EP1479910A2 - Sensormembran - Google Patents

Sensormembran Download PDF

Info

Publication number
EP1479910A2
EP1479910A2 EP04101686A EP04101686A EP1479910A2 EP 1479910 A2 EP1479910 A2 EP 1479910A2 EP 04101686 A EP04101686 A EP 04101686A EP 04101686 A EP04101686 A EP 04101686A EP 1479910 A2 EP1479910 A2 EP 1479910A2
Authority
EP
European Patent Office
Prior art keywords
membrane
sensor
layer
conductive
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04101686A
Other languages
English (en)
French (fr)
Other versions
EP1479910B1 (de
EP1479910A3 (de
Inventor
Rainer Weisbrodt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prominent Dosiertechnik GmbH
Original Assignee
Prominent Dosiertechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prominent Dosiertechnik GmbH filed Critical Prominent Dosiertechnik GmbH
Priority to PL04101686T priority Critical patent/PL1479910T3/pl
Priority to SI200430443T priority patent/SI1479910T1/sl
Publication of EP1479910A2 publication Critical patent/EP1479910A2/de
Publication of EP1479910A3 publication Critical patent/EP1479910A3/de
Application granted granted Critical
Publication of EP1479910B1 publication Critical patent/EP1479910B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0081Special features systems, control, safety measures
    • F04B43/009Special features systems, control, safety measures leakage control; pump systems with two flexible members; between the actuating element and the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/04PTFE [PolyTetraFluorEthylene]

Definitions

  • the present invention relates to a sensor membrane having a plurality of sandwiches arranged membrane layers, which allows a rupture of the delivery membrane during operation or to determine at a standstill.
  • diaphragm pumps are known in which a flexible membrane, the terminates a pump volume, is rapidly reciprocated to produce a fluid, i. a liquid or a gas to suck through an intake valve and in the next cycle through an exhaust valve eject.
  • a fluid i. a liquid or a gas
  • Such diaphragm pumps are often used for dosing chemicals in process engineering Processes used.
  • the membranes must be inert to aggressive ones Chemicals, e.g. Acids, be. Therefore, the delivery membrane is mostly from the brand Teflon available plastic PTFE (polytetrafluoroethylene) produced.
  • PTFE polytetrafluoroethylene
  • sensor membranes For early detection of breaks in the delivery membrane so-called sensor membranes known that generate an electrical warning signal when tearing the conveyor diaphragm.
  • the document EP 0 715 690 B1 shows a delivery membrane, in which in the PTFE layer a wire loop is poured, covering the largest possible area of the membrane. Tears or breaks the membrane, so the wire of the loop also breaks and the electrical contact is interrupted. The interruption of the contact is detected by a corresponding evaluation electronics and an alarm signal is triggered.
  • a disadvantage here proves that the wires due to which, that they must be designed very thin, already by the mechanical stress during Cycle the membrane can break, although still no cracks in the PTFE material of the delivery membrane appeared.
  • EP 0 732 501 B1 discloses a sensor membrane comprising two conductive layers within the membrane, which is isolated by another non-conductive layer against each other are. All three layers are made of rubber, that for the conductive layers with carbon is mixed. Now breaks the arranged on the rubber layers conveyor membrane, it comes to pumping liquid or the gas in contact with the first conductive layer. Break these too first conductive layer and also the underlying insulating rubber layer, so closes the liquid the two conductive layers are short and a warning signal is output.
  • a great disadvantage in this embodiment of a sensor membrane that breaks in the delivery membrane only detected be, although the lying below the conveyor membrane conductive and insulating membrane layers made of rubber. A diaphragm fracture thus becomes a very advanced one Time of damage indicated. Especially with very aggressive liquids At this time, liquid may already have entered the drive unit of the pump.
  • the present invention has the object, a To provide sensor membrane, which solves the aforementioned problems.
  • the sensor membrane according to the invention in that they have several sandwiched membrane layers having a delivery membrane, a first electrically conductive membrane layer disposed thereunder, an electrically arranged underneath insulating membrane layer and a second electrically conductive membrane layer arranged underneath comprising, wherein the first and second conductive membrane layers by the electrically insulating membrane layer are separated from each other and electrically insulated and the second electrically conductive membrane layer has portions passing through openings in the electrically insulating Membrane layer and pass through openings in the first electrically conductive membrane layer and the electrically insulating membrane layer has portions passing through openings in the first reach through the conductive membrane layer.
  • the inventive solution of the problem is particularly advantageous because a break in the Delivery membrane is detected as soon as liquid has passed through the delivery membrane and up to the level the first conductive membrane layer has penetrated. Up to this level, i. above the first conductive membrane layer, also extends through the openings cross-cutting material of the second Membrane layer. In the normal state, i. intact condition, the materials are the first and second conductive membrane layers, however, by the material of the insulating membrane layer, the also passes through the openings in the first conductive membrane layer, electrically from each other isolated.
  • PTFE polytetrafluoroethylene
  • the electrically conductive and electrically insulating membrane layers Rubber, preferably a plastic-fiber-reinforced EPDM (ethylene-propylene terpolymer) are made.
  • EPDM ethylene-propylene terpolymer
  • Such a rubber has the advantage that it is highly flexible, pressure resistant and very is claimable. This is especially true for those occurring in membranes in diaphragm pumps Walk movements. If the rubber is mixed with an appropriate amount of carbon particles, so it becomes conductive, with the positive properties of the rubber full or at least in be preserved to a sufficient extent.
  • the membrane is substantially circular disk-shaped is. Due to the symmetry then the stresses occur by the walking movements evenly distributed over the circumference of the membrane. It is advantageous if the Membrane layers have substantially the same diameter. This prevents, for example when tearing the delivery membrane to the underlying membrane layers liquid passes into the area of the pump drive.
  • the passages through the first electrically conductive membrane layer have a circular, oval or square shape, wherein circular penetration for stability reasons are particularly preferred.
  • at least some of the passages are kidney-shaped about the midpoint the membrane arranged openings.
  • the membrane many possible contact bridges that capture a fraction of the delivery membrane can, arrange. Due to the circular disk shape of the membrane, it is advantageous if the passages are arranged symmetrically around the center of the membrane around. In addition it can be advantageous if a penetration in the center of the membrane is arranged. That's how everyone is monitor areas of the conveyor diaphragm that are particularly prone to galling for cracks and fractures.
  • an embodiment of the invention in which preferably between 4 and 20 Passages symmetrically arranged in concentric circles around the center of the membrane are. This allows a goodêtnabdekkung for the typical diameter of the delivery membranes by the possible contact bridges between the first and the second conductive membrane layer. Thus, the particularly strongly gewalkten areas of the membrane near the clamping area especially good and monitor the length of the entire circumference.
  • the passages in the form of concentric circles around the center of the Membrane be arranged around. This allows monitoring of the tightness of the delivery membrane along the length of the entire circumference in the area of maximum stress.
  • the delivery membrane has one or more having concentrically arranged around the center of the membrane sealing beads. These are arranged in the region of the clamping region of the membrane, so that they here an effective seal form between the delivery membrane and the pump volume limiting housing. Since the delivery membrane does not need to be further sealed, it can easily, without additional To use sealant to be replaced.
  • the membrane has a membrane core made of plastic or metal or combinations thereof, which is below the second conductive Membrane layer is arranged symmetrically to the center of the membrane. This forms the mechanical connection between the individual membrane layers and the membrane driving Mechanics.
  • a further insulating membrane layer is arranged below the second conductive membrane layer, i. between this and the membrane core. This provides electrical insulation between the second conductive membrane layer and the membrane core ago. It can also be positively connected to the membrane core, so that they transmits the movement of the core directly to the membrane.
  • an embodiment of the invention in which the two electrically conductive Membrane layers with the two connections of a resistance, current or voltage measuring device are connected.
  • a bridging of the insulation between the two can be electrically conductive membrane layers by the liquid to be pumped easily by a change detect the resistance and optionally output an alarm signal.
  • the conductive membrane layers are preferably made of rubber, as stated above, which are admixed with carbon particles for the conductivity.
  • the conductivity of these mixtures is but not comparable to that of metallic conductors, but by several orders of magnitude lower.
  • the resistors to be measured at contact closure between the first and second conductive membrane layer are therefore usually in the megaohm range. It is appropriate when the conductive membrane layers by means of metallic contact pins of the pumped Liquid can be contacted from opposite side.
  • the pin contacting the first conductive membrane layer by the second electrically conductive membrane layer and the electrically insulating membrane layer engages being in the area the second electrically conductive membrane layer by material of the insulating membrane layer opposite the second electrically conductive membrane layer or other insulating material is isolated.
  • Such a design makes it possible to easily replace the membrane, since can apply a simple plug-in connection to the contact pins, the membrane with the corresponding Measuring electronics connects.
  • FIG. 1 clearly shows the schematic structure of a preferred embodiment of the invention Sensor membrane.
  • the delivery membrane 1 forms the uppermost layer of the sensor membrane. It consists in the embodiment shown of PTFE.
  • two sealing beads 8 can be seen, which protrude from the conveying membrane 1.
  • the two sealing beads 8 are in the so-called clamping region 9 of the membrane. This area will clamped in the designated clamp mount the diaphragm pump under pressure. there seal the sealing beads 8, the membrane against its holder, so that no liquid from the Working space can escape.
  • the first conductive membrane layer 2 arranged below the delivery membrane 1, which is made of rubber, which enriched with synthetic fibers to increase the stability and additionally contains carbon particles in an amount such that the rubber membrane is conductive is.
  • the first conductive membrane layer 2 forms a continuous body, as a Part is made. This can be seen particularly clearly in the exploded view in FIG.
  • the first conductive membrane layer 2 has openings 6. Below the first conductive membrane layer 2 is the insulating membrane layer 3, also made of rubber with plastic fibers, arranged. This has regions 12 which extend over the plane formed by the membrane layer 3 extend upward and reach through the openings 6 of the first conductive membrane layer 2.
  • the second electrically conductive membrane layer 4 is arranged below the insulating membrane layer 3. This has areas 7, which protrude from the plane formed by the membrane layer 4 and through the openings 5 in the insulating membrane layer 3 in the openings 6 of the first conductive Engage membrane layer 2. They are from the also in the openings 6 of the first conductive membrane layer 2 engaging portions 12 of the insulating membrane layer 3 surrounded and thus electrically isolated from the first conductive membrane layer 2.
  • Figure 3 shows an alternative embodiment to the membrane of Figures 1 and 2 with a somewhat other number and arrangement of the through openings. Otherwise, the structure is the same, which is why like parts are designated by like reference numerals.
  • the individual layers of the membrane are connected to each other by vulcanization or gluing, so that they form a unit mechanically.
  • a membrane core 10 is arranged made of metal or plastic. This consists essentially of a cylindrical rod which has a receptacle 15 at the lower end has, in which engages the connecting rod of the drive unit.
  • the membrane core 10 transmits the Translational movement of the drive unit to the located above the diaphragm core 10 layers the sensor membrane.
  • the lowest insulating membrane layer 11 designed so that they form fit in the head 16 of the Diaphragm core 10 intervenes.
  • the translational movement of the diaphragm core 10 becomes both in the lifting as well as in the suction direction on the membrane layers (1, 2, 3, 4, 11). This can also be seen particularly clearly in FIG.
  • the electrical contacting of the electrically conductive membrane layers 2, 4 takes place by means of metal pins 13 and 14, which pass through the lowest insulating membrane layer 11 to the corresponding electrically conductive membrane layers into it. It is important to note that the pin 13, the first electrically conductive membrane layer 2 contacted by means of the material of the insulating Membrane layer 3 or with another material compared to the second electrically conductive Membrane layer 4 is isolated.
  • the pins 13 and 14 with the two terminals a resistance meter connected.
  • the electrical resistance between the two electrical conductive membranes 2, 4 is measured. If the delivery membrane 1 is intact, i. reject them no continuous cracks or breaks, so the surface of the under the conveyor membrane 1 membrane layers are not wetted by the liquid and the resistance between the first and second electrically conductive layer (2, 4) is extremely large. In case of damage, i. when in the Conveying membrane 1 through cracks or breaks occur, penetrates the liquid to be pumped through the conveying membrane 1 and wets the surface of the under the conveying membrane. 1 lying diaphragm layers, so that the electrical resistance between the first 2 and second electrically conductive membrane layer becomes smaller, e.g. in the range of 50 M ⁇ and less. Such a decrease of the electrical resistance can be detected by the resistance measuring device and triggers an alarm when it falls below a previously set threshold.
  • the sensor membrane can be immediately after the occurrence of the leak alarm or after a predetermined Time interval are exchanged.
  • the replacement of the membrane is due to the design
  • Their mechanical and electrical connections are very simple and can be learned Assistants executable.
  • the edge areas of the membrane are in a designated Holder clamped and are due to the provided sealing beads 8 after clamping automatically sealed.
  • the electrical connection to the Pins 13 and 14 is done by means of a standardized plug element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Fluid Pressure (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Diaphragms And Bellows (AREA)
  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Sensormembran mit mehreren sandwichartig übereinander angeordneten Membranlagen, welche eine Förder- oder Trennmembran (1), eine darunter angeordnete erste elektrisch leitfähige Membranlage (2), eine darunter angeordnete elektrisch isolierende Membranlage (3) und eine darunter angeordnete zweite elektrisch leitfähige Membranlage (4) umfassen, wobei die ersten und zweiten leitfähigen Membranlagen (2, 4) durch die elektrisch isolierende Membranlage (3) voneinander getrennt und elektrisch isoliert sind und die zweite elektrisch leitfähige Membranlage (4) Abschnitte (7) aufweist, die durch Öffnungen (5) in der elektrisch isolierenden Membranlage (3) und durch Öffnungen (6) in der ersten elektrisch leitfähigen Membranlage (2) hindurchgreifen und die elektrisch isolierende Membranlage (3) Abschnitte (12) aufweist, die durch die Öffnungen (5) in der ersten leitfähigen Membranlage hindurchgreifen. <IMAGE>

Description

Die vorliegende Erfindung betrifft eine Sensormembran mit mehreren sandwichartig übereinander angeordneten Membranlagen, die es erlaubt, einen Bruch der Fördermembran während des Betriebes oder im Stillstand festzustellen.
Aus dem Stand der Technik sind Membranpumpen bekannt, bei denen eine flexible Membran, die ein Pumpenvolumen abschließt, schnell hin und her bewegt wird, um ein Fluid, d.h. eine Flüssigkeit oder ein Gas, durch ein Einlaßventil anzusaugen und im nächsten Arbeitszyklus durch ein Auslaßventil auszustoßen. Solche Membranpumpen werden häufig zum Dosieren von Chemikalien in verfahrenstechnischen Prozessen verwendet. Die Membranen müssen inert gegenüber aggressiven Chemikalien, z.B. Säuren, sein. Daher wird die Fördermembran zumeist aus dem unter der Marke Teflon erhältlichen Kunststoff PTFE (Polytetrafluorethylen) hergestellt. PTFE hat die Eigenschaft, daß es in hohem Maße flexibel ist, vor allem wenn es in dünnen Membranlagen verarbeitet wird. Jedoch brechen solche Kunststoffmembranen mit der Zeit an besonders beanspruchten Stellen. Diese liegen im Fall von Membranen, die als Fördermembranen in Pumpen verwendet werden, vor allem in den zu den Einspannbereichen der Membran benachbarten Bereichen der Fördermembran, die während des Betriebes besonders gewalkt werden. Kommt es zum Bruch der Fördermembran, so strömt das zu fördernde Fluid in den Bereich der Antriebsmechanik für die Membran, wo es zum Beispiel aufgrund seiner ätzenden oder korrosiven Wirkung zu dauerhaften Schädigungen der Pumpenmechanik führen kann.
Daher ist es wünschenswert, Brüche und Risse in der Fördermembran möglichst frühzeitig zu erkennen, so daß die Membran ausgetauscht werden kann bevor sie vollends durchbricht.
Zum frühzeitigen Erkennen von Brüchen in der Fördermembran sind sogenannte Sensormembranen bekannt, die beim Einreißen der Fördermembran ein elektrisches Warnsignal erzeugen.
Die Druckschrift EP 0 715 690 B1 zeigt eine Fördermembran, bei der in die PTFE-Lage eine Drahtschleife eingegossen ist, die eine möglichst große Fläche der Membran bedeckt. Reißt oder bricht die Membran, so reißt der Draht der Schleife ebenfalls und der elektrische Kontakt wird unterbrochen. Die Unterbrechung des Kontaktes wird durch eine entsprechende Auswertelektronik erfaßt und ein Alarmsignal ausgelöst. Als nachteilig erweist sich hierbei, daß die Drähte aufgrund dessen, daß sie sehr dünn ausgelegt werden müssen, bereits durch die mechanische Beanspruchung beim Walken der Membran abreißen können, obwohl noch keine Risse im PTFE-Material der Fördermembran aufgetreten sind.
Die Druckschriften US 4,569,634 und WO 95/27194 zeigen Fördermembranen, bei denen die Membran eine leitfähige Membranlage unterhalb der eigentlichen Fördermembran aufweist, bzw. die Fördermembran von einer leitfähigen Membranlage durchzogen ist. Die leitfähige Membranlage ist mit dem einen Anschluß eines Widerstandsmeßgerätes verbunden. Der zweite Anschluß des Widerstandsmeßgerätes ist mit dem Korpus des Pumpenvolumens bzw. mit einer darin angebrachten Elektrode verbunden. Treten nun Risse oder Brüche in der Fördermembran auf, so schließt die Flüssigkeit den Kontakt zwischen dem Korpus und der leitfähigen Membranlage in der Membran, und es wird ein Warnsignal ausgegeben. Als nachteilig erweist sich bei diesen Sensormembranen, daß der Korpus des Pumpvolumens aus einem leitfähigen Material bestehen muß, bzw. eine leitfähige Elektrode in dem Pumpvolumen angebracht sein muß. Dies beschränkt den Anwendungsbereich einer Pumpe mit einer solchen Membran auf Flüssigkeiten, die die Metalle nicht angreifen, da sich das Pumpvolumen nicht vollständig mit einem chemisch inerten Kunststoff belegen läßt.
In der EP 0 732 501 B1 wird demgegenüber eine Sensormembran offenbart, die zwei leitfähige Lagen innerhalb der Membran aufweist, die durch eine weitere nicht leitende Lage gegeneinander isoliert sind. Dabei bestehen alle drei Lagen aus Gummi, das für die leitfähigen Lagen mit Kohlenstoff vermischt ist. Bricht nun die über den Gummilagen angeordnete Fördermembran, so kommt die zu pumpende Flüssigkeit oder das Gas mit der ersten leitfähigen Lage in Kontakt. Bricht nun auch diese erste leitfähige Lage und auch die darunter liegende isolierende Gummilage, so schließt die Flüssigkeit die beiden leitfähigen Lagen kurz und ein Warnsignal wird ausgegeben. Ein großer Nachteil bei dieser Ausgestaltung einer Sensormembran ist, daß Brüche in der Fördermembran erst erfaßt werden, wenn auch die unter der Fördermembran liegenden leitfähigen und isolierenden Membranlagen aus Gummi durchgebrochen sind. Ein Membranbruch wird somit erst zu einem sehr weit fortgeschrittenen Zeitpunkt der Beschädigung angezeigt. Gerade bei sehr aggressiven Flüssigkeiten kann zu diesem Zeitpunkt bereits Flüssigkeit in die Antriebseinheit der Pumpe gelangt sein.
Gegenüber diesem Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Sensormembran zur Verfügung zu stellen, die die zuvor genannten Probleme löst.
Diese Aufgabe wird von der erfindungsgemäßen Sensormembran dadurch gelöst, daß sie mehrere sandwichartig übereinander angeordnete Membranlagen aufweist, welche eine Fördermembran, eine darunter angeordnete erste elektrisch leitfähige Membranlage, eine darunter angeordnete elektrisch isolierende Membranlage und eine darunter angeordnete zweite elektrisch leitfähige Membranlage umfassen, wobei die ersten und zweiten leitfähigen Membranlagen durch die elektrisch isolierende Membranlage voneinander getrennt und elektrisch isoliert sind und die zweite elektrisch leitfähige Membranlage Abschnitte aufweist, die durch Öffnungen in der elektrisch isolierenden Membranlage und durch Öffnungen in der ersten elektrisch leitfähigen Membranlage hindurchgreifen und die elektrisch isolierende Membranlage Abschnitte aufweist, die durch Öffnungen in der ersten leitfähigen Membranlage hindurchgreifen.
Die erfindungsgemäße Lösung der Aufgabenstellung ist besonders vorteilhaft, da ein Bruch in der Fördermembran erkannt wird, sobald Flüssigkeit die Fördermembran passiert hat und bis zur Ebene der ersten leitfähigen Membranlage vorgedrungen ist. Bis zu dieser Ebene, d.h. oberhalb der ersten leitfähigen Membranlage, reicht auch das durch die Öffnungen hindurchgreifende Material der zweiten Membranlage. Im Normalzustand, d.h. intakten Zustand, sind die Materialien der ersten und zweiten leitfähigen Membranlagen jedoch durch das Material der isolierenden Membranlage, das ebenfalls durch die Öffnungen in der ersten leitfähigen Membranlage hindurchgreift, elektrisch voneinander isoliert. Erst wenn die Flüssigkeit eindringt und im Bereich der Durchtrittsöffnungen eine Benetzung mit Flüssigkeit stattfindet, kommt es zur Ausbildung einer meßbaren elektrisch leitfähigen Verbindung zwischen erster leitfähiger Membranlage und zweiter leitfähiger Membranlage über die Flüssigkeit. Ein Aufbrechen der unter der Fördermembran liegenden Membranlagen ist zur Auslösung des Signals hingegen nicht notwendig.
Bevorzugt wird eine Ausführungsform der Erfindung, bei der die Fördermembran aus einem flexiblen chemisch inerten Kunststoff, vorzugsweise Polytetrafluorethylen (PTFE) hergestellt ist. Eine solche Ausgestaltung hat den Vorteil, daß die Membran von den meisten zu fördernden Chemikalien nicht angegriffen wird.
Zweckmäßig ist es, wenn die elektrisch leitfähigen und elektrisch isolierenden Membranlagen aus Gummi, vorzugsweise einem mit Kunststoffasern verstärkten EPDM (Ethylen-Propylen-Terpolymer) hergestellt sind. Ein solcher Gummi hat den Vorteil, daß er hoch flexibel, druckfest und sehr beanspruchbar ist. Dies gilt gerade für die bei den Membranen in Membranpumpen auftretenden Walkbewegungen. Wird der Gummi mit einer entsprechenden Menge von Kohlenstoffpartikeln vermischt, so wird er leitfähig, wobei die positiven Eigenschaften des Gummis voll oder zumindest in ausreichendem Maße erhalten bleiben.
Es erweist sich als vorteilhaft, wenn die Durchgriffe der zweiten elektrisch leitfähigen Lage durch die erste elektrisch leitfähige Membranlage und die isolierende Membranlage in der Nähe der beim Membranhub gewalkten Membranbereiche angeordnet sind. Diese liegen vor allem im Bereich um den Einspannbereich der Membran herum und in den den Membrankern umgebenden Bereichen. Diese werden bei den Hubbewegungen der Membran besonders beansprucht. Daher treten Brüche und Risse in der Fördermembran zuerst an diesen Stellen auf, so daß zu erwarten ist, daß an diesen Stellen zuerst Flüssigkeit auf die unter der Fördermembran liegenden Membranlagen trifft. Sind die Durchgriffe in diesem Bereich angeordnet, so wird ein Alarmsignal unmittelbar beim Durchtreten der Flüssigkeit ausgelöst.
Bevorzugt wird eine Ausführungsform der Erfindung, bei der die Membran im wesentlichen kreisscheibenförmig ist. Aufgrund der Symmetrie treten dann die Belastungen durch die walkenden Bewegungen gleichmäßig verteilt über den Umfang der Membran auf. Vorteilhaft ist es, wenn die Membranlagen im wesentlichen den gleichen Durchmesser aufweisen. So wird verhindert, daß beispielsweise beim Einreißen der Fördermembran an den darunterliegenden Membranlagen Flüssigkeit vorbei in den Bereich des Pumpenantriebs gelangt.
Besonders bevorzugt wird eine Ausführungsform der Erfindung, bei der die Durchgriffe durch die erste elektrisch leitfähige Membranlage eine kreisförmige, ovale oder quadratische Form aufweisen, wobei kreisförmige Durchgriffe aus Stabilitätsgründen besonders bevorzugt sind. Bei einer weiteren bevorzugten Ausführungsform sind wenigsten einige der Durchgriffe nierenförmig um den Mittelpunkt der Membran angeordnete Öffnungen. Durch diese Ausgestaltung lassen sich auf dem Umfang der Membran viele mögliche Kontaktbrücken, die einen Bruch der Fördermembran erfassen können, anordnen. Aufgrund der Kreisscheibenform der Membran ist es vorteilhaft, wenn die Durchgriffe symmetrisch um den Mittelpunkt der Membran herum angeordnet sind. Zusätzlich kann es vorteilhaft sein, wenn ein Durchgriff im Mittelpunkt der Membran angeordnet ist. So lassen sich alle besonders durch Walken beanspruchten Bereiche der Fördermembran auf Risse und Brüche überwachen.
Zweckmäßig ist dabei eine Ausführungsform der Erfindung, bei der vorzugsweise zwischen 4 und 20 Durchgriffe symmetrisch in konzentrischen Kreisen um den Mittelpunkt der Membran angeordnet sind. Dies erlaubt für die typischen Durchmesser der Fördermembranen eine gute Flächenabdekkung durch die möglichen Kontaktbrücken zwischen der ersten und der zweiten leitfähigen Membranlage. So lassen sich die besonders stark gewalkten Bereiche der Membran nahe des Einspannbereiches besonders gut und auf der Länge des gesamten Umfanges überwachen.
Alternativ dazu können die Durchgriffe in Form von konzentrischen Kreisen um den Mittelpunkt der Membran herum angeordnet sein. Dies ermöglicht eine Überwachung der Dichtigkeit der Fördermembran auf der Länge des gesamten Umfangs im Bereich größter Beanspruchung.
Bevorzugt wird eine Ausführungsform der Erfindung, bei der die Fördermembran einen oder mehrere konzentrisch um den Mittelpunkt der Membran angeordnete Dichtwülste aufweist. Dabei sind diese im Bereich des Einspannbereichs der Membran angeordnet, so daß sie hier eine effektive Abdichtung zwischen der Fördermembran und dem das Pumpvolumen begrenzenden Gehäuses bilden. Da die Fördermembran nicht weiter abgedichtet werden muß, kann sie leicht, ohne zusätzliche Dichtmittel zu verwenden, ausgetauscht werden.
Besonders vorteilhaft ist eine Ausführungsform der Erfindung, bei der die Membran einen Membrankern aus Kunststoff oder Metall oder Kombinationen davon aufweist, der unterhalb der zweiten leitfähigen Membranlage symmetrisch zum Mittelpunkt der Membran angeordnet ist. Dieser bildet die mechanische Verbindung zwischen den einzelnen Membranlagen und der die Membran antreibenden Mechanik.
Als zweckmäßig erweist es sich, wenn unterhalb der zweiten leitfähigen Membranlage, d.h. zwischen dieser und dem Membrankern, eine weitere isolierende Membranlage angeordnet ist. Diese stellt eine elektrische Isolierung zwischen der zweiten leitfähigen Membranlage und dem Membrankern her. Sie kann darüber hinaus formschlüssig mit dem Membrankern verbunden sein, so daß sie die Bewegung des Kerns direkt auf die Membran überträgt.
Als vorteilhaft erweist sich bei der vorliegenden Erfindung, wenn die einzelnen Lagen der Membran beispielsweise durch Vulkanisieren oder Kleben miteinander untrennbar verbunden sind. So wird die Hubbewegung optimal auf alle Lagen und vor allem auf die Fördermembran übertragen.
Besonders bevorzugt wird eine Ausführungsform der Erfindung, bei der die beiden elektrisch leitfähigen Membranlagen mit den zwei Anschlüssen eines Widerstands-, Strom- oder Spannungsmeßgerätes verbunden sind. So läßt sich eine Überbrückung der Isolierung zwischen den beiden elektrisch leitenden Membranlagen durch die zu pumpende Flüssigkeit leicht anhand einer Änderung des Widerstandes erfassen und gegebenenfalls ein Alarmsignal ausgeben.
Die leitfähigen Membranlagen werden vorzugsweise, wie oben ausgeführt, aus Gummi hergestellt, dem für die Leitfähigkeit Kohlenstoffpartikel beigemischt sind. Die Leitfähigkeit dieser Mischungen ist jedoch nicht vergleichbar mit derjenigen von metallischen Leitern, sondern um einige Größenordnungen geringer. Die zu messenden Widerstände bei Kontaktschluß zwischen der ersten und zweiten leitfähigen Membranlage liegen daher üblicherweise im Megaohmbereich. Es ist zweckmäßig, wenn die leitfähigen Membranlagen mit Hilfe von metallischen Kontaktstiften von der der zu pumpenden Flüssigkeit gegenüberliegenden Seite aus kontaktiert werden. Dabei muß darauf geachtet werden, daß der die erste leitfähige Membranlage kontaktierende Stift durch die zweite elektrisch leitfähige Membranlage und die elektrisch isolierende Membranlage hindurchgreift, wobei er im Bereich der zweiten elektrisch leitfähigen Membranlage durch Material der isolierenden Membranlage gegenüber der zweiten elektrisch leitfähigen Membranlage oder einem anderen isolierenden Material isoliert ist. Eine solche Ausgestaltung ermöglicht es, die Membran leicht auszutauschen, da sich auf die Kontaktstifte eine einfache Steckverbindung aufbringen läßt, die die Membran mit der entsprechenden Meßelektronik verbindet.
Es ist vorteilhaft, wenn die zuvor beschriebene Sensormembran in einer Membranpumpe verwendet wird.
Weitere Merkmale, Vorteile und Ausführungsformen der vorliegenden Erfindung ergeben sich aus den beigefügten Figuren und der zugehörigen Beschreibung. Es zeigen:
Figur 1
eine dreidimensionale aufgebrochene Ansicht der erfindungsgemäßen Sensormembran,
Figur 2
eine Explosionsdarstellung der erfindungsgemäßen Sensormembran,
Figur 3
einen seitlichen Schnitt durch eine alternative Ausführungsform der erfindungsgemäßen Sensormembran.
Figur 1 zeigt deutlich den schematischen Aufbau einer bevorzugten Ausführungsform der erfindungsgemäßen Sensormembran. Die Fördermembran 1 bildet die oberste Lage der Sensormembran. Sie besteht in der gezeigten Ausführungsform aus PTFE. In den Außenbereichen der Membran sind deutlich zwei Dichtwülste 8 zu erkennen, die aus der Fördermembran 1 herausragen. Die beiden Dichtwülste 8 liegen im sogenannten Einspannbereich 9 der Membran. Dieser Bereich wird in der dafür vorgesehenen Klemmhalterung der Membranpumpe unter Druck eingeklemmt. Dabei dichten die Dichtwülste 8 die Membran gegen ihre Halterung ab, so daß keine Flüssigkeit aus dem Arbeitsraum austreten kann. Unterhalb der Fördermembran 1 ist die erste leitfähige Membranlage 2 angeordnet. Diese besteht aus Gummi, das zur Erhöhung der Stabilität mit Kunststoffasern angereichert ist und zusätzlich Kohlenstoffpartikel in einer Menge enthält, so daß die Gummimembran leitfähig ist. Die erste leitfähige Membranlage 2 bildet einen zusammenhängenden Körper, der als ein Teil gefertigt wird. Dies ist besonders deutlich in der Explosionszeichnung in Figur 2 zu erkennen. Hierin sind die einzelnen Lagen der erfindungsgemäßen Sensormembran vor dem Zusammenfügen gezeigt.
Die erste leitfähige Membranlage 2 weist Öffnungen 6 auf. Unterhalb der ersten leitfähigen Membranlage 2 ist die isolierende Membranlage 3, ebenfalls aus Gummi mit Kunststoffasern hergestellt, angeordnet. Diese weist Bereiche 12 auf, die sich über die von der Membranlage 3 gebildete Ebene hinaus nach oben erstrecken und durch die Öffnungen 6 der ersten leitfähigen Membranlage 2 hindurchgreifen.
Unterhalb der isolierenden Membranlage 3 ist die zweite elektrisch leitfähige Membranlage 4 angeordnet. Diese weist Bereiche 7 auf, die aus der von der Membranlage 4 gebildeten Ebene herausragen und durch die Öffnungen 5 in der isolierenden Membranlage 3 in die Öffnungen 6 der erste leitfähigen Membranlage 2 eingreifen. Dabei werden sie von den ebenfalls in die Öffnungen 6 der ersten leitfähigen Membranlage 2 eingreifenden Bereichen 12 der isolierenden Membranlage 3 umgeben und so elektrisch von der ersten leitfähigen Membranlage 2 isoliert.
In Figur 2 ist zu sehen, daß in der beschriebenen Ausführungsform insgesamt 19 Durchgriffe der zweiten Leitfähigen Membran 4 in die erste leitfähige Membran vorgesehen sind. Diese sind wie folgt verteilt: in der Mitte der Membran findet sich ein zentraler Durchgriff, der von einem ersten konzentrischen Kreis von 6 Durchgriffen umgeben ist und von einem weiteren konzentrischen Kreis mit 12 Durchgriffen. Diese Anordnung ermöglicht eine optimale Abdeckung der Fläche der Membran mit möglichen Kontaktbrücken, vor allem in den am stärksten gewalkten Bereichen.
Figur 3 zeigt eine alternative Ausführungsform zu der Membran der Figuren 1 und 2 mit einer etwas anderen Anzahl und Anordnung der Durchgriffsöffnungen. Ansonsten ist der Aufbau gleich, weshalb gleiche Teile mit gleichen Bezugszahlen bezeichnet sind.
Wie in Figuren 2 und 3 besonders gut zu erkennen ist, ist unterhalb der zweiten elektrisch leitfähigen Membranlage 4 eine weitere isolierende Membranlage 11, die aus dem gleichen Gummimaterial wie die isolierende Membranlage 3 hergestellt ist, angeordnet.
Die einzelnen Lagen der Membran werden durch Vulkanisieren oder Kleben miteinander verbunden, so daß sie mechanisch eine Einheit bilden.
Unterhalb der Membranlage 11 ist ein Membrankern 10 aus Metall oder Kunststoff angeordnet. Dieser besteht im wesentlichen aus einer zylindrischen Stange, die am unteren Ende eine Aufnahme 15 aufweist, in welche die Pleuelstange der Antriebseinheit eingreift. Der Membrankern 10 überträgt die Translationsbewegung der Antriebseinheit auf die über dem Membrankern 10 befindlichen Lagen der Sensormembran. Für eine effektive Übertragung der Bewegung auf die Membranlagen ist die unterste isolierende Membranlage 11 so ausgeführt, daß sie formschlüssig in den Kopf 16 des Membrankerns 10 eingreift. Dadurch wird die Translationsbewegung des Membrankerns 10 sowohl in Hub- als auch in Saugrichtung auf die über dem Kern 10 angeordneten Membranlagen (1, 2, 3, 4, 11) übertragen. Dies ist auch besonders deutlich in Figur 3 zu sehen.
Die elektrische Kontaktierung der elektrisch leitfähigen Membranlagen 2, 4 erfolgt mit Hilfe von Metallstiften 13 und 14, die durch die unterste isolierende Membranlage 11 durchgreifen bis in die entsprechende elektrisch leitfähige Membranlagen hinein. Dabei ist darauf zu achten, daß der Stift 13, der die erste elektrisch leitfähige Membranlage 2 kontaktiert mit Hilfe des Materials aus der isolierenden Membranlage 3 oder mit einem anderen Material gegenüber der zweiten elektrisch leitfähigen Membranlage 4 isoliert ist.
In dieser Ausführungsform der Erfindung werden die Stifte 13 und 14 mit den beiden Anschlüssen eines Widerstandsmeßgerätes verbunden. Der elektrische Widerstand zwischen den beiden elektrisch leitfähigen Membranen 2, 4 wird gemessen. Ist die Fördermembran 1 intakt, d.h. weist sie keine durchgehenden Risse oder Brüche auf, so wird die Oberfläche der unter der Fördermembran 1 gelegenen Membranlagen nicht von der Flüssigkeit benetzt und der Widerstand zwischen der ersten und zweiten elektrisch leitfähigen Lage (2, 4) ist extrem groß. Im Schadensfall, d.h. wenn in der Fördermembran 1 durchgehende Risse oder Brüche auftreten, dringt die zu fördernde Flüssigkeit durch die Fördermembran 1 hindurch und benetzt die Oberfläche der unter der Fördermembran 1 liegenden Membranlagen, so daß der elektrische Widerstand zwischen der ersten 2 und zweiten 2 elektrisch leitfähigen Membranlage kleiner wird, z.B. in den Bereich von 50 MΩ und weniger gelangt. Ein solches Absinken des elektrischen Widerstandes kann von dem Widerstandsmeßgerät erfaßt werden und löst bei Unterschreiten eines zuvor gesetzten Schwellenwertes einen Alarm aus.
Die Sensormembran kann nach Auftreten des Undichtigkeitsalarms sofort oder nach einem vorbestimmten Zeitintervall ausgetauscht werden. Der Austausch der Membran ist aufgrund der Ausgestaltung ihrer mechanischen und elektrischen Anschlüsse denkbar einfach und auch von angelernten Hilfskräften ausführbar. Die Randbereiche der Membran werden in einer dafür vorgesehenen Halterung eingeklemmt und sind aufgrund der vorgesehenen Dichtwülste 8 nach dem Einklemmen automatisch gedichtet. Der Anschluß des Membrankerns 10 an die Kupplungsstange der Antriebseinheit, z. B. eines Motors mit Exzenterantrieb oder eines elektromechanischen Linearantriebs, erfolgt mit Hilfe des Anschlusses 15 im unteren Bereich des Kerns 10. Der elektrische Anschluß an die Stifte 13 und 14 erfolgt mit Hilfe eines standardisierten Steckerelements.

Claims (19)

  1. Sensormembran mit mehreren sandwichartig übereinander angeordneten Membranlagen, welche eine Förder- oder Trennmembran (1), eine darunter angeordnete erste elektrisch leitfähige Membranlage (2), eine darunter angeordnete elektrisch isolierende Membranlage (3) und eine darunter angeordnete zweite elektrisch leitfähige Membranlage (4) umfassen, wobei die ersten und zweiten leitfähigen Membranlagen (2, 4) durch die elektrisch isolierende Membranlage (3) voneinander getrennt und elektrisch isoliert sind und die zweite elektrisch leitfähige Membranlage (4) Abschnitte (7) aufweist, die durch Öffnungen (5) in der elektrisch isolierenden Membranlage (3) und durch Öffnungen (6) in der ersten elektrisch leitfähigen Membranlage (2) hindurchgreifen und die elektrisch isolierende Membranlage (3) Abschnitte (12) aufweist, die durch die Öffnungen (5) in der ersten leitfähigen Membranlage hindurchgreifen.
  2. Sensormembran nach Anspruch 1, dadurch gekennzeichnet, daß die Fördermembran (1) aus einem flexiblen, chemisch inerten Kunststoff, vorzugsweise Polytetrafluorethylen (PTFE), hergestellt ist.
  3. Sensormembran nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die elektrisch leitfähigen (2, 4) und elektrisch isolierenden (3) Membranlagen aus Gummi, vorzugsweise einem mit Kunststoffasern verstärkten EPDM (Ethylen-Propylen-Terpolymer), hergestellt sind.
  4. Sensormembran nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die elektrisch leitfähigen Membranlagen (2, 4) aus Gummi eine Beimischung von Kohlenstoffpartikeln in einer Menge enthalten, so daß die Membranlagen elektrisch leitfähig sind.
  5. Sensormembran nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Durchgriffe in der Nähe der beim Membranhub gewalkten Membranbereiche angeordnet sind.
  6. Sensormembran nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Membran im wesentlichen kreisscheibenförmig ist.
  7. Sensormembran nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Membranlagen (1, 2, 3, 4, 11) im wesentlichen den gleichen Durchmesser aufweisen.
  8. Sensormembran nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Durchgriffe durch die erste elektrisch leitfähige Membranlage (2) eine kreisförmige, kreissegmentförmige, nierenförmige, quadratische oder ovale Form aufweisen.
  9. Sensormembran nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Durchgriffe symmetrisch um den Mittelpunkt der Membran angeordnet sind.
  10. Sensormembran nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß ein Durchgriff im Mittelpunkt der Membran angeordnet ist.
  11. Sensormembran nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß vorzugsweise zwischen 4 und 20 18 Durchgriffe symmetrisch um den Mittelpunkt der Membran angeordnet sind.
  12. Sensormembran nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Durchgriffe durch die erste elektrisch leitfähige Membranlage (2) konzentrische Kreise um den Mittelpunkt der Membran bilden.
  13. Sensormembran nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Fördermembran (1) einen oder mehrere konzentrisch um den Mittelpunkt der Membran verlaufende Dichtwülste (8) aufweist, die im Einspannbereich (9) der Membran angeordnet sind.
  14. Sensormembran nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Membran einen Membrankern (10) aus Kunststoff oder Metall oder Kombinationen davon aufweist, der unterhalb der zweiten leitfähigen Membranlage (4) symmetrisch zum Mittelpunkt der Membran angeordnet ist.
  15. Sensormembran nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Sensormembran eine weitere nicht leitfähige oder isolierende Membranlage (11) aus Gummi zwischen der zweiten leitfähigen Membranlage (4) und dem Membrankern (10) aufweist, die formschlüssig mit dem Membrankern (10) verbunden ist.
  16. Sensormembran nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß Lagen (1, 2, 3, 4, 11) der Membran, vorzugsweise durch Kleben oder Vulkanisieren, fest miteinander verbunden sind.
  17. Sensormembran nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die elektrisch leitfähigen Membranlagen (2, 4) mit den beiden Anschlüssen eines Widerstands-, Strom- oder Spannungsmeßgerätes verbunden sind.
  18. Sensormembran nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß die leitfähigen Membranlagen (2, 4) mit Hilfe von metallischen Kontaktstiften (13, 14) kontaktiert werden, wobei der Stift (13), der die erste leitfähige Membranlage (2) kontaktiert, durch die zweite leitfähige Membranlage (4) und durch die isolierende Membranlage (3) hindurchgreift und mit Hilfe von Material aus der isolierenden Membranlage (3) oder einem anderen isolierenden Material gegen die zweite leitfähige Membranlage (4) isoliert ist.
  19. Membranpumpe mit einer Sensormembran nach einem der Ansprüche 1 bis 18.
EP04101686A 2003-05-20 2004-04-22 Sensormembran Expired - Lifetime EP1479910B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL04101686T PL1479910T3 (pl) 2003-05-20 2004-04-22 Membrana czujnikowa
SI200430443T SI1479910T1 (sl) 2003-05-20 2004-04-22 Senzorska membrana

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10323059 2003-05-20
DE10323059A DE10323059A1 (de) 2003-05-20 2003-05-20 Sensormembran

Publications (3)

Publication Number Publication Date
EP1479910A2 true EP1479910A2 (de) 2004-11-24
EP1479910A3 EP1479910A3 (de) 2005-09-21
EP1479910B1 EP1479910B1 (de) 2007-09-05

Family

ID=33039255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04101686A Expired - Lifetime EP1479910B1 (de) 2003-05-20 2004-04-22 Sensormembran

Country Status (9)

Country Link
US (1) US6935180B2 (de)
EP (1) EP1479910B1 (de)
JP (1) JP4666340B2 (de)
AT (1) ATE372461T1 (de)
DE (2) DE10323059A1 (de)
DK (1) DK1479910T3 (de)
ES (1) ES2290626T3 (de)
PL (1) PL1479910T3 (de)
SI (1) SI1479910T1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106841327A (zh) * 2017-04-06 2017-06-13 重庆华伟沃电科技有限公司 一种带破损检测传感器的窨井盖
WO2017125349A1 (en) * 2016-01-21 2017-07-27 Tetra Laval Holdings & Finance S.A. Membrane pump with leakage detection
WO2017140418A1 (de) * 2016-02-17 2017-08-24 Timmer Gmbh Membranpumpe, membran für eine membranpumpe und verfahren zum nachweis einer defekten membran einer membranpumpe
CH712963A1 (de) * 2016-09-29 2018-03-29 Daetwyler Schweiz Ag Pumpenmembran für eine Membranpumpe zur Förderung eines Fluides.

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2433298A (en) * 2005-12-13 2007-06-20 Joseph Anthony Griffiths Diaphragm with rupture detection
US20080003120A1 (en) * 2006-06-30 2008-01-03 Meza Humberto V Pump apparatus and method
DE102009023012A1 (de) * 2009-05-28 2010-12-16 G.S. Anderson Gmbh Membranventil-Membran
GB201015586D0 (en) 2010-09-17 2010-10-27 Qinetiq Ltd Leakage censor
JP6271871B2 (ja) * 2013-06-04 2018-01-31 株式会社フジキン ダイヤフラム弁
DE102013214304A1 (de) 2013-07-22 2015-01-22 Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaft Membran und Verfahren zu deren Herstellung
US10330094B2 (en) 2013-08-26 2019-06-25 Blue-White Industries, Ltd. Sealing diaphragm and methods of manufacturing said diaphragm
EP3415759B1 (de) 2017-06-13 2020-12-02 SISTO Armaturen S.A. Membran mit leitfähigen strukturen
EP3604876B2 (de) 2018-08-03 2024-04-03 SISTO Armaturen S.A. Membrandiagnose über luftschnittstelle
DE102019109283A1 (de) * 2019-04-09 2020-10-15 Prominent Gmbh Membranbruchüberwachung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732501A1 (de) * 1995-03-16 1996-09-18 W.L. GORE &amp; ASSOCIATES, INC. Störungsvorauserfassung bei einem Membran
US20020006335A1 (en) * 2000-05-18 2002-01-17 Gerhard Rohner Method and a device for measuring the pump operating parameters of a diaphragm delivery unit
US6498496B1 (en) * 1999-06-04 2002-12-24 Carl Freudenberg Device for detecting membrane leaks in a diaphragm pump

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153402Y2 (de) * 1971-07-28 1976-12-21
US4177680A (en) * 1977-10-14 1979-12-11 Bunker Ramo Corporation Dual pressure sensor
US4569634A (en) * 1984-09-27 1986-02-11 Mantell Myron E Failure sensing diaphragm for a diaphragm pump
JPS6282286A (ja) * 1985-10-04 1987-04-15 Nikkiso Co Ltd ダイアフラムポンプ用ダイアフラム
US4781535A (en) * 1987-11-13 1988-11-01 Pulsafeeder, Inc. Apparatus and method for sensing diaphragm failures in reciprocating pumps
JPH0285193A (ja) * 1988-09-22 1990-03-26 Mitsubishi Kasei Corp 非導電性材料ライニング金属製機器
JPH0337503A (ja) * 1989-07-03 1991-02-18 Kayaba Ind Co Ltd 歪ゲージ
DE4018464A1 (de) * 1990-06-08 1991-12-12 Ott Kg Lewa Membran fuer eine hydraulisch angetriebene membranpumpe
WO1995006205A1 (en) 1993-08-23 1995-03-02 W.L. Gore & Associates, Inc. Pre-failure warning pump diaphragm
IT1273394B (it) 1994-03-31 1997-07-08 Tetra Brik Res Dev Spa Dispositivo per la rilevazione di una perdita
SE506558C2 (sv) * 1994-04-14 1998-01-12 Cecap Ab Givarelement för tryckgivare
DE19750131C2 (de) * 1997-11-13 2002-06-13 Infineon Technologies Ag Mikromechanische Differenzdrucksensorvorrichtung
DE19829084B4 (de) * 1998-06-30 2005-01-13 Prominent Dosiertechnik Gmbh Membranpumpe
JP2001041838A (ja) * 1999-08-03 2001-02-16 Yamatake Corp 圧力センサおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732501A1 (de) * 1995-03-16 1996-09-18 W.L. GORE &amp; ASSOCIATES, INC. Störungsvorauserfassung bei einem Membran
US6498496B1 (en) * 1999-06-04 2002-12-24 Carl Freudenberg Device for detecting membrane leaks in a diaphragm pump
US20020006335A1 (en) * 2000-05-18 2002-01-17 Gerhard Rohner Method and a device for measuring the pump operating parameters of a diaphragm delivery unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017125349A1 (en) * 2016-01-21 2017-07-27 Tetra Laval Holdings & Finance S.A. Membrane pump with leakage detection
WO2017140418A1 (de) * 2016-02-17 2017-08-24 Timmer Gmbh Membranpumpe, membran für eine membranpumpe und verfahren zum nachweis einer defekten membran einer membranpumpe
CH712963A1 (de) * 2016-09-29 2018-03-29 Daetwyler Schweiz Ag Pumpenmembran für eine Membranpumpe zur Förderung eines Fluides.
WO2018060034A1 (de) * 2016-09-29 2018-04-05 Dätwyler Schweiz Ag Pumpenmembran
US10900478B2 (en) 2016-09-29 2021-01-26 Dätwyler Schweiz Ag Pump membrane for diaphragm pump
CN106841327A (zh) * 2017-04-06 2017-06-13 重庆华伟沃电科技有限公司 一种带破损检测传感器的窨井盖

Also Published As

Publication number Publication date
DE502004004843D1 (de) 2007-10-18
JP4666340B2 (ja) 2011-04-06
EP1479910B1 (de) 2007-09-05
JP2004347115A (ja) 2004-12-09
ATE372461T1 (de) 2007-09-15
ES2290626T3 (es) 2008-02-16
DK1479910T3 (da) 2008-04-21
EP1479910A3 (de) 2005-09-21
DE10323059A1 (de) 2004-12-09
US20040261536A1 (en) 2004-12-30
PL1479910T3 (pl) 2008-01-31
SI1479910T1 (sl) 2007-12-31
US6935180B2 (en) 2005-08-30

Similar Documents

Publication Publication Date Title
EP1479910B1 (de) Sensormembran
DE69313670T2 (de) Störungsvoraussage bei einem pumpmembran
DE102010043221B4 (de) Gassensor
DE2636406A1 (de) Verfahren und einrichtung zur feststellung leitfaehiger partikel in einem stroemungssystem
DE19926372C2 (de) Einrichtung zur Erkennung von Undichtheiten an Membranen
WO2014095419A1 (de) VORRICHTUNG ZUR BESTIMMUNG ODER ÜBERWACHUNG EINER PROZESSGRÖßE EINES MEDIUMS IN EINER ROHRLEITUNG
DE102009020439B4 (de) Zweipoliger Flüssigkeits-Leitfähigkeitssensor für hohe Hygieneanforderungen
DE102020001977A1 (de) Sensorelement und gassensor
EP1156215A1 (de) Einrichtung zur Überwachung der Unversehrtheit einer Membran
EP1164292A1 (de) Einrichtung zur Erkennung von Undichtheiten an Membranen
DE3247250A1 (de) Verfahren und vorrichtung zum feststellen der anwesenheit einer leitfaehigen fluessigkeit
DE19829084B4 (de) Membranpumpe
DE19855822A1 (de) Leitfähigkeitsmeßgerät
DE4027027C2 (de) Verfahren zur Erkennung einer Bruchstelle in einer Membran und Membranfördereinheit
DE69414260T2 (de) Brennstoffzellen
DE2624129A1 (de) Membranpumpe
DE102019109283A1 (de) Membranbruchüberwachung
EP2696045A2 (de) Vorrichtung zur Überwachung eines Hydraulikmediums
EP0276206A1 (de) Kontaktschiene für elektrischen fadenwächter.
DE20206914U1 (de) Membran für Ventile, Pumpen u.dgl.
DE3231363C2 (de)
DE3050189C2 (de) Stabförmige Sonde für die kapazitive Messung des Füllstandes in einem Behälter
DE60035844T2 (de) Brennstoffeinspritzventil mit einer Anordnung zur Verbesserung der Integrität der Schweissnaht
AT393903B (de) Heizblock
DE19950999B4 (de) Planares Sensorelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20060301

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004004843

Country of ref document: DE

Date of ref document: 20071018

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071012

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2290626

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E002822

Country of ref document: HU

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20140324

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20140326

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004004843

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004004843

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE

Effective date: 20140613

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004004843

Country of ref document: DE

Owner name: PROMINENT GMBH, DE

Free format text: FORMER OWNER: PROMINENT DOSIERTECHNIK GMBH, 69123 HEIDELBERG, DE

Effective date: 20140613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140422

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140418

Year of fee payment: 11

Ref country code: CZ

Payment date: 20140416

Year of fee payment: 11

Ref country code: SI

Payment date: 20140328

Year of fee payment: 11

Ref country code: NL

Payment date: 20140418

Year of fee payment: 11

Ref country code: AT

Payment date: 20140411

Year of fee payment: 11

Ref country code: SK

Payment date: 20140417

Year of fee payment: 11

Ref country code: IT

Payment date: 20140422

Year of fee payment: 11

Ref country code: ES

Payment date: 20140428

Year of fee payment: 11

Ref country code: CH

Payment date: 20140418

Year of fee payment: 11

Ref country code: FR

Payment date: 20140422

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20140422

Year of fee payment: 11

Ref country code: BE

Payment date: 20140418

Year of fee payment: 11

Ref country code: DK

Payment date: 20140422

Year of fee payment: 11

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

Ref country code: AT

Ref legal event code: MM01

Ref document number: 372461

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150422

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150422

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150501

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 2990

Country of ref document: SK

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

Ref country code: SI

Ref legal event code: KO00

Effective date: 20151216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150423

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150423

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150423

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200615

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004843

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103