EP1426452B1 - Procédé de fabrication d'une pièce en acier bainitique - Google Patents

Procédé de fabrication d'une pièce en acier bainitique Download PDF

Info

Publication number
EP1426452B1
EP1426452B1 EP03292950A EP03292950A EP1426452B1 EP 1426452 B1 EP1426452 B1 EP 1426452B1 EP 03292950 A EP03292950 A EP 03292950A EP 03292950 A EP03292950 A EP 03292950A EP 1426452 B1 EP1426452 B1 EP 1426452B1
Authority
EP
European Patent Office
Prior art keywords
steel
content
carried out
precipitation
trace levels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03292950A
Other languages
German (de)
English (en)
Other versions
EP1426452A1 (fr
Inventor
Pierre Dierickx
Gaëlle André
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ascometal SA
Original Assignee
Ascometal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ascometal SA filed Critical Ascometal SA
Publication of EP1426452A1 publication Critical patent/EP1426452A1/fr
Application granted granted Critical
Publication of EP1426452B1 publication Critical patent/EP1426452B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the invention relates to metallurgy, and more specifically the field of steels for the manufacture of parts to withstand significant stresses.
  • such parts are made of hardened and tempered steel or, as far as possible, of forged steel with a ferrito-pearlitic structure which is supposed to offer a better technical-economic compromise, but whose mechanical performance is still limited. .
  • Ferritic-pearlitic steels often used for this purpose are types XC70, 45Mn5, 30MnSiV6 and 38MnSiV5, and undergo, after rolling or forging, simple cooling in line with still air. Their method of implementation is therefore relatively economical, but their service life in the presence of high demands is limited.
  • the object of the invention is to propose an association between a steel grade and a part manufacturing process, having economic advantages over existing associations without the metallurgical performance being altered, or even improving these performances.
  • the part thus manufactured will have to withstand heavy fatigue stresses.
  • this manufacturing process should, in particular, be adaptable to any forging line.
  • the steel contains from 5 to 50 ppm B.
  • the steel contains 0.005 to 0.04% Ti.
  • the Ti content is preferably at least 3.5 times the N content of the steel.
  • the steel contains from 0.005 to 0.06% Nb.
  • the steel contains from 0.005 to 0.2% of S.
  • the steel contains at least one of the elements Ca up to 0.007%, Te up to 0.03%, Se up to 0.05%, Bi up to 0.05% and Pb up to 0.1%.
  • the C content of the steel is between 0.06 and 0.20%.
  • the Mn content of the steel is then preferably between 0.5 and 1.5%, and the Cr content is preferably between 0.3 and 1.2%.
  • the Ni content of the steel can then be preferably between traces and 1%.
  • the Ni content of the steel can then also be between 2 and 4.5%, and the Al content is then between 1 and 2%.
  • the precipitation yield is in the general case preferably between 425 and 600 ° C.
  • the precipitation yield is preferably between 425 and 500 ° C for 1 to 10h.
  • the precipitation is preferably between 500 and 600 ° C for more than 1 hour.
  • the precipitation is preferably between 500 and 550 ° C for more than 1 hour.
  • Said hot deformation may be a rolling.
  • Said hot deformation may be forging.
  • the controlled cooling of the blank is carried out at a rate of less than 3 ° C / s between 600 and 300 ° C.
  • a steel part obtained by the process according to the invention has a bainitic microstructure, and typically a tensile strength Rm of 750 to 1300 MPa and a yield strength Re greater than or equal to 500 MPa.
  • the invention consists of the combination of a steel grade and a post-casting treatment process comprising a hot forming step of the part, a controlled cooling being carried out in calm air or in pulsed air and a precipitation income preceding or following the machining of the room.
  • the composition of the selected steel ensures that, regardless of the cooling mode, the fatigue strength results of the parts manufactured from this steel will be sufficient to meet the requirements of the users.
  • the hot forming operation may consist of one or more rolling, or rolling followed by forging, or forging alone.
  • the bottom line is that the last hot deformation brings the steel between 1100 and 1300 ° C, and the controlled cooling takes place from this temperature.
  • the chemical characteristics of the steel and its heat treatments after casting aim at obtaining a bainitic microstructure, and also at obtaining optimized mechanical characteristics.
  • This bainitic microstructure must be able to be obtained after cooling in still air, but must also be compatible with forced air cooling.
  • the parts of the process of the invention can be produced on any existing installation, that it allows after forging or rolling a forced air cooling, or that it allows only a cooling in the calm air .
  • a forging installation initially designed to treat ferritic-pearlitic microstructure steel parts can without difficulty, and without special adaptations, treat bainitic microstructure parts of the process of the invention.
  • the bainitic microstructure steels previously used for these purposes required pulsed air cooling, and therefore could not always be processed on standard design facilities.
  • the last hot deformation is carried out at 1100-1300 ° C and is followed by air-controlled cooling in hot rolling or forging, in still air or forced air. This gives a rough sketch of the piece.
  • blade it should be understood that here is meant a bar, or a half-product in another form, from which the final piece will be obtained by machining, and this regardless of the mode of hot deformation practiced: rolling, forging or their combination.
  • a precipitation income is then made. This is either before or after machining the workpiece from said blank.
  • the carbon content is between 0.06 and 0.25%. This content makes it possible to govern the type of microstructure obtained. Less than 0.06%, the microstructure obtained would not be interesting for the objectives. Above 0.25%, in combination with the other elements, a sufficiently bainitic microstructure would not be obtained after cooling with still air.
  • the manganese content is between 0.5 and 2%. This element added to more than 0.5% gives its quenchability to the material, and allows to obtain a broad bainitic range regardless of the cooling mode. A content greater than 2% would, however, be likely to cause excessive segregation.
  • the silicon content is between traces and 3%. This element, which is not obligatory, is advantageous in that it hardens the bainite by passing it in solid solution.
  • silicon avoids the problems associated with the presence of copper during hot forming. A content greater than 3% can however pose problems of machinability of the material.
  • the nickel content is between traces and 4.5%. This non-obligatory element promotes quenchability and stabilization of austenite. If the aluminum content allows it, it can form very hardening NiAl precipitates, giving the metal high mechanical characteristics. In the case where copper is present in a relatively large quantity, nickel can play the same role as silicon. Above 4.5%, the addition of nickel is unnecessarily expensive in view of metallurgical objectives.
  • the aluminum content is between traces and 3%.
  • This non-obligatory element is a strong deoxidizer, and even added at a low level, it makes it possible to limit the amount of dissolved oxygen in the liquid steel, thus improving the inclusiveness of the room if it has been possible to avoid reoxidation too much. important during casting. At high levels, as has been said, it is likely to form NiAl precipitates if nickel is present in large quantities. It is not useful for the aluminum content to exceed 3%.
  • chromium content a non-mandatory element, is between traces and 1.2%. Like manganese, chromium contributes to the improvement of quenchability. Its addition becomes unnecessarily expensive beyond 1.2%.
  • the molybdenum content is between traces and 0.30%. This element, which is not mandatory, prevents the formation of coarse-grained ferrite and makes it possible to obtain the bainitic structure more definitely. Its addition is unnecessarily expensive beyond 0.30%.
  • the vanadium content is between traces and 2%. This element, not mandatory, serves to harden the bainite by passing it in solid solution. At high content, it also makes it possible to obtain precipitation hardening of carbides and / or carbonitrides. Its addition is unnecessarily expensive beyond 2%.
  • the copper content is between traces and 3.5%.
  • This element which is not mandatory, can improve machinability and, by precipitating, cause secondary hardening of the material. But beyond 3.5% it makes hot formatting of the problematic part. As has been said, it is advisable to associate a significant nickel or silicon content to minimize hot forming problems. Beyond 3.5% its addition is in any case unnecessarily expensive.
  • the boron content can be between 5 and 50 ppm. It can improve the hardenability, but must be in solid solution to be effective. In other words, it must be avoided that almost all the boron is found in the form of nitrides or carbonitrides of boron.
  • the minimum titanium content, for this purpose is 0.005%, for the lowest nitrogen contents usually encountered. However, it is advisable not to exceed a titanium content of 0.04%, otherwise we obtain titanium nitrides too large.
  • Titanium also has the function of limiting the magnification of the austenitic grain at high temperature, and can, for this, be added independently of boron, at a content of between 0.005 and 0.04%.
  • Niobium may also be added at levels of between 0.005 and 0.06%. He too can precipitate in the form of carbonitrides in the austenite, and can thus bring about a hardening of the material.
  • the machinability of the material can be improved by adding sulfur (from 0.005% to 0.2%), to which a calcium addition can also be added (up to 0.007%), and / or or tellurium (up to 0.03%) and / or selenium (up to 0.05%), and / or bismuth (up to 0.05%) and / or lead (up to 0.1%).
  • the part blank is forged or not according to the usual methods. It is heated to 1100-1300 ° C, then the deformations giving rise to the piece blank are carried out.
  • controlled cooling of the room is carried out, either in still air or in forced air.
  • the part is forced to cool at a speed less than or equal to 3 ° C / s between 600 and 300 ° C.
  • the precipitation yield is preferably between 425 and 600 ° C.
  • the temperature of the income and its duration are optimally adapted to the targeted characteristics.
  • the precipitation of copper is preferably obtained by treatment at 425-500 ° C for 1 to 10 hours.
  • Precipitation of vanadium is preferably obtained by treatment at 500-600 ° C for more than 1 hour.
  • Precipitation of NiAl is preferably obtained by treatment at 500-550 ° C for more than 1h.
  • the tensile strength Rm is from 1000 to 1300 MPa and the yield strength Re is of the order of 900 MPa or more.
  • the carbon content is limited to 0.06-0.2%, so as to obtain a bainite of hardness limited to 300-330 Hv30.
  • the manganese content should be between 0.5 and 1.5%, the chromium content between 0.3 and 1.2%, and the nickel content can be up to 1% if it is not that a good quenchability, or go from 2 to 4% if one seeks a NiAl precipitation as we have seen. In the latter case, the aluminum content is between 1 and 2%.
  • the tensile characteristics (yield strength, strength) of the product obtained after rolling or forging and cooling with controlled air are not particularly high: typically the tensile strength Rm is of the order of 750 -1050 MPa and the elasticity limit Re of the order of 500 to 750 MPa. But these steels have good machinability.
  • This example is representative of the variant of the invention for which a relatively low carbon content can be used, and precipitation hardening is achieved by the addition of copper.
  • composition of the steel is as follows, expressed in 10 -3 % by weight: VS mn Yes S P Or Cu Cr MB al Ti B NOT 80 1500 300 85 10 1500 2500 280 50 25 - - 6
  • a bainitic microstructure After hot forging at a temperature of 1250-1200 ° C and cooling with still air (average cooling rate of 1 ° C / s between 700 and 300 ° C) a bainitic microstructure is obtained with a moderate hardness of 265Hv30, providing a resistance of less than 900 MPa. With this level of mechanical characteristics, machinability is not a problem. Then, an income at 450 ° C, with a hold time of one hour, allows to increase the resistance characteristics to reach more than 340Hv30 hardness, providing a resistance of 1100MPa.
  • This example is representative of the variant of the invention for which a relatively low carbon content can be used, and precipitation hardening is carried out by the addition of vanadium.
  • composition of the steel is as follows, expressed in 10 -3 % by weight: VS mn Yes S P Or Cu Cr MB al Ti V 150 1230 250 80 20 150 200 205 50 30 - 820
  • This example is representative of the variant of the invention for which a relatively low carbon content can be used, and precipitation hardening is carried out by means of conjugate additions of nickel and aluminum.
  • composition of the steel is as follows, given in 10 -3 % by weight: VS mn Yes S P Or Cu Cr MB al Ti B NOT 95 1150 200 80 10 3000 206 220 60 1500 - 3 3
  • a bainitic microstructure After hot forging at a temperature of 1250-1200 ° C and cooling with still air (average cooling rate of 1 ° C / s between 700 and 300 ° C) a bainitic microstructure is obtained with a moderate hardness of 240Hv30, providing a resistance of less than 800 MPa. With this level of mechanical characteristics, machinability is not a problem. Then, an income at 520 ° C, with a holding time of 10 hours, increases the strength characteristics to reach more than 370Hv30 hardness, providing a resistance of the order of 1200MPa.
  • composition of the steel is as follows, given in 10 -3 % by weight: VS mn Yes S P Or Cu Cr MB al Ti V B 230 1500 700 80 11 150 150 800 70 20 25 190 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

  • L'invention concerne la métallurgie, et plus précisément le domaine des aciers destinés à la fabrication des pièces devant résister à d'importantes sollicitations.
  • Souvent, de telles pièces sont réalisées en un acier trempé et revenu ou, dans la mesure du possible, en acier forgé à structure ferrito-perlitique qui est censé offrir un meilleur compromis technico-économique, mais dont les performances mécaniques sont tout de même limitées.
  • Des aciers à structure ferrito-perlitique souvent employés à cet effet sont des types XC70, 45Mn5, 30MnSiV6 et 38MnSiV5, et subissent après laminage ou forgeage un simple refroidissement en ligne à l'air calme. Leur méthode de mise en oeuvre est donc relativement économique, mais leur durée de vie en présence de fortes sollicitations est limitée.
  • On a déjà proposé de réaliser de telles pièces en acier bainitique à partir d'une nuance de type 25MnSiCrVBS, le refroidissement après forgeage ou laminage ayant lieu à l'air. Les performances de tenue sont sensiblement améliorées par rapport aux exemples précédents, mais restent relativement limitées par rapport à ce qu'il est possible d'atteindre sur un acier trempé et revenu.
  • Le document JP-A-10-102184 divulgue un procédé de fabrication de pièce en acier comprenant les étapes suivantes:
    • coulée d'un acier de composition, en pourcentage de poids: C 0,04-0,08%; Mn 1,20-1,70%; Si 0,10-0,30%; Mo 0,100-0,500%; Ti 0,020-0,070; Nb 0.030-0,080%; balance Fe et impuretés;
    • chauffage entre 1200 et 1300°C;
    • laminage à chaud; et
    • bobinage entre 450 et 560°C.
  • Le but de l'invention est de proposer une association entre une nuance d'acier et un procédé de fabrication d'une pièce, présentant des avantages économiques par rapport aux associations existantes sans que les performances métallurgiques soient altérées, voire en améliorant ces performances. La pièce ainsi fabriquée devra résister à d'importantes sollicitations en fatigue. Dans le cas des pièces forgées, ce procédé de fabrication devrait, en particulier, être adaptable sur toute ligne de forgeage.
  • A cet effet, l'invention a pour objet un procédé de fabrication d'une pièce en acier, caractérisé en ce que :
    • on élabore et on coule un acier de composition, en pourcentages pondéraux, 0,06% ≤ C ≤ 0,25% ; 0,5% ≤ Mn ≤ 2% ; traces ≤ Si ≤ 3% ; traces ≤ Ni ≤ 4,5% ; traces ≤ Al ≤ 3% ; traces ≤ Cr ≤ 1,2% ; traces ≤ Mo ≤ 0,30% ; traces ≤ V ≤ 2% ; traces ≤ Cu ≤ 3,5% ; et respectant l'une au moins des conditions :
      • * 0,5% ≤ Cu ≤ 3,5%
      • * 0,5% ≤ V ≤ 2%
      • * 2% ≤ Ni ≤ 4,5% et 1% ≤ Al ≤ 2%
      le reste étant du fer et des impuretés résultant de l'élaboration ;
    • on effectue au moins une déformation à chaud de l'acier coulé pour obtenir une ébauche de la pièce à une température de 1100 à 1300°C ;
    • on effectue un refroidissement contrôlé de l'ébauche de la pièce à l'air calme ou à l'air pulsé à une vitesse inférieure à 3°C/s entre 600 at 300° C, de manière à lui conférer une microstructure bainitique;
    • et on réchauffe l'acier pour effectuer un revenu de précipitation, précédant ou suivant l'usinage de la pièce à partir de ladite ébauche.
  • De préférence, l'acier contient de 5 à 50 ppm de B.
  • De préférence, l'acier contient de 0,005 à 0,04% de Ti.
  • Si du B est présent, la teneur en Ti est de préférence égale à au moins 3,5 fois la teneur en N de l'acier.
  • De préférence, l'acier contient de 0,005 à 0,06% de Nb.
  • De préférence, l'acier contient de 0,005 à 0,2% de S.
  • Dans ce cas, de préférence, l'acier contient au moins un des éléments Ca jusqu'à 0,007%, Te jusqu'à 0,03%, Se jusqu'à 0,05%, Bi jusqu'à 0,05% et Pb jusqu'à 0,1%.
  • Selon une variante de l'invention, la teneur en C de l'acier est comprise entre 0,06 et 0,20%.
  • La teneur en Mn de l'acier est alors de préférence comprise entre 0,5 et 1,5%, et la teneur en Cr est de préférence comprise entre 0,3 et 1,2%.
  • La teneur en Ni de l'acier peut être alors de préférence comprise entre des traces et 1%.
  • La teneur en Ni de l'acier peut alors également être comprise entre 2 et 4,5%, et la teneur en Al est alors comprise entre 1 et 2%.
  • Le revenu de précipitation est dans le cas général effectué de préférence entre 425 et 600°C.
  • Lorsque l'acier contient 0,5 à 3,5% de Cu, le revenu de précipitation est de préférence effectué entre 425 et 500°C pendant 1 à 10h.
  • Lorsque l'acier contient 0,5 à 2% de V, le revenu de précipitation est effectué de préférence entre 500 et 600°C pendant plus d'1h.
  • Lorsque l'acier contient de 2 à 4,5% de Ni et 1 à 2% d'Al, le revenu de précipitation est effectué de préférence entre 500 et 550°C pendant plus d'1h.
  • Ladite déformation à chaud peut être un laminage.
  • Ladite déformation à chaud peut être un forgeage.
  • De préférence, le refroidissement contrôlé de l'ébauche est effectué à une vitesse inférieure à 3°C/s entre 600 et 300°C.
  • Une pièce en acier obtenue par le procédé selon l'invention a une microstructure bainitique, et typiquement une résistance à la traction Rm de 750 à 1300MPa et une limite d'élasticité Re supérieure ou égale à 500MPa.
  • Comme on l'aura compris, l'invention consiste en la combinaison d'une nuance d'acier et d'un procédé de traitement suivant la coulée comprenant une étape de mise en forme à chaud de la pièce, un refroidissement contrôlé pouvant être effectué à l'air calme ou à l'air pulsé et un revenu de précipitation précédant ou suivant l'usinage de la pièce. La composition de l'acier choisie garantit que, quel que soit le mode de refroidissement, les résultats de tenue en fatigue des pièces fabriquées à partir de cet acier seront suffisants pour répondre aux exigences des utilisateurs.
  • L'opération de mise en forme à chaud peut consister en un ou des laminages, ou en un laminage suivi d'un forgeage, ou en un forgeage seul. L'essentiel est que la dernière déformation à chaud amène l'acier entre 1100 et 1300°C, et que le refroidissement contrôlé ait lieu à partir de cette température.
  • Les caractéristiques chimiques de l'acier et ses traitements thermiques postérieurs à la coulée visent à l'obtention d'une microstructure bainitique, et également à l'obtention de caractéristiques mécaniques optimisées. Cette microstructure bainitique doit pouvoir être obtenue à la suite d'un refroidissement à l'air calme, mais doit aussi être compatible avec un refroidissement à l'air pulsé. De cette façon, les pièces du procédé de l'invention pourront être produites sur toute installation existante, que celle-ci permette après forgeage ou laminage un refroidissement à air pulsé, ou qu'elle ne permette qu'un refroidissement à l'air calme. Ainsi, une installation de forgeage initialement conçue pour traiter des pièces en acier à microstructure ferrito-perlitique pourra sans difficultés, et sans adaptations particulières, traiter des pièces à microstructure bainitique du procédé de l'invention. Les aciers à microstructure bainitique précédemment employés pour ces usages exigeaient un refroidissement à air pulsé, et ne pouvaient donc pas toujours être traités sur des installations de conception courante.
  • Selon l'invention, on commence donc par élaborer un acier dont la composition sera détaillée et justifiée plus loin, puis on le coule, en lingots ou en continu suivant le format de la pièce finale, et le plus généralement on le lamine de manière à obtenir un demi-produit.
  • On peut ensuite effectuer une opération de forgeage du demi-produit.
  • La dernière déformation à chaud est effectuée à 1100-1300°C et est suivie par un refroidissement contrôlé à l'air dans la chaude de laminage ou de forge, à l'air calme ou à l'air pulsé. On obtient ainsi une ébauche de la pièce.
  • Par le terme « ébauche », il doit être compris que l'on désigne ici une barre, ou un demi-produit sous une autre forme, à partir duquel la pièce définitive sera obtenue par usinage, et ceci indépendamment du mode de déformation à chaud pratiqué : laminage, forgeage ou leur combinaison.
  • On effectue ensuite un revenu de précipitation. Celui-ci se situe soit avant, soit après l'usinage de la pièce à partir de ladite ébauche.
  • Les fourchettes analytiques exigées sont les suivantes pour les différents éléments chimiques devant ou pouvant être présents (tous les pourcentages sont pondéraux).
  • La teneur en carbone est comprise entre 0,06 et 0,25%. Cette teneur permet de gouverner le type de microstructure obtenu. A moins de 0,06%, la microstructure obtenue ne serait pas intéressante pour les objectifs visés. Au-delà de 0,25%, en combinaison avec les autres éléments, on n'obtiendrait pas une microstructure suffisamment bainitique après refroidissement à l'air calme.
  • La teneur en manganèse est comprise entre 0,5 et 2%. Cet élément ajouté à plus de 0,5% procure sa trempabilité au matériau, et permet d'obtenir un domaine bainitique large quel que soit le mode de refroidissement. Une teneur supérieure à 2% serait cependant susceptible de provoquer des ségrégations trop importantes.
  • La teneur en silicium est comprise entre des traces et 3%. Cet élément, non obligatoire à proprement parier, est avantageux en ce qu'il durcit la bainite par son passage en solution solide. De plus, au cas où du cuivre serait présent en quantité relativement importante, le silicium permet d'éviter les problèmes associés à cette présence de cuivre lors de la mise en forme à chaud. Une teneur supérieure à 3% peut cependant poser des problèmes d'usinabilité du matériau.
  • La teneur en nickel est comprise entre des traces et 4,5%. Cet élément non obligatoire favorise la trempabilité et la stabilisation de l'austénite. Si la teneur en aluminium le permet, il peut former des précipités de NiAl très durcissants, procurant au métal des caractéristiques mécaniques élevées. Au cas où du cuivre serait présent en quantité relativement importante, le nickel peut jouer le même rôle que le silicium. Au-delà de 4,5%, l'addition de nickel est inutilement coûteuse au vu des objectifs métallurgiques visés.
  • La teneur en aluminium est comprise entre des traces et 3%. Cet élément non obligatoire est un désoxydant fort, et même ajouté à faible teneur, il permet de limiter la quantité d'oxygène dissous dans l'acier liquide, donc d'améliorer la propreté inclusionnaire de la pièce si on a su éviter des réoxydations trop importantes lors de la coulée. A forte teneur, comme on l'a dit, il est susceptible de former des précipités de NiAl si du nickel est présent en grande quantité. Il n'est pas utile que la teneur en aluminium dépasse 3%.
  • La teneur en chrome, élément non obligatoire, est comprise entre des traces et 1,2%. Comme le manganèse, le chrome contribue à l'amélioration de la trempabilité. Son addition devient inutilement coûteuse au-delà de 1,2%.
  • La teneur en molybdène est comprise entre des traces et 0,30%. Cet élément, non obligatoire, empêche la formation de ferrite à gros grains et permet d'obtenir plus assurément la structure bainitique. Son addition est inutilement coûteuse au-delà de 0,30%.
  • La teneur en vanadium est comprise entre des traces et 2%. Cet élément, non obligatoire, sert à durcir la bainite par son passage en solution solide. A forte teneur, il permet également d'obtenir un durcissement par précipitation de carbures et/ou de carbonitrures. Son addition est inutilement coûteuse au-delà de 2%.
  • La teneur en cuivre est comprise entre des traces et 3,5%. Cet élément, non obligatoire, peut améliorer l'usinabilité et, en précipitant, provoquer un durcissement secondaire du matériau. Mais au-delà de 3,5% il rend la mise en forme à chaud de la pièce problématique. Comme on l'a dit, il est conseillé de lui associer une teneur en nickel ou en silicium significative pour minimiser les problèmes de mise en forme à chaud. Au-delà de 3,5% son addition est de toute façon inutilement coûteuse.
  • Par ailleurs, il faut que l'une au moins des trois conditions suivantes soit respectée :
    • une teneur en cuivre comprise entre 0,5 et 3,5%
    • une teneur en vanadium comprise entre 0,5 et 2%
    • une teneur en nickel comprise entre 2 et 4,5% et une teneur en aluminium comprise entre 1 et 2%.
  • Les éléments que l'on vient de citer sont ceux dont le rôle métallurgique est ou peut être le plus important pour l'invention, mais d'autres éléments que l'on va citer peuvent aussi être optionnellement présents pour améliorer certaines propriétés de l'acier.
  • La teneur en bore peut être comprise entre 5 et 50ppm. Il peut améliorer la trempabilité, mais doit être en solution solide pour être efficace. Autrement dit, on doit éviter que tout le bore ou presque ne se retrouve sous la forme de nitrures ou carbonitrures de bore. A cet effet, il est conseillé d'associer à l'addition de bore une addition de titane, de préférence dans une proportion telle que 3,5 x N% ≤ Ti%. A cette dernière condition, on peut capter tout l'azote dissous et éviter la formation de nitrures ou de carbonitrures de bore. La teneur minimale en titane, à cet effet, est de 0,005%, pour les teneurs en azote les plus basses usuellement rencontrées. Il est cependant conseillé de ne pas dépasser une teneur en titane de 0,04%, sinon on obtient des nitrures de titane de taille trop élevée.
  • Le titane a également pour fonction de limiter le grossissement du grain austénitique à haute température, et peut, pour cela, être ajouté indépendamment du bore, à une teneur comprise entre 0,005 et 0,04%.
  • Du niobium peut également être ajouté, à des teneurs comprises entre 0,005 et 0,06%. Lui aussi peut précipiter sous forme de carbonitrures dans l'austénite, et peut ainsi apporter un durcissement du matériau.
  • Enfin, de manière classique, on peut améliorer l'usinabilité du matériau par une addition de soufre (de 0,005% à 0,2%), à laquelle on peut aussi associer une addition de calcium (jusqu'à 0,007%), et/ou de tellure (jusqu'à 0,03%) et/ou de sélénium (jusqu'à 0,05%), et/ou de bismuth (jusqu'à 0,05%) et/ou de plomb (jusqu'à 0,1%).
  • Une fois obtenu après laminage le demi-produit ayant la composition précédemment citée, on procède ou non à un forgeage de l'ébauche de la pièce selon les procédés habituels. On la chauffe jusqu'à 1100-1300°C, puis on exécute les déformations donnant naissance à l'ébauche de pièce.
  • En l'absence de forgeage, le laminage doit se terminer à une température de 1100-1300°C.
  • Puis immédiatement après le laminage, ou après le forgeage si cette opération a été effectuée, on effectue un refroidissement contrôlé de la pièce, soit à l'air calme, soit à l'air pulsé. De manière générale, on impose à la pièce un refroidissement à une vitesse inférieure ou égale à 3°C/s entre 600 et 300°C.
  • Selon l'invention, et ce avant ou après l'usinage de la pièce qui lui confère ses dimensions définitives, on procède à un durcissement de l'acier par précipitation au moyen d'un revenu, c'est-à-dire d'un traitement thermique faisant suite à un réchauffage à partir d'une température égale ou de peu supérieure à l'ambiante ; pour cela trois options sont possibles, et peuvent d'ailleurs être combinées :
    • la précipitation de cuivre, si la teneur en cuivre est comprise entre 0,5 et 3,5% ;
    • la précipitation de vanadium si sa teneur est comprise entre 0,5 et 2% ;
    • la précipitation de NiAl si la teneur en nickel est comprise entre 2 et 4,5% et la teneur en aluminium comprise entre 1 et 2%.
  • De manière générale, le revenu de précipitation est effectué de préférence entre 425 et 600°C. Mais la température du revenu et sa durée sont optimalement à adapter aux caractéristiques visées. A titre d'exemple, la précipitation du cuivre est obtenue de préférence par un traitement à 425-500°C pendant 1 à 10h. La précipitation de vanadium est de préférence obtenue par un traitement à 500-600°C pendant plus d'1h. La précipitation de NiAl est de préférence obtenue par un traitement à 500-550°C pendant plus d'1h.
  • Ce revenu peut être effectué :
    • soit après l'usinage de façon à avoir un métal pas trop dur pendant l'usinage ;
    • soit après le refroidissement contrôlé à l'air et avant l'usinage ; on réalise alors l'usinage sur une pièce à hautes caractéristiques mécaniques, ce qui le rend particulièrement précis.
  • Grâce à ce revenu, on peut obtenir des caractéristiques mécaniques élevées pour le produit obtenu. Typiquement, la résistance à la traction Rm va de 1000 à 1300 MPa et la limite d'élasticité Re est de l'ordre de 900 MPa ou davantage.
  • Optimalement, on limite la teneur en carbone à 0,06-0,2%, de manière à obtenir une bainite de dureté limitée à 300-330 Hv30. Optimalement, la teneur en manganèse doit être comprise entre 0,5 et 1,5%, la teneur en chrome entre 0,3 et 1,2%, et la teneur en nickel peut soit aller jusqu'à 1% si on ne vise qu'une bonne trempabilité, soit aller de 2 à 4% si on recherche une précipitation de NiAl comme on l'a vu. Dans ce dernier cas, la teneur en aluminium est comprise entre 1 et 2%.
  • Pour ces aciers, les caractéristiques de traction (limite d'élasticité, résistance) du produit obtenu après laminage ou forgeage et refroidissement à l'air contrôlé ne sont pas particulièrement élevées : typiquement la résistance à la traction Rm est de l'ordre de 750-1050 MPa et la limite d'élasticité Re de l'ordre de 500 à 750MPa. Mais ces aciers présentent une bonne usinabilité.
  • A titre d'exemples de mise en oeuvre de l'invention et d'exemple comparatif, on peut citer les essais suivants,
  • Exemple 1 (invention)
  • Cet exemple est représentatif de la variante de l'invention pour laquelle on peut utiliser une teneur en carbone relativement basse, et où on réalise le durcissement par précipitation grâce à une addition de cuivre.
  • La composition de l'acier est la suivante, exprimée en 10-3% pondéraux :
    C Mn Si S P Ni Cu Cr Mo Al Ti B N
    80 1500 300 85 10 1500 2500 280 50 25 - - 6
  • Après forgeage à chaud à une température de 1250-1200°C et refroidissement à l'air calme (vitesse de refroidissement moyenne de 1°C/s entre 700 et 300°C) une microstructure bainitique est obtenue avec une dureté modérée de 265Hv30, procurant une résistance inférieure à 900 MPa. Avec ce niveau de caractéristiques mécaniques, l'usinabilité ne pose pas de problèmes. Ensuite, un revenu à 450°C, avec une durée de maintien d'une heure, permet d'augmenter les caractéristiques de résistance pour atteindre plus de 340Hv30 de dureté, procurant une résistance de 1100MPa.
  • Exemple 2 (invention)
  • Cet exemple est représentatif de la variante de l'invention pour laquelle on peut utiliser une teneur en carbone relativement basse, et où on réalise le durcissement par précipitation grâce à une addition de vanadium.
  • La composition de l'acier est la suivante, exprimée en 10-3% pondéraux :
    C Mn Si S P Ni Cu Cr Mo Al Ti V
    150 1230 250 80 20 150 200 205 50 30 - 820
  • Après forgeage à chaud à une température de 1250-1200°C et refroidissement à l'air calme (en moyenne 1°C/s entre 700 et 300°C) d'une pièce de forge de diamètre équivalent à 15mm, une microstructure majoritairement bainitique est obtenue avec déjà une dureté importante de 300-320Hv30, procurant une résistance de 1000MPa environ, qui est actuellement la limite haute permettant encore une usinabilité correcte sur des moyens d'usinage classiques. Après un revenu de 2h à 580°C, le durcissement par le vanadium permet d'atteindre une dureté de l'ordre de 400Hv30, correspondant à une résistance supérieure à 1200MPa.
  • Exemple 3 (invention)
  • Cet exemple est représentatif de la variante de l'invention pour laquelle on peut utiliser une teneur en carbone relativement basse, et où on réalise le durcissement par précipitation grâce à des additions conjuguées de nickel et d'aluminium.
  • La composition de l'acier est la suivante, donnée en 10-3% pondéraux :
    C Mn Si S P Ni Cu Cr Mo Al Ti B N
    95 1150 200 80 10 3000 206 220 60 1500 - 3 3
  • Après forgeage à chaud à une température de 1250-1200°C et refroidissement à l'air calme (vitesse de refroidissement moyenne de 1°C/s entre 700 et 300°C) une microstructure bainitique est obtenue avec une dureté modérée de 240Hv30, procurant une résistance inférieure à 800 MPa. Avec ce niveau de caractéristiques mécaniques, l'usinabilité ne pose pas de problèmes. Ensuite, un revenu à 520°C, avec une durée de maintien de 10 heures, permet d'augmenter les caractéristiques de résistance pour atteindre plus de 370Hv30 de dureté, procurant une résistance de l'ordre de 1200MPa.
  • Exemple 4 (référence)
  • La composition de l'acier est la suivante, donnée en 10-3% pondéraux :
    C Mn Si S P Ni Cu Cr Mo Al Ti V B
    230 1500 700 80 11 150 150 800 70 20 25 190 3
  • Après forgeage à chaud à 1250 - 1200°C et refroidissement à l'air calme d'une pièce de diamètre équivalent à 25 mm, une microstructure majoritairement bainitique est obtenue avec une dureté voisine de 320 Hv30, procurant une résistance de 1050Mpa environ. Un revenu d'une heure entre 300 et 450°C ne permet pas d'augmenter significativement la résistance.

Claims (12)

  1. Procédé de fabrication d'une pièce en acier, caractérisé en ce que :
    - on élabore et on coule un acier de composition, en pourcentages pondéraux, 0,06% ≤ C ≤ 0,25% ; 0.5% ≤ Mn ≤ 2% ; traces ≤ Si ≤ 3% ; traces ≤ Ni ≤ 4,5% ; traces ≤ Al ≤ 3% ; traces ≤ Cr ≤ 1,2% ; traces ≤ Mo ≤ 0,30% ; traces ≤ V ≤ 2% ; traces ≤ Cu ≤ 3,5% ; et respectant l'une au moins des conditions :
    * 0,5% ≤ Cu ≤ 3,5%
    * 0,5% ≤ V ≤ 2%
    * 2% ≤ Ni ≤ 4,5% et 1% ≤ Al ≤ 2%
    optionnellement de 5 à 50 ppm de B;
    optionnellement de 0,005 à 0,04% de Ti;
    optionnellement de 0,005 à 0,06% de Nb;
    optionnellement de 0,005 à 0,2% de S;
    optionnellement au moins un des éléments Ca jusqu'à 0,007%, Te jusqu'à 0,03%, Se jusqu à 0,05%, Bi jusqu'à 0,05% et Pb jusqu'à 0,1%;
    le reste étant du fer et des impuretés résultant de l'élaboration ;
    - on effectue au moins une déformation à chaud de l'acier coulé pour obtenir une ébauche de la pièce à une température de 1100 à 1300°C ;
    - on effectue un refroidissement contrôlé de l'ébauche de la pièce à l'air calme ou à l'air pulseé, avec une vitesse inférieure ou égale à 3°C/s entre 600 et 300°C, de maniére à lui conférer une micro-structure bainitique;
    - et on réchauffe l'acier pour effectuer un revenu de précipitation, précédant ou suivant l'usinage de la pièce à partir de ladite ébauche.
  2. Procédé selon la revendication 1, caractérisé en ce que l'acier contient du B et du Ti et que la teneur en Ti est égale à au moins 3,5 fois la teneur en N de l'acier.
  3. Procédé selon l'une des revendications 1 à 2, caractérisé en ce que la teneur en C de l'acier est comprise entre 0,06 et 0,20%.
  4. Procédé selon la revendication 3, caractérisé en ce que la teneur en Mn de l'acier est comprise entre 0,5 et 1,5%, et en ce que la teneur en Cr est comprise entre 0,3 et 1,2%.
  5. Procédé selon la revendication 3 ou 4, caractérisé en ce que la teneur en Ni de l'acier est comprise entre des traces et 1%.
  6. Procédé selon la revendication 3 ou 4, caractérisé en ce que la teneur en Ni de l'acier est comprise entre 2 et 4,5%, et en ce que la teneur en Al est comprise entre 1 et 2%.
  7. Procédè selon l'une des revendications 1 à 6, caractérisé en ce que le revenu de précipitation est effectué entre 425 et 600°C.
  8. Procédé selon la revendication 7, caractérisé en ce que l'acier contient 0,5 à 3,5% de Cu et en ce que le revenu de précipitation est effectué entre 425 et 500°C pendant 1 à 10h.
  9. Procédé selon la revendication 7, caractérisé en ce que l'acier contient 0,5 à 2% de V et en ce que le revenu de précipitation est effectué entre 500 et 600°C pendant plus d'1h.
  10. Procédé selon la revendication 7, caractérisé en ce que l'acier contient de 2 à 4,5% de Ni et 1 à 2% d'Al et en ce que le revenu de précipitation est effectué entre 500 et 550°C pendant plus d'1 h.
  11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que ladite déformation à chaud est un laminage.
  12. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que ladite déformation à chaud est un forgeage.
EP03292950A 2002-12-03 2003-11-27 Procédé de fabrication d'une pièce en acier bainitique Expired - Lifetime EP1426452B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0215226A FR2847908B1 (fr) 2002-12-03 2002-12-03 Piece en acier bainitique, refroidie et revenue, et son procede de fabrication.
FR0215226 2002-12-03

Publications (2)

Publication Number Publication Date
EP1426452A1 EP1426452A1 (fr) 2004-06-09
EP1426452B1 true EP1426452B1 (fr) 2009-09-02

Family

ID=32309974

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03292950A Expired - Lifetime EP1426452B1 (fr) 2002-12-03 2003-11-27 Procédé de fabrication d'une pièce en acier bainitique

Country Status (11)

Country Link
US (1) US7354487B2 (fr)
EP (1) EP1426452B1 (fr)
JP (1) JP4316361B2 (fr)
CN (1) CN1288270C (fr)
AT (1) ATE441730T1 (fr)
CA (1) CA2452647C (fr)
DE (1) DE60329064D1 (fr)
ES (1) ES2331949T3 (fr)
FR (1) FR2847908B1 (fr)
MX (1) MXPA03010998A (fr)
PL (1) PL206237B1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381642B2 (en) 2004-09-23 2008-06-03 Megica Corporation Top layers of metal for integrated circuits
JP4582177B2 (ja) * 2008-03-31 2010-11-17 パナソニック電工株式会社 電動工具
CN103074549B (zh) * 2012-12-01 2015-02-25 滁州恒昌机械制造有限公司 挖掘机斗齿用低碳多元合金钢及其生产工艺
CN105164296A (zh) * 2013-10-02 2015-12-16 新日铁住金株式会社 时效硬化性钢
US10745772B2 (en) * 2014-03-05 2020-08-18 Daido Steel Co., Ltd. Age hardening non-heat treated bainitic steel
CN105543686A (zh) * 2015-12-28 2016-05-04 常熟市明瑞针纺织有限公司 基于Pro/E的经编机凸轮轮廓曲线生成方法
CN105710264A (zh) * 2016-03-20 2016-06-29 电子科技大学中山学院 采用附加强制冷却的锥形板镦粗法锻制锻件的工艺
CN105886919A (zh) * 2016-06-13 2016-08-24 苏州双金实业有限公司 一种具有防腐蚀性能的钢
CN106011635A (zh) * 2016-08-03 2016-10-12 苏州市虎丘区浒墅关弹簧厂 一种耐冲击抗压型弹簧材料
FR3064282B1 (fr) * 2017-03-23 2021-12-31 Asco Ind Acier, procede pour la fabrication de pieces mecaniques en cet acier, et pieces ainsi fabriquees
CN110684928B (zh) * 2019-10-31 2020-10-23 上海交通大学 一种低温用高强高韧厚板结构钢及其热处理方法
CN112501518B (zh) * 2020-12-01 2022-04-01 青岛科技大学 一种贝氏体钢及其制备方法与用途

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE28523E (en) * 1963-11-12 1975-08-19 High strength alloy steel compositions and process of producing high strength steel including hot-cold working
FR2741632B1 (fr) * 1995-11-27 1997-12-26 Ascometal Sa Acier pour la fabrication d'une piece forgee ayant une structure bainitique et procede de fabrication d'une piece
JPH10102184A (ja) * 1996-09-26 1998-04-21 Sumitomo Metal Ind Ltd 高強度ラインパイプ電縫鋼管用熱延鋼板
FR2774098B1 (fr) * 1998-01-28 2001-08-03 Ascometal Sa Acier et procede pour la fabrication de pieces de mecanique secables
JP3900690B2 (ja) * 1998-06-26 2007-04-04 愛知製鋼株式会社 時効硬化型高強度ベイナイト鋼およびその製造方法
FR2796966B1 (fr) * 1999-07-30 2001-09-21 Ugine Sa Procede de fabrication de bandes minces en acier de type "trip" et bandes minces ainsi obtenues
ATE464402T1 (de) * 1999-09-16 2010-04-15 Jfe Steel Corp Verfahren zur herstellung einer dünnen stahlplatte mit hoher festigkeit
WO2001023624A1 (fr) * 1999-09-29 2001-04-05 Nkk Corporation Tole d'acier et son procede de fabrication
JP3750789B2 (ja) * 1999-11-19 2006-03-01 株式会社神戸製鋼所 延性に優れる溶融亜鉛めっき鋼板およびその製造方法
JP2001152246A (ja) * 1999-11-22 2001-06-05 Sanyo Special Steel Co Ltd 靭性、鏡面性および被削性に優れたプラスチック成形金型用鋼の製造方法
US6558483B2 (en) * 2000-06-12 2003-05-06 Sumitomo Metal Industries, Ltd. Cu precipitation strengthened steel

Also Published As

Publication number Publication date
US20040108020A1 (en) 2004-06-10
PL363854A1 (en) 2004-06-14
CN1519386A (zh) 2004-08-11
JP2004190138A (ja) 2004-07-08
JP4316361B2 (ja) 2009-08-19
CN1288270C (zh) 2006-12-06
PL206237B1 (pl) 2010-07-30
ATE441730T1 (de) 2009-09-15
EP1426452A1 (fr) 2004-06-09
FR2847908A1 (fr) 2004-06-04
US7354487B2 (en) 2008-04-08
DE60329064D1 (de) 2009-10-15
MXPA03010998A (es) 2004-09-10
CA2452647C (fr) 2009-07-14
FR2847908B1 (fr) 2006-10-20
CA2452647A1 (fr) 2004-06-03
ES2331949T3 (es) 2010-01-21

Similar Documents

Publication Publication Date Title
CA2847809C (fr) Acier lamine durcissant par precipitation apres formage a chaud et/ou trempe sous outil a tres haute resistance et ductilite et son procede de fabrication
EP1874973B1 (fr) Acier martensitique durci, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue
EP0851038B2 (fr) Acier et procédé pour la fabrication d'une piéce en acier mise en forme par déformation plastique à froid
EP0787812B1 (fr) Procédé de fabrication d'une pièce forgée en acier
EP1979583B1 (fr) Procédé de fabrication d'une soupape de moteur à explosion, et soupape ainsi obtenue
EP1426452B1 (fr) Procédé de fabrication d'une pièce en acier bainitique
CA3022115A1 (fr) Procede de fabrication d'une piece en acier inoxydable martensitique a partir d'une tole
FR2958943A1 (fr) Rail d'acier traite thermiquement a haute teneur en carbone et a haute resistance et procede de fabrication associe
CA2984131A1 (fr) Acier, produit realise en cet acier, et son procede de fabrication
FR2931166A1 (fr) Acier pour forge a chaud a hautes caracteristiques mecaniques des pieces produites
EP0051511A1 (fr) Cylindre de laminage à froid fabriqué par coulée et son procédé de fabrication
FR2774098A1 (fr) Acier et procede pour la fabrication de pieces de mecanique secables
JP4185997B2 (ja) 軸受部品の製造方法
EP3378957B1 (fr) Acier, procédé pour la fabrication de pièces mécaniques en cet acier, et pièces ainsi fabriquées
FR2583778A1 (fr) Acier inoxydable a haute resistance
EP2134882B1 (fr) Acier micro-allié à bonne tenue à l'hydrogène pour le formage à froid de pièces mécaniques à hautes caractéristiques
JP2009191330A (ja) 電縫鋼管
EP3274483B1 (fr) Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication
EP1563109A1 (fr) Piece d'acier de construction soudable et procede de fabrication
EP2257652B1 (fr) Procede de fabrication de tôles d'acier inoxydable austenitique a hautes caracteristiques mecaniques, et tôles ainsi obtenues
FR3001738B1 (fr) Procede de fabrication d'un composant d'essieu de vehicule automobile
FR2781813A1 (fr) Acier pour la fabrication d'une piece pour roulement
JPH09165643A (ja) 転動疲労特性に優れた軸受鋼
WO2005100618A2 (fr) Piece mecanique de taille moyenne ou petite issue de la forge ou de la frappe
FR2847592A1 (fr) Acier pour deformation a froid ou a chaud, piece mecanique prete a l'emploi realisable avec cet acier et son procede de fabrication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20041013

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070802

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: MANUFACTURING PROCESS OF A BAINITIC STEEL ARTICLE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DIERICKX, PIERRE

Inventor name: ANDRE, GAELLE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60329064

Country of ref document: DE

Date of ref document: 20091015

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2331949

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

26N No opposition filed

Effective date: 20100603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20141024

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141118

Year of fee payment: 12

Ref country code: MC

Payment date: 20141021

Year of fee payment: 12

Ref country code: ES

Payment date: 20141124

Year of fee payment: 12

Ref country code: DE

Payment date: 20141113

Year of fee payment: 12

Ref country code: FR

Payment date: 20141016

Year of fee payment: 12

Ref country code: SE

Payment date: 20141114

Year of fee payment: 12

Ref country code: CH

Payment date: 20141114

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

Effective date: 20141222

Ref country code: FR

Ref legal event code: TP

Owner name: ASCO INDUSTRIES, FR

Effective date: 20141222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141113

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20141127

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150910 AND 20150916

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60329064

Country of ref document: DE

Owner name: ASCO INDUSTRIES, FR

Free format text: FORMER OWNER: ASCOMETAL, COURBEVOIE, FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60329064

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151127

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151127

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: FR

Ref legal event code: RG

Effective date: 20180606