EP1497838B1 - Procédé pour la fabrication d'un composant ptc - Google Patents

Procédé pour la fabrication d'un composant ptc Download PDF

Info

Publication number
EP1497838B1
EP1497838B1 EP03747078A EP03747078A EP1497838B1 EP 1497838 B1 EP1497838 B1 EP 1497838B1 EP 03747078 A EP03747078 A EP 03747078A EP 03747078 A EP03747078 A EP 03747078A EP 1497838 B1 EP1497838 B1 EP 1497838B1
Authority
EP
European Patent Office
Prior art keywords
oxygen content
sintering
ceramic
temperature
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03747078A
Other languages
German (de)
English (en)
Other versions
EP1497838A1 (fr
Inventor
Lutz Kirsten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP1497838A1 publication Critical patent/EP1497838A1/fr
Application granted granted Critical
Publication of EP1497838B1 publication Critical patent/EP1497838B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/18Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/021Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient formed as one or more layers or coatings

Definitions

  • the invention relates to a method for producing a PTC component.
  • PTC elements For ceramic PTC thermistors, i. Components with positive temperature coefficient of resistance, so-called PTC elements, are not commonly used temperature-stable electrodes made of precious metal suitable. These can not establish an ohmic contact between the ceramic and the metallic electrodes. Therefore, PTC elements with noble metal (inner) electrodes have an inadmissibly high resistance. However, the base metal suitable as the electrode material usually does not survive the sintering process required for the construction of multilayer devices.
  • a PTC device which is a multilayer component of stacked ceramic layers and which is sintered or post-annealed in an atmosphere with high oxygen content. Debinding and sintering of the layer stack take place in an atmosphere which has a lowered oxygen content compared to air.
  • the PTC device contains internal electrodes with tungsten. Although tungsten survives the sintering process.
  • a PTC component is to be understood as a component having a base body containing superimposed ceramic layers which are separated from one another by electrode layers, in which the ceramic layers contain a ceramic material which has a positive temperature coefficient at least in a characteristic part of the R / T characteristic.
  • the device has laterally mounted collecting electrodes, wherein the electrode layers are contacted alternately with these collecting electrodes.
  • the oxygen content during sintering where i. a. higher temperatures than used in debinding, further lowered.
  • the method according to the invention allows the production of PTC components having a volume V and an ohmic resistance R measured between the collecting electrodes at a temperature between 0 ° C and 40 ° C, where V ⁇ R ⁇ 600.
  • the ceramic starting material is finely ground and homogeneously mixed with a binder material.
  • the film is then produced by film drawing or tape casting in a desired thickness.
  • FIG. 1 shows such a green sheet 1 in perspective view.
  • an electrode paste 2 is applied to the area provided for the electrode.
  • a number of particular thick film methods preferably imprints, for example by screen printing are suitable.
  • At least in the region of an edge of the green sheet 1, such as in FIG. 1 represented, or only in the region of a corner of the green sheet remains a non-covered by electrode paste and here referred to as passive region 3 surface area. It is also possible not to apply the electrode as a flat layer, but structured, possibly as a perforated pattern.
  • the electrode paste 2 consists of metallic, metallic tungsten or a tungsten compound comprising particles for producing the desired conductivity, optionally sinterable ceramic particles to adapt the fading properties of the electrode paste to the ceramic and a burn-out organic binder to a moldability of the ceramic mass or a To ensure cohesion of the green body. It can be used pure tungsten particles, tungsten alloy particles, tungsten compound or mixed particles of tungsten and other metals.
  • the electrode layers and thus the electrode paste may also contain other tungsten compounds such as tungsten carbide, tungsten nitride or tungsten oxide (WO). The only point is that the tungsten is present in an oxidation state which is less than +6, so that it can still fulfill its function in the barrier degradation.
  • the printed green sheets 9 are stacked in a desired number so as to form a film stack that (green) ceramic layers 1 and electrode layers 2 are arranged alternately one above the other.
  • the electrode layers are also connected in alternation on different sides of the component with collecting electrodes in order to connect the individual electrodes in parallel.
  • a uniform electrode geometry is selected for this, wherein the first and second green sheets 9 differ in that they are rotated in the film stack against each other by 180 °.
  • the binder still formelastische film stack is brought by pressing and optionally cutting into the desired outer shape. Thereafter, the film stack is unbound and sintered, either separately or in one step.
  • FIG. 2 shows a finished multilayer component 8 in schematic cross-section.
  • ceramic layers 4 and electrode layers 5 are arranged one above the other alternately.
  • collecting electrodes 6, 6 ' are generated, which are each in electrical contact with each second electrode layer 5.
  • a metallization usually made of silver on the ceramic, for example by electroless deposition.
  • This can then be galvanically reinforced, for example by applying a layer sequence Ag / Ni / Sn. This improves the solderability on boards.
  • other possibilities of metallization or generation of the collecting electrodes 6, 6 ' for example sputtering, are also suitable.
  • That in the FIG. 2 illustrated component 8 has on both main surfaces of ceramic layers as final layers.
  • ceramic layers for this purpose, for example, be installed as a top layer of an unprinted green sheet 1 before sintering in the film stack, so that the stack does not end with an electrode layer 2.
  • several unprinted green sheets 1 can be installed without an electrode layer and pressed together with the remaining green film stack and sintered.
  • FIG. 3 shows a printed with an electrode pattern 2 green sheet, which allows dividing into several components, each with a smaller footprint.
  • the passive areas 3 not printed with electrode paste are arranged in such a way that that can be adjusted by alternately stacking first and second green sheets of suitable for contacting alternating displacement of the electrodes in the stack. This can be achieved if the first and second green sheets are each mutually rotated by, for example, 180 °, or if first and second green sheets generally have a staggered electrode pattern.
  • the cutting lines 7, along which the green sheet or the layer stack produced therefrom can be singulated into individual components, are identified by dashed lines. However, it is also possible electrode patterns in which the cutting guides can be placed to singulate so that no electrode layer must be severed. Each second electrode layer is then contactable from the stack edge. If appropriate, the stacks after singulation and sintering before the application of the collecting electrodes 6, 6 'are still ground to expose the electrode layers to be contacted.
  • FIG. 4 shows a layer stack thus produced in schematic cross section. It can be seen that, when the layer stack is singulated along the cutting lines 7, components are produced which individually have the desired offset of the electrodes 4.
  • the division of such a multilayer film stack comprising several component layouts into individual film stacks of the desired component base surface preferably takes place after the film stack has been pressed, for example by cutting or punching. Subsequently, the film stacks are sintered. However, it is also possible first to sinter the multilayer sheet of multilayer film stacks and then to singulate the individual components by sawing the finished sintered ceramic. Finally, collecting electrodes 6 are applied again.
  • a PTC device consists of a barium titanate ceramic of the general composition (Ba, Ca, Sr, Pb) TiO 3 doped with donors and / or acceptors, for example with manganese and yttrium.
  • the component may comprise, for example, 5 to 20 or even more ceramic layers together with the associated electrode layers, but at least two internal electrode layers.
  • the ceramic layers usually each have a thickness of 30 to 200 microns. However, they can also have larger or smaller layer thicknesses.
  • the outer dimension of a PTC device may vary, but is typically in the range of a few millimeters for SMD processable devices.
  • a suitable size is, for example, the type 2220 known from capacitors. Geometries and component tolerances result from the standard CECC 32101-801 or from other standards. However, the PTC device may be even smaller.
  • FIGS. 5 A to D show a temperature / oxygen profile for the debindering or sintering of a layer stack with variable oxygen content.
  • FIGS. 5 A to D each show an identical temperature profile, which is combined with different oxygen profiles.
  • the temperature profile is indicated by the solid curve G.
  • Range I between times 0 and 560 minutes is the range of debindering. The temperature rises evenly from 20 ° C to 500 ° C. In this time range, the oxygen content is 2% by volume.
  • Area I is followed by area II, which starts at 560 minutes and ends at 1000 minutes. In this area II, the sintering of the layer stack takes place.
  • the temperature is based on the final temperature 500 ° C of debindering further increased up to a temperature of 1200 ° C and then lowered again.
  • the oxygen content can be maintained at either 2% by volume, ie at the value of debindering (curve A in FIG. 5 A) or the oxygen content is at the end of the debinder at a lower value such as 1 vol .-% (curve B in Figure 5 A) or 0.5 vol .-% (curve C in FIG. 5 A) lowered.
  • FIG. 5C Another possibility is to lower the oxygen content in stages, in opposite directions to the rising temperature (compare curve D in FIG. 5B) , in FIG. 5C a further variant is shown, according to which, according to curve E, the oxygen content during sintering is lowered continuously to a value of 0.5% by volume.
  • Curve F shown to lower the oxygen content with increasing temperature and to let rise gradually after exceeding the maximum temperature of 1200 ° C. This has the advantage that at lower temperatures than the maximum sintering temperature again increased oxygen is available for the ceramic, which improves the properties of the ceramic. As a result, the grain boundary active layers of the PTC ceramic can be better assembled.
  • an atmosphere is used for the processes debindering or sintering, which is a mixture of nitrogen or noble gas or other inert gas with air or oxygen.
  • nitrogen and air may be mixed so as to result in an oxygen content of the atmosphere of 2% by volume.
  • the layer stacks are debinded, wherein the sintering takes place in the same atmosphere.
  • barium titanate ceramics can be used, the sintering taking place at the usual temperatures.
  • Table 1 shows component resistances of PTC components manufactured according to the method of the invention in the form 1210 with 23 electrodes as a function of the oxygen content during sintering and compared with the sintering in air.
  • Table 1 Oxygen content in Vol .-% Component resistance in ⁇ 21 (air) 40 7 25 1 9 0.5 2.5
  • Table 2 shows PTC component resistances as a function of the volume of the PTC device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermistors And Varistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Claims (10)

  1. Procédé de fabrication d'un composant PTC comprenant les stades :
    a) on produit une pile de couches en feuilles (1) céramiques crues ayant des couches (5) d'électrode entre elles,
    b) on élimine le liant et on fritte la pile de couches dans une atmosphère qui a une teneur en oxygène abaissée par rapport à l'air, caractérisé en ce que l'on continue à abaisser la teneur en oxygène après l'élimination du liant.
  2. Procédé suivant la revendication 1,
    dans lequel la teneur en oxygène de l'atmosphère est plus petite que 8 % en volume.
  3. Procédé suivant l'une des revendications 1 ou 2, dans lequel on effectue l'élimination du liant à une température inférieure à 600°C.
  4. Procédé suivant l'une des revendications 1 à 3, dans lequel on effectue le frittage dans un intervalle de température compris entre 1000°C et 1200°C.
  5. Procédé suivant l'une des revendications 1 à 4, dans lequel on maintient la température de la pile de couches, après l'élimination du liant, au moins jusqu'à ce que le frittage soit terminé, à une température qui correspond au moins à la température maximum de l'élimination du liant.
  6. Procédé suivant l'une des revendications 1 à 5, dans lequel on effectue l'élimination du liant à une teneur en oxygène comprise entre 0,5 et inférieure à 8 % en volume.
  7. Procédé suivant l'une des revendications 1 à 6, dans lequel on effectue le frittage à une teneur en oxygène comprise entre 0,1 et 5 % en volume.
  8. Procédé suivant l'une des revendications 1 à 7, dans lequel on abaisse continuellement la teneur en oxygène après l'élimination du liant.
  9. Procédé suivant l'une des revendications 1 à 7, dans lequel, après l'élimination du liant, on abaisse la teneur en oxygène en ayant une température croissante.
  10. Procédé suivant l'une des revendications 1 à 9, dans lequel, après avoir dépassé une température maximum, on augmente à nouveau la teneur en oxygène.
EP03747078A 2002-04-23 2003-04-14 Procédé pour la fabrication d'un composant ptc Expired - Fee Related EP1497838B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10218154 2002-04-23
DE10218154A DE10218154A1 (de) 2002-04-23 2002-04-23 PTC-Bauelement und Verfahren zu dessen Herstellung
PCT/DE2003/001264 WO2003092019A1 (fr) 2002-04-23 2003-04-14 Composant ptc et procedes de fabrication

Publications (2)

Publication Number Publication Date
EP1497838A1 EP1497838A1 (fr) 2005-01-19
EP1497838B1 true EP1497838B1 (fr) 2008-07-02

Family

ID=29224698

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03747078A Expired - Fee Related EP1497838B1 (fr) 2002-04-23 2003-04-14 Procédé pour la fabrication d'un composant ptc

Country Status (5)

Country Link
US (1) US7633374B2 (fr)
EP (1) EP1497838B1 (fr)
JP (1) JP4302054B2 (fr)
DE (2) DE10218154A1 (fr)
WO (1) WO2003092019A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10218154A1 (de) 2002-04-23 2003-11-13 Epcos Ag PTC-Bauelement und Verfahren zu dessen Herstellung
JP3831363B2 (ja) * 2003-06-24 2006-10-11 Tdk株式会社 有機質正特性サーミスタ及びその製造方法並びにその酸素含有量の測定方法
DE102006017796A1 (de) 2006-04-18 2007-10-25 Epcos Ag Elektrisches Kaltleiter-Bauelement
TW200834612A (en) * 2007-02-05 2008-08-16 Du Pont Polymeric positive temperature coefficient thermistor and process for preparing the same
EP2223072B1 (fr) * 2007-11-09 2018-09-05 BAE Systems PLC Améliorations portant sur des procédés de fabrication d'éléments structuraux
DE102008029426A1 (de) * 2008-06-23 2010-01-07 Epcos Ag Verfahren zur Herstellung eines Vielschichtbauelements, Vielschichtbauelement und Schablone
JP5293971B2 (ja) 2009-09-30 2013-09-18 株式会社村田製作所 積層セラミック電子部品、および積層セラミック電子部品の製造方法
CN102810372A (zh) * 2012-08-10 2012-12-05 深圳顺络电子股份有限公司 负温度系数热敏电阻及其制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533966A (en) * 1966-02-11 1970-10-13 Westinghouse Electric Corp Process for making current limiting devices
GB1186116A (en) * 1966-12-19 1970-04-02 Nippon Telegraph & Telephone Improvements in or relating to the Production of High Dielectric Ceramics
JPS5823722B2 (ja) * 1978-12-25 1983-05-17 ティーディーケイ株式会社 電圧非直線性抵抗体磁器の製造法
JPS5814044B2 (ja) 1978-12-26 1983-03-17 ティーディーケイ株式会社 正特性磁器
DE3019098C2 (de) * 1980-05-19 1983-02-10 Siemens AG, 1000 Berlin und 8000 München Keramisches Kaltleitermaterial und Verfahren zu dessen Herstellung
JPS5760802A (en) 1980-09-30 1982-04-13 Tokyo Shibaura Electric Co Current limiting resistance element
JPH01186601A (ja) 1988-01-14 1989-07-26 Murata Mfg Co Ltd V↓2o↓3系セラミクス抵抗体素子
JPH01233702A (ja) 1988-03-14 1989-09-19 Murata Mfg Co Ltd V↓2o↓3系セラミクス抵抗体素子
JPH0547508A (ja) 1991-08-08 1993-02-26 Murata Mfg Co Ltd 積層型半導体磁器及びその製造方法
JPH06302403A (ja) 1993-04-16 1994-10-28 Murata Mfg Co Ltd 積層型半導体セラミック素子
US5879812A (en) * 1995-06-06 1999-03-09 Murata Manufacturing Co., Ltd. Monolithic ceramic capacitor and method of producing the same
DE19719174A1 (de) * 1997-05-06 1998-11-12 Siemens Matsushita Components Elektrisches Vielschichtbauelement
JP2000095562A (ja) * 1998-07-24 2000-04-04 Murata Mfg Co Ltd 正特性サ―ミスタ用原料組成物、正特性サ―ミスタ用磁器、および正特性サ―ミスタ用磁器の製造方法
TW487742B (en) * 1999-05-10 2002-05-21 Matsushita Electric Ind Co Ltd Electrode for PTC thermistor, manufacture thereof, and PTC thermistor
JP2001126946A (ja) * 1999-10-28 2001-05-11 Murata Mfg Co Ltd 積層セラミック電子部品及びその製造方法
DE10018377C1 (de) * 2000-04-13 2001-12-06 Epcos Ag Keramisches Vielschichtbauelement und Verfahren zur Herstellung
JP3636075B2 (ja) * 2001-01-18 2005-04-06 株式会社村田製作所 積層ptcサーミスタ
DE10120517B4 (de) 2001-04-26 2013-06-06 Epcos Ag Elektrischer Vielschicht-Kaltleiter und Verfahren zu dessen Herstellung
EP1386334A1 (fr) * 2001-05-08 2004-02-04 Epcos Ag Composant ceramique multicouche et son procede de production
US20030198892A1 (en) 2002-04-22 2003-10-23 General Electric Company Limited play data storage media and method for limiting access to data thereon
DE10218154A1 (de) 2002-04-23 2003-11-13 Epcos Ag PTC-Bauelement und Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
EP1497838A1 (fr) 2005-01-19
DE50310068D1 (de) 2008-08-14
US20060132280A1 (en) 2006-06-22
JP4302054B2 (ja) 2009-07-22
DE10218154A1 (de) 2003-11-13
JP2005524226A (ja) 2005-08-11
US7633374B2 (en) 2009-12-15
WO2003092019A1 (fr) 2003-11-06

Similar Documents

Publication Publication Date Title
DE112004000186B4 (de) Mehrschicht-Keramik-Elektronikkomponenten und Verfahren zur Herstellung derselben
EP0103748B1 (fr) Circuit combiné avec un varistor
DE112008000744B4 (de) Mehrschichtiger Thermistor mit positivem Temperaturkoeffizienten
EP3238218B1 (fr) Composant multicouche céramique et procédé de fabrication d'un composant céramique multicouche
EP0189087A1 (fr) Résistance électrique dépendant de la tension (varistance)
WO2007076849A1 (fr) Composant ceramique monolithique et son procede de fabrication
EP1386335B1 (fr) Composant electrique multicouche et son procede de production
WO2003030187A2 (fr) Composant electroceramique comportant plusieurs surfaces de contact
DE102020107286A1 (de) Mehrschichtiger Keramikkondensator und Verfahren zu dessen Herstellung
DE10307804B4 (de) Leitfähige Paste und deren Verwendung zur Herstellung eines laminierten keramischen elektronischen Bauteils
EP1497838B1 (fr) Procédé pour la fabrication d'un composant ptc
WO2001082314A1 (fr) Composant electrique, son procede de fabrication et son utilisation
DE102012202923A1 (de) Elektroden-Sinterkörper, vielschichtige elektronische Vorrichtung, interne Elektrodenpaste, Herstellungsverfahren des Elektroden-Sinterkörpers und Herstellungsverfahren der vielschichtigen elektronischen Vorrichtung
DE102007012916B4 (de) Laminiertes piezoelektrisches Element und Herstellungsverfahren hierfür
DE10018377C1 (de) Keramisches Vielschichtbauelement und Verfahren zur Herstellung
DE102022134924A1 (de) Elektronische mehrschicht-keramikvorrichtung und verfahren zu deren herstellung
EP1386334A1 (fr) Composant ceramique multicouche et son procede de production
DE10039649B4 (de) Verfahren zur Herstellung eines keramischen Vielschichtbauelements und entsprechendes Vielschichtbauelement
DE102020006903A1 (de) Keramik-elektronikvorrichtung und herstellungsverfahren dafür
WO2003012808A1 (fr) Composant electro-ceramique, condensateur multicouche et procede de fabrication dudit condensateur
WO2003004436A1 (fr) Matiere ceramique, composant multicouche ceramique et procede de production d'un tel composant
WO2013167368A1 (fr) Procédé de production d'un élément mulcicouche et élément multicouche produit selon ce procédé
DE102020122299B3 (de) Vielschichtvaristor und Verfahren zur Herstellung eines Vielschichtvaristors
DE10110680A1 (de) Elektrisches Bauelement
DE102019111989B3 (de) Keramisches Bauelement und Verfahren zur Herstellung des keramischen Bauelements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040826

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050708

TPAC Observations by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR THE PRODUCTION OF A PTC COMPONENT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50310068

Country of ref document: DE

Date of ref document: 20080814

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090403

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090414

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090414

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120423

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50310068

Country of ref document: DE

Effective date: 20131101