EP1458216B1 - Vorrichtung und Verfahren zur Adaption von Hörgerätemikrofonen - Google Patents

Vorrichtung und Verfahren zur Adaption von Hörgerätemikrofonen Download PDF

Info

Publication number
EP1458216B1
EP1458216B1 EP04003637A EP04003637A EP1458216B1 EP 1458216 B1 EP1458216 B1 EP 1458216B1 EP 04003637 A EP04003637 A EP 04003637A EP 04003637 A EP04003637 A EP 04003637A EP 1458216 B1 EP1458216 B1 EP 1458216B1
Authority
EP
European Patent Office
Prior art keywords
microphone
microphones
amplitude
output signal
polynomial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04003637A
Other languages
English (en)
French (fr)
Other versions
EP1458216A2 (de
EP1458216A3 (de
Inventor
Georg-Erwin Arndt
Joachim Dr. Eggers
Thomas Hanses
Torsten Dr. Niederdränk
Hartmut Ritter
Gunter Sauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos GmbH
Original Assignee
Siemens Audioligische Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Audioligische Technik GmbH filed Critical Siemens Audioligische Technik GmbH
Publication of EP1458216A2 publication Critical patent/EP1458216A2/de
Publication of EP1458216A3 publication Critical patent/EP1458216A3/de
Application granted granted Critical
Publication of EP1458216B1 publication Critical patent/EP1458216B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/004Monitoring arrangements; Testing arrangements for microphones
    • H04R29/005Microphone arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers

Definitions

  • the present invention relates to a method for the mutual adaptation of a plurality of microphones of a hearing device. Moreover, the present invention relates to a corresponding device for adapting the microphones.
  • Hearing impaired people often suffer from a reduced ability to communicate in noise.
  • To improve the signal / noise ratio directional microphone arrays have been used for some time, the benefits to the hearing impaired is undisputed.
  • either first-order systems i. H. used with two microphones, or higher order.
  • the exclusion of backward received interference signals as well as the focus on frontally incident sounds facilitate a better understanding in everyday situations.
  • Directional microphones are sensitive to detuning of the transfer functions of the microphones by amount and phase.
  • the sensitivity to moods increases with the order of the directional microphone system and with decreasing frequency. At low frequencies, such directional microphone systems are the most sensitive.
  • a microphone at low frequencies can be determined by a first order high pass.
  • FIG. 1 Characterize a first microphone 1 by a high pass with the transfer function s / s-pol_ac1.
  • the microphone 1 receives a first input signal 2.
  • This filtered with the high-pass filter of the microphone 1 input signal 2 is converted by means of a first compensation filter 3 in a first microphone output signal 4.
  • the Compensation filter 3 has the transfer function s-pol_ac1 / s-pol_ideal. Both numerator and denominator can be represented as polynomial.
  • the numerator polynomial of the compensation filter 3 is chosen to correspond to the denominator polynomial of the high-pass acoustic impedance of the microphone 1.
  • the denominator polynomial of the compensation filter 3 corresponds to the denominator polynomial of the high pass of an ideal microphone.
  • the specific high-pass with the transfer function s / s-pol_ac2 of the second microphone 5 is compensated by a second compensation filter 6 with the transfer function s-pol_ac2 / s-pol_ideal, so that a corresponding second microphone output signal 8 is formed from the second microphone input signal 7.
  • the denominator polynomial of the high-pass filter 5 is eliminated by the numerator polynomial of the second compensation filter 6.
  • a processor of the hearing aid is capable of determining a difference in mean signal levels of two input signals. From this and with the aid of IIR or FIR filters, the frequency response of a channel can be corrected. Optionally, processing takes place in a frequency range from 100 Hz to 1 kHz.
  • FIG. 1 A temporally averaged view of the input levels at the microphones can be drawn on the input sensitivity of the microphones. Assuming that the incident switching signals are received by all microphones with a time delay but at almost the same level, the amplitude of the input sensitivities can be adjusted by adjusting the average input levels at the microphones.
  • the object of the present invention is to simplify the compensation of microphone differences in hearing aids.
  • this object is achieved according to claim 1 by a method for mutual adaptation of a plurality of microphones of a hearing aid, by measuring a first amplitude of a first output signal from a first of the plurality of microphones in a predetermined frequency range, measuring a second amplitude of a second output signal from a second one of the plurality Microphones in the predetermined frequency range and filtering the first output signal in response to the first amplitude and the second amplitude, so that the difference between the two output signals is reduced.
  • the filtering is done by multiplying by a denominator and counter polynomial, but only the numerator polynomial is varied by a closed-loop control.
  • the predetermined frequency range for measuring the amplitudes of the two output signals of the microphones corresponds to several frequency bands below 150 Hz.
  • the frequency band is between 40 and 60 Hz or 80 to 120 Hz. This is the range in which there are differences in the cutoff frequency of the high-pass filters make the microphones particularly noticeable.
  • FIG. 1 can be dispensed with by the invention to a compensation filter in a microphone path, the reference path.
  • Each compensation filter is thus contained in each path except the reference path. This means that, for example, with three microphones in two microphone paths, a compensation filter is to be provided, while the third microphone path is used as the reference path.
  • the filtering may be adjusted by a control loop so that the first and second amplitudes correspond to each other. This makes it possible to change the timing of the transfer function the microphones, for example, by pollution or aging effectively counter.
  • the compensation filtering can be divided into two sub-filters.
  • a first partial filtering is realized by a denominator polynomial that models the high-pass frequency of the reference path.
  • a second sub-filter is realized by a counter polynomial adapted to minimize the average level difference between the microphone paths.
  • the adaptation takes place by amount formation of the signals, whereby a phase dependence is eliminated. This can be dispensed with a unit such as the above-mentioned "acoustical delay compensation" block.
  • the coefficients of the counter polynomial depend only on a single parameter. This leads to a low effort in the adaptation. If only the counter polynomial is adaptable, this will in principle not lead to identically identical microphone signals, since there may be an error between the characteristic of the reference microphone and the filter effect described in the denominator polynomial. However, the effect of this good approximate solution is sufficient to significantly improve the directivity with minimal effort.
  • the amount and / or phase of the first output signal can be modified by the filtering. This can be used to improve the directional microphone setting.
  • the aim is to match the two or more microphones in their electrical and acoustic behavior to each other.
  • Each microphone can be described in the low-frequency range by a characteristic acoustic high pass whose corner frequency is about 50 Hz and a high-voltage electrical pass whose corner frequency is about 100 Hz. Both the acoustic and electrical high passes of the plurality of hearing aid microphones are slightly different and can be adapted to each other in the following manner.
  • a compensation according to the invention of the microphone differences is that first as in the prior art according to FIG. 1 the microphone input signal 2 is filtered with an acoustic high pass 1 of the first microphone 1 with the transfer function s / s-pol_ac1.
  • the subsequent compensation filter 3 has the transfer function s-pol_ac1 / s-pol_ac2.
  • the second microphone path which is in FIG. 2 below is taken into account.
  • the signal 7 of a reference microphone 5 is subjected to high-pass filtering in accordance with the transfer function s / s-pol_ac2.
  • the denominator polynomial of the second high-pass acoustic pass of the second microphone 5 is used to normalize the compensation filter 3 'in the first microphone path.
  • the compensation filter 3 'does not have to be normalized to an ideal microphone in order to obtain the first microphone output signal 4.
  • In the second microphone path can be dispensed with a compensation filter to obtain the second microphone output signal 8.
  • the compensation filter 3 ' has a transfer function with a counter polynomial s-pol_ac1 and a denominator polynomial s-pol_ac2. With simplified compensation, only the numerator and not the denominator and the counter are adjusted.
  • the denominator of the compensation filter 3 ' is set at a nominal frequency. In the acoustic case the nominal frequency is 50 Hz and in the electrical case 100 Hz. However, with this fixed nominal frequency only approximate compensation is possible. This approximate compensation is, as mentioned, sufficiently good, for example, to improve the directivity of a directional microphone.
  • the functions p 1 and p 0 and the parameter q 0 result from the above-mentioned European Patent Application EP 0982971 A2 ,
  • the variable z represents the frequency variable of the microphone input signal.
  • the parameter Xp corresponds to a manipulated variable of the compensation filter.
  • the denominator can not be varied in this simplified approach.
  • FIG. 3 An implementation for adapting the high pass of a microphone according to the first embodiment, in which the denominator of the transfer function of the compensation filter is fixed, is in FIG FIG. 3 shown as a block diagram.
  • the input unit forms the compensation filter 3 ', which is already in connection with FIG. 2 was explained.
  • Input signal here is the signal 2 of a first microphone, in contrast to FIG. 2 on the playback of an acoustic high pass, which represents the microphone has been omitted.
  • Output signal of the compensation filter 3 ' which performs the low-frequency microphone matching in the present case of the acoustic high-pass at 50 Hz, in turn, the signal 4.
  • This is a multiplication unit 10, in which the signal with a corresponding compensation factor 11 broadband corrected in amplitude can be.
  • a frequency range between 40 and 60 Hz is cut out of the output signal of the multiplication unit 10 and fed to a level meter 13. There, the level of the frequency range to be analyzed determined from the signal of the first microphone 2.
  • a bandpass 14 also cuts out the frequency range between 40 and 60 Hz from the output signal of the microphone and also delivers the filtered signal to a level meter 15.
  • the levels measured by the level meters 13 and 15 are subtracted from each other and the resulting level difference is made available to an updating unit for updating the Xp variable.
  • an update of the Xp value should only take place if the microphone signals have a correspondingly high level.
  • the microphone levels are applied to an input level sensing block 18 which generates an enable Xp signal when both signal levels exceed a certain threshold. This can be prevented that in cases where there are no acoustic input signals but only microphone noise, a microphone adaptation takes place. The enable-Xp signal is therefore looped to the Xp update block.
  • the value Xp, optionally updated in block 17, is now provided to the compensation filter 3 'to complete the control loop.
  • the determination of the Xp value and thus the adaptation of the microphones to each other in the Xp update block 17 can be carried out by a (N) LMS algorithm (Normalized Leased Meansquare), wherein an "acoustical delay" block is necessary.
  • FIG. 4 a circuit diagram of an improved version of a matching circuit is shown.
  • the essential structure corresponds to that of FIG. 3 , wherein the corresponding function blocks perform substantially the same functions.
  • Only the compensation filter, which is also designated by the reference numeral 3 ', has a further signal input, with which also the denominator polynomial can be changed via the variable X q .
  • the output signal of the input level query block 18, with which it is determined whether the two microphone signals have a sufficiently high level is forwarded to a switch 19.
  • This switch 19 alternately generates an enable-X q signal and an enable-X p signal in time if it receives an enable-X p -X q signal from block 18.
  • Xq update block 20 is therefore provided for changing or updating the X q -value here.
  • the switch 19 outputs an enable-X q signal, the X q value is changed in accordance with the level difference from the subtractor 16. Otherwise, if the switch 19 outputs an enable-signal X p, X p value is changed in the X p -Update block 17 corresponding to the level difference.
  • the level difference is less than 0, the X p or X q value in one direction and when the level difference is greater than 0 are changed in the corresponding other direction.
  • the compensation filter 3 'receives the modified or updated X p and X q values as manipulated variables.
  • the different high-pass frequencies of the microphones in a narrow frequency range around the corner frequencies mean different average output levels of the two microphone signals. This means that the level difference depends directly on the difference between the corner frequencies. To adapt the corner frequencies, therefore, simply the difference of the level is formed (power difference).
  • the total distance of a directional microphone from the microphone input to the output is often described at low frequencies with other first-order high-passes.
  • the microphone still has a first order electrical high pass with a corner frequency of about 180 Hz.
  • Another high pass results from a coupling capacitor and input resistance of an IC input stage.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Neurosurgery (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Transmitters (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur wechselseitigen Adaption mehrerer Mikrofone eines Hörgeräts. Darüber hinaus betrifft die vorliegende Erfindung eine entsprechende Vorrichtung zur Adaption der Mikrofone.
  • Hörgeschädigte leiden häufig unter einer verminderten Kommunikationsfähigkeit in Störlärm. Zur Verbesserung des Signal/Störgeräusch-Verhältnisses werden seit einiger Zeit Richtmikrofonanordnungen eingesetzt, deren Nutzen für den Hörgeschädigten unumstritten ist. Dabei werden häufig entweder Systeme erster Ordnung, d. h. mit zwei Mikrofonen, oder höherer Ordnung eingesetzt. Die Ausgrenzung von rückwärtig empfangenen Störsignalen sowie die Fokussierung auf frontal einfallende Schalle ermöglichen eine bessere Verständigung in Alltagssituationen.
  • Richtmikrofone sind jedoch sensibel gegenüber Verstimmungen der Übertragungsfunktionen der Mikrofone nach Betrag und Phase. Die Empfindlichkeit gegenüber Verstimmungen steigt mit der Ordnung des Richtmikrofonsystems und mit fallender Frequenz. Bei niedrigen Frequenzen sind derartige Richtmikrofonsysteme am empfindlichsten.
  • In dem Dokument EP 0982971 A2 ist in diesem Zusammenhang dargelegt, dass ein Mikrofon bei tiefen Frequenzen durch einen Hochpass erster Ordnung bestimmt werden kann. Dementsprechend lässt sich gemäß FIG 1 ein erstes Mikrofon 1 durch einen Hochpass mit der Übertragungsfunktion s/s-pol_ac1 charakterisieren. Das Mikrofon 1 nimmt ein erstes Eingangssignal 2 auf. Dieses mit dem Hochpassfilter des Mikrofons 1 gefilterte Eingangssignal 2 wird mit Hilfe eines ersten Kompensationsfilters 3 in ein erstes Mikrofonausgangssignal 4 gewandelt. Das Kompensationsfilter 3 besitzt die Übertragungsfunktion s-pol_ac1/s-pol_ideal. Sowohl Zähler als auch Nenner können als Polynom dargestellt werden. Das Zählerpolynom des Kompensationsfilters 3 wird so gewählt, dass es dem Nennerpolynom des akustischen Hochpasses des Mikrofons 1 entspricht. Das Nennerpolynom des Kompensationsfilters 3 entspricht dem Nennerpolynom des Hochpasses eines idealen Mikrofons. Durch Multiplikation der beiden Übertragungsfunktionen des Hochpasses, der das reale Mikrofon 1 charakterisiert, und des Kompensationsfilters 3 ergibt sich eine Normierung hinsichtlich des idealen Mikrofons und die spezifische Übertragungsfunktion des ersten Mikrofons ist kompensiert.
  • Bei der Betrachtung von Hörgerätemikrofonen hat sich gezeigt, dass in einem vereinfachten Ansatz insbesondere der am unteren Rand des nutzbaren Frequenzbandes vorhandene akustische Hochpass hinsichtlich Verstimmungen untersucht werden muss. Verschmutzungen, Alterung oder veränderte Umwelteinflüsse wirken besonders stark auf diesen Hochpass und verändern somit Amplituden- und Frequenzgang des Mikrofons im besonders kritischen, mittleren und unteren Frequenzbereich. Ein Möglichkeit, derart hervorgerufene Verstimmungen zu reduzieren, besteht darin, in allen Mikrofonpfaden dieselbe Hochpasseckfrequenz zu erzwingen.
  • In gleicher Weise wird der spezifische Hochpass mit der Übertragungsfunktion s/s-pol_ac2 des zweiten Mikrofons 5 durch ein zweites Kompensationsfilter 6 mit der Übertragungsfunktion s-pol_ac2/s-pol_ideal kompensiert, so dass aus dem zweiten Mikrofoneingangssignal 7 ein entsprechendes zweites Mikrofonausgangssignal 8 entsteht. Auch hier wird das Nennerpolynom des Hochpasses 5 durch das Zählerpolynom des zweiten Kompensationsfilters 6 eliminiert. Mit diesen beiden Kompensationsfiltern 3 und 6 können die Schwankungen der Hochpassgrenzfrequenz von Mikrofon zu Mikrofon, die insbesondere bei tiefen Frequenzen zu Phasen- und Amplitudenfehlern führen würden, ausgeglichen werden, indem in allen Mikrofonpfaden dieselben Eckfrequenzen eingestellt werden.
  • In dem weiteren Dokument US 6,272,229 B1 wird ein Verfahren zum relativen, adaptiven Phasenabgleich von zwei Mikrofonen grob skizziert. Dabei wird ein allgemeines Blockschaltbild für ein adaptives System angegeben. Das System beinhaltet einen Block "acoustical delay compensation", der in einer Art Vorverarbeitung die lineare Phasendifferenz der Mikrofone, die durch die Signallaufzeit zwischen den Mikrofonen bedingt ist, ausgleicht. Eine Adaptionsvorschrift ist jedoch nicht angegeben.
  • Ferner ist aus der Druckschrift EP 1 191 817 A1 ein Hörgerät mit adaptiver Mikrofonanpassung bekannt. Ein Prozessor des Hörgeräts ist in der Lage, eine Differenz der mittleren Signalpegel von zwei Eingangssignalen zu bestimmen. Daraus und mit Hilfe von IIR- oder FIR-Filtern kann die Frequenzantwort eines Kanals korrigiert werden. Gegebenenfalls erfolgt eine Verarbeitung in einem Frequenzbereich von 100 Hz bis 1 kHz.
  • Weitere interne Realisierungen greifen vor allem den Eingangsempfindlichkeitsunterschied der Mikrofone auf. Über eine zeitlich gemittelte Betrachtung der Eingangspegel an den Mikrofonen kann Rückschluss über die Eingangsempfindlichkeit der Mikrofone gezogen werden. Unter der Annahme, dass die einfallenden Schaltsignale zwar zeitverzögert, aber mit nahezu dem gleichen Pegel von allen Mikrofonen empfangen werden, kann über einen Abgleich der gemittelten Eingangspegel an den Mikrofonen die Amplitude der Eingangsempfindlichkeiten abgeglichen werden.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, die Kompensation von Mikrofonunterschieden bei Hörgeräten zu vereinfachen.
  • Erfindungsgemäß wird diese Aufgabe nach Anspruch 1 gelöst durch ein Verfahren zur wechselseitigen Adaption mehrerer Mikrofone eines Hörgeräts, durch Messen einer ersten Amplitude eines ersten Ausgangssignals von einem ersten der mehreren Mikrofone in einem vorgegebenen Frequenzbereich, Messen einer zweiten Amplitude eines zweiten Ausgangssignals von einem zweiten der mehreren Mikrofone in dem vorgegebenen Frequenzbereich und Filtern des ersten Ausgangssignals in Abhängigkeit von der ersten Amplitude und der zweiten Amplitude, so dass die Differenz zwischen den beiden Ausgangssignalen reduziert wird. Das Filtern erfolgt durch Multiplizieren mit einem Nenner- und Zählerpolynom, aber ausschließlich das Zählerpolynom wird durch eine Regelung variiert. Der vorgegebene Frequenzbereich für das Messen der Amplituden der beiden Ausgangssignale der Mikrofone entspricht mehreren Frequenzbändern unterhalb von 150 Hz. Insbesondere liegt das Frequenzband zwischen 40 und 60 Hz oder 80 bis 120 Hz. Dies ist der Bereich, in dem sich Unterschiede in der Eckfrequenz der Hochpassfilter der Mikrofone besonders stark bemerkbar machen.
  • Ferner ist erfindungsgemäß eine entsprechende Vorrichtung nach Anspruch 5 vorgesehen.
  • Gegenüber dem Stand der Technik nach FIG 1 kann durch die Erfindung auf ein Kompensationsfilter in einem Mikrofonpfad, dem Referenzpfad, verzichtet werden. Jeweils ein Kompensationsfilter ist damit in jedem Pfad, außer dem Referenzpfad, enthalten. Dies bedeutet, dass beispielsweise bei drei Mikrofonen in zwei Mikrofonpfaden ein Kompensationsfilter vorzusehen ist, während der dritte Mikrofonpfad als Referenzpfad verwendet wird.
  • Die Filterung kann durch eine Regelschleife angepasst werden, so dass die erste und zweite Amplitude einander entsprechen. Dadurch ist es möglich, der zeitlichen Änderung der Übertragungsfunktion der Mikrofone beispielsweise durch Verschmutzungen oder Alterung wirksam zu begegnen.
  • Die Kompensationsfilterung kann in zwei Teilfilterungen aufgeteilt werden. Eine erste Teilfilterung wird dabei durch ein Nennerpolynom, das die Hochpasseckfrequenz des Referenzpfads modelliert, realisiert. Ein zweites Teilfilter wird durch ein Zählerpolynom, das so adaptiert wird, dass die gemittelte Pegeldifferenz zwischen den Mikrofonpfaden minimal wird, realisiert. Die Adaption findet durch Betragsbildung der Signale statt, wodurch eine Phasenabhängigkeit entfällt. Damit kann auf eine Einheit wie den oben genannten "acoustical delay compensation"-Block verzichtet werden.
  • Vorzugsweise sind die Koeffizienten des Zählerpolynoms nur von einem einzigen Parameter abhängig. Dies führt zu einem geringen Aufwand bei der Adaption. Ist lediglich das Zählerpolynom adaptierbar, so führt dies prinzipiell nicht zu identisch gleichen Mikrofonsignalen, da ein Fehler zwischen der Charakteristik des Referenzmikrofons und der im Nennerpolynom beschriebenen Filterwirkung bestehen kann. Die Wirkung dieser guten Näherungslösung ist aber ausreichend, um die Richtwirkung mit minimalem Aufwand deutlich zu verbessern.
  • Eine optimale Adaption der zwei oder mehr Mikrofone aneinander ist möglich, wenn auch das Nennerpolynom variierbar ist. Diese zusätzliche Adaptionsmöglichkeit gewährleistet auch eine raschere Adaption durch den Regelkreis.
  • Vorteilhafterweise können durch das Filtern Betrag und/oder Phase des ersten Ausgangssignals modifiziert werden. Damit lässt sich die Einstellung des Richtmikrofons verbessern.
  • Der Vorteil einer Adaption mit dem Mikrofonmodell gegenüber einer Adaption mit einem Filter, das beliebige Phasenfunktionen nachbilden kann, liegt zum einen in der Einfachheit der Realisierung. Zum anderen ist es grundsätzlich vorteilhaft, von einer vereinfachten Modellvorstellung auszugehen und die Kompensation speziell auf das Modell auszurichten.
  • Die vorliegende Erfindung wird nun anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:
  • FIG 1
    ein Blockschaltbild zur Kompensation von Verschiebungen von Hochpasseckfrequenzen gemäß dem Stand der Technik;
    FIG 2
    ein Blockschaltbild zur Kompensation von Verschiebungen von Hochpasseckfrequenzen gemäß der vorliegenden Erfindung;
    FIG 3
    ein Schaltungsdiagramm einer Kompensationsschaltung gemäß einer ersten Ausführungsform der vorliegenden Erfindung; und
    FIG 4
    ein Schaltungsdiagramm einer Kompensationsschaltung gemäß einer zweiten Ausführungsform die zum Verständnis der vorliegenden Erfindung hilfreich ist.
  • Ziel ist es, die zwei oder mehr Mikrofone in ihrem elektrischen und akustischen Verhalten aneinander anzupassen. Jedes Mikrofon kann im tieffrequenten Bereich durch einen charakteristischen akustischen Hochpass, dessen Eckfrequenz etwa bei 50 Hz liegt und einen elektrischen Hochpass, dessen Eckfrequenz etwa 100 Hz liegt, beschrieben werden. Sowohl die akustischen als auch die elektrischen Hochpässe der mehreren Hörgerätemikrofone sind geringfügig voneinander verschieden und können auf die folgende Art aneinander adaptiert werden.
  • Gemäß dem Blockschaltbild von FIG 2 besteht eine erfindungsgemäße Kompensation der Mikrofonunterschiede darin, dass zunächst wie beim Stand der Technik gemäß FIG 1 das Mikrofoneingangssignal 2 mit einem akustischen Hochpass 1 des ersten Mikrofons 1 mit der Übertragungsfunktion s/s-pol_ac1 gefiltert wird. Das anschließende Kompensationsfilter 3' besitzt die Übertragungsfunktion s-pol_ac1/s-pol_ac2. Mit dieser Übertragungsfunktion wird dem zweiten Mikrofonpfad, der in FIG 2 unten dargestellt ist, Rechnung getragen. In diesem zweiten Mikrofonpfad wird wie beim Stand der Technik das Signal 7 eines Referenzmikrofons 5 einer Hochpassfilterung entsprechend der Übertragungsfunktion s/s-pol_ac2 unterzogen. Das Nennerpolynom des zweiten akustischen Hochpasses des zweiten Mikrofons 5 wird zur Normierung des Kompensationsfilters 3' im ersten Mikrofonpfad verwendet. Mit dieser Normierung muss das Kompensationsfilter 3' nicht auf ein ideales Mikrofon normiert werden, um das erste Mikrofonausgangssignal 4 zu erhalten. Im zweiten Mikrofonpfad kann dadurch auf ein Kompensationsfilter verzichtet werden, um das zweite Mikrofonausgangssignal 8 zu erhalten.
  • Das Kompensationsfilter 3' besitzt eine Übertragungsfunktion mit einem Zählerpolynom s-pol_ac1 und einem Nennerpolynom s-pol_ac2. Bei einer vereinfachten Kompensation wird nur der Zähler und nicht der Nenner und der Zähler angepasst. Der Nenner des Kompensationsfilters 3' wird bei einer Nominalfrequenz festgelegt. Im akustischen Fall liegt die Nominalfrequenz bei 50 Hz und im elektrischen Fall bei 100 Hz. Mit dieser festen Nominalfrequenz ist jedoch nur eine näherungsweise Kompensation möglich. Diese näherungsweise Kompensation ist, wie erwähnt, hinreichend gut, um beispielsweise die Richtwirkung eines Richtmikrofons zu verbessern.
  • Die Transformation eines derartigen Kompensationsfilters vom Analog- in den Digitalbereich führt zu einem einfachen IIR-Filter erster Ordnung, der sich wie folgt darstellen lässt: p 1 X p z + p 0 X p z + q 0
    Figure imgb0001
  • Die Funktionen p1 und p0 sowie der Parameter q0 ergeben sich aus der eingangs erwähnten europäischen Patentanmeldung EP 0982971 A2 . Die Variable z stellt die Frequenzvariable des Mikrofoneingangssignals dar. Der Parameter Xp entspricht einer Stellgröße des Kompensationsfilters. Der Nenner ist in diesem vereinfachten Ansatz nicht variierbar.
  • Es ergibt sich eine verbesserte Adaption des Kompensationsfilters dadurch, dass auch der Nenner in seiner Übertragungsfunktion durch einen Parameter Xq wie folgt variierbar ist: p 1 X p z + p 0 X p z + q 0 X p
    Figure imgb0002
  • Eine Implementierung zur Adaption des Hochpasses eines Mikrofons gemäß der ersten Ausführungsform, bei der der Nenner der Übertragungsfunktion des Kompensationsfilters fest ist, ist in FIG 3 als Blockschaltbild dargestellt. Die Eingangseinheit bildet das Kompensationsfilter 3', das bereits in Zusammenhang mit FIG 2 erläutert wurde. Eingangssignal ist auch hier das Signal 2 eines ersten Mikrofons, wobei bei dieser Darstellung im Gegensatz zu FIG 2 auf die Wiedergabe eines akustischen Hochpasses, der das Mikrofon darstellt, verzichtet wurde. Ausgangssignal des Kompensationsfilters 3', der das niederfrequente Mikrofon-Matching im vorliegenden Fall des akustischen Hochpasses bei 50 Hz durchführt, ist wiederum das Signal 4. Dieses wird einer Multiplikationseinheit 10 zugeführt, in der das Signal mit einem entsprechenden Kompensationsfaktor 11 breitbandig bezüglich der Amplitude korrigiert werden kann.
  • In einem anschließenden Bandpassfilter 12 wird ein Frequenzbereich zwischen 40 und 60 Hz aus dem Ausgangssignal der Multiplikationseinheit 10 ausgeschnitten und einem Pegelmesser 13 zugeführt. Dort wird der Pegel des zu analysierenden Frequenzbereichs aus dem Signal des ersten Mikrofons 2 ermittelt.
  • Parallel hierzu wird das aus einem zweiten Mikrofoneingangssignal 8 resultierende Ausgangssignal eines gleichermaßen nicht dargestellten zweiten beziehungsweise Referenzmikrofons ebenfalls einer Bandpassfilterung unterzogen. Ein Bandpass 14 schneidet hierzu ebenfalls den Frequenzbereich zwischen 40 und 60 Hz aus dem Ausgangssignal des Mikrofons aus und liefert das gefilterte Signal ebenfalls an einen Pegelmesser 15.
  • In einer Subtraktionseinheit werden die von den Pegelmessern 13 und 15 gemessenen Pegel voneinander subtrahiert und die resultierende Pegeldifferenz für eine Update-Einheit zur Aktualisierung der Xp-Variable zur Verfügung gestellt. Eine Aktualisierung des Xp-Werts soll allerdings nur erfolgen, wenn die Mikrofonsignale einen entsprechend hohen Pegel aufweisen. Hierzu werden die Mikrofonpegel einem Eingangspegelabfrageblock 18 zugeführt, der ein enable-Xp-Signal generiert, wenn beide Signalpegel eine gewisse Schwelle überschreiten. Dadurch kann verhindert werden, dass in Fällen, in denen keine akustischen Eingangssignale aber lediglich Mikrofonrauschen vorliegt, eine Mikrofonadaption erfolgt. Das enable-Xp-Signal wird daher an den Xp-Update-Block weitergeschleift.
  • Der in Block 17 gegebenenfalls aktualisierte Wert Xp wird nun zur Vervollständigung der Regelschleife an das Kompensationsfilter 3' geliefert. Die Ermittlung des Xp-Werts und damit die Adaption der Mikrofone aneinander in dem Xp-Update-Block 17 kann durch einen (N)LMS-Algorithmus (Normalised Leased Meansquare) erfolgen, wobei ein "acoustical delay"-Block notwendig ist.
  • In FIG 4 ist ein Schaltbild einer verbesserten Version eines Anpassschaltkreises dargestellt. Der wesentliche Aufbau entspricht dem von FIG 3, wobei die einander entsprechenden Funktionsblöcke im Wesentlichen die gleichen Funktionen ausführen. Lediglich das Kompensationsfilter, das ebenfalls mit dem Bezugszeichen 3' bezeichnet ist, verfügt über einen weiteren Signaleingang, mit dem auch das Nennerpolynom über die Variable Xq verändert werden kann.
  • Um sowohl eine Änderung des Zähler- als auch des Nennerpolynoms durchführen zu können, wird das Ausgangssignal des Eingangspegelabfrage-Blocks 18, mit dem festgestellt wird, ob die beiden Mikrofonsignale einen ausreichend hohen Pegel besitzen, an einen Schalter 19 weitergeleitet. Dieser Schalter 19 erzeugt zeitlich abwechselnd ein enable-Xq-Signal und ein enable-Xp-Signal, falls er ein enable-Xp-Xq-Signal von Block 18 erhält.
  • Neben dem Xp-Update-Block 17 ist hier folglich auch ein Xq-Update-Block 20 zur Änderung beziehungsweise Aktualisierung des Xq-Werts vorgesehen. Falls nun der Schalter 19 ein enable-Xq-Signal abgibt, wird der Xq-Wert entsprechend der Pegeldifferenz aus dem Subtrahierer 16 geändert. Wenn andernfalls der Schalter 19 ein enable-Xp-Signal abgibt, wird der Xp-Wert in dem Xp-Update-Block 17 entsprechend der Pegeldifferenz geändert. Wenn die Pegeldifferenz kleiner 0 ist wird der Xp- oder Xq-Wert in einer Richtung, und wenn die Pegeldifferenz größer 0 ist, in der entsprechend anderen Richtung geändert.
  • Das Kompensationsfilter 3' erhält die geänderten beziehungsweise aktualisierten Xp- und Xq-Werte als Stellgrößen. Wie auch bei der vorhergehenden Ausführungsform gemäß FIG 3 bedeuten die unterschiedlichen Hochpasseckfrequenzen der Mikrofone in einem schmalen Frequenzbereich um die Eckfrequenzen unterschiedliche gemittelte Ausgangspegel der beiden Mikrofonsignale. Dies bedeutet, dass die Pegeldifferenz direkt vom Unterschied der Eckfrequenzen abhängt. Zur Adaption der Eckfrequenzen wird daher einfach die Differenz der Pegel gebildet (Leistungsdifferenz).
  • Die Gesamtstrecke eines Richtmikrofons vom Mikrofoneingang bis zum Ausgang wird bei tiefen Frequenzen vielfach mit weiteren Hochpässen erster Ordnung beschrieben. Neben dem akustischen Hochpass verfügt das Mikrofon noch über einen elektrischen Hochpass erster Ordnung mit einer Eckfrequenz von ca. 180 Hz. Ein weiterer Hochpass ergibt sich durch einen Koppelkondensator und Eingangswiderstand einer IC-Eingangsstufe.
  • Die oben beschriebenen adaptiven Verfahren können prinzipiell bei allen Hochpässen angewandt werden.

Claims (6)

  1. Verfahren zur wechselseitigen Adaption mehrerer Mikrofone (1, 5) eines Hörgeräts, durch
    - Messen (13) einer ersten Amplitude eines ersten Ausgangssignals von einem ersten der mehreren Mikrofone (1) in einem vorgegebenen Frequenzbereich (12),
    - Messen (15) einer zweiten Amplitude eines zweiten Ausgangssignals von einem zweiten der mehreren Mikrofone (5) in dem vorgegebenen Frequenzbereich (14) und
    - Filtern (3') des ersten Ausgangssignals in Abhängigkeit von der ersten Amplitude und der zweiten Amplitude, so dass die Differenz (16) zwischen den beiden Ausgangssignalen reduziert wird,
    dadurch gekennzeichnet, dass
    - das Filtern (3') durch Multiplizieren mit einem Nenner- und Zählerpolynom erfolgt,
    - ausschließlich das Zählerpolynom durch eine Regelung variiert wird und
    - der vorgegebene Frequenzbereich (12, 14) aus einem ersten Frequenzband zwischen 40 und 60 Hz und einem zweiten Frequenzband zwischen 80 und 120 Hz besteht.
  2. Verfahren nach Anspruch 1, wobei Parameter zum Filtern (3') in einer Regelschleife derart angepasst werden, so dass die erste und zweite Amplitude einander entsprechen.
  3. Verfahren nach Anspruch 1 oder 2, wobei durch das Filtern Betrag und/oder Phase des ersten Ausgangssignals modifiziert wird.
  4. Vorrichtung zur wechselseitigen Adaption mehrerer Mikrofone (1, 5) eines Hörgeräts mit
    - einer ersten Messeinrichtung (13) zum Messen einer ersten Amplitude eines ersten Ausgangssignals von einem ersten der mehreren Mikrofone (1) in einem vorgegebenen Frequenzbereich (12),
    - einer zweiten Messeinrichtung (15) zum Messen einer zweiten Amplitude eines zweiten Ausgangssignals von einem zweiten der mehreren Mikrofone (5) in dem vorgegebenen Frequenzbereich (14) und
    - einer Filtereinrichtung (3'), die an die erste und zweite Messeinrichtung (13, 15) angeschlossen ist, zum Filtern des ersten Ausgangssignals in Abhängigkeit von der ersten Amplitude und der zweiten Amplitude, so dass die Differenz (16) zwischen den beiden Ausgangssignalen reduzierbar ist,
    dadurch gekennzeichnet, dass
    - die Filtereinrichtung (3') durch ein Nenner- und Zählerpolynom modellierbar ist,
    - eine Regeleinrichtung an die Filtereinrichtung angeschlossen ist, mit der ausschließlich das Zählerpolynom variierbar ist, und
    - der vorgegebene Frequenzbereich (12, 14) aus einem ersten Frequenzband zwischen 40 und 60 Hz und einem zweiten Frequenzband zwischen 80 und 120 Hz besteht.
  5. Vorrichtung nach Anspruch 4, wobei die Filtereinrichtung (3') in einer Regelschleife derart anpassbar ist, dass erste und zweite Amplitude einander entsprechen.
  6. Vorrichtung nach Anspruch 4 oder 5, wobei mit der Filtereinrichtung Betrag und/oder Phase des ersten Ausgangssignals modifizierbar ist.
EP04003637A 2003-03-11 2004-02-18 Vorrichtung und Verfahren zur Adaption von Hörgerätemikrofonen Expired - Lifetime EP1458216B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10310580 2003-03-11
DE10310580A DE10310580A1 (de) 2003-03-11 2003-03-11 Vorrichtung und Verfahren zur Adaption von Hörgerätemikrofonen

Publications (3)

Publication Number Publication Date
EP1458216A2 EP1458216A2 (de) 2004-09-15
EP1458216A3 EP1458216A3 (de) 2005-12-14
EP1458216B1 true EP1458216B1 (de) 2008-08-06

Family

ID=32748191

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04003637A Expired - Lifetime EP1458216B1 (de) 2003-03-11 2004-02-18 Vorrichtung und Verfahren zur Adaption von Hörgerätemikrofonen

Country Status (5)

Country Link
US (1) US7254245B2 (de)
EP (1) EP1458216B1 (de)
AT (1) ATE404032T1 (de)
DE (2) DE10310580A1 (de)
DK (1) DK1458216T3 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK200401280A (da) * 2004-08-24 2006-02-25 Oticon As Lavfrekvens fase matchning til mikrofoner
CA2581118C (en) 2004-10-19 2013-05-07 Widex A/S A system and method for adaptive microphone matching in a hearing aid
EP1773098B1 (de) * 2005-10-06 2012-12-12 Oticon A/S Vorrichtung und Verfahren zur Anpassung von Mikrofonen
US8031881B2 (en) 2007-09-18 2011-10-04 Starkey Laboratories, Inc. Method and apparatus for microphone matching for wearable directional hearing device using wearer's own voice
US8374362B2 (en) * 2008-01-31 2013-02-12 Qualcomm Incorporated Signaling microphone covering to the user
US9838783B2 (en) * 2015-10-22 2017-12-05 Cirrus Logic, Inc. Adaptive phase-distortionless magnitude response equalization (MRE) for beamforming applications
CN108235818B (zh) * 2018-01-05 2020-02-21 万魔声学科技有限公司 主动降噪方法、设备及耳机
US11070907B2 (en) 2019-04-25 2021-07-20 Khaled Shami Signal matching method and device
DE102020200553B3 (de) 2020-01-17 2021-05-12 Sivantos Pte. Ltd. Verfahren zur Abstimmung der jeweiligen Phasengänge eines ersten Mikrofones und eines zweiten Mikrofons

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402496A (en) 1992-07-13 1995-03-28 Minnesota Mining And Manufacturing Company Auditory prosthesis, noise suppression apparatus and feedback suppression apparatus having focused adaptive filtering
US5550923A (en) 1994-09-02 1996-08-27 Minnesota Mining And Manufacturing Company Directional ear device with adaptive bandwidth and gain control
DE19810043A1 (de) 1998-03-09 1999-09-23 Siemens Audiologische Technik Hörgerät mit einem Richtmikrofon-System
DE19814180C1 (de) 1998-03-30 1999-10-07 Siemens Audiologische Technik Digitales Hörgerät sowie Verfahren zur Erzeugung einer variablen Richtmikrofoncharakteristik
US6654468B1 (en) * 1998-08-25 2003-11-25 Knowles Electronics, Llc Apparatus and method for matching the response of microphones in magnitude and phase
DE19849739C2 (de) * 1998-10-28 2001-05-31 Siemens Audiologische Technik Adaptives Verfahren zur Korrektur der Mikrofone eines Richtmikrofonsystems in einem Hörgerät sowie Hörgerät
DE19918883C1 (de) * 1999-04-26 2000-11-30 Siemens Audiologische Technik Hörhilfegerät mit Richtmikrofoncharakteristik
DE19927278C1 (de) * 1999-06-15 2000-12-14 Siemens Audiologische Technik Verfahren zum Anpassen eines Hörhilfegeräts sowie Hörhilfegerät
EP1198974B1 (de) * 1999-08-03 2003-06-04 Widex A/S Hörgerät mit adaptiver anpassung von mikrofonen
DE19955156A1 (de) * 1999-11-17 2001-06-21 Univ Karlsruhe Verfahren und Vorrichtung zur Unterdrückung eines Störsignalanteils im Ausgangssignal eines Schallwandlermittels
US7027607B2 (en) * 2000-09-22 2006-04-11 Gn Resound A/S Hearing aid with adaptive microphone matching

Also Published As

Publication number Publication date
US7254245B2 (en) 2007-08-07
EP1458216A2 (de) 2004-09-15
DE502004007757D1 (de) 2008-09-18
DE10310580A1 (de) 2004-10-07
ATE404032T1 (de) 2008-08-15
DK1458216T3 (da) 2008-11-24
US20040228495A1 (en) 2004-11-18
EP1458216A3 (de) 2005-12-14

Similar Documents

Publication Publication Date Title
EP1853089B1 (de) Verfahren zum Unterdrücken von Rückkopplungen und zur Spektralerweiterung bei Hörvorrichtungen
EP1366564B1 (de) Vorrichtung zum geräuschabhängigen einstellen der lautstärken
DE19802568C2 (de) Hörhilfe mit Kompensation von akustischer und/oder mechanischer Rückkopplung
DE3101851C2 (de) Vorrichtung zum Erkennen von Sprache
EP0656737B1 (de) Hörhilfegerät mit Unterdrückung der akustischen Rückkopplung
DE2207141C3 (de) Schaltungsanordnung zur Unterdrückung unerwünschter Sprachsignale mittels eines vorhersagenden Filters
DE69628411T2 (de) Vorrichtung und Verfahren zur Geräuschreduzierung eines Sprachsignals
DE3802903C2 (de)
EP1771034A2 (de) Mikrofonkalibrierung bei einem RGSC-Beamformer
DE102006047965A1 (de) Hörhilfsgerät mit einer Okklusionsreduktionseinrichtung und Verfahren zur Okklusionsreduktion
EP1456839B1 (de) Verfahren und vorrichtung zur unterdrückung von periodischen störsignalen
EP1458216B1 (de) Vorrichtung und Verfahren zur Adaption von Hörgerätemikrofonen
DE10310579B4 (de) Automatischer Mikrofonabgleich bei einem Richtmikrofonsystem mit wenigstens drei Mikrofonen
EP3454572A1 (de) Verfahren zum erkennen eines defektes in einem hörinstrument
DE19821273B4 (de) Meßverfahren zur gehörrichtigen Qualitätsbewertung von codierten Audiosignalen
EP1052881B1 (de) Hörhilfsgerät mit Oszillationsdetektor sowie Verfahren zur Feststellung von Oszillationen in einem Hörhilfsgerät
DE60304147T2 (de) Virtuelle Mikrophonanordnung
EP1850634A2 (de) Verfahren zum Einstellen eines Hörgeräts mit Hochfrequenzverstärkung
DE102005039621A1 (de) Verfahren und Vorrichtung zur adaptiven Reduktion von Rausch- und Hintergrundsignalen in einem sprachverarbeitenden System
EP1453355B1 (de) Signalverarbeitung in einem Hörgerät
DE102019201879B3 (de) Verfahren zum Betrieb eines Hörsystems und Hörsystem
DE102019105458A1 (de) Zeitverzögerungsschätzung
DE2712534C2 (de) Verfahren und Vorrichtung zur Schalldämpfung
EP1309225B1 (de) Verfahren zur Bestimmung einer Rückkopplungsschwelle in einem Hörgerät
EP3796676B1 (de) Verfahren zum betrieb eines hörgeräts und hörgerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 04R 25/00 A

Ipc: 7H 04R 3/00 B

17P Request for examination filed

Effective date: 20060206

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070228

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004007757

Country of ref document: DE

Date of ref document: 20080918

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081117

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

BERE Be: lapsed

Owner name: SIEMENS AUDIOLOGISCHE TECHNIK G.M.B.H.

Effective date: 20090228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090225

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004007757

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004007757

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004007757

Country of ref document: DE

Owner name: SIVANTOS GMBH, DE

Free format text: FORMER OWNER: SIEMENS AUDIOLOGISCHE TECHNIK GMBH, 91058 ERLANGEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190221

Year of fee payment: 16

Ref country code: DE

Payment date: 20190219

Year of fee payment: 16

Ref country code: CH

Payment date: 20190221

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190221

Year of fee payment: 16

Ref country code: DK

Payment date: 20190226

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004007757

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20200229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200218

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901