 2023-10-20 浙江大学 High-strength nickel-based deformation superalloy without medium-temperature brittleness
CN117089741A (en) * 2023-07-07 2023-11-21 江苏三鑫特殊金属材料股份有限公司 Wear-resistant nickel-based alloy and preparation method thereof
CN117535559B (en) * 2024-01-10 2024-05-07 北京北冶功能材料有限公司 Low-density nickel-based high-temperature alloy foil and preparation method and application thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039330A (en) * 1971-04-07 1977-08-02 The International Nickel Company, Inc. Nickel-chromium-cobalt alloys
JPS5631345B2 (en) * 1972-01-27 1981-07-21
US4444589A (en) * 1981-04-27 1984-04-24 Kubota, Ltd. Heat resistant alloy excellent in bending property and ductility after aging and its products
JPS5837160A (en) * 1981-08-27 1983-03-04 Mitsubishi Metal Corp Cast alloy for guide shoe of inclined hot rolling mill for manufacturing seamless steel pipe
JPS5974266A (en) 1982-10-19 1984-04-26 Mitsubishi Metal Corp High hardness fe-ni-cr alloy for valve and valve seat for engine
JPS5974256A (en) 1982-10-20 1984-04-26 Kawasaki Steel Corp Nondirectional silicon steel plate with small iron loss
US4671931A (en) * 1984-05-11 1987-06-09 Herchenroeder Robert B Nickel-chromium-iron-aluminum alloy
US4787945A (en) * 1987-12-21 1988-11-29 Inco Alloys International, Inc. High nickel chromium alloy
JPH01252750A (en) * 1988-03-31 1989-10-09 Nkk Corp Ni-based alloy having excellent corrosion resistance to molten carbonate
EP0433072B1 (en) * 1989-12-15 1994-11-09 Inco Alloys International, Inc. Oxidation resistant low expansion superalloys
DE4111821C1 (en) * 1991-04-11 1991-11-28 Vdm Nickel-Technologie Ag, 5980 Werdohl, De
US5306358A (en) * 1991-08-20 1994-04-26 Haynes International, Inc. Shielding gas to reduce weld hot cracking
ATE123819T1 (en) * 1991-12-20 1995-06-15 Inco Alloys Ltd HIGH TEMPERATURE RESISTANT NI-CR ALLOY.
KR940014865A (en) * 1992-12-11 1994-07-19 에드워드 에이. 스틴 High Temperature Resistant Nickel-Chrome Alloys
EP0611938A1 (en) * 1993-02-10 1994-08-24 Robert Thomas Metall- und Elektrowerke Kiln firing support for ceramic articles
US5997809A (en) * 1998-12-08 1999-12-07 Inco Alloys International, Inc. Alloys for high temperature service in aggressive environments
KR100372482B1 (en) * 1999-06-30 2003-02-17 스미토모 긴조쿠 고교 가부시키가이샤 Heat resistant Ni base alloy
GB2361933A (en) * 2000-05-06 2001-11-07 British Nuclear Fuels Plc Melting crucible made from a nickel-based alloy
JP3965869B2 (en) * 2000-06-14 2007-08-29 住友金属工業株式会社 Ni-base heat-resistant alloy
JP4154885B2 (en) * 2000-11-16 2008-09-24 住友金属工業株式会社 Welded joint made of Ni-base heat-resistant alloy
JP3952861B2 (en) * 2001-06-19 2007-08-01 住友金属工業株式会社 Metal material with metal dusting resistance
DE10302989B4 (en) * 2003-01-25 2005-03-03 Schmidt + Clemens Gmbh & Co. Kg Use of a heat and corrosion resistant nickel-chromium steel alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019034845A1 (en) 2017-08-15 2019-02-21 Paralloy Limited Oxidation resistent alloy

Also Published As

Publication number Publication date
IL169579A0 (en) 2007-07-04
AU2004207921A1 (en) 2004-08-12
RS20050552A (en) 2007-09-21
EA008522B1 (en) 2007-06-29
CA2513830A1 (en) 2004-08-12
US10041152B2 (en) 2018-08-07
EG23864A (en) 2007-11-19
US20050129567A1 (en) 2005-06-16
US10724121B2 (en) 2020-07-28
EP1501953A1 (en) 2005-02-02
TR200502892T2 (en) 2005-09-21
TR200502892T1 (en) 2008-02-21
ES2287692T3 (en) 2007-12-16
US20090016926A1 (en) 2009-01-15
EP1501953B8 (en) 2008-01-23
US20190106770A1 (en) 2019-04-11
MA27650A1 (en) 2005-12-01
HK1075679A1 (en) 2005-12-23
NO20053617L (en) 2005-10-06
DE10302989A1 (en) 2004-08-05
DE502004003863D1 (en) 2007-07-05
CA2513830C (en) 2010-12-14
MXPA05007806A (en) 2006-04-27
UA80319C2 (en) 2007-09-10
HRP20050728A2 (en) 2005-12-31
NO20053617D0 (en) 2005-07-26
WO2004067788A1 (en) 2004-08-12
NZ541874A (en) 2008-03-28
EA200501178A1 (en) 2005-12-29
KR20050092452A (en) 2005-09-21
CN1742106A (en) 2006-03-01
DE10302989B4 (en) 2005-03-03
ZA200505714B (en) 2006-04-26
CN100351412C (en) 2007-11-28
JP2006516680A (en) 2006-07-06
BRPI0406570B1 (en) 2016-05-17
JP4607092B2 (en) 2011-01-05
ATE362997T1 (en) 2007-06-15
PT1501953E (en) 2007-08-17
PL377496A1 (en) 2006-02-06
BRPI0406570A (en) 2005-12-20

Similar Documents

Publication Publication Date Title
EP1501953B1 (en) Thermostable and corrosion-resistant cast nickel-chromium alloy
EP2350329B1 (en) Nickel-chromium alloy
DE60304077T2 (en) Heat and corrosion resistant austenitic alloy, heat and pressure resistant components and method of making the same
EP2855723B1 (en) Nickel-chromium-aluminium alloy with good formability, creep strength and corrosion resistance
DE2655617C2 (en) Wrought cobalt-based alloy and process for producing a sheet from this alloy
EP2855724B1 (en) Nickel-chromium alloy with good formability, creep strength and corrosion resistance
DE2517519C3 (en) Use of a heat-resistant austenitic stainless steel
DE2809081C3 (en) Use of an alloy of the iron-nickel-chromium-molybdenum system
DE1558668C3 (en) Use of creep-resistant, stainless austenitic steels for the production of sheet metal
DE19712020A1 (en) Fully martensitic steel alloy
EP0752481B1 (en) Malleable nickel alloy
DE2447137A1 (en) STEEL ALLOY RESISTANT AGAINST PITCH CORROSION
EP3645762A1 (en) Steel alloy having improved corrosion resistance under high-temperature loading and method for producing steel strip from said steel alloy
DE2216626A1 (en) NICKEL-CHROME-COBALT CAST ALLOY
EP2240619A1 (en) Creep resistant steel
DE4035114C2 (en) Fe-Cr-Ni-Al ferrite alloys
AT403058B (en) IRON BASED ALLOY FOR USE AT HIGHER TEMPERATURE AND TOOLS MADE OF THIS ALLOY
DE2219287A1 (en) Iron-chromium-molybdenum-nickel-cobalt alloy
EP1630243A2 (en) Method for manufacturing a workpiece
DE3911104C1 (en)
DE1292412B (en) Process for the heat treatment of titanium alloys
EP0060577B1 (en) Turbine blade material with high fatigue-corrosion resistance, method of production and use
DE3207276A1 (en) Turbine blade material having high resistance to corrosion fatigue, process for producing it and its use
DE19753539C9 (en) Highly heat-resistant, oxidation-resistant kneadable nickel alloy
EP1047801B1 (en) High temperature oxidation resistant ductile nickel alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050215

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1075679

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN2 Information on inventor provided after grant (corrected)

Inventor name: BECKER, PETRA

Inventor name: KIRCHHEINER, ROLF

Inventor name: JAKOBI, DIETLINDE

Inventor name: DURHAM, RICKY

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004003863

Country of ref document: DE

Date of ref document: 20070705

Kind code of ref document: P

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070806

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070829

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20070523

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2287692

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E002032

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1075679

Country of ref document: HK

26N No opposition filed

Effective date: 20080226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080801

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080122

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230113

Year of fee payment: 20

Ref country code: FR

Payment date: 20230123

Year of fee payment: 20

Ref country code: FI

Payment date: 20230119

Year of fee payment: 20

Ref country code: ES

Payment date: 20230216

Year of fee payment: 20

Ref country code: CZ

Payment date: 20230112

Year of fee payment: 20

Ref country code: BG

Payment date: 20230118

Year of fee payment: 20

Ref country code: AT

Payment date: 20230118

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230119

Year of fee payment: 20

Ref country code: SK

Payment date: 20230113

Year of fee payment: 20

Ref country code: SE

Payment date: 20230123

Year of fee payment: 20

Ref country code: PT

Payment date: 20230117

Year of fee payment: 20

Ref country code: IT

Payment date: 20230131

Year of fee payment: 20

Ref country code: HU

Payment date: 20230117

Year of fee payment: 20

Ref country code: GB

Payment date: 20230124

Year of fee payment: 20

Ref country code: BE

Payment date: 20230123

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230124

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20240121

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20240122

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240121

Ref country code: SK

Ref legal event code: MK4A

Ref document number: E 2327

Country of ref document: SK

Expiry date: 20240122

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 362997

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240122

Ref country code: SK

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240122

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240131

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240121