EP1438406A1 - Medikament zur behandlung eines pankreaskarzinoms - Google Patents

Medikament zur behandlung eines pankreaskarzinoms

Info

Publication number
EP1438406A1
EP1438406A1 EP02785312A EP02785312A EP1438406A1 EP 1438406 A1 EP1438406 A1 EP 1438406A1 EP 02785312 A EP02785312 A EP 02785312A EP 02785312 A EP02785312 A EP 02785312A EP 1438406 A1 EP1438406 A1 EP 1438406A1
Authority
EP
European Patent Office
Prior art keywords
strand
dsrna
medicament
nucleotides
use according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02785312A
Other languages
English (en)
French (fr)
Inventor
Matthias Ocker
Christoph Herold
Anke Geick
Detlef Schuppan
Hans-Peter Vornlocher
Roland Kreutzer
Stefan Limmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alnylam Europe AG
Original Assignee
Ribopharma AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10160151A external-priority patent/DE10160151A1/de
Priority claimed from PCT/EP2002/000151 external-priority patent/WO2002055692A2/de
Priority claimed from DE10230996A external-priority patent/DE10230996A1/de
Application filed by Ribopharma AG filed Critical Ribopharma AG
Priority to EP02785312A priority Critical patent/EP1438406A1/de
Priority claimed from PCT/EP2002/011970 external-priority patent/WO2003035870A1/de
Publication of EP1438406A1 publication Critical patent/EP1438406A1/de
Withdrawn legal-status Critical Current

Links

Definitions

  • the invention relates to a medicament and a use for the treatment of pancreatic carcinoma and a use for the production of such a medicament.
  • Pancreatic carcinoma or adenocarcinoma of the pancreas is one of the carcinomas with the worst prognoses. Little is known about the causes of the development of pancreatic cancer. A sufficiently successful therapy does not yet exist. In addition to other genetic changes, the cells of the pancreatic carcinoma often have a mutation in the K-ras gene. Mutations were mainly detected in codons 12, 13 and 61.
  • the K-ras gene is a proto-oncogene that codes for the GTP-binding protein K-ras. K-ras is located on the cytoplasmic side of the plasma membrane of cells and is associated with receptor tyrosine kinases. Binding of GTP activates K-ras.
  • K-ras can be reactivated by releasing the resulting GDP and binding GTP again.
  • the mentioned mutations can lead to an exchange of an amino acid in K-ras and thus to its permanent activation.
  • Activation of K-ras activates protein kinase C, among other things.
  • DE 101 00 586 C1 discloses a method for inhibiting the expression of a target gene in a cell, in which an oligoribonucleotide with a double-stranded structure is introduced into the cell.
  • One strand of the double-stranded structure is complementary to the target gene.
  • the principle on which inhibition is based is now known as RNA interference.
  • the object of the present invention is to eliminate the disadvantages of the prior art.
  • an effective medicament and a use for the treatment of pancreatic carcinoma are to be provided.
  • a use for the production of such a medicament is to be provided.
  • a medicament for the treatment of, in particular human, pancreatic carcinoma, the medicament containing a double-stranded ribonucleic acid (dsRNA) which is suitable for inhibiting the expression of a K-ras gene by means of RNA interference.
  • dsRNA double-stranded ribonucleic acid
  • a dsRNA is present when the ribonucleic acid consisting of one or two ribonucleic acid strands has a double-stranded structure.
  • Not all nucleotides of the dsRNA need to have canonical Watson-Crick base pairings.
  • individual non-complementary base pairs hardly or not at all impair the effectiveness.
  • the maximum possible number of base pairs is the number of nucleotides in the shortest strand contained in the dsRNA.
  • the medicament may contain the dsRNA in an amount sufficient to inhibit the expression of the K-ras gene in the pancreatic carcinoma.
  • the drug can also be designed so that several units of the drug together contain the sufficient amount in total. The sufficient amount depends on the form of administration.
  • the dsRNA can be administered in increasing amounts or doses. Then, using a tissue sample taken from the pancreatic carcinoma, it can be determined using known methods whether an inhibition of the Expression of the K-ras gene has occurred.
  • the methods can be, for example, molecular biological, biochemical or immunological methods.
  • the K-ras gene can be mutated in such a way that it causes permanent activation of K-ras.
  • the inhibition of the expression of such a gene by the medicament according to the invention brings about a particularly effective inhibition of the growth of pancreatic carcinoma.
  • the K-ras gene can be mutated in codons 12, 13 or 61.
  • codon 12 can code for arginine, serine, alanine, valine, cysteine or aspartic acid, codon 13 for aspartic acid or codon 61 for histidine or leucine.
  • codon 12 and codon 13 each code for glycine and codon 61 for glutamic acid.
  • a strand S1 of the dsRNA preferably has a region which is at least partially complementary to the K-ras gene and in particular comprises fewer than 25 successive nucleotides.
  • a dsRNA is particularly well suited for inhibiting the expression of the K-ras gene.
  • the “K-ras gene” is understood to mean the DNA strand of the double-stranded DNA coding for K-ras in the tumor cell, which is complementary to one that serves as a template during transcription Strand of DNA including all transcribed areas.
  • the K-ras gene is therefore generally the sense strand.
  • the strand S1 can thus be complementary to an RNA transcript formed during the expression of the K-ras gene or its processing product, such as an mRNA.
  • the complementary region of the dsRNA can have 19 to 24, preferably 20 to 24, particularly preferably 21 to 23, in particular 22 or 23, nucleotides.
  • a dsRNA with this structure is particularly efficient in inhibiting the K-ras gene.
  • the strand S1 of the dsRNA can have less than 30, preferably less than 25, particularly preferably 21 to 24, in particular 23, nucleotides. The number of these nucleotides is also the number of the maximum possible base pairs in the dsRNA. Such a dsRNA is particularly stable intracellularly.
  • dsRNA has a single-stranded overhang formed from 1 to 4, in particular 2 or 3, nucleotides.
  • a dsRNA has a better effectiveness in inhibiting the expression of the K-ras gene than at least one end of a dsRNA without single-stranded overhangs.
  • One end is a region of the dsRNA in which there is a 5 'and a 3' strand end.
  • a dsRNA consisting only of strand S1 accordingly has a loop structure and only one end.
  • a dsRNA formed from the strand S1 and a strand S2 has two ends. One end is formed in each case by one end of strand S1 and one end of strand S2.
  • the single-stranded overhang is preferably located at the 3 'end of the strand S1. This localization of the single-stranded overhang leads to a further increase in the efficiency of the drug.
  • the dsRNA only at one, especially at the 3 'end of the strand
  • dsRNA 51 located, end a single-stranded overhang.
  • the other end is smooth on a double ended dsRNA, i.e. without overhangs, trained.
  • a dsRNA has proven to be particularly stable both in various cell culture media and in blood and serum.
  • the dsRNA preferably has a strand in addition to the strand S1
  • the medicament is particularly effective if the strand S1 (anti-sense strand) has a length of 23 nucleotides, the strand S2 has a length of 21 nucleotides and the 3 'end of the strand S1 has a single-stranded overhang formed from two nucleotides , The end of the dsRNA located at the 5 'end of the strand S1 is smooth.
  • the strand S1 can be complementary to the primary or processed RNA transcript of the K-ras gene.
  • the dsRNA preferably consists of strand S2 with the sequence SEQ ID NO: 1 and strand S1 with the sequence SEQ ID NO: 2 or strand S2 with the sequence SEQ ID NO: 3 and strand S1 with the sequence SEQ ID NO : 4 or strand S2 with the sequence SEQ ID NO: 5 and strand S1 with the sequence SEQ ID NO: 6 according to the attached sequence listing.
  • a dsRNA is particularly effective in inhibiting the expression of the K-ras gene.
  • the dsRNA can be enclosed in the medicament in a solution, in particular a physiologically compatible buffer or a physiological saline solution, by a micellar structure, preferably a liposome, a capsid, a capsoid or a polymeric nano or microcapsule, or on a polymeric nano or microcapsule be bound.
  • the physiologically compatible buffer can be a phosphate-buffered saline solution.
  • a micellar structure, a capsid, a capsoid or a polymeric nano or microcapsule can facilitate the uptake of the dsRNA into the tumor cells.
  • the polymeric nano- or microcapsule consists of at least one biodegradable polymer, for example polybutylcyanoacrylic.
  • the polymeric nano- or microcapsule can transport and release dsRNA contained in or bound to it in the body.
  • the medicament can have a preparation which is suitable for inhalation, oral ingestion, infusion or injection, in particular for intravenous, intraperitoneal or intratumoral infusion or injection.
  • a preparation suitable for inhalation, infusion or injection can consist of a physiologically compatible solvent, preferably a physiological saline solution or a physiologically compatible buffer, in particular a phosphate-buffered salt solution, and the dsRNA.
  • the medicament is preferably present in at least one administration unit which contains the dsRNA in an amount which has a dosage of at most 5 mg, in particular at most 2.5 mg, preferably at most 200 ⁇ g, particularly preferably at most 100 ⁇ g, preferably at most 50 ⁇ g, in particular allows a maximum of 25 ⁇ g per kg body weight and day.
  • the administration unit can be designed for a single administration or intake per day. Then the entire daily dose is contained in one administration unit. Is the administration unit for repeated administration or Designed to be taken per day, the dsRNA is contained in a correspondingly smaller amount that enables the daily dose to be reached.
  • the administration unit can also be designed for a single administration or ingestion for several days, e.g. B. by releasing the dsRNA over several days. The administration unit then contains a corresponding multiple of the daily dose.
  • the use of a double-stranded ribonucleic acid suitable for inhibiting the expression of a K-ras gene by means of RNA interference is also provided for the manufacture of a medicament for the treatment of pancreatic carcinoma. Furthermore, the invention provides for the use of a double-stranded ribonucleic acid which is suitable for inhibiting the expression of a K-ras gene by means of RNA interference for the treatment of pancreatic carcinoma.
  • 2 shows the number of vital cells after transfection with a dsRNA and 3 shows the volume of subcutaneously implanted human pancreatic adenocarcinomas in NMRI mice.
  • the double-stranded oligoribonucleotides used have the following sequences, designated SEQ ID NO: 1 to SEQ ID NO: 8 in the sequence listing:
  • KRAS1 which is complementary to a sequence having a first point mutation in codon 12 from the human K-ras gene in YAP C cells:
  • KRAS1 ' which is complementary to a sequence having a first point mutation in codon 12 from the human K-ras gene in a human pancreatic adenocarcinoma implanted subcutaneously in NMRI mice:
  • KRAS2 which is complementary to the wild-type sequence from the human K-ras gene:
  • NEO which is complementary to a sequence from the neomycin resistance gene:
  • S2 5'- c aag gau gag gau cgu uuc gca-3 '(SEQ ID NO: 7)
  • Sl 3' -ucu guc cua cuc cua gca aag cg -5 '(SEQ ID NO: 8)
  • Cells from the human pancreatic carcinoma cell line YAP C which can be obtained under the number ACC 382 from the German Collection of Microorganisms and Cell Cultures, Braunschweig, were under constant conditions at 37 ° C, 5% CO in RPMI 1640 medium (Biochrom, Berlin) with 10% fetal calf serum (FKS) and 100 ⁇ g / ml penicillin / streptomycin.
  • FKS fetal calf serum
  • the transfections were carried out in a 6-well plate with oligofectamine (Invitrogen, Düsseldorf). 150,000 cells were exposed per well.
  • the transfection of the double-stranded oligoribonucleotides was carried out according to the protocol recommended by Invitrogen for oligofectamines (details refer to a well or a well of a 6-well plate):
  • 10 ⁇ l of the double-stranded oligoribonucleotide (0.1-10 ⁇ M) were diluted with 175 ⁇ l cell culture medium without additives.
  • 3 ul oligofectamines were diluted with 12 ul cell culture medium without additives and incubated for 10 minutes at room temperature.
  • the oligofectamine thus diluted was added to the already diluted double-stranded oligoribonucleotides, mixed and incubated for 20 minutes at room temperature.
  • the cells to be transfected were washed once with cell culture medium without additives and 800 ⁇ l of fresh cell culture medium were added.
  • the supernatants were collected after the incubation, the cells were washed with phosphate-buffered saline (PBS), detached using trypsin and centrifuged at 100 g for 10 minutes. The supernatant was discarded and the pellet was incubated with hypotonic propidium iodide solution for 30 minutes at 4 ° C in the dark. The analysis was carried out by flow cytometry in the fluorescence-assisted cell sorter FACSCalibur (BD GmbH, Heidelberg).
  • PBS phosphate-buffered saline
  • KRAS1 shows the percentage apoptosis rate of human pancreatic carcinoma cells YAP C as a function of the incubation time after transfection with increasing concentrations of the dsRNA KRAS1. It can be seen from this that KRAS1 induces apoptosis in human pancreatic carcinoma cells depending on the concentration. The apoptosis rate increases depending on the incubation period.
  • YAP-C cells were exposed per well in a 6-well plate and transfected as described above.
  • the number of vital cells was determined using the trypan blue exclusion staining after 24 to 120 h of incubation by counting in a Neubauer counting chamber. The result is shown in Fig. 2.
  • the proliferation of YAP C cells could be inhibited by KRASl depending on the concentration.
  • NMRI mice (Harlan Winkelmann GmbH, Borchen) tissue fragments of 2-3 mm in diameter from a human pancreatic adenocarcinoma were implanted subcutaneously. After the tumors had reached a size of 6-7 mm, 200 ⁇ g KRAS1 'or NEO per kg body weight, each dissolved in physiological saline, were injected intraperitoneally. Physiological saline was injected as a control. The tumors were measured daily using a caliper or a standardized template. 3 shows the tumor volume measured in mm 3 as the mean +/- standard error of the mean as a function of the time measured in days from the start of treatment by the intraperitoneal injections (days ip).
  • the dsRNA which is complementary to the K-ras gene, is able to inhibit the growth of the tumors.

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Die Erfindung betrifft ein Medikament zur Behandlung eines Pankreaskarzinoms, wobei das Medikament eine zu einer Hemmung der Expression eines K-ras-Gens geeignete doppelsträngige Ribonukleinsäure (dsRNA) enthält.

Description

Medikament zur Behandlung eines Pankreaskarzinoms
Die Erfindung betrifft ein Medikament und eine Verwendung zur Behandlung eines Pankreaskarzinoms sowie eine Verwendung zur Herstellung eines solchen Medikaments.
Das Pankreaskarzinom bzw. Adenokarzinom des Pankreas gehört zu den Karzinomen mit den schlechtesten Prognosen. Über die Ursachen der Entstehung des Pankreaskarzinoms ist wenig be- kannt. Eine ausreichend erfolgreiche Therapie existiert bisher nicht. Neben anderen genetischen Veränderungen weisen die Zellen des Pankreaskarzinoms häufig eine Mutation im K-ras- Gen auf . Mutationen wurden dabei vor allem in den Codons 12 , 13 und 61 nachgewiesen. Das K-ras-Gen ist ein Proto-Onkogen, welches für das GTP-bindende Protein K-ras kodiert. K-ras ist auf der zytoplasmatisehen Seite der Plasmamembran von Zellen lokalisiert und mit Rezeptor-Tyrosin-Kinasen assoziiert. Bindung von GTP aktiviert K-ras . Die Inaktivierung erfolgt durch hydrolytische Abspaltung eines Phosphatrests vom gebundenen GTP. Durch Freisetzen des dabei gebildeten GDPs und erneutem Binden von GTP kann K-ras wieder aktiviert werden. Die genannten Mutationen können zu einem Austausch einer Aminosäure in K-ras und dadurch zu dessen permanenter Aktivierung führen. Die Aktivierung von K-ras aktiviert unter anderem Prote- in-Kinase C.
Aus der DE 101 00 586 Cl ist ein Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle bekannt, bei dem ein Oligoribonukleotid mit doppelsträngiger Struktur in die Zelle eingeführt wird. Ein Strang der doppelsträngigen Struktur ist dabei komplementär zum Zielgen. Das der Hemmung zu Grunde liegende Prinzip wird inzwischen als RNA-Interferenz bezeichnet. Aufgabe der vorliegenden Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es soll insbesondere ein wirksames Medikament und eine Verwendung zur Behandlung eines Pankreaskarzinoms bereitgestellt werden. Weiterhin soll eine Verwendung zur Herstellung eines solchen Medikaments bereitgestellt werden.
Diese Aufgabe wird durch die Merkmale der Ansprüche 1, 19 und 20 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 18 und 21 bis 38.
Erfindungsgemäß ist ein Medikament zur Behandlung eines, insbesondere humanen, Pankreaskarzinoms vorgesehen, wobei das Medikament eine zu einer Hemmung der Expression eines K-ras- Gens mittels RNA-Interferenz geeignete doppelsträngige Ribonukleinsäure (dsRNA) enthält. Eine dsRNA liegt vor, wenn die aus einem oder zwei Ribonukleinsäure-Strängen bestehende Ribonukleinsäure eine doppelsträngige Struktur aufweist. Nicht alle Nukleotide der dsRNA müssen kanonische Watson-Crick- Basenpaarungen aufweisen. Insbesondere einzelne nicht komplementäre Basenpaare beeinträchtigen die Wirksamkeit kaum oder gar nicht. Die maximal mögliche Zahl der Basenpaare ist die Zahl der Nukleotide in dem kürzesten in der dsRNA enthaltenen Strang.
Das Medikament kann die dsRNA in einer zu der Hemmung der Expression des K-ras-Gens in dem Pankreaskarzinom ausreichenden Menge enthalten. Das Medikament kann auch so konzipiert sein, dass mehrere Einheiten des Medikaments zusammen die ausrei- chende Menge in der Summe enthalten. Die ausreichende Menge hängt von der Verabreichungsform ab. Zur Ermittlung einer ausreichenden Menge kann die dsRNA in steigenden Mengen bzw. Dosierungen verabreicht werden. Danach kann an einer aus dem Pankreaskarzinom entnommenen Gewebeprobe mit bekannten Metho- den ermittelt werden, ob bei dieser Menge eine Hemmung der Expression des K-ras-Gens eingetreten ist. Bei den Methoden kann es sich z.B. um molekularbiologische, biochemische oder immunologische Methoden handeln.
Überraschenderweise hat sich gezeigt, dass durch die Behandlung mittels dsRNA, welche gezielt die Expression des K-ras- Gens hemmen kann, die Proliferation von Pankreaskarzinomzel- len gehemmt und sogar die Zahl vitaler Tumorzellen reduziert werden kann. Erstaunlicherweise bleibt das Proliferationsver- halten nicht maligner Zellen weit gehend unbeeinflusst von einer solchen Behandlung. Das Medikament kann eine Steigerung der Apoptose-Rate in den Zellen des Pankreaskarzinoms bewirken. In vivo ist es durch ein solches Medikament möglich, das Wachstum eines Pankreastumors effektiv zu hemmen.
Das K-ras-Gen kann derart mutiert sein, dass dadurch eine permanente Aktivierung von K-ras bewirkt wird. Die Hemmung der Expression eines solchen Gens durch das erfindungsgemäße Medikament bewirkt eine besonders effektive Hemmung des Wachstums des Pankreaskarzinoms. Das K-ras-Gen kann dabei in den Codons 12, 13 oder 61 mutiert sein. Im mutierten K-ras- Gen kann das Codon 12 für Arginin, Serin, Alanin, Valin, Cy- stein oder Asparaginsäure, das Codon 13 für Asparaginsäure oder das Codon 61 für Histidin oder Leucin kodieren. Im Wild- typ des K-ras-Gens kodiert das Codon 12 und das Codon 13 jeweils für Glycin und das Codon 61 für Glutaminsäure.
Vorzugsweise weist ein Strang Sl der dsRNA einen zum K-ras- Gen zumindest abschnittsweise komplementären, insbesondere aus weniger als 25 aufeinander folgenden Nukleotiden bestehenden, Bereich auf. Eine solche dsRNA ist besonders gut zur Hemmung der Expression des K-ras-Gens geeignet. Unter dem "K- ras-Gen" wird der DNA-Strang der doppelsträngigen für K-ras kodierenden DNA in der Tumorzelle verstanden, welcher ko ple- mentär zu einem bei der Transkription" als Matrize dienenden DNA-Strang einschließlich aller transkribierten Bereiche ist. Bei dem K-ras-Gen handelt es sich also im Allgemeinen um den Sinn-Strang. Der Strang Sl kann somit komplementär zu einem bei der Expression des K-ras-Gens gebildeten RNA-Transkript oder dessen Prozessierungsprodukt, wie z.B. einer mRNA, sein.
Der komplementäre Bereich der dsRNA kann 19 bis 24, bevorzugt 20 bis 24, besonders bevorzugt 21 bis 23, insbesondere 22 oder 23, Nukleotide aufweisen. Eine dsRNA mit dieser Struktur ist besonders effizient in der Inhibition des K-ras-Gens. Der Strang Sl der dsRNA kann weniger als 30, vorzugsweise weniger als 25, besonders vorzugsweise 21 bis 24, insbesondere 23, Nukleotide aufweisen. Die Zahl dieser Nukleotide ist zugleich die Zahl der in der dsRNA maximal möglichen Basenpaare. Eine solche dsRNA ist intrazellulär besonders beständig.
Als besonders vorteilhaft hat es sich erwiesen, wenn zumindest ein Ende der dsRNA einen aus 1 bis 4, insbesondere 2 oder 3, Nukleotiden gebildeten einzelsträngigen Überhang auf- weist. Eine solche dsRNA weist gegenüber einer dsRNA ohne einzelsträngige Überhänge an mindestens einem Ende eine bessere Wirksamkeit bei der Hemmung der Expression des K-ras- Gens auf. Ein Ende ist dabei ein Bereich der dsRNA, in welchem ein 5'- und ein 3 ' -Strangende vorliegen. Eine nur aus dem Strang Sl bestehende dsRNA weist demnach eine Schleifenstruktur und nur ein Ende auf. Eine aus dem Strang Sl und einem Strang S2 gebildete dsRNA weist zwei Enden auf. Ein Ende wird dabei jeweils von einem auf dem Strang Sl und einem auf dem Strang S2 liegenden Strangende gebildet.
Vorzugsweise befindet sich der einzelsträngige Überhang am 3 ' -Ende des Strangs Sl. Diese Lokalisation des einzelsträngigen Überhangs führt zu einer weiteren Steigerung der Effizienz des Medikaments. In einem Ausführungsbeispiel weist die dsRNA nur an einem, insbesondere dem am 3 ' -Ende des Strangs
51 gelegenen, Ende einen einzelsträngigen Überhang auf. Das andere Ende ist bei einer zwei Enden aufweisenden dsRNA glatt, d.h. ohne Überhänge, ausgebildet. Eine solche dsRNA hat sich sowohl in verschiedenen Zellkulturmedien als auch in Blut und Serum als besonders beständig erwiesen.
Vorzugsweise weist die dsRNA neben dem Strang Sl einen Strang
52 auf, d.h. sie ist aus zwei Einzelsträngen gebildet. Beson- ders wirksam ist das Medikament, wenn der Strang Sl (Anti- sinn-Strang) eine Länge von 23 Nukleotiden, der Strang S2 eine Länge von 21 Nukleotiden und das 3 ' -Ende des Strangs Sl einen aus zwei Nukleotiden gebildeten einzelsträngigen Überhang aufweist. Das am 5 ' -Ende des Strangs Sl gelegene Ende der dsRNA ist dabei glatt ausgebildet. Der Strang Sl kann zum primären oder prozessierten RNA-Transkript des K-ras-Gens komplementär sein. Vorzugsweise besteht die dsRNA aus dem Strang S2 mit der Sequenz SEQ ID NO: 1 und dem Strang Sl mit der Sequenz SEQ ID NO: 2 oder dem Strang S2 mit der Sequenz SEQ ID NO: 3 und dem Strang Sl mit der Sequenz SEQ ID NO : 4 oder dem Strang S2 mit der Sequenz SEQ ID NO: 5 und dem Strang Sl mit der Sequenz SEQ ID NO: 6 gemäß dem anliegenden Sequenzprotokoll. Eine solche dsRNA ist in der Hemmung der Expression des K-ras-Gens besonders wirksam.
Die dsRNA kann in dem Medikament in einer Lösung, insbesondere einem physiologisch verträglichen Puffer oder einer physiologischen Kochsalzlösung, von einer micellaren Struktur, vorzugsweise einem Liposom, einem Kapsid, einem Kapsoid oder einer polymeren Nano- oder Mikrokapsel umschlossen oder an einer polymeren Nano- oder Mikrokapsel gebunden vorliegen. Der physiologisch verträgliche Puffer kann eine phosphatgepufferte Salzlösung sein. Eine micellare Struktur, ein Kapsid, ein Kapsoid oder eine polymere Nano- oder Mikrokapsel kann die Aufnahme der dsRNA in die Tumorzellen erleichtern. Die polymere Nano- oder Mikrokapsel besteht aus mindestens einem biologisch abbaubaren Polymer, z.B. Polybutylcyanoacry- lat. Die polymere Nano- oder Mikrokapsel kann darin enthaltene oder daran gebundene dsRNA im Körper transportieren und freisetzen.
Das Medikament kann eine Zubereitung aufweisen, die zur Inhalation, oralen Aufnahme, Infusion oder Injektion, insbesondere zur intravenösen, intraperitonealen oder intratumoralen Infusion oder Injektion, geeignet ist. Eine zur Inhalation, Infusion oder Injektion geeignete Zubereitung kann im einfachsten Fall aus einem physiologisch verträglichen Lösungsmittel, vorzugsweise einer physiologischen Kochsalzlösung oder einem physiologisch verträglichen Puffer, insbesondere einer phosphatgepufferten Salzlösung, und der dsRNA bestehen. Es hat sich nämlich überraschenderweise herausgestellt, dass eine lediglich in einem solchen Lösungsmittel oder einem solchen Puffer gelöste und verabreichte dsRNA von den Tumorzellen aufgenommen wird und die Expression des K-ras-Gens hemmt, ohne dass die dsRNA dazu in einem besonderen Vehikel verpackt sein muss .
Vorzugsweise liegt das Medikament in mindestens einer Verabreichungseinheit vor, welche die dsRNA in einer Menge enthält, die eine Dosierung von höchstens 5 mg, insbesondere höchstens 2,5 mg, bevorzugt höchstens 200 μg, besonders bevorzugt höchstens 100 μg, vorzugsweise höchstens 50 μg, insbesondere höchstens 25 μg, pro kg Körpergewicht und Tag ermöglicht. Es hat es sich nämlich gezeigt, dass die dsRNA be- reits in dieser Dosierung eine ausgezeichnete Effektivität in der Hemmung der Expression des K-ras-Gens aufweist. Die Ver- -abreichungseinheit kann für eine einmalige Verabreichung bzw. Einnahme pro Tag konzipiert sein. Dann ist die gesamte Tagesdosis in einer Verabreichungseinheit enthalten. Ist die Ver- abreichungseinheit für eine mehrmalige Verabreichung bzw. Einnahme pro Tag konzipiert, so ist die dsRNA darin in einer entsprechend geringeren das Erreichen der Tagesdosis ermöglichenden Menge enthalten. Die Verabreichungseinheit kann auch für eine einzige Verabreichung bzw. Einnahme für mehrere Tage konzipiert sein, z. B. indem die dsRNA über mehrere Tage freigesetzt wird. Die Verabreichungseinheit enthält dann ein entsprechend Mehrfaches der Tagesdosis.
Erfindungsgemäß ist weiterhin die Verwendung einer zur Hem- mung der Expression eines K-ras-Gens mittels RNA-Interferenz geeigneten doppelsträngigen Ribonukleinsäure zur Herstellung eines Medikaments zur Behandlung eines Pankreaskarzinoms vorgesehen. Weiterhin ist erfindungsgemäß die Verwendung einer zur Hemmung der Expression eines K-ras-Gens mittels RNA- Interferenz geeigneten doppelsträngigen Ribonukleinsäure zur Behandlung eines Pankreaskarzinoms vorgesehen.
Wegen der vorteilhaften Ausgestaltung der erfindungsgemäßen Verwendungen wird auf die vorangegangenen Ausführungen ver- wiesen.
Die Erfindung wird nachfolgend anhand der Zeichnungen beispielhaft erläutert. Als Abkürzung der Konzentrationsangabe "mol/1" wird dabei "M" verwendet. Es zeigen:
Fig. 1 die prozentuale Apoptose-Rate von humanen Pankreas- karzinomzeilen YAP C in Abhängigkeit von der Inkubationszeit nach Transfektion mit einer zu einer ersten Sequenz aus dem humanen K-ras-Gen komplementären dsRNA,
Fig. 2 die Anzahl vitaler Zellen nach Transfektion mit einer dsRNA und Fig. 3 das Volumen subkutan implantierter humaner Pan- kreasadenokarzino e in NMRI-Mäusen.
Die eingesetzten doppelsträngigen Oligoribonukleotide weisen folgende, im Sequenzprotokoll mit SEQ ID NO:l bis SEQ ID NO:8 bezeichneten, Sequenzen auf:
KRASl, welche zu einer eine erste Punktmutation im Codon 12 aufweisenden Sequenz aus dem humanen K-ras-Gen in YAP C- Zellen komplementär ist:
S2 : 5'- agu ugg agc ugu ugg cgu agg-3 ' (SEQ ID NO: 1) Sl: 3 ' -ca uca acc ucg aca acc gca ucc-5 ' (SEQ ID NO: 2)
KRASl ' , welche zu einer eine erste Punktmutation im Codon 12 aufweisenden Sequenz aus dem humanen K-ras-Gen in einem humanen subkutan in NMRI-Mäusen implantierten Pankreasadenokarzi- nom komplementär ist:
S2 : 5'- agu ugg agc uga ugg cgu agg-3' (SEQ ID NO: 3) Sl : 3 ' -ca uca acc ucg acu acc gca ucc-5' (SEQ ID NO: 4)
KRAS2, welche zu der Wildtyp-Sequenz aus dem humanen K-ras- Gen komplementär ist:
S2 : 5'- agu ugg agc ugg ugg cgu agg-3' (SEQ ID NO: 5) Sl: 3 ' - ca uca acc ucg acc acc gca ucc-5' (SEQ ID NO: 6)
NEO, welche zu einer Sequenz aus dem Neomycin-Resistenz-Gen komplementär ist:
S2 : 5'- c aag gau gag gau cgu uuc gca-3 ' (SEQ ID NO: 7) Sl: 3 ' -ucu guc cua cuc cua gca aag cg -5' (SEQ ID NO: 8) Zellen der humanen Pankreaskarzinomzellinie YAP C, welche unter der Nr. ACC 382 von der Deutschen Sammlung von Mikroorganismen und Zellkulturen, Braunschweig bezogen werden können, wurden unter konstanten Bedingungen bei 37°C, 5% C0 in RPMI 1640-Medium (Fa. Biochrom, Berlin) mit 10% fötalem Kälberserum (FKS) und 100 μg/ml Penicillin/Streptomycin kultiviert.
Die Transfektionen wurden in einer 6-Well-Platte mit Oligo- fectamine (Fa. Invitrogen, Karlsruhe) durchgeführt. Pro Well wurden 150 000 Zellen ausgesetzt. Die Transfektion der doppelsträngigen Oligoribonukleotide wurde nach dem von Invitrogen für Oligofectamine empfohlenen Protokoll durchgeführt (Angaben beziehen sich auf eine Vertiefung bzw. ein Well ei- ner 6-Well-Platte) :
10 μl des doppelsträngigen Oligoribonukleotids (0,1 - 10 μM) wurden mit 175 μl Zellkulturmedium ohne Zusätze verdünnt. 3 μl Oligofectamine wurden mit 12 μl Zellkulturmedium ohne Zu- sätze verdünnt und 10 Minuten bei Raumtemperatur inkubiert. Das so verdünnte Oligofectamine wurde zu den bereits verdünnten doppelsträngigen Oligoribonukleotiden gegeben, gemischt und 20 Minuten bei Raumtemperatur inkubiert. In dieser Zeit wurden die zu transfizierenden Zellen einmal mit Zellkultur- medium ohne Zusätze gewaschen und 800 μl frisches Zellkulturmedium zugegeben. Danach wurden pro Well 200 μl des beschriebenen Oligofectamine-dsRNA-Gemisches zugegeben, so dass das Endvolumen für die Transfektion 1000 μl betrug. Hierdurch ergibt sich eine Endkonzentration der doppelsträngigen Oligori- bonukleotide von 1—100 M. Der Transfektionsansatz wurde vier Stunden bei 37°C bebrütet. Danach wurden pro Well 500 μl Zellkulturmedium mit 30% FKS zugegeben, so dass die Endkonzentration an FKS 10% betrug. Dieser Ansatz wurde für 24 bis 120 Stunden bei 37°C inkubiert. Zur Bestimmung der Appoptose-Rate wurden die Überstände nach der Inkubation gesammelt, die Zellen mit phosphatgepufferter Salzlösung (PBS) gewaschen, mittels Trypsin abgelöst und 10 Minuten mit 100 g zentrifugiert. Der Überstand wurde verworfen und das Pellet mit hypotoner Propidiumjodidlösung 30 Minuten bei 4°C im Dunkeln inkubiert. Die Analyse erfolgte durchflusszytometrisch im Fluoreszenz-unterstützten Zellsortierer FACSCalibur (Fa. BD GmbH, Heidelberg) .
Fig. 1 zeigt die prozentuale Apoptose-Rate humaner Pankreaskarzinomzellen YAP C in Abhängigkeit von der Inkubationszeit nach Transfektion mit steigenden Konzentrationen der dsRNA KRASl. Daraus ist ersichtlich, dass KRASl konzentrationsab- hängig Apoptose in humanen Pankreaskarzinomzellen induziert. Die Apoptose-Rate steigt in Abhängigkeit von der Inkubationszeit an. Während unbehandelte YAP C-Zellen (Kontrolle) und Zellen, mit welchen das beschriebene Verfahren zur Transfektion ohne doppelsträngiges Oligoribonukleotid durchgeführt wurde (Mocktransfektion bzw. Scheintransfektion) , auch nach 120 h Inkubation nur maximal 5% Apoptose aufwiesen, konnte durch Transfektion mit 100 nM KRASl die Apoptose-Rate nach 120 h auf 24% gesteigert werden. Mit gleicher Effektivität induzierte die zum Wildtyp von K-ras komplementäre dsRNA KRAS2 Apoptose in YAP C-Zellen.
Zur Bestimmung des Einflusses der Transfektionen auf die Proliferation bzw. die Zahl vitaler Zellen, wurden pro Vertiefung einer 6-Well-Platte 50 000 YAP-C-Zellen ausgesetzt und wie oben beschrieben transfiziert . Die Anzahl vitaler Zellen wurde mit der Trypanblau-Ausschluss-Färbung nach 24 bis 120 h Inkubationszeit durch Auszählen in einer Neubauer-Zählkammer bestimmt. Das Ergebnis ist in Fig. 2 dargestellt. Die Proliferation von YAP C-Zellen konnte durch KRASl konzentrati- onsabhängig gehemmt werden. Die Zahl vitaler Zellen konnte bereits durch 1 nM KRASl statistisch signifikant (p = 0,001 vs . unbehandelte Kontrolle nach 120 h) reduziert werden.
Eine Transfektion mit der zum K-ras-Wildtyp komplementären dsRNA KRAS2 führte bei einer Konzentration von 100 nM zu einer Reduktion der Zahl vitaler Zellen. Nicht-maligne humane Hautfibroblasten zeigten keine Änderung ihres Proliferations- verhaltens durch Transfektion mit KRASl oder KRAS2.
Für in vivo-Untersuchungen sind NMRI-Mäusen (Harlan Winkelmann GmbH, Borchen) Gewebefragmente von 2 - 3 mm Durchmesser aus einem humanen Pankreasadenokarzinom subkutan implantiert worden. Nachdem die Tumoren eine Größe von 6 - 7 mm erreicht hatten, wurden täglich 200 μg KRASl' oder NEO pro kg Körper- gewicht, jeweils gelöst in physiologischer Kochsalzlösung, intraperitoneal injiziert. Als Kontrolle wurde eine physiologische Kochsalzlösung injiziert. Die Tumore wurden täglich mittels einer Schiebelehre bzw. einer standardisierten Schablone vermessen. In Fig. 3 ist das in mm3 gemessene Tumorvo- lumen als Mittelwert +/- Standardfehler des Mittelwerts in Abhängigkeit von der in Tagen bemessenen Zeit ab Beginn der Behandlung durch die intraperitonealen Injektionen (Tage i.p.) dargestellt. Daraus ist ersichtlich, dass die zum K- ras-Gen komplementäre dsRNA in der Lage ist, das Wachstum der Tumore zu hemmen. Durch tägliche intraperitoneale Applikation der zum K-ras-Gen komplementären dsRNA in einer Dosierung von 200 μg/kg wurde das Wachstum des Tumors derart gehemmt, dass das Tumorvolumen nach 24 Tagen Behandlung nur 62% des Tumorvolumens der Kontrollgruppe betragen hat.

Claims

Patentansprüche
1. Medikament zur Behandlung eines Pankreaskarzinoms, wobei das Medikament eine zu einer Hemmung der Expression eines K-ras-Gens mittels RNA-Interferenz geeignete doppelsträngige Ribonukleinsäure (dsRNA) enthält.
2. Medikament nach Anspruch 1, wobei das K-ras-Gen derart mutiert ist, dass dadurch eine permanente Aktivierung von K-ras bewirkt wird.
3. Medikament nach Anspruch 1 oder 2, wobei das K-ras-Gen in den Codons 12, 13 oder 61 mutiert ist.
4. Medikament nach einem der vorhergehenden Ansprüche, wobei im K-ras-Gen das Codon 12 für Arginin, Serin, Alanin, Va- lin, Cystein oder Asparaginsäure, das Codon 13 für Aspa- raginsäure oder das Codon 61 für Histidin oder Leucin kodiert .
5. Medikament nach einem der vorhergehenden Ansprüche, wobei ein Strang Sl der dsRNA einen zum K-ras-Gen zumindest abschnittsweise komplementären, insbesondere aus weniger als 25 aufeinander folgenden Nukleotiden bestehenden, Bereich aufweist.
6. Medikament nach einem der vorhergehenden Ansprüche, wobei der komplementäre Bereich 19 bis 24, bevorzugt 20 bis 24, besonders bevorzugt 21 bis 23, insbesondere 22 oder 23, Nukleotide aufweist.
7. Medikament nach einem der vorhergehenden Ansprüche, wobei der Strang Sl weniger als 30, vorzugsweise weniger als 25, besonders vorzugsweise 21 bis 24, insbesondere 23, Nukleotide aufweist.
8. Medikament nach einem der vorhergehenden Ansprüche, wobei zumindest ein Ende der dsRNA einen aus 1 bis 4, insbeson- dere 2 oder 3, Nukleotiden gebildeten einzelsträngigen Überhang aufweist.
9. Medikament nach Anspruch 8, wobei sich der einzelsträngige Überhang am 3 ' -Ende des Strangs Sl befindet.
10. Medikament nach einem der vorhergehenden Ansprüche, wobei die dsRNA nur an einem, insbesondere dem am 3 ' -Ende des Strangs Sl gelegenen, Ende einen einzelsträngigen Überhang aufweist.
11. Medikament nach einem der vorhergehenden Ansprüche, wobei die dsRNA neben dem Strang Sl einen Strang S2 aufweist.
12. Medikament nach Anspruch 11, wobei der Strang Sl eine Länge von 23 Nukleotiden, der Strang S2 eine Länge von 21 Nukleotiden und das 3 ' -Ende des Strangs Sl einen aus zwei Nukleotiden gebildeten einzelsträngigen Überhang auf- weist, während das am 5 ' -Ende des Strangs Sl gelegene Ende der dsRNA glatt ausgebildet ist.
13. Medikament nach einem der vorhergehenden Ansprüche, wobei der Strang Sl zum primären oder prozessierten RNA- Transkript des K-ras-Gens komplementär ist.
14. Medikament nach einem der vorhergehenden Ansprüche, wobei die dsRNA aus dem Strang S2 mit der Sequenz SEQ ID NO: 1 und dem Strang Sl mit der Sequenz SEQ ID NO: 2 oder dem Strang S2 mit der Sequenz SEQ ID NO: 3 und dem Strang Sl mit der Sequenz SEQ ID NO : 4 oder dem Strang S2 mit der Sequenz SEQ ID NO: 5 und dem Strang Sl mit der Sequenz SEQ ID NO: 6 gemäß dem anliegenden Sequenzprotokoll besteht.
15. Medikament nach einem der vorhergehenden Ansprüche, wobei die dsRNA in dem Medikament in einer Lösung, insbesondere einem physiologisch verträglichen Puffer oder einer physiologischen Kochsalzlösung, von einer micellaren Struk- tur, vorzugsweise einem Liposom, einem Kapsid, einem Kapsoid oder einer polymeren Nano- oder Mikrokapsel umschlossen oder an einer polymeren Nano- oder Mikrokapsel gebunden vorliegt.
16. Medikament nach einem der vorhergehenden Ansprüche, wobei das Medikament eine Zubereitung aufweist, die zur Inhalation, oralen Aufnahme, Infusion oder Injektion, insbesondere zur intravenösen, intraperitonealen oder intratumo- ralen Infusion oder Injektion, geeignet ist.
17. Medikament nach Anspruch 16, wobei die Zubereitung, insbesondere ausschließlich, aus einem physiologisch verträglichen Lösungsmittel, vorzugsweise einer physiologischen Kochsalzlösung oder einem physiologisch verträglichen Puffer, insbesondere einer phosphatgepufferten Sals- lösung, und der dsRNA besteht.
18. Medikament nach einem der vorhergehenden Ansprüche, wobei das Medikament in mindestens einer Verabreichungseinheit vorliegt, welche die dsRNA in einer Menge enthält, die eine Dosierung von höchstens 5 mg, insbesondere höchstens 2,5 mg, bevorzugt höchstens 200 μg, besonders bevorzugt höchstens 100 μg, vorzugsweise höchstens 50 μg, insbesondere höchstens 25 μg, pro kg Körpergewicht und Tag ermöglicht.
19. Verwendung einer zur Hemmung der Expression eines K-ras- Gens mittels RNA-Interferenz geeigneten doppelsträngigen
Ribonukleinsäure (dsRNA) zur Herstellung eines Medikaments zur Behandlung eines Pankreaskarzinoms.
20. Verwendung einer zur Hemmung der Expression eines K-ras- Gens mittels RNA-Interferenz geeigneten doppelsträngigen Ribonukleinsäure (dsRNA) zur Behandlung eines Pankreaskarzinoms .
21. Verwendung nach Anspruch 19 oder 20, wobei das K-ras-Gen derart mutiert ist, dass dadurch eine permanente Aktivierung von K-ras bewirkt wird.
22. Verwendung nach einem der Ansprüche 19 bis 21, wobei das K-ras-Gen in den Codons 12, 13 oder 61 mutiert ist.
23. Verwendung nach einem der Ansprüche 19 bis 22, wobei im K-ras-Gen das Codon 12 für Arginin, Serin, Alanin, Valin, Cystein oder Asparaginsäure, das Codon 13 für Asparaginsäure oder das Codon 61 für Histidin oder Leucin kodiert.
24. Verwendung nach einem der Ansprüche 19 bis 23, wobei ein Strang Sl der dsRNA einen zum K-ras-Gen zumindest abschnittsweise komplementären, insbesondere aus weniger als 25 aufeinander folgenden Nukleotiden bestehenden, Bereich aufweist.
25. Verwendung nach einem der Ansprüche 19 bis 24, wobei der komplementäre Bereich 19 bis 24, bevorzugt 20 bis 24, besonders bevorzugt 21 bis 23, insbesondere 22 oder 23, Nukleotide aufweist.
26. Verwendung nach einem der Ansprüche 19 bis 25, wobei der Strang Sl weniger als 30, vorzugsweise weniger als 25, besonders vorzugsweise 21 bis 24, insbesondere 23, Nukleotide aufweist.
27. Verwendung nach einem der Ansprüche 19 bis 26, wobei zumindest ein Ende der dsRNA einen aus 1 bis 4, insbesonde- re 2 oder 3, Nukleotiden gebildeten einzelsträngigen Überhang aufweist.
28. Verwendung nach Anspruch 27, wobei sich der einzelsträngige Überhang am 3 ' -Ende des Strangs Sl befindet.
29. Verwendung nach einem der Ansprüche 19 bis 28, wobei die dsRNA nur an einem, insbesondere dem am 3 ' -Ende des Strangs Sl gelegenen, Ende einen einzelsträngigen Überhang aufweist.
30. Verwendung nach einem der Ansprüche 19 bis 29, wobei die dsRNA neben dem Strang Sl einen Strang S2 aufweist.
31. Verwendung nach Anspruch 30, wobei der Strang Sl eine Länge von 23 Nukleotiden, der Strang S2 eine Länge von 21 Nukleotiden und das 3 ' -Ende des Strangs Sl einen aus zwei Nukleotiden gebildeten einzelsträngigen Überhang aufweist, während das am 5 '-Ende des Strangs Sl gelegene En- de der dsRNA glatt ausgebildet ist.
32. Verwendung nach einem der Ansprüche 19 bis 31, wobei der Strang Sl zum primären oder prozessierten RNA-Transkript des K-ras-Gens komplementär ist.
33. Verwendung nach einem der Ansprüche 19 bis 32, wobei die dsRNA aus dem Strang S2 mit der Sequenz SEQ ID NO: 1 und dem Strang Sl mit der Sequenz SEQ ID NO: 2 oder dem Strang S2 mit der Sequenz SEQ ID NO: 3 und dem Strang Sl mit der Sequenz SEQ ID NO: 4 oder dem Strang S2 mit der Sequenz SEQ ID NO: 5 und dem Strang Sl mit der Sequenz SEQ ID NO: 6 gemäß dem anliegenden Sequenzprotokoll besteht .
34. Verwendung nach einem der Ansprüche 19 bis 33, wobei die dsRNA in einer Lösung, insbesondere einem physiologisch verträglichen Puffer oder einer physiologischen Kochsalz- lösung, von einer micellaren Struktur, vorzugsweise einem Liposom, einem Kapsid, einem Kapsoid oder einer polymeren Nano- oder Mikrokapsel umschlossen oder an einer polymeren Nano- oder Mikrokapsel gebunden vorliegt.
35. Verwendung nach einem der Ansprüche 19 bis 34, wobei die dsRNA in einer Zubereitung vorliegt, die zur Inhalation, oralen Aufnahme, Infusion oder Injektion, insbesondere zur intravenösen, intraperitonealen oder intratumoralen Infusion oder Injektion, geeignet ist.
36. Verwendung nach Anspruch 35, wobei die Zubereitung, insbesondere ausschließlich, aus einem physiologisch ver- träglichen Lösungsmittel, vorzugsweise einer physiologischen Kochsalzlösung oder einem physiologisch verträglichen Puffer, insbesondere einer phosphatgepufferten Salzlösung, und der dsRNA besteht.
37. Verwendung nach einem der Ansprüche 19 bis 36, wobei die dsRNA oral, mittels Inhalation, Infusion oder Injektion, insbesondere intravenösen, intraperitonealen oder intratumoralen Infusion oder Injektion, verabreicht wird.
38. Verwendung nach einem der Ansprüche 19 bis 37, wobei die dsRNA in einer Dosierung von höchstens 5 mg, insbesondere höchstens 2,5 mg, bevorzugt höchstens 200 μg, besonders bevorzugt höchstens 100 μg, vorzugsweise höchstens 50 μg, insbesondere höchstens 25 μg, pro kg Körpergewicht und Tag verwendet wird.
EP02785312A 2001-10-26 2002-10-25 Medikament zur behandlung eines pankreaskarzinoms Withdrawn EP1438406A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02785312A EP1438406A1 (de) 2001-10-26 2002-10-25 Medikament zur behandlung eines pankreaskarzinoms

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
DE10155280 2001-10-26
DE10155280 2001-10-26
DE10158411 2001-11-29
DE10158411 2001-11-29
DE10160151A DE10160151A1 (de) 2001-01-09 2001-12-07 Verfahren zur Hemmung der Expression eines vorgegebenen Zielgens
DE10160151 2001-12-07
PCT/EP2002/000151 WO2002055692A2 (de) 2001-01-09 2002-01-09 Verfahren zur hemmung der expression eines zielgens und medikament zur therapie einer tumorerkrankung
WOPCT/EP02/00152 2002-01-09
PCT/EP2002/000152 WO2002055693A2 (de) 2001-01-09 2002-01-09 Verfahren zur hemmung der expression eines zielgens
WOPCT/EP02/00151 2002-01-09
DE10230996A DE10230996A1 (de) 2001-10-26 2002-07-09 Medikament zur Behandlung eines Pankreaskarzinoms
DE10230996 2002-07-09
EP02785312A EP1438406A1 (de) 2001-10-26 2002-10-25 Medikament zur behandlung eines pankreaskarzinoms
PCT/EP2002/011970 WO2003035870A1 (de) 2001-10-26 2002-10-25 Medikament zur behandlung eines pankreaskarzinoms

Publications (1)

Publication Number Publication Date
EP1438406A1 true EP1438406A1 (de) 2004-07-21

Family

ID=32601224

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02785312A Withdrawn EP1438406A1 (de) 2001-10-26 2002-10-25 Medikament zur behandlung eines pankreaskarzinoms

Country Status (1)

Country Link
EP (1) EP1438406A1 (de)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03035870A1 *

Similar Documents

Publication Publication Date Title
WO2003035870A1 (de) Medikament zur behandlung eines pankreaskarzinoms
EP1349927B1 (de) Verfahren zur hemmung der expression eines zielgens und medikament zur therapie einer tumorerkrankung
DE60037938T2 (de) Antisense-therapie für trpm-2
WO2003035868A1 (de) Medikament zur erhöhung der wirksamkeit eines rezeptor-vermittelt apoptose in tumorzellen auslösenden arzeimittels
DE10230997A1 (de) Medikament zur Erhöhung der Wirksamkeit eines Rezeptor-vermittelt Apoptose in Tumorzellen auslösenden Arzneimittels
WO2003062432A1 (de) Verfahren zur erhöhung der wirksamkeit eines inhibitors der aktivität einer tyrosinkinase
WO2003035869A1 (de) Verwendung einer doppelsträngigen ribonukleinsäure zur gezielten hemmung der expression eines vorgegebenen zielgens
WO2003033700A1 (de) Verfahren zur hemmung der replikation von viren
DE10230996A1 (de) Medikament zur Behandlung eines Pankreaskarzinoms
EP2036980A1 (de) Herabregulation der Genexpression mittels Nukleinsäure-beladener virusähnlicher Partikel
WO2016166285A1 (de) Arenaviren zur anwendung bei der behandlung und/oder vorbeugung von tumoren sowie verfahren zur herstellung von arenaviren mit (verbesserten) tumorregressiven eigenschaften
EP0859628A1 (de) Medikament, insbesondere zur modulation der immunantwort bei der bekämpfung von viren, tumoren, bakterien und parasiten
EP1325122A2 (de) Modulation der transkription pro-inflammatorischer genprodukte
DE69719785T2 (de) Zusammensetzung aus brustkrebszellen, die mit einem gegen den rezeptor für insulin-ähnlichen wachstumsfaktor gerichteten antisens-oligonukleotidbehandelt worden sind.
EP1171587B1 (de) Peptid aus antigen muc-1 zur auslösung einer immunreaktion gegen tumorzellen
DE69627644T2 (de) Vektoren, die therapeutische gene fuer antimikrobielle peptide enthalten, zur verwendung in der gentherapie
DE60038680T2 (de) Antisense-therapie für hormonregulierte tumoren
EP1599194A1 (de) Verwendung von wirksubstanzen zur prophylaxe und/oder therapie von viruserkrankungen
EP1438406A1 (de) Medikament zur behandlung eines pankreaskarzinoms
EP1259263B1 (de) Komplexierung von rns, insbesondere von ribozymen, mit polyethyleniminen zu deren stabilisierung und zellulären einschleusung
DE69733320T2 (de) Differenzierungsfaktor der hypophyse und methoden zu seiner verwendung.
WO2017218638A1 (en) Methods for treating subjects suffering from acute myeloid leukemia with flt3 ligand-targeted mir-150 nanoparticles
DE69936632T2 (de) Hemmung der cytokin-herstellung
DE60023943T2 (de) Antisense oligonukleotide zur inhibition der expression von typ i prokollagen
WO1997029201A2 (de) Retroviraler vektor für den gentransfer eines il6-antagonisten in humane hämatopoetische stammzellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040424

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070502