EP1399990A1 - Wide band printed antenna with several radiating elements - Google Patents

Wide band printed antenna with several radiating elements

Info

Publication number
EP1399990A1
EP1399990A1 EP02735550A EP02735550A EP1399990A1 EP 1399990 A1 EP1399990 A1 EP 1399990A1 EP 02735550 A EP02735550 A EP 02735550A EP 02735550 A EP02735550 A EP 02735550A EP 1399990 A1 EP1399990 A1 EP 1399990A1
Authority
EP
European Patent Office
Prior art keywords
substrate
conductive layer
antenna
projection
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02735550A
Other languages
German (de)
French (fr)
Inventor
Jean-Philippe Coupez
Yann Toutain
Jean-Pierre Blot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP1399990A1 publication Critical patent/EP1399990A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas

Definitions

  • the present invention relates to a printed antenna of the "patch" type in plated technology, with linear or circular polarization, capable of operating in a wide frequency range extending at least up to a few gigahertz.
  • this antenna is intended to be installed in base stations of cellular networks for radiocommunications with mobile terminals in order to cover the frequency bands of several networks.
  • the invention is directed to a printed antenna comprising a dielectric substrate of low relative permittivity having faces supporting conductive layers, as described in international patent application PCT / FR01 / 04064 filed on December 19, 2001 and not yet published.
  • One of the conductive layers has a projection so as to reduce the size of the antenna and thus give the antenna a high compactness, while preserving a large opening of the radiation pattern of the antenna.
  • a printed antenna comprising a first substrate having faces supporting conductive layers, one of which has a projection, is characterized in that it comprises a second substrate having a face of complementary shape to one of the faces of the first substrate and disposed against this and another face supporting a conductive layer, and the conductive layer on the first substrate against which the second substrate is disposed and the conductive layer on the second substrate both have a projection and an opening which are superimposed.
  • the conductive layer on the first substrate against which the second substrate is arranged comprises the projection, and the other conductive layer on the first substrate constitutes a ground plane.
  • the projection of the conductive layer supported by the face of the first substrate against which the second substrate is arranged acts as a tongue complementary to a groove in the face of the second substrate of complementary shape.
  • the conductive layer on the first substrate against which the second substrate is arranged comprises the opening
  • the other conductive layer on the first substrate constitutes a ground plane and comprises the projection which is superimposed on the 'opening.
  • the projection of the other conductive layer on the first substrate can be formed by a groove in the first substrate covered by said other conductive layer.
  • an opening of the conductive layer on one of the first and second substrates substantially frames the conductive layer having the projection on the other substrate, and the first and second substrates are combined into a single substrate.
  • the antenna may include a microwave supply means connected to the two conductive layers of the first substrate.
  • This power supply means can be a coaxial probe for linear polarization operation, or can comprise a hybrid coupler for circular polarization operation.
  • Substrates one of the faces of which has a conductive layer with a projection or an opening can be stacked and nested so as to constitute a compact stack of radiating elements constituting the antenna and adapted to the desired operating frequency band.
  • the third substrate has a face with a shape complementary to the face of the second substrate supporting a conductive layer and arranged against it, and another face supporting a layer conductive, and the conductive layers on the second and third substrates have either a projection and an opening which are superimposed.
  • the substrates are preferably made of a dielectric foam of very low relative permittivity which standardizes the dielectric materials in the antenna in order to make the radiation performance of the antenna more efficient.
  • each substrate constitutes a block which is nested on another block without sealing.
  • FIGS. 1 and 2 are perspective views, respectively not exploded and exploded view of a printed antenna with two radiating elements on two blocks of dielectric foam superimposed respectively nested and supplied according to the invention, a quadrant of the upper block shown in the lower part of the figures being torn off, and a central square opening not being practiced than in the upper block shown in Figure 2;
  • FIG. 3 is a sectional view taken along the plane III-III in Figure 1, the antenna comprising a coaxial probe for excitation in linear polarization;
  • FIG. 4 is a perspective view of the first block of a printed antenna of the type shown in Figures 1 and 2, with circular polarization with hybrid coupler, a quadrant of the lower block being cut away;
  • - Figures 5 and 6 are respectively top views and in section along the line VI-VI of Figure 5 of the first antenna block shown in Figure 4;
  • - Figures 7 and 8 are respectively top and perspective views of the first block of dielectric foam of the antenna shown in Figures 1 and 2 which is machined during a first step of the antenna manufacturing process;
  • - Figures 9 and 10 are respectively top and perspective views of the first block of machined foam which is metallized during a second stage of the manufacturing process;
  • FIGS. 11 and 12 are respectively top and perspective views of the first block of machined and metallized foam which is cut during a third step of the manufacturing process;
  • FIGS 13, 14 and 15 are respectively perspective views of the second block of foam which is machined, then metallized and finally cut during the first, second and third steps of the manufacturing process of the antenna shown in Figures 1 and 2 ;
  • Figure 16 is a sectional view in partial perspective on a larger scale, taken along line XVI-XVI in Figure 3, through the interlocking of a first block tongue and a second block groove of the antenna, at the level of the internal conductor of the coaxial probe;
  • - Figures 17 and 18 show variations in adaptation and transmission as a function of frequency for a linearly polarized antenna of the type shown in Figures 1 to 3;
  • FIG. 19 is an axial sectional view of another alternative antenna with two nested dielectric foam blocks
  • - Figure 20 is an axial sectional view of another antenna with two radiating elements but comprising only a single block of dielectric foam
  • - Figure 21 is an axial sectional view of another antenna with two blocks of dielectric foam with a ground plane having at least one projection
  • FIG. 22 is an axial sectional view of an antenna with three blocks of dielectric foam each supporting a radiating element.
  • a printed antenna 1 of the “square patch” type with two radiating elements is described below in detail with reference to FIGS. 1 to 3, ignoring the antenna supply means.
  • the antenna is made up of two blocks B1 and B2 which fit one on the other as shown in FIG. 2. Each block is produced by machining in a thin dielectric parallelepipedal block and has a square contour, or well rectangular, and is thus symmetrical with respect to two perpendicular axes of X and Y symmetry of the antenna.
  • the first block B1 shown in the lower part in FIGS. 1 to 3 comprises a dielectric substrate 2 and first and second square, or else rectangular, electrically conductive layers 3 and.
  • the first conductive layer 3 constitutes a ground plane and extends over a first face of the first substrate 2 constituting a lower external face of the antenna 1.
  • the second conductive layer 4 is centered on the second face of the substrate 2 which has two projections 21, substantially rectangular, perpendicular and centered on the axes of symmetry X and Y of the antenna.
  • the second conductive layer 4 at least partially covers the upper face of the first block B1, including the top and the longitudinal sides of the two projections 21, and extends along the projections.
  • the layer 4 has a U-shaped section with potentiated ends transversely to each of the projections, as shown in FIGS. 3 and 16.
  • the wings of the U-shaped section of the layer 4 extend on the second face of the substrate with a width L1 much greater than the width L2 of each projection 21.
  • the height h of the projections 21 of the substrate 2 and therefore of the conductive layer 4 is greater than the thickness e2 of the thinnest part of the substrate 2.
  • the first block of the antenna 1 can be identical to a printed antenna with circular polarization described in the international patent application already cited PCT / FR01 / 04064.
  • the second block B2 of the antenna 1 shown in the upper part in FIGS. 1 to 3 comprises a second dielectric substrate 5 which fits on the upper face of the first block B1 covered by the second conductive layer 4, and an electrically conductive layer 6 extending over the second flat face of the substrate 5.
  • the layer 6 has a square, or rectangular, central opening 61 superimposed on the center of the cross formed by the projections 21 and having sides perpendicular to the projections.
  • the opening 61 and each projection 21 have respective axes of coplanar symmetry X, Y.
  • the third conductive layer 6 thus has a shape in a square crown which is centered on the axes of symmetry X and Y of the antenna 1 and which, according to the illustrated embodiment, borders the periphery of the upper face of the antenna 1.
  • the conductive layer 6 constitutes a second radiating element electromagnetically coupled to the first radiating element constituted by the second conducting layer 4 through the central opening 61.
  • the lower face of the second block B2 perfectly matches the shape of the upper face of the first block B1 and comprises two perpendicular rectilinear grooves 51 which are complementary, and preferably with identical ribs, to the projections 21 making tabs office so that the block B2 fits without mechanical play on the block Bl so as to obtain a very compact antenna 1.
  • the antenna 1 thus has the two perpendicular axes of symmetry X and Y along the two crossed pairs of tongues and grooves 21-51 and an axis of symmetry Z central to the antenna 1 and perpendicular to the various substrates and conductive layers.
  • the substrates are of imide polymethacrylate foam.
  • Dielectric foam offers the advantage of being easily machinable as will be seen below. Thanks to its mechanical properties, in particular its flexibility, the foam allows the block B2 to be easily fitted with great precision onto the block Bl by pushing the block B2 with light pressure on the block Bl so that the crossed grooves 51 in the underside of the upper block B2 substantially enclose the crossed tongues 21 in the upper face of the lower block Bl.
  • This interlocking of blocks does not require any particular sealing between the blocks and thus ensures perfect homogeneity of the two blocks constituting the antenna as well as precise relative positions of the radiating elements 4 and 6 and therefore precise spacing between the radiating elements.
  • the intrinsic elasticity of the dielectric foam substrates provides correct adhesion between the two blocks, with no mechanical play between them.
  • the antenna 1 when the antenna 1 operates in circular polarization, it comprises a microwave supply means comprising a coaxial probe 7 and a hybrid coupler 8 at 3 dB-90 °, connected to the conductive layers 3 and 4 of the first substrate 2.
  • the hybrid coupler 8 is configured substantially along the outline of a square and photo-etched on the upper face of a small square dielectric support 23.
  • the support 23 is embedded in a central cavity of the underside of the substrate 2 of the first block Bl against which the second substrate 5 is not disposed and which is covered by the metal layer 3 forming the ground plane.
  • the support 23 has a significantly higher relative permittivity.
  • the coaxial probe 7 has an external conductive base which is fixed on the ground plane 3 and has an internal conductor which crosses the ground plane and the dielectric support 23.
  • the end of the internal conductor of the coaxial probe 7 is welded to the end of a branch 81 forming an access to a top of the hybrid coupler 8.
  • Another top of the coupler located in front in Figures 4 and 5 can be connected to the internal conductor of a second coaxial probe (not shown).
  • the other two vertices 82 of the coupler 8 are two other accesses extended by metal bushings 83 which are formed through the ends of the two tongue-and-groove projections 21.
  • Upper ends of the metal bushings 83 are in metallic contact by welding or bonding 84 with the conductive layer 4 extending over the tops of the tabs 21.
  • the first block B1 is produced according to a method of manufacturing a printed antenna with a single radiating element, mainly comprising three steps E1, E2 and E3 respectively illustrated in FIGS. 7-8, 9-10 and 11-12.
  • the manufacture of the first block Bl starts from a block of thin foam of thickness h + e2 and of width and length greater than 2L1 + L2.
  • step E1 four rectangular cavities C with a bottom of thickness e2 are machined symmetrically with respect to the transverse axes X and Y in one face of the block so that the cavities are separated by two perpendicular transverse bands BA having the section (h .L2) of the tongues 21.
  • the square cavities C have a width greater than L1.
  • the underside of the foam block is also machined in order to dig a thin square cavity therein, a few tens of millimeters deep, centered under the cross formed by the two transverse bands BA. Two holes are then drilled at the ends of two tongues 21 in order to constitute the two metal crossings 83.
  • the support 23 on which the hybrid coupler 8 has been photograved is fitted into the underlying thin cavity and if necessary glued into the cavity slim.
  • step E2 the upper face of the block of foam machined with the cavities C is metallized by depositing a layer of metallic paint to constitute the conductive layer 4.
  • the metallic paint covers the two bands BA and the bottom of the four cavities C.
  • the metallic paint also covers the underside of the block of machined foam, with the exception of the thin square cavity intended for the support 23 of the hybrid coupler 8, so as to constitute the ground plane 3.
  • the ground plane 3 is constituted by a metal support on which the block of machined foam is fixed.
  • the metallization of the upper face of the metallized foam block also the two holes drilled in the tongues 21 so as to constitute the metal crossings 83 which connect the conductive layer 4 extending on the tongues 21 to two vertices 82 of the coupler 8.
  • step E3 the antenna 1 is cut into D1 by a second machining in the metallized block along the square contour of side 2L1 + L2, or else rectangular, of the first block B1.
  • the second block B2 is manufactured in steps El, E2 and E3 also shown respectively in FIGS. 13, 14 and 15.
  • steps E1 and E2 two perpendicular grooves R of depth h and width L2 are machined in the foam block initially at least of width 2L1 + L2.
  • a square cover CA of side L61, or else rectangular, is applied to the upper surface of the block, centrally above the crossing of the grooves R.
  • the upper face of the block is then metallized by depositing a layer of metallic paint to form the conductive layer 6 around the cover CA having the dimensions of the non-metallized opening 61.
  • step E1 the upper face of the block is machined so as to completely remove a rectangular block of square section L61 x L61 so that the opening 61 is extended by a recess crossing the block B2 between the upper face of the block and in particular the bottom of the grooves R, in place of the cover CA, as shown in FIG. 2.
  • step E3 the second block B2 is cut into D2 by a second machining in the metallized block along the rectangular contour of 2L6 + L61 of block B2.
  • the second block B2 thus produced is juxtaposed by simple pressure on the metallized upper face 4 of the first block B1 so that the grooves 51 receive the tabs 21 fully and the lower face of the second block B2 abuts against the metallized face of the first block B1.
  • the coaxial probe 7 and the hybrid coupler 8 with its support 23 are eliminated and replaced by a microwave supply means with a single excitation point, constituted by a coaxial probe 9, as shown in FIGS. 3 and 16.
  • the probe 9 has an external conductive base which is fixed on the conductive layer 3 forming the ground plane, and an internal conductor 91 which crosses the ground plane and the dielectric substrate 2 so that one end of the conductor 91 is connected to the conductive layer 4 on the end of one of the projections 21.
  • the hole for passing the internal conductor of the probe 9 is drilled in the manufacturing step E3 of the block Bl and the end of the internal conductor of the probe is soldered to the layer 4.
  • the linearly polarized antenna can be supplied by a microstrip feed line, the microstrip of which has a width much less than the width of the antenna 2L1 + L2 and which extends for example in the extension of the conductive layer 4 on one end of one of the tongues 21.
  • This microstrip line corresponds to a quarter-wave transformer and acts as an impedance adapter with respect to the characteristic impedance, typically 50 ⁇ , from the antenna supply line.
  • the blocks B1 and B2 respectively comprise only a single metallized tongue 21 and a single groove 51 which fits into one another.
  • the layer 4 is deposited on the grooved underside of the second block B2 instead of the top face of the block Bl.
  • a linearly polarized antenna with two tongues and a coaxial probe 9, intended to operate in a frequency band around 2 GHz has been produced with the following dimensions.
  • the thickness of the dielectric support 23 corresponding to the depth of the underlying thin cavity in the dielectric substrate 2 is 635 ⁇ m.
  • FIGS. 17 and 18 show the adaptation A and the transmission TC.
  • the antenna has a bandwidth of 275 MHz substantially around a central frequency of 2 GHz for an adaptation to -10 dB of approximately 14% for this bandwidth.
  • the bandwidth depends on the resonance frequency at approximately 1950 MHz of the first radiating element 4 with tongue 21 in the block B1 and on the resonance frequency at approximately 2120 MHz of the second radiating element 6 with non-metallized opening 61 in the block B2. On this 14% bandwidth, the transmission remains substantially constant.
  • the use of several radiating elements makes it possible to increase the bandwidth of the antenna.
  • the addition of block B2 to the block Bl substantially doubles the width of the passband.
  • the widening of this bandwidth is also associated with effective radiation in the main axis of radiation Z of the antenna.
  • the dimensions of the radiating elements are chosen to lengthen, respectively reduce, the equivalent electrical paths on each of these elements.
  • these electrical paths are lengthened by increasing the height h and width L2 of the projections 21 in the block B1 and of the grooves 51 in the block B2 and / or the width L61 of the non-metallized opening 61 in the upper face of the block B2.
  • an antenna according to the invention can cover a frequency band from 1700 to 2100 MHz so as to be used as a dual-band printed antenna both in a cellular radio communication network according to the DCS-1800 standard and in a network radiocommunication cell phone according to the UMTS standard.
  • the frequency band of the antenna can be widened up to the low frequencies of the order of 900 MHz in order to constitute a tri-band printed antenna also for a cellular radiocommunication network according to the GSM-900 standard.
  • an antenna la comprises a first block B1 similar to that included in the antenna 1 and comprising a dielectric substrate 2 with one or two perpendicular rectilinear tab projections 21, a conductive ground layer 3 and an upper conductive layer 4, and a second block B2a comprising a dielectric substrate 5a in which the upper opening 61a at the level of the upper conductive layer 6a has been machined without, however, completely passing through the block Ba.
  • the bottom of the opening 61a does not reach the bottom of the groove or grooves 51a fitting into the tongue or tongues 21.
  • the opening 61a is a cavity in the form of a truncated pyramid, the small base constitutes the bottom of the opening and the width of which is substantially greater than the width L2 of the tab (s) 21.
  • the third upper conductive layer 6a also has a shape in a square crown and covers the edges of the opening 61a as well as the pyramidal sides thereof.
  • the small base of the opening 61a is extended by a square, or else rectangular, recess crossing the second substrate 5a up to the first substrate.
  • FIG. 20 shows another antenna 1b with two radiating elements 4b and 6b, but comprising only a single block of dielectric foam thanks to the union of the two dielectric substrates in a single machined dielectric substrate 25.
  • the substrate 25 thus has a surface lower plane covered by the mass conducting layer 3b and an upper face combining in the center the upper face with one or two projections 21b of the block B1 and at the periphery the upper face with coupling opening 61b of the block B2.
  • the upper face of the dielectric substrate 25 constituting a single block of foam comprises a square recess 61b, or rectangular, at the bottom of which one or two rectilinear projections 21b are provided, and the conductive layer 4b extends over and along the projections at the bottom of the opening 61b.
  • the depth of the opening 61b is greater than the height of the projections 21b.
  • the upper conductive layer 6b covers the edge in the form of a square crown of the opening 61b which has a width L61 at least equal to 2L1 + L2.
  • the conductive layer with opening 41c or recess can be placed between the conductive ground layer 3c and the other conductive layer 6c with one or two rectilinear projections 61c, as shown in FIG. 21.
  • the projections 61c are preferably oriented towards the opening 41c so to achieve a better coupling between the two radiating elements.
  • the two blocks Blc and B2c of the corresponding antenna each include a conductive layer 3c, 6c having one or two perpendicular projections and extending on the lower, respectively upper face of the block.
  • the first block Blc thus comprises a lower face in which one or two perpendicular rectilinear grooves 21c are formed with a predetermined height h.
  • the first conductive layer 3c covers the entire underside of the block Blc, including the bottom and the sides of the groove or grooves 21c and constitutes the ground plane of the antenna le.
  • the groove or grooves 21c are replaced by one or two perpendicular rectilinear tongues which project on the underside of the block Blc.
  • the second conductive layer 4c is in the form of a square or rectangular crown, the non-metallized central part 41c of which covers the center of the groove or grooves 21c.
  • the upper face of the block Blc can have the profile of the upper face of the block B2a shown in FIG. 19.
  • the second block B2c of the antenna has a non-metallized lower face complementary to the partially metallized upper face of the first block Blc and applied against it, and an upper face comprising one or two perpendicular rectilinear grooves 61c.
  • the upper face of the block B2c is at least metallized at the bottom, on the flanks and the edges of the groove or grooves 61c.
  • the dimensions of the groove or grooves 61c may be different from those of the groove or grooves 21c.
  • the groove or grooves 61c are replaced by one or two projections which protrude from the upper face of the second block B2c.
  • the invention is not limited to the superposition preferably by interlocking of two blocks of dielectric foam, but also relates to the interlocking of several blocks of dielectric foam by complementarity between the upper face of a block and the lower face of the block immediately superior.
  • Each block has an upper face, respectively a lower face, supporting a conductive layer with one or two projections or perpendicular grooves, or with an opening or recess constituting a radiating element of the antenna thus produced.
  • the first block in the lower part of the stack of blocks has a lower face covered by the conductive layer constituting the ground plane and the first radiating element constituted by the first conductive layer above the ground plane is supplied directly by a coaxial probe or a microstrip line for linear polarization operation, or through two excitation points such as bushings metallic 83 connected to the hybrid coupler 8 for circular polarization operation.
  • an antenna ld comprises three blocks Bld, B2d and B3d machined and cut from the same dielectric foam.
  • the blocks Bld and B2d are for example analogous to the blocks Bl and B2a of the antenna shown in FIG. 19.
  • the third block B3d comprises a dielectric substrate 11 whose lower face is complementary to the upper face of the second block B2d, and thus has a projection 111 in a truncated pyramid which fits into one recess 61a formed in the upper face of the block B2d.
  • the upper face of the substrate 11 of the block B3d has one or two perpendicular rectilinear grooves 112 and supports a conductive layer 12 which covers the bottom, the sides and the edges of the groove (s) 112.
  • the width of the groove (s) 112 is by example less than the width of the truncated pyramid projection 111 and the width of the tongues 21 projecting from the upper face of the first block Bld.
  • the block B3d has flanges 113 which intimately frame the upper part of the sides of the underlying block B2d . Such flanges 113 can be added to any block whose useful bottom face is substantially flat.
  • the stacking of several blocks of dielectric foam each comprising a radiating element makes it possible to increase the bandwidth of the antenna compared to an antenna comprising only one radiating element of the pellet type and thus makes it possible to confer an operation of type multifrequency of the antenna.
  • the radiation frequencies of these elements and therefore the bandwidth of the antenna are adapted to the desired use of the antenna.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The antenna comprises a first substrate (2) with a conducting layer in a layout plan (3) and another conducting layer (4) and a second substrate (5) comprising a conducting layer (6), arranged on the first substrate. Several substrates made from dielectric foam may be simply stacked such that the conducting layers (4, 6) thereof alternatively comprise one or two projections (21) and an opening (61) which comprises radiating elements which contribute to widening the frequency band of the antenna.

Description

Antenne imprimée à large bande et à plusieurs éléments rayonnants Broadband printed antenna with multiple radiating elements
La présente invention concerne une antenne imprimée du type "pastille" en technologie plaquée, à polarisation linéaire ou circulaire, pouvant fonctionner dans une large gamme de fréquence s ' étendant au moins jusqu'à quelques gigahertz. En particulier, cette antenne est destinée à être installée dans des stations de base de réseaux cellulaires pour des radiocommunications avec des terminaux mobiles afin de couvrir les bandes de fréquence de plusieurs réseaux.The present invention relates to a printed antenna of the "patch" type in plated technology, with linear or circular polarization, capable of operating in a wide frequency range extending at least up to a few gigahertz. In particular, this antenna is intended to be installed in base stations of cellular networks for radiocommunications with mobile terminals in order to cover the frequency bands of several networks.
Plus particulièrement, l'invention est dirigée vers une antenne imprimée comprenant un substrat diélectrique de faible permittivité relative ayant des faces supportant des couches conductrices, telle que décrite dans la demande de brevet internationale PCT/FR01/04064 déposée le 19 décembre 2001 et non encore publiée. L'une des couches conductrices comporte un ressaut de manière à réduire la taille de l'antenne et ainsi conférer à l'antenne une compacité élevée, tout en préservant une grande ouverture du diagramme de rayonnement de l'antenne.More particularly, the invention is directed to a printed antenna comprising a dielectric substrate of low relative permittivity having faces supporting conductive layers, as described in international patent application PCT / FR01 / 04064 filed on December 19, 2001 and not yet published. One of the conductive layers has a projection so as to reduce the size of the antenna and thus give the antenna a high compactness, while preserving a large opening of the radiation pattern of the antenna.
L'invention a pour but de fournir une antenne de type "pastille" présentant une plus large bande de fréquence de fonctionnement, tout en conservant une taille réduite et en facilitant l'adaptation d'éléments rayonnants à la largeur de la bande de fonctionnement de l'antenne et l'assemblage de ceux- ci . A cette fin, une antenne imprimée comprenant un premier substrat ayant des faces supportant des couches conductrices dont une comporte un ressaut, est caractérisée en ce qu'elle comprend un deuxième substrat ayant une face de forme complémentaire de l'une des faces du premier substrat et disposée contre celle-ci et une autre face supportant une couche conductrice, et la couche conductrice sur le premier substrat contre laquelle le deuxième substrat est disposé et la couche conductrice sur le deuxième substrat comportent indifféremment un ressaut et une ouverture qui sont superposés.The object of the invention is to provide a “patch” type antenna having a wider operating frequency band, while retaining a reduced size and facilitating the adaptation of radiating elements to the width of the operating band of the antenna and the assembly thereof. To this end, a printed antenna comprising a first substrate having faces supporting conductive layers, one of which has a projection, is characterized in that it comprises a second substrate having a face of complementary shape to one of the faces of the first substrate and disposed against this and another face supporting a conductive layer, and the conductive layer on the first substrate against which the second substrate is disposed and the conductive layer on the second substrate both have a projection and an opening which are superimposed.
Selon une première réalisation, la couche conductrice sur le premier substrat contre laquelle le deuxième substrat est disposé, comporte le ressaut, et l'autre couche conductrice sur le premier substrat constitue un plan de masse. Dans cette première réalisation, le ressaut de la couche conductrice supportée par la face du premier substrat contre laquelle le deuxième substrat est disposé, fait office de languette complémentaire d'une rainure dans la face du deuxième substrat de forme complémentaire .According to a first embodiment, the conductive layer on the first substrate against which the second substrate is arranged, comprises the projection, and the other conductive layer on the first substrate constitutes a ground plane. In this first embodiment, the projection of the conductive layer supported by the face of the first substrate against which the second substrate is arranged, acts as a tongue complementary to a groove in the face of the second substrate of complementary shape.
Selon une deuxième réalisation préférée, la couche conductrice sur le premier substrat contre laquelle le deuxième substrat est disposé, comporte l'ouverture, et l'autre couche conductrice sur le premier substrat constitue un plan de masse et comporte le ressaut qui est superposé à l'ouverture. Dans cette deuxième réalisation, le ressaut de l'autre couche conductrice sur le premier substrat peut être formée par une rainure dans le premier substrat recouverte par ladite autre couche conductrice . En variante, une ouverture de la couche conductrice sur l'un des premier et deuxième substrats encadre sensiblement la couche conductrice ayant le ressaut sur l'autre substrat, et les premier et deuxième substrats sont confondus en un unique substrat .According to a second preferred embodiment, the conductive layer on the first substrate against which the second substrate is arranged, comprises the opening, and the other conductive layer on the first substrate constitutes a ground plane and comprises the projection which is superimposed on the 'opening. In this second embodiment, the projection of the other conductive layer on the first substrate can be formed by a groove in the first substrate covered by said other conductive layer. Alternatively, an opening of the conductive layer on one of the first and second substrates substantially frames the conductive layer having the projection on the other substrate, and the first and second substrates are combined into a single substrate.
L'antenne peut comporter un moyen d'alimentation à micro-onde relié aux deux couches conductrices du premier substrat. Ce moyen d'alimentation peut être une sonde coaxiale pour un fonctionnement à polarisation linéaire, ou peut comprendre un coupleur hybride pour un fonctionnement à polarisation circulaire .The antenna may include a microwave supply means connected to the two conductive layers of the first substrate. This power supply means can be a coaxial probe for linear polarization operation, or can comprise a hybrid coupler for circular polarization operation.
Des substrats dont l'une des faces comporte une couche conductrice avec un ressaut ou une ouverture peuvent être empilés et emboîtés de manière à constituer une pile d'éléments rayonnants compacte constituant l'antenne et adaptée à la bande de fréquence de fonctionnement souhaitée. Par exemple, lorsqu'un troisième substrat est ajouté aux premier et deuxième substrats, le troisième substrat a une face avec une forme complémentaire de la face du deuxième substrat supportant une couche conductrice et disposée contre celle-ci, et une autre face supportant une couche conductrice, et les couches conductrices sur les deuxième et troisième substrats comportent indifféremment un ressaut et une ouverture qui sont superposés.Substrates, one of the faces of which has a conductive layer with a projection or an opening can be stacked and nested so as to constitute a compact stack of radiating elements constituting the antenna and adapted to the desired operating frequency band. For example, when a third substrate is added to the first and second substrates, the third substrate has a face with a shape complementary to the face of the second substrate supporting a conductive layer and arranged against it, and another face supporting a layer conductive, and the conductive layers on the second and third substrates have either a projection and an opening which are superimposed.
Les substrats sont de préférence en une mousse diélectrique de permittivité relative très faible ce qui uniformise les matériaux diélectriques dans l'antenne afin de rendre plus efficace les performances en rayonnement de l'antenne. En outre, grâce à la constitution en mousse diélectrique des substrats, chaque substrat constitue un bloc qui est emboité sur un autre bloc sans scellement.The substrates are preferably made of a dielectric foam of very low relative permittivity which standardizes the dielectric materials in the antenna in order to make the radiation performance of the antenna more efficient. In addition, thanks to the dielectric foam constitution of the substrates, each substrate constitutes a block which is nested on another block without sealing.
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante de plusieurs réalisations préférées de l'invention en référence aux dessins annexés correspondants dans lesquels : les figures 1 et 2 sont des vues en perspective respectivement non éclatée et éclatée d'une antenne imprimée à deux éléments rayonnants sur deux blocs de mousse diélectrique superposés respectivement emboîtés et alimentés selon l'invention, un quadrant du bloc supérieur montré en partie inférieure des figures étant arraché, et une ouverture carrée centrale n'étant pratiquée que dans le bloc supérieur montré à la figure 2 ;Other characteristics and advantages of the present invention will appear more clearly on reading the following description of several preferred embodiments of the invention with reference to the corresponding appended drawings in which: FIGS. 1 and 2 are perspective views, respectively not exploded and exploded view of a printed antenna with two radiating elements on two blocks of dielectric foam superimposed respectively nested and supplied according to the invention, a quadrant of the upper block shown in the lower part of the figures being torn off, and a central square opening not being practiced than in the upper block shown in Figure 2;
- la figure 3 est une vue en coupe prise suivant le plan III-III dans la figure 1, l'antenne comportant une sonde coaxiale pour excitation en polarisation linéaire ;- Figure 3 is a sectional view taken along the plane III-III in Figure 1, the antenna comprising a coaxial probe for excitation in linear polarization;
- la figure 4 est une vue en perspective du premier bloc d'une antenne imprimée du type de celle montrée aux figures 1 et 2, à polarisation circulaire avec coupleur hybride, un quadrant du bloc inférieur étant arraché ;- Figure 4 is a perspective view of the first block of a printed antenna of the type shown in Figures 1 and 2, with circular polarization with hybrid coupler, a quadrant of the lower block being cut away;
- les figures 5 et 6 sont respectivement des vues de dessus et en coupe le long de la ligne VI-VI de la figure 5 du premier bloc d'antenne montré à la figure 4 ; - les figures 7 et 8 sont respectivement des vues de dessus et en perspective du premier bloc de mousse diélectrique de l'antenne montrée aux figures 1 et 2 qui est usiné lors d'une première étape de procédé de fabrication de l'antenne ; - les figures 9 et 10 sont respectivement des vues de dessus et en perspective du premier bloc en mousse usiné qui est métallisé lors d'une deuxième étape du procédé de fabrication ;- Figures 5 and 6 are respectively top views and in section along the line VI-VI of Figure 5 of the first antenna block shown in Figure 4; - Figures 7 and 8 are respectively top and perspective views of the first block of dielectric foam of the antenna shown in Figures 1 and 2 which is machined during a first step of the antenna manufacturing process; - Figures 9 and 10 are respectively top and perspective views of the first block of machined foam which is metallized during a second stage of the manufacturing process;
- les figures 11 et 12 sont respectivement des vues de dessus et en perspective du premier bloc en mousse usiné et métallisé qui est découpé lors d'une troisième étape du procédé de fabrication ;- Figures 11 and 12 are respectively top and perspective views of the first block of machined and metallized foam which is cut during a third step of the manufacturing process;
- les figures 13, 14 et 15 sont respectivement des vues en perspective du deuxième bloc de mousse qui est usiné, puis métallisé et enfin découpé lors des première, deuxième et troisième étapes du procédé de fabrication de l'antenne montrée aux figures 1 et 2 ; la figure 16 est une vue en coupe et en perspective partielle à plus grande échelle, prise suivant la ligne XVI-XVI dans la figure 3, à travers l'emboîtement d'une languette de premier bloc et une rainure de deuxième bloc de l'antenne, au niveau du conducteur interne de la sonde coaxiale ; - les figures 17 et 18 montrent des variations d'adaptation et de transmission en fonction de la fréquence pour une antenne à polarisation linéaire du type de celle montrée aux figure 1 à 3 ;- Figures 13, 14 and 15 are respectively perspective views of the second block of foam which is machined, then metallized and finally cut during the first, second and third steps of the manufacturing process of the antenna shown in Figures 1 and 2 ; Figure 16 is a sectional view in partial perspective on a larger scale, taken along line XVI-XVI in Figure 3, through the interlocking of a first block tongue and a second block groove of the antenna, at the level of the internal conductor of the coaxial probe; - Figures 17 and 18 show variations in adaptation and transmission as a function of frequency for a linearly polarized antenna of the type shown in Figures 1 to 3;
- la figure 19 est une vue en coupe axiale d'une autre variante d'antenne à deux blocs de mousse diélectrique emboîtés ;- Figure 19 is an axial sectional view of another alternative antenna with two nested dielectric foam blocks;
- la figure 20 est une vue en coupe axiale d'une autre antenne à deux éléments rayonnants mais ne comportant qu'un seul bloc de mousse diélectrique ; - la figure 21 est une vue en coupe axiale d'une autre antenne à deux blocs de mousse diélectrique avec un plan de masse ayant au moins un ressaut ; et- Figure 20 is an axial sectional view of another antenna with two radiating elements but comprising only a single block of dielectric foam; - Figure 21 is an axial sectional view of another antenna with two blocks of dielectric foam with a ground plane having at least one projection; and
- la figure 22 est une vue en coupe axiale d'une antenne à trois blocs de mousse diélectrique supportant chacun un élément rayonnant. Une antenne imprimée 1 de type "pastille carrée" à deux éléments rayonnants est décrite ci-après en détail en référence aux figures 1 à 3, en faisant abstraction de moyen d'alimentation d'antenne. L'antenne est constituée de deux blocs Bl et B2 qui s'emboîtent l'un sur l'autre comme montré à la figure 2. Chaque bloc est issu d'un usinage dans un bloc parallélépipédique mince diélectrique et a un contour carré, ou bien rectangulaire, et est ainsi symétrique par rapport à deux axes perpendiculaires de symétrie X et Y de l'antenne.- Figure 22 is an axial sectional view of an antenna with three blocks of dielectric foam each supporting a radiating element. A printed antenna 1 of the “square patch” type with two radiating elements is described below in detail with reference to FIGS. 1 to 3, ignoring the antenna supply means. The antenna is made up of two blocks B1 and B2 which fit one on the other as shown in FIG. 2. Each block is produced by machining in a thin dielectric parallelepipedal block and has a square contour, or well rectangular, and is thus symmetrical with respect to two perpendicular axes of X and Y symmetry of the antenna.
Le premier bloc Bl montré en partie inférieure dans les figures 1 à 3 comprend un substrat diélectrique 2 et des première et deuxième couches carrées, ou bien rectangulaires, conductrices électriquement 3 et . La première couche conductrice 3 constitue un plan de masse et s'étend sur une première face du premier substrat 2 constituant une face externe inférieure de l'antenne 1. La deuxième couche conductrice 4 est centrée sur la deuxième face du substrat 2 qui présente deux ressauts 21, sensiblement parallélépipédiques, perpendiculaires et centrés sur les axes de symétrie X et Y de l'antenne. La deuxième couche conductrice 4 recouvre au moins partiellement la face supérieure du premier bloc Bl, y compris le dessus et les côtés longitudinaux des deux ressauts 21, et s'étend le long des ressauts. La couche 4 présente une section en U à extrémités potencées transversalement à chacun des ressauts, comme montré aux figures 3 et 16. Les ailes de la section en U de la couche 4 s'étendent sur la deuxième face du substrat avec une largeur Ll beaucoup plus grande que la largeur L2 de chaque ressaut 21. En général, la hauteur h des ressauts 21 du substrat 2 et donc de la couche conductrice 4 est supérieure à l'épaisseur e2 de la partie la plus mince du substrat 2.The first block B1 shown in the lower part in FIGS. 1 to 3 comprises a dielectric substrate 2 and first and second square, or else rectangular, electrically conductive layers 3 and. The first conductive layer 3 constitutes a ground plane and extends over a first face of the first substrate 2 constituting a lower external face of the antenna 1. The second conductive layer 4 is centered on the second face of the substrate 2 which has two projections 21, substantially rectangular, perpendicular and centered on the axes of symmetry X and Y of the antenna. The second conductive layer 4 at least partially covers the upper face of the first block B1, including the top and the longitudinal sides of the two projections 21, and extends along the projections. The layer 4 has a U-shaped section with potentiated ends transversely to each of the projections, as shown in FIGS. 3 and 16. The wings of the U-shaped section of the layer 4 extend on the second face of the substrate with a width L1 much greater than the width L2 of each projection 21. In general, the height h of the projections 21 of the substrate 2 and therefore of the conductive layer 4 is greater than the thickness e2 of the thinnest part of the substrate 2.
Le premier bloc de l'antenne 1 peut être identique à une antenne imprimée à polarisation circulaire décrite dans la demande de brevet internationale déjà citée PCT/FR01/04064. Les deux ressauts rectilignes 21 de dimension identique qui sont perpendiculaires entre eux pour former une croix centrale à quatre branches égales réduisent la longueur de l'élément rayonnant constituée par la deuxième couche conductrice 4 de manière significative suivant les axes de symétrie X et Y montrés à la figure 1, comparativement à un élément rayonnant plat selon la technique antérieure ayant une largeur W = 2L1 + L2 + 2h. Cette réduction significative de longueur rapproche les fentes rayonnantes 22 (figures 3 et 16) de l'antenne "pastille" 1 entre les bords de la couche 4 et de la couche de masse 3, ce qui ouvre le diagramme de rayonnement dans le plan de champ électrique perpendiculaire à chaque ressaut 21 qui fait office de languette pour 1 ' mboîtement avec le deuxième bloc B2. Le deuxième bloc B2 de l'antenne 1 montré en partie supérieure dans les figures 1 à 3 comprend un deuxième substrat diélectrique 5 qui s'emboîte sur la face supérieure du premier bloc Bl recouverte par la deuxième couche conductrice 4, et une couche conductrice électriquement 6 s ' étendant sur la deuxième face plane du substrat 5. La couche 6 présente une ouverture centrale carrée, ou bien rectangulaire, 61 superposée au centre de la croix formée par les ressauts 21 et ayant des côtés perpendiculaires aux ressauts. L'ouverture 61 et chaque ressaut 21 ont des axes respectifs de symétrie coplanaires X, Y. La troisième couche conductrice 6 a ainsi une forme en couronne carrée qui est centrée sur les axes de symétrie X et Y de l'antenne 1 et qui, selon la réalisation illustrée, borde la périphérie de la face supérieure de l'antenne 1. La couche conductrice 6 constitue un deuxième élément rayonnant couplé électromagnétiquement au premier élément rayonnant constitué par la deuxième couche conductrice 4 à travers l'ouverture centrale 61. La largeur des côtés L61 de l'ouverture 61 qui est à section carrée selon la réalisation illustrée est en général supérieure à la largeur L2 des ressauts 21. Selon la réalisation illustrée, l'égalité 2L1 + L2 = 2L6 + L61 est satisfaite.The first block of the antenna 1 can be identical to a printed antenna with circular polarization described in the international patent application already cited PCT / FR01 / 04064. The two rectilinear projections 21 of identical size which are perpendicular to each other to form a central cross with four equal branches reduce the length of the radiating element formed by the second conductive layer 4 significantly along the axes of symmetry X and Y shown at Figure 1, compared to a flat radiating element according to the prior art having a width W = 2L1 + L2 + 2h. This significant reduction in length brings the radiating slits 22 (FIGS. 3 and 16) closer to the “patch” antenna 1 between the edges of the layer 4 and of the ground layer 3, which opens the radiation diagram in the plane of electric field perpendicular to each projection 21 which acts as a tongue for the housing with the second block B2. The second block B2 of the antenna 1 shown in the upper part in FIGS. 1 to 3 comprises a second dielectric substrate 5 which fits on the upper face of the first block B1 covered by the second conductive layer 4, and an electrically conductive layer 6 extending over the second flat face of the substrate 5. The layer 6 has a square, or rectangular, central opening 61 superimposed on the center of the cross formed by the projections 21 and having sides perpendicular to the projections. The opening 61 and each projection 21 have respective axes of coplanar symmetry X, Y. The third conductive layer 6 thus has a shape in a square crown which is centered on the axes of symmetry X and Y of the antenna 1 and which, according to the illustrated embodiment, borders the periphery of the upper face of the antenna 1. The conductive layer 6 constitutes a second radiating element electromagnetically coupled to the first radiating element constituted by the second conducting layer 4 through the central opening 61. The width of the sides L61 of l opening 61 which is of square section according to the illustrated embodiment is generally greater than the width L2 of the projections 21. According to the illustrated embodiment, the equality 2L1 + L2 = 2L6 + L61 is satisfied.
Comme montré particulièrement aux figures 1 et 2, la face inférieure du deuxième bloc B2 épouse parfaitement la forme de la face supérieure du premier bloc Bl et comporte deux rainures rectilignes perpendiculaires 51 qui sont complémentaires, et de préférence à côtes identiques, aux ressauts 21 faisant office de languettes afin que le bloc B2 s'emboîte sans jeu mécanique sur le bloc Bl de manière à obtenir une antenne 1 très compacte. L'antenne 1 présente ainsi les deux axes de symétrie perpendiculaires X et Y le long des deux couples croisés de languettes et rainures 21-51 et un axe de symétrie Z central à l'antenne 1 et perpendiculaire aux différents substrats et couches conductrices.As shown particularly in FIGS. 1 and 2, the lower face of the second block B2 perfectly matches the shape of the upper face of the first block B1 and comprises two perpendicular rectilinear grooves 51 which are complementary, and preferably with identical ribs, to the projections 21 making tabs office so that the block B2 fits without mechanical play on the block Bl so as to obtain a very compact antenna 1. The antenna 1 thus has the two perpendicular axes of symmetry X and Y along the two crossed pairs of tongues and grooves 21-51 and an axis of symmetry Z central to the antenna 1 and perpendicular to the various substrates and conductive layers.
En pratique, les substrats diélectriques 2 et 5 sont en mousse diélectrique de permittivité relative très faible, typiquement εr = 1,07, et à très faibles pertes diélectriques afin que les substrats soient quasiment équivalents à des lames d'air ce qui optimise les performances de l'antenne. Typiquement les substrats sont en mousse imide de polyméthacrylate. La mousse diélectrique offre l'avantage d'être facilement usinable comme on le verra ci-après. Grâce à ses propriétés mécaniques, notamment de souplesse, la mousse permet d'emboîter facilement avec grande précision le bloc B2 sur le bloc Bl en poussant le bloc B2 avec une légère pression sur le bloc Bl pour que les rainures croisées 51 dans la face inférieure du bloc supérieur B2 enserrent sensiblement les languettes croisées 21 dans la face supérieure du bloc inférieur Bl . Cet emboîtement de blocs ne nécessite aucun scellement particulier entre les blocs et assure ainsi une parfaite homogénéité des deux blocs constituant l'antenne ainsi que des positionnements relatifs précis des éléments rayonnants 4 et 6 et donc un espacement précis entre les éléments rayonnants. L'élasticité intrinsèque des substrats en mousse diélectrique confère une adhérence correcte entre les deux blocs, sans jeu mécanique entre ceux-ci.In practice, the dielectric substrates 2 and 5 are made of dielectric foam of very low relative permittivity, typically ε r = 1.07, and with very low dielectric losses so that the substrates are almost equivalent to air layers which optimizes the performance of the antenna. Typically the substrates are of imide polymethacrylate foam. Dielectric foam offers the advantage of being easily machinable as will be seen below. Thanks to its mechanical properties, in particular its flexibility, the foam allows the block B2 to be easily fitted with great precision onto the block Bl by pushing the block B2 with light pressure on the block Bl so that the crossed grooves 51 in the underside of the upper block B2 substantially enclose the crossed tongues 21 in the upper face of the lower block Bl. This interlocking of blocks does not require any particular sealing between the blocks and thus ensures perfect homogeneity of the two blocks constituting the antenna as well as precise relative positions of the radiating elements 4 and 6 and therefore precise spacing between the radiating elements. The intrinsic elasticity of the dielectric foam substrates provides correct adhesion between the two blocks, with no mechanical play between them.
Comme montré aux figures 4, 5 et 6, lorsque l'antenne 1 fonctionne en polarisation circulaire, elle comprend un moyen d'alimentation à micro-onde comportant une sonde coaxiale 7 et un coupleur hybride 8 à 3 dB-90°, relié aux couches conductrices 3 et 4 du premier substrat 2. Le coupleur hybride 8 est configuré sensiblement suivant le contour d'un carré et photogravé sur la face supérieure d'un petit support diélectrique carré 23. Le support 23 est encastré dans une cavité centrale de la face inférieure du substrat 2 du premier bloc Bl contre laquelle le deuxième substrat 5 n'est pas disposé et qui est recouverte par la couche métallique 3 formant le plan de masse.As shown in Figures 4, 5 and 6, when the antenna 1 operates in circular polarization, it comprises a microwave supply means comprising a coaxial probe 7 and a hybrid coupler 8 at 3 dB-90 °, connected to the conductive layers 3 and 4 of the first substrate 2. The hybrid coupler 8 is configured substantially along the outline of a square and photo-etched on the upper face of a small square dielectric support 23. The support 23 is embedded in a central cavity of the underside of the substrate 2 of the first block Bl against which the second substrate 5 is not disposed and which is covered by the metal layer 3 forming the ground plane.
Le support 23 a une permittivité relative nettement plus élevée. Le support 23 est par exemple en une céramique chargée comme le diélectrique AR1000 de la société ARLON avec une permittivité élevée εr = 10,2, afin que les rayonnements parasites susceptibles d'être produits par le coupleur soient minimisés et afin que les dimensions du coupleur 8 soient petites et donc compatibles avec la compacité de l'antenne 1 pour les fréquences de fonctionnement de l'antenne de l'ordre du gigahertz.The support 23 has a significantly higher relative permittivity. The support 23 is for example made of a charged ceramic such as the dielectric AR1000 from the company ARLON with a high permittivity ε r = 10.2, so that the stray radiation likely to be produced by the coupler is minimized and so that the dimensions of the coupler 8 are small and therefore compatible with the compactness of the antenna 1 for the antenna operating frequencies of the order of a gigahertz.
La sonde coaxiale 7 a une embase conductrice externe qui est fixée sur le plan de masse 3 et a un conducteur interne qui traverse le plan de masse et le support diélectrique 23. L'extrémité du conducteur interne de la sonde coaxiale 7 est soudée à l'extrémité d'une branche 81 formant un accès à un sommet du coupleur hybride 8. Un autre sommet du coupleur situé devant dans les figures 4 et 5 peut être relié au conducteur interne d'une deuxième sonde coaxiale (non représentée) . Les deux autres sommets 82 du coupleur 8 sont deux autres accès prolongés par des traversées métalliques 83 qui sont ménagées à travers des extrémités des deux ressauts-languettes 21. Des extrémités supérieures des traversées métalliques 83 sont en contact métallique par soudure ou collage 84 avec la couche conductrice 4 s 'étendant sur les dessus des ressauts-languettes 21.The coaxial probe 7 has an external conductive base which is fixed on the ground plane 3 and has an internal conductor which crosses the ground plane and the dielectric support 23. The end of the internal conductor of the coaxial probe 7 is welded to the end of a branch 81 forming an access to a top of the hybrid coupler 8. Another top of the coupler located in front in Figures 4 and 5 can be connected to the internal conductor of a second coaxial probe (not shown). The other two vertices 82 of the coupler 8 are two other accesses extended by metal bushings 83 which are formed through the ends of the two tongue-and-groove projections 21. Upper ends of the metal bushings 83 are in metallic contact by welding or bonding 84 with the conductive layer 4 extending over the tops of the tabs 21.
Le premier bloc Bl est réalisé selon un procédé de fabrication d'une antenne imprimée à un seul élément rayonnant, comprenant principalement trois étapes El, E2 et E3 respectivement illustrées aux figures 7-8, 9-10 et 11-12.The first block B1 is produced according to a method of manufacturing a printed antenna with a single radiating element, mainly comprising three steps E1, E2 and E3 respectively illustrated in FIGS. 7-8, 9-10 and 11-12.
Initialement, la fabrication du premier bloc Bl part d'un bloc de mousse mince d'épaisseur h+e2 et de largeur et longueur supérieures à 2L1 + L2. La matière diélectrique du bloc dans laquelle sera usiné le substrat diélectrique 2 présente une permittivité relative typiquement de l'ordre de 1,07 en correspondance avec une longueur 2L1 + L2 + 2h = 2(17,5) + 10 + 2(8) = 61 mm de l'ordre de λr/2 avec λ r = λ/V<δ* r, où λ est la longueur d'onde correspondant à une fréquence inférieure à 2,3 GHz environ.Initially, the manufacture of the first block Bl starts from a block of thin foam of thickness h + e2 and of width and length greater than 2L1 + L2. The dielectric material of the block in which the dielectric substrate 2 will be machined has a relative permittivity typically of the order of 1.07 in correspondence with a length 2L1 + L2 + 2h = 2 (17.5) + 10 + 2 (8) = 61 mm of the order of λ r / 2 with λ r = λ / V <δ * r , where λ is the wavelength corresponding to a frequency less than about 2.3 GHz.
A l'étape El, quatre cavités rectangulaires C avec un fond d'épaisseur e2 sont usinées symétriquement par rapport aux axes transversaux X et Y dans une face du bloc afin que les cavités soient séparées par deux bandes transversales perpendiculaires BA ayant la section (h.L2) des languettes 21. Les cavités carrées C ont une largeur supérieure à Ll .In step E1, four rectangular cavities C with a bottom of thickness e2 are machined symmetrically with respect to the transverse axes X and Y in one face of the block so that the cavities are separated by two perpendicular transverse bands BA having the section (h .L2) of the tongues 21. The square cavities C have a width greater than L1.
Pour réaliser le bloc Bl de l'antenne à polarisation circulaire 1 montré aux figures 4 à 6, la face inférieure du bloc de mousse est également usinée afin d'y creuser une cavité carrée mince de profondeur de quelques diziemes de millimètre, centrée sous la croix formée par les deux bandes transversales BA. Deux trous sont alors percés aux extrémités de deux languettes 21 en vue de constituer les deux traversées métalliques 83. Le support 23 sur lequel a été photogravé le coupleur hybride 8 est emboîté dans la cavité mince sous-jacente et le cas échéant collé dans la cavité mince.To make the block B1 of the circularly polarized antenna 1 shown in FIGS. 4 to 6, the underside of the foam block is also machined in order to dig a thin square cavity therein, a few tens of millimeters deep, centered under the cross formed by the two transverse bands BA. Two holes are then drilled at the ends of two tongues 21 in order to constitute the two metal crossings 83. The support 23 on which the hybrid coupler 8 has been photograved is fitted into the underlying thin cavity and if necessary glued into the cavity slim.
Puis à l'étape E2, la face supérieure du bloc de mousse usiné avec les cavités C est métallisée en déposant une couche de peinture métallique pour constituer la couche conductrice 4. En particulier, la peinture métallique recouvre les deux bandes BA et le fond des quatre cavités C. La peinture métallique recouvre également la face inférieure du bloc de mousse usiné, à l'exception de la cavité carrée mince destinée au support 23 du coupleur hybride 8, de manière à constituer le plan de masse 3. En variante, à la place de la métallisation de la face inférieure, le plan de masse 3 est constitué par un support métallique sur lequel le bloc de mousse usiné est fixé.Then in step E2, the upper face of the block of foam machined with the cavities C is metallized by depositing a layer of metallic paint to constitute the conductive layer 4. In particular, the metallic paint covers the two bands BA and the bottom of the four cavities C. The metallic paint also covers the underside of the block of machined foam, with the exception of the thin square cavity intended for the support 23 of the hybrid coupler 8, so as to constitute the ground plane 3. As a variant, in place of the metallization of the lower face, the ground plane 3 is constituted by a metal support on which the block of machined foam is fixed.
La métallisation de la face supérieure du bloc de mousse métallisé également les deux trous percés dans les languettes 21 de manière à constituer les traversées métalliques 83 qui relient la couche conductrice 4 s 'étendant sur les languettes 21 à deux sommets 82 du coupleur 8.The metallization of the upper face of the metallized foam block also the two holes drilled in the tongues 21 so as to constitute the metal crossings 83 which connect the conductive layer 4 extending on the tongues 21 to two vertices 82 of the coupler 8.
Finalement à l'étape E3, l'antenne 1 est découpée en Dl par un deuxième usinage dans le bloc métallisé suivant le contour carré de côté 2L1 + L2, ou bien rectangulaire, du premier bloc Bl.Finally in step E3, the antenna 1 is cut into D1 by a second machining in the metallized block along the square contour of side 2L1 + L2, or else rectangular, of the first block B1.
En parallèle, dans un bloc de mousse d'épaisseur e5 du deuxième substrat 5, par exemple de 18 mm, le deuxième bloc B2 est fabriqué aux étapes El, E2 et E3 également montrées respectivement aux figures 13, 14 et 15. A l'étape El, deux rainures perpendiculaires R de profondeur h et de largeur L2 sont usinées dans le bloc de mousse initialement au moins de largeur 2L1 + L2. Puis après retournement du bloc à l'étape E2, un cache carré CA de côté L61, ou bien rectangulaire, est appliqué sur la surface supérieure du bloc, centralement au-dessus du croisement des rainures R. La face supérieure du bloc est alors métallisée en déposant une couche de peinture métallique pour constituer la couche conductrice 6 autour du cache CA ayant les dimensions de l'ouverture non métallisée 61. En variante, à l'étape El, la face supérieure du bloc est usinée de manière à retirer complètement un pavé parallélépipédique de section carrée L61 x L61 afin que l'ouverture 61 soit prolongée par un évidement traversant le bloc B2 entre la face supérieure du bloc et notamment le fond des rainures R, à la place du cache CA, comme montré à la figure 2. Finalement à l'étape E3, le deuxième bloc B2 est découpé en D2 par un deuxième usinage dans le bloc métallisé suivant le contour rectangulaire de 2L6 + L61 du bloc B2.In parallel, in a block of foam of thickness e5 of the second substrate 5, for example of 18 mm, the second block B2 is manufactured in steps El, E2 and E3 also shown respectively in FIGS. 13, 14 and 15. At the step E1, two perpendicular grooves R of depth h and width L2 are machined in the foam block initially at least of width 2L1 + L2. Then after reversing the block in step E2, a square cover CA of side L61, or else rectangular, is applied to the upper surface of the block, centrally above the crossing of the grooves R. The upper face of the block is then metallized by depositing a layer of metallic paint to form the conductive layer 6 around the cover CA having the dimensions of the non-metallized opening 61. As a variant, in step E1, the upper face of the block is machined so as to completely remove a rectangular block of square section L61 x L61 so that the opening 61 is extended by a recess crossing the block B2 between the upper face of the block and in particular the bottom of the grooves R, in place of the cover CA, as shown in FIG. 2. Finally in step E3, the second block B2 is cut into D2 by a second machining in the metallized block along the rectangular contour of 2L6 + L61 of block B2.
Le deuxième bloc B2 ainsi fabriqué est juxtaposé par simple pression sur la face supérieure métallisée 4 du premier bloc Bl afin que les rainures 51 reçoivent à fond les languettes 21 et la face inférieure du deuxième bloc B2 bute contre la face métallisée du premier bloc Bl.The second block B2 thus produced is juxtaposed by simple pressure on the metallized upper face 4 of the first block B1 so that the grooves 51 receive the tabs 21 fully and the lower face of the second block B2 abuts against the metallized face of the first block B1.
Pour réaliser une antenne à deux blocs et à polarisation linéaire, la sonde coaxiale 7 et le coupleur hybride 8 avec son support 23 sont supprimés et remplacés par un moyen d'alimentation à micro-onde avec un seul point d'excitation, constitué par une sonde coaxiale 9, comme montré aux figures 3 et 16. La sonde 9 a une embase conductrice externe qui est fixée sur la couche conductrice 3 formant le plan de masse, et un conducteur interne 91 qui traverse le plan de masse et le substrat diélectrique 2 afin qu'une extrémité du conducteur 91 soit reliée à la couche conductrice 4 sur l'extrémité de l'un des ressauts 21. Le trou pour passer le conducteur interne de la sonde 9 est percé à 1 ' étape de fabrication E3 du bloc Bl et l'extrémité du conducteur interne de la sonde est soudée à la couche 4. En variante, l'antenne à polarisation linéaire peut être alimentée par une ligne d'alimentation à microruban (microstrip) dont le microruban a une largeur nettement inférieure à la largeur de l'antenne 2L1 + L2 et qui s'étend par exemple dans le prolongement de la couche conductrice 4 sur une extrémité de l'une des languettes 21. Cette ligne microruban correspond à un transformateur quart d'onde et joue le rôle d'adaptateur d'impédance par rapport à l'impédance caractéristique, typiquement 50 Ω, de la ligne d'alimentation de l'antenne.To make a two-block, linearly polarized antenna, the coaxial probe 7 and the hybrid coupler 8 with its support 23 are eliminated and replaced by a microwave supply means with a single excitation point, constituted by a coaxial probe 9, as shown in FIGS. 3 and 16. The probe 9 has an external conductive base which is fixed on the conductive layer 3 forming the ground plane, and an internal conductor 91 which crosses the ground plane and the dielectric substrate 2 so that one end of the conductor 91 is connected to the conductive layer 4 on the end of one of the projections 21. The hole for passing the internal conductor of the probe 9 is drilled in the manufacturing step E3 of the block Bl and the end of the internal conductor of the probe is soldered to the layer 4. As a variant, the linearly polarized antenna can be supplied by a microstrip feed line, the microstrip of which has a width much less than the width of the antenna 2L1 + L2 and which extends for example in the extension of the conductive layer 4 on one end of one of the tongues 21. This microstrip line corresponds to a quarter-wave transformer and acts as an impedance adapter with respect to the characteristic impedance, typically 50 Ω, from the antenna supply line.
Selon une variante plus simple d'une antenne de polarisation linéaire, les blocs Bl et B2 ne comprennent respectivement qu'une seule languette métallisée 21 et une seule rainure 51 qui s'emboîte l'une dans l'autre.According to a simpler variant of a linear polarization antenna, the blocks B1 and B2 respectively comprise only a single metallized tongue 21 and a single groove 51 which fits into one another.
Selon une variante équivalente à la réalisation illustrée, la couche 4 est déposée sur la face inférieure rainurée du deuxième bloc B2 au lieu de la face supérieure du bloc Bl.According to a variant equivalent to the illustrated embodiment, the layer 4 is deposited on the grooved underside of the second block B2 instead of the top face of the block Bl.
A titre d'exemple, une antenne à polarisation linéaire avec deux languettes et une sonde coaxiale 9, destinée à fonctionner dans une bande de fréquence autour de 2 GHz, a été réalisée avec les dimensions suivantes. Les substrats diélectriques 2 et 5 ont respectivement une épaisseur globale e2 + h = 2 + 8 = 10 mm et e5 = 18 mm, avec une hauteur h = 8 mm des languettes 21 et des rainures 51, soit une épaisseur totale de l'antenne à deux blocs Bl et B2 de e2 + e5 = 20 mm. La largeur de l'antenne 2L1 + L2 = 2L6 + L61 est de 45 mm. Lorsque l'antenne est une antenne à polarisation circulaire, l'épaisseur du support diélectrique 23 correspondant à la profondeur de la cavité mince sous-jacente dans le substrat diélectrique 2 est de 635 μm.By way of example, a linearly polarized antenna with two tongues and a coaxial probe 9, intended to operate in a frequency band around 2 GHz, has been produced with the following dimensions. The dielectric substrates 2 and 5 respectively have an overall thickness e2 + h = 2 + 8 = 10 mm and e5 = 18 mm, with a height h = 8 mm of the tongues 21 and of the grooves 51, ie a total thickness of the antenna with two blocks Bl and B2 of e2 + e5 = 20 mm. The width of the antenna 2L1 + L2 = 2L6 + L61 is 45 mm. When the antenna is a circularly polarized antenna, the thickness of the dielectric support 23 corresponding to the depth of the underlying thin cavity in the dielectric substrate 2 is 635 μm.
Pour l'antenne à polarisation linéaire telle que dimensionnée ci-dessus, les figures 17 et 18 montrent l'adaptation A et la transmission TC. L'antenne présente une largeur de bande de 275 MHz sensiblement autour d'une fréquence centrale de 2 GHz pour une adaptation à -10 dB de 14 % environ pour cette bande passante. La bande passante dépend de la fréquence de résonance à environ 1950 MHz du premier élément rayonnant 4 à languette 21 dans le bloc Bl et de la fréquence de résonance à environ 2120 MHz du deuxième élément rayonnant 6 à ouverture non métallisée 61 dans le bloc B2. Sur cette bande passante de 14%, la transmission reste sensiblement constante.For the linearly polarized antenna as dimensioned above, FIGS. 17 and 18 show the adaptation A and the transmission TC. The antenna has a bandwidth of 275 MHz substantially around a central frequency of 2 GHz for an adaptation to -10 dB of approximately 14% for this bandwidth. The bandwidth depends on the resonance frequency at approximately 1950 MHz of the first radiating element 4 with tongue 21 in the block B1 and on the resonance frequency at approximately 2120 MHz of the second radiating element 6 with non-metallized opening 61 in the block B2. On this 14% bandwidth, the transmission remains substantially constant.
A niveaux d'adaptation comparables, l'utilisation de plusieurs éléments rayonnants, dimensionnés pour fonctionner aux fréquences désirées, permet d'augmenter la bande passante de l'antenne. Comparativement à une antenne à un seul élément rayonnant composée du seul bloc Bl comme décrite dans la demande de brevet précitée PCT/FR01/04064, l'adjonction du bloc B2 sur le bloc Bl double sensiblement la largeur de la bande passante. En outre, l'élargissement de cette bande passante est également associé à un rayonnement effectif dans l'axe principal de rayonnement Z de l'antenne. Afin de contrôler la plage de fonctionnement de cette antenne vers les fréquences basses, respectivement élevées, les dimensions des éléments rayonnants sont choisies pour allonger, respectivement réduire, les chemins électriques équivalents sur chacun de ces éléments. Par exemple, pour travailler vers les basses fréquences, ces chemins électriques sont allongés en augmentant la hauteur h et largeur L2 des ressauts 21 dans le bloc Bl et des rainures 51 dans le bloc B2 et/ou la largeur L61 de l'ouverture non métallisée 61 dans la face supérieure du bloc B2. Au contraire, plus les largeurs h, L2 et L61 sont diminuées, plus le fonctionnement de l'antenne se fera à fréquences élevées .At comparable adaptation levels, the use of several radiating elements, dimensioned to operate at the desired frequencies, makes it possible to increase the bandwidth of the antenna. Compared to an antenna with a single radiating element composed of the single block Bl as described in the aforementioned patent application PCT / FR01 / 04064, the addition of block B2 to the block Bl substantially doubles the width of the passband. In addition, the widening of this bandwidth is also associated with effective radiation in the main axis of radiation Z of the antenna. In order to control the operating range of this antenna towards the low and respectively high frequencies, the dimensions of the radiating elements are chosen to lengthen, respectively reduce, the equivalent electrical paths on each of these elements. For example, to work towards low frequencies, these electrical paths are lengthened by increasing the height h and width L2 of the projections 21 in the block B1 and of the grooves 51 in the block B2 and / or the width L61 of the non-metallized opening 61 in the upper face of the block B2. On the contrary, the more the widths h, L2 and L61 are reduced, the more the antenna will operate at high frequencies.
Par exemple, une antenne selon l'invention peut couvrir une bande de fréquence de 1700 à 2100 MHz de manière à être utilisée comme antenne imprimée bi- bande à la fois dans un réseau cellulaire de radiocommunications selon la norme DCS-1800 et dans un réseau cellulaire de radiocommunications selon la norme UMTS. Cependant, en augmentant la hauteur h et la largeur L2 des ressauts 21 et rainures 51 et/ou la largeur L61 de l'ouverture non métallisée 61, la bande de fréquence de l'antenne peut être élargie jusque dans les fréquences basses de l'ordre de 900 MHz afin de constituer une antenne imprimée tri-bande également pour un réseau cellulaire de radiocommunications selon la norme GSM-900.For example, an antenna according to the invention can cover a frequency band from 1700 to 2100 MHz so as to be used as a dual-band printed antenna both in a cellular radio communication network according to the DCS-1800 standard and in a network radiocommunication cell phone according to the UMTS standard. However, by increasing the height h and the width L2 of the projections 21 and grooves 51 and / or the width L61 of the non-metallized opening 61, the frequency band of the antenna can be widened up to the low frequencies of the order of 900 MHz in order to constitute a tri-band printed antenna also for a cellular radiocommunication network according to the GSM-900 standard.
De nombreuses variantes de réalisation peuvent être déduites de la structure à deux éléments rayonnants 4 et 6 de l'antenne 1 décrite ci-dessus.Many alternative embodiments can be deduced from the structure with two radiating elements 4 and 6 of the antenna 1 described above.
Selon la figure 19, une antenne la comprend un premier bloc Bl analogue à celui inclus dans l'antenne 1 et comportant un substrat diélectrique 2 avec un ou deux ressauts-languettes rectilignes perpendiculaires 21, une couche conductrice de masse 3 et une couche conductrice supérieure 4, et un deuxième bloc B2a comportant un substrat diélectrique 5a dans lequel l'ouverture supérieure 61a au niveau de la couche conductrice supérieure 6a a été usinée sans toutefois traversée complètement le bloc Ba . Le fond de l'ouverture 61a n'atteint pas le fond de la ou des rainures 51a s ' emboîtant dans la ou les languettes 21. Selon la réalisation illustrée à la figure 19, l'ouverture 61a est une cavité en forme de pyramide tronquée dont la petite base constitue le fond de l'ouverture et dont la largeur est sensiblement plus grande que la largeur L2 de la ou des languettes 21. La troisième couche conductrice supérieure 6a a également une forme en couronne carrée et recouvre les bords de l'ouverture 61a ainsi que les flancs pyramidaux de celle-ci. En variante la petite base de l'ouverture 61a est prolongée par un évidement carré, ou bien rectangulaire, traversant le deuxième substrat 5a jusqu'au premier substrat. La figure 20 montre une autre antenne lb à deux éléments rayonnants 4b et 6b, mais ne comportant qu'un seul bloc en mousse diélectrique grâce à la réunion des deux substrats diélectriques en un seul substrat diélectrique usiné 25. Le substrat 25 présente ainsi une surface inférieure plane recouverte par la couche conductrice de masse 3b et une face supérieure combinant au centre la face supérieure à un ou deux ressauts 21b du bloc Bl et à la périphérie la face supérieure à ouverture de couplage 61b du bloc B2. Ainsi la face supérieure du substrat diélectrique 25 constituant un seul bloc de mousse comporte un évidement carré 61b, ou rectangulaire, au fond duquel un ou deux ressauts rectilignes 21b sont ménagés, et la couche conductrice 4b s'étend sur et le long du ou des ressauts au fond de l'ouverture 61b. La profondeur de l'ouverture 61b est supérieure à la hauteur des ressauts 21b. La couche conductrice supérieure 6b recouvre le bord en forme de couronne carrée de l'ouverture 61b qui a une largeur L61 au moins égale à 2L1 + L2.According to FIG. 19, an antenna la comprises a first block B1 similar to that included in the antenna 1 and comprising a dielectric substrate 2 with one or two perpendicular rectilinear tab projections 21, a conductive ground layer 3 and an upper conductive layer 4, and a second block B2a comprising a dielectric substrate 5a in which the upper opening 61a at the level of the upper conductive layer 6a has been machined without, however, completely passing through the block Ba. The bottom of the opening 61a does not reach the bottom of the groove or grooves 51a fitting into the tongue or tongues 21. According to the embodiment illustrated in FIG. 19, the opening 61a is a cavity in the form of a truncated pyramid, the small base constitutes the bottom of the opening and the width of which is substantially greater than the width L2 of the tab (s) 21. The third upper conductive layer 6a also has a shape in a square crown and covers the edges of the opening 61a as well as the pyramidal sides thereof. As a variant, the small base of the opening 61a is extended by a square, or else rectangular, recess crossing the second substrate 5a up to the first substrate. FIG. 20 shows another antenna 1b with two radiating elements 4b and 6b, but comprising only a single block of dielectric foam thanks to the union of the two dielectric substrates in a single machined dielectric substrate 25. The substrate 25 thus has a surface lower plane covered by the mass conducting layer 3b and an upper face combining in the center the upper face with one or two projections 21b of the block B1 and at the periphery the upper face with coupling opening 61b of the block B2. Thus the upper face of the dielectric substrate 25 constituting a single block of foam comprises a square recess 61b, or rectangular, at the bottom of which one or two rectilinear projections 21b are provided, and the conductive layer 4b extends over and along the projections at the bottom of the opening 61b. The depth of the opening 61b is greater than the height of the projections 21b. The upper conductive layer 6b covers the edge in the form of a square crown of the opening 61b which has a width L61 at least equal to 2L1 + L2.
Au lieu de superposer une troisième couche 6, 6a, 6b avec une ouverture 61, 61a, 61b à une deuxième couche conductrice 4, 4b avec un ou deux ressauts perpendiculaires 21, 21b dans l'antenne 1, la, lb, la couche conductrice à ouverture 41c ou évidement peut être placée entre la couche conductrice de masse 3c et l'autre couche conductrice 6c à un ou deux ressauts rectilignes 61c, comme montré à la figure 21. Les ressauts 61c sont de préférence orientés vers l'ouverture 41c afin de réaliser un meilleur couplage entre les deux éléments rayonnants. Les deux blocs Blc et B2c de l'antenne correspondante le comporte chacun une couche conductrice 3c, 6c ayant un ou deux ressauts perpendiculaires et s ' étendant sur la face inférieure, respectivement supérieure du bloc.Instead of superimposing a third layer 6, 6a, 6b with an opening 61, 61a, 61b on a second conductive layer 4, 4b with one or two perpendicular projections 21, 21b in the antenna 1, la, lb, the conductive layer with opening 41c or recess can be placed between the conductive ground layer 3c and the other conductive layer 6c with one or two rectilinear projections 61c, as shown in FIG. 21. The projections 61c are preferably oriented towards the opening 41c so to achieve a better coupling between the two radiating elements. The two blocks Blc and B2c of the corresponding antenna each include a conductive layer 3c, 6c having one or two perpendicular projections and extending on the lower, respectively upper face of the block.
Le premier bloc Blc comporte ainsi une face inférieure dans laquelle une ou deux rainures rectilignes perpendiculaires 21c sont ménagées avec une hauteur prédéterminée h. La première couche conductrice 3c recouvre toute la face inférieure du bloc Blc, y compris le fond et les flancs de la ou des rainures 21c et constitue le plan de masse de l'antenne le. En variante, la ou les rainures 21c sont remplacées par une ou deux languettes rectilignes perpendiculaires qui saillent sur la face inférieure du bloc Blc. La deuxième couche conductrice 4c est en forme de couronne carrée, ou bien rectangulaire, dont la partie centrale non métallisée 41c recouvre le centre de la ou des rainures 21c. En variante, la face supérieure du bloc Blc peut présenter le profil de la face supérieure du bloc B2a montré à la figure 19. Le deuxième bloc B2c de l'antenne le présente une face inférieure non métallisée complémentaire de la face supérieure partiellement métallisée du premier bloc Blc et appliquée contre celle-ci, et une face supérieure comportant une ou deux rainures rectilignes perpendiculaires 61c. La face supérieure du bloc B2c est au moins métallisée au fond, sur les flancs et les bordures de la ou des rainures 61c. En fonction de la bande de fréquence utile de l'antenne le, les dimensions de la ou des rainures 61c peuvent être différentes de celles de la ou des rainures 21c. En variante, la ou les rainures 61c sont remplacées par un ou deux ressauts qui saillent sur la face supérieure du deuxième bloc B2c.The first block Blc thus comprises a lower face in which one or two perpendicular rectilinear grooves 21c are formed with a predetermined height h. The first conductive layer 3c covers the entire underside of the block Blc, including the bottom and the sides of the groove or grooves 21c and constitutes the ground plane of the antenna le. As a variant, the groove or grooves 21c are replaced by one or two perpendicular rectilinear tongues which project on the underside of the block Blc. The second conductive layer 4c is in the form of a square or rectangular crown, the non-metallized central part 41c of which covers the center of the groove or grooves 21c. As a variant, the upper face of the block Blc can have the profile of the upper face of the block B2a shown in FIG. 19. The second block B2c of the antenna has a non-metallized lower face complementary to the partially metallized upper face of the first block Blc and applied against it, and an upper face comprising one or two perpendicular rectilinear grooves 61c. The upper face of the block B2c is at least metallized at the bottom, on the flanks and the edges of the groove or grooves 61c. Depending on the useful frequency band of the antenna 1c, the dimensions of the groove or grooves 61c may be different from those of the groove or grooves 21c. As a variant, the groove or grooves 61c are replaced by one or two projections which protrude from the upper face of the second block B2c.
L'invention n'est pas limitée à la superposition de préférence par emboîtement de deux blocs de mousse diélectrique, mais concerne également l'emboîtement de plusieurs blocs de mousse diélectrique par complémentarité entre la face supérieure d'un bloc et la face inférieure du bloc immédiatement supérieur. Chaque bloc présente une face supérieure, respectivement inférieure, supportant une couche conductrice à un ou deux ressauts ou rainures perpendiculaires, ou à ouverture ou évidement constituant un élément rayonnant de l'antenne ainsi réalisée. En général, le premier bloc en partie inférieure de la pile de blocs a une face inférieure recouverte par la couche conductrice constituant le plan de masse et le premier élément rayonnant constitué par la première couche conductrice au- dessus du plan de masse est alimentée directement par une sonde coaxiale ou une ligne à microruban pour un fonctionnement à polarisation linéaire, ou à travers deux points d'excitation comme les traversées métalliques 83 reliées au coupleur hybride 8 pour un fonctionnement à polarisation circulaire.The invention is not limited to the superposition preferably by interlocking of two blocks of dielectric foam, but also relates to the interlocking of several blocks of dielectric foam by complementarity between the upper face of a block and the lower face of the block immediately superior. Each block has an upper face, respectively a lower face, supporting a conductive layer with one or two projections or perpendicular grooves, or with an opening or recess constituting a radiating element of the antenna thus produced. In general, the first block in the lower part of the stack of blocks has a lower face covered by the conductive layer constituting the ground plane and the first radiating element constituted by the first conductive layer above the ground plane is supplied directly by a coaxial probe or a microstrip line for linear polarization operation, or through two excitation points such as bushings metallic 83 connected to the hybrid coupler 8 for circular polarization operation.
Par exemple, comme montré à la figure 22, une antenne ld comprend trois blocs Bld, B2d et B3d usinés et découpés dans la même mousse diélectrique. Les blocs Bld et B2d sont par exemple analogues aux blocs Bl et B2a de l'antenne la montrée à la figure 19. Le troisième bloc B3d comporte un substrat diélectrique 11 dont la face inférieure est complémentaire de la face supérieure du deuxième bloc B2d, et ainsi comporte une saillie 111 en pyramide tronquée qui s'emboîte dans 1 ' évidement 61a ménagé dans la face supérieure du bloc B2d. La face supérieure du substrat 11 du bloc B3d présente une ou deux rainures rectilignes perpendiculaires 112 et supporte une couche conductrice 12 qui recouvre le fond, les flancs et les bordures de la ou des rainures 112. La largeur de la ou des rainures 112 est par exemple inférieure à la largeur de la saillie en pyramide tronquée 111 et de la largeur des languettes 21 saillant sur la face supérieure du premier bloc Bld. Afin d'améliorer la liaison entre les blocs B2d et B3d et de positionner précisément ces deux blocs l'un par rapport à l'autre, le bloc B3d comporte des rebords 113 qui encadrent intimement la partie supérieure des côtés du bloc sous-jacent B2d. De tels rebords 113 peuvent être ajoutés à tout bloc dont la face inférieure utile est sensiblement plane . L'empilement de plusieurs blocs en mousse diélectrique comportant chacun un élément rayonnant permet d'accroître la largeur de bande de l'antenne comparativement à une antenne ne comportant qu'un seul élément rayonnant du type pastille et ainsi permet de conférer un fonctionnement de type multifréquence de l'antenne. En déterminant correctement les géométries et les tailles des éléments rayonnants constitués par les couches conductrices 4, 6, 12, etc., les fréquences de rayonnement de ces éléments et par conséquent la largeur de bande de l'antenne sont adaptées à l'utilisation souhaitée de l'antenne. For example, as shown in FIG. 22, an antenna ld comprises three blocks Bld, B2d and B3d machined and cut from the same dielectric foam. The blocks Bld and B2d are for example analogous to the blocks Bl and B2a of the antenna shown in FIG. 19. The third block B3d comprises a dielectric substrate 11 whose lower face is complementary to the upper face of the second block B2d, and thus has a projection 111 in a truncated pyramid which fits into one recess 61a formed in the upper face of the block B2d. The upper face of the substrate 11 of the block B3d has one or two perpendicular rectilinear grooves 112 and supports a conductive layer 12 which covers the bottom, the sides and the edges of the groove (s) 112. The width of the groove (s) 112 is by example less than the width of the truncated pyramid projection 111 and the width of the tongues 21 projecting from the upper face of the first block Bld. In order to improve the connection between the blocks B2d and B3d and to precisely position these two blocks relative to each other, the block B3d has flanges 113 which intimately frame the upper part of the sides of the underlying block B2d . Such flanges 113 can be added to any block whose useful bottom face is substantially flat. The stacking of several blocks of dielectric foam each comprising a radiating element makes it possible to increase the bandwidth of the antenna compared to an antenna comprising only one radiating element of the pellet type and thus makes it possible to confer an operation of type multifrequency of the antenna. By correctly determining the geometries and sizes of the radiating elements formed by the conductive layers 4, 6, 12, etc., the radiation frequencies of these elements and therefore the bandwidth of the antenna are adapted to the desired use of the antenna.

Claims

REVENDICATIONS
1 - Antenne imprimée comprenant un premier substrat ayant des faces supportant des couches conductrices dont une comporte un ressaut, caractérisée en ce qu'elle comprend un deuxième substrat (5, 5c) ayant une face de forme complémentaire de l'une des faces du premier substrat (2, 2a) et disposée contre celle-ci et une autre face supportant une couche conductrice (6, 6c), et la couche conductrice (4 ; 4c) sur le premier substrat (2 ; 2c) contre laquelle le deuxième substrat est disposé et la couche conductrice (6 ; 6c) sur le deuxième substrat (5 ; 5c) comportent indifféremment un ressaut (21 ; 61c) et une ouverture (61 ; 41c) qui sont superposés.1 - Printed antenna comprising a first substrate having faces supporting conductive layers, one of which includes a projection, characterized in that it comprises a second substrate (5, 5c) having a face of complementary shape to one of the faces of the first substrate (2, 2a) and disposed against it and another face supporting a conductive layer (6, 6c), and the conductive layer (4; 4c) on the first substrate (2; 2c) against which the second substrate is disposed and the conductive layer (6; 6c) on the second substrate (5; 5c) indifferently comprise a projection (21; 61c) and an opening (61; 41c) which are superimposed.
2 - Antenne conforme à la revendication 1, dans laquelle la couche conductrice (4) sur le premier substrat (2) contre laquelle le deuxième substrat (5) est disposé, comporte le ressaut (21), et l'autre couche conductrice (3) sur le premier substrat (2) constitue un plan de masse.2 - Antenna according to claim 1, in which the conductive layer (4) on the first substrate (2) against which the second substrate (5) is arranged, comprises the projection (21), and the other conductive layer (3 ) on the first substrate (2) constitutes a ground plane.
3 - Antenne conforme à la revendication 2, dans laquelle le ressaut de la couche conductrice (4) supportée par la face du premier substrat (2) contre laquelle le deuxième substrat (5) est disposé, fait office de languette (21) complémentaire d'une rainure (51) dans la face du deuxième substrat (5) de forme complémentaire .3 - Antenna according to claim 2, wherein the projection of the conductive layer (4) supported by the face of the first substrate (2) against which the second substrate (5) is arranged, acts as a tongue (21) complementary to 'A groove (51) in the face of the second substrate (5) of complementary shape.
4 - Antenne conforme à la revendication 1, dans laquelle la couche conductrice (4c) sur le premier substrat (2c) contre laquelle le deuxième substrat (5c) est disposé, comporte l'ouverture (41c), et l'autre couche conductrice (3c) sur le premier substrat constitue un plan de masse et comporte le ressaut (21c) qui est superposé à l'ouverture (41c).4 - Antenna according to claim 1, in which the conductive layer (4c) on the first substrate (2c) against which the second substrate (5c) is arranged, comprises the opening (41c), and the other conductive layer (3c) on the first substrate constitutes a ground plane and comprises the projection (21c) which is superimposed on the opening (41c).
5 - Antenne conforme à la revendication 4, dans laquelle le ressaut (21c) de l'autre couche conductrice (3c) sur le premier substrat (2c) est formée par une rainure dans le premier substrat recouverte par ladite autre couche conductrice.5 - An antenna according to claim 4, wherein the projection (21c) of the other conductive layer (3c) on the first substrate (2c) is formed by a groove in the first substrate covered by said other conductive layer.
6 - Antenne conforme à l'une quelconque des revendications 1 à 5, dans laquelle l'ouverture (61) est dans la couche conductrice (6) du deuxième substrat (5) et prolongée par un évidement traversant le deuxième substrat (5) jusqu'au premier substrat (2) .6 - Antenna according to any one of claims 1 to 5, in which the opening (61) is in the conductive layer (6) of the second substrate (5) and extended by a recess passing through the second substrate (5) up to 'to the first substrate (2).
7 - Antenne conforme à l'une quelconque des revendications 1 à 5, dans laquelle l'ouverture dans la couche conductrice (6a) supportée par le deuxième substrat (5a) est une cavité (61a) ayant des flancs recouverts par la couche conductrice (6a).7 - Antenna according to any one of claims 1 to 5, in which the opening in the conductive layer (6a) supported by the second substrate (5a) is a cavity (61a) having flanks covered by the conductive layer ( 6a).
8 - Procédé conforme à l'une quelconque des revendications 1 à 7, dans laquelle l'ouverture (61b) de la couche conductrice (6b) sur l'un des premier et deuxième substrats encadre sensiblement la couche conductrice (4b) ayant le ressaut (21b) sur l'autre substrat, et les premier et deuxième substrats sont confondus en un unique substrat (25) .8 - Method according to any one of claims 1 to 7, wherein the opening (61b) of the conductive layer (6b) on one of the first and second substrates substantially frames the conductive layer (4b) having the projection (21b) on the other substrate, and the first and second substrates are merged into a single substrate (25).
9 - Antenne conforme à l'une quelconque des revendications 1 à 8, comprenant un troisième substrat (11) ayant une face avec une forme complémentaire de la face du deuxième substrat (5a) supportant une couche conductrice (6a) et disposée contre celle-ci, et une autre face supportant une couche conductrice (12), et les couches conductrices (6a, 12) sur les deuxième et troisième substrats (5a, 11) comportent indifféremment un ressaut (112) et une ouverture (61a) qui sont superposés.9 - Antenna according to any one of claims 1 to 8, comprising a third substrate (11) having a face with a shape complementary to the face of the second substrate (5a) supporting a conductive layer (6a) and arranged against it, and another face supporting a conductive layer (12), and the conductive layers (6a, 12) on the second and third substrates (5a, 11) either have a projection (112) and an opening (61a) which are superimposed.
10 - Antenne conforme à l'une quelconque des revendications 1 à 9, dans laquelle chaque ouverture10 - Antenna according to any one of claims 1 to 9, in which each opening
(61a, 61b) et chaque ressaut (21, 21b, 21c, 61c, 112) sont rectangulaires et ont des axes respectifs coplanaires .(61a, 61b) and each projection (21, 21b, 21c, 61c, 112) are rectangular and have respective coplanar axes.
11 - Antenne conforme à l'une quelconque des revendications 1 à 10, dans laquelle chaque couche conductrice (4 ; 3c ; 6c ; 112) comportant un ressaut (21 ; 21c ; 61c ; 112) comprend un autre ressaut, les deux ressauts étant perpendiculaires entre eux et à des côtés de chaque ouverture (61 ; 61a ; 41c) .11 - Antenna according to any one of claims 1 to 10, in which each conductive layer (4; 3c; 6c; 112) comprising a projection (21; 21c; 61c; 112) comprises another projection, the two projections being perpendicular to each other and to sides of each opening (61; 61a; 41c).
12 - Antenne conforme à l'une quelconque des revendications 1 à 11, comprenant un moyen d'alimentation à micro-onde (8 ; 9) relié aux deux couches conductrices (3, 4) du premier substrat (2) .12 - Antenna according to any one of claims 1 to 11, comprising a microwave supply means (8; 9) connected to the two conductive layers (3, 4) of the first substrate (2).
13 - Antenne conforme à la revendication 12, dans laquelle le moyen d'alimentation à micro-onde est une sonde coaxiale (9) dont le conducteur externe est fixé sur la couche conductrice (3) du premier substrat (2) contre laquelle n'est pas disposée le deuxième substrat (5), et dont le conducteur interne (91) traverse le premier substrat (2) pour être relié à l'autre couche conductrice (4). 14 - Antenne conforme à la revendication 13, dans laquelle le conducteur interne (91) de la sonde coaxiale a une extrémité reliée à un ressaut (21) de l'autre couche conductrice (4) du premier substrat (2) contre laquelle le deuxième substrat (5) est disposé .13 - Antenna according to claim 12, in which the microwave supply means is a coaxial probe (9), the external conductor of which is fixed on the conductive layer (3) of the first substrate (2) against which n the second substrate (5) is not arranged, and the internal conductor (91) of which passes through the first substrate (2) to be connected to the other conductive layer (4). 14 - Antenna according to claim 13, in which the internal conductor (91) of the coaxial probe has one end connected to a projection (21) of the other conductive layer (4) of the first substrate (2) against which the second substrate (5) is arranged.
15 - Antenne conforme à la revendication 12, dans laquelle le moyen d'alimentation à micro-onde comprend un coupleur hybride (8) qui est réalisé sur un support diélectrique (23) et logé dans la face du premier substrat diélectrique (2) contre laquelle le deuxième substrat (5) n'est pas disposé, et qui a au moins un accès (81) connecté à l'extrémité du conducteur interne d'une sonde coaxiale (7), et au moins deux autres accès (81) prolongés par des traversées métalliques (83) jusqu'à des ressauts (21) de la couche conductrice (4) sur le premier substrat15 - Antenna according to claim 12, in which the microwave supply means comprises a hybrid coupler (8) which is produced on a dielectric support (23) and housed in the face of the first dielectric substrate (2) against which the second substrate (5) is not disposed, and which has at least one access (81) connected to the end of the internal conductor of a coaxial probe (7), and at least two other accesses (81) extended by metallic crossings (83) to projections (21) of the conductive layer (4) on the first substrate
(1) contre laquelle le deuxième substrat (5) est disposé.(1) against which the second substrate (5) is arranged.
16 - Antenne conforme à l'une quelconque des revendications 1 à 15, dans laquelle les substrats (2, 5, 11) sont en une mousse diélectrique de permittivité relative très faible et sont emboîtés les uns sur les autres sans scellement. 16 - Antenna according to any one of claims 1 to 15, in which the substrates (2, 5, 11) are made of a dielectric foam of very low relative permittivity and are nested one on the other without sealing.
EP02735550A 2001-06-19 2002-05-21 Wide band printed antenna with several radiating elements Withdrawn EP1399990A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0108149 2001-06-19
FR0108149A FR2826187B1 (en) 2001-06-19 2001-06-19 BROADBAND PRINTED ANTENNA WITH MULTIPLE RADIANT ELEMENTS
PCT/FR2002/001714 WO2002103845A1 (en) 2001-06-19 2002-05-21 Wide band printed antenna with several radiating elements

Publications (1)

Publication Number Publication Date
EP1399990A1 true EP1399990A1 (en) 2004-03-24

Family

ID=8864580

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02735550A Withdrawn EP1399990A1 (en) 2001-06-19 2002-05-21 Wide band printed antenna with several radiating elements

Country Status (3)

Country Link
EP (1) EP1399990A1 (en)
FR (1) FR2826187B1 (en)
WO (1) WO2002103845A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232833A (en) * 2012-05-01 2013-11-14 Fujitsu Ltd Antenna device
CN108539395B (en) * 2018-04-18 2023-10-13 深圳市信维通信股份有限公司 Dual-frenquency millimeter wave antenna system suitable for 5G communication and handheld device thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204444A (en) * 1995-01-31 1996-08-09 Mitsumi Electric Co Ltd Converter function incorporated type gps antenna
SE521407C2 (en) * 1997-04-30 2003-10-28 Ericsson Telefon Ab L M Microwave antenna system with a flat construction
WO2000052783A1 (en) * 1999-02-27 2000-09-08 Rangestar International Corporation Broadband antenna assembly of matching circuitry and ground plane conductive radiating element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02103845A1 *

Also Published As

Publication number Publication date
WO2002103845A1 (en) 2002-12-27
FR2826187B1 (en) 2003-08-08
FR2826187A1 (en) 2002-12-20

Similar Documents

Publication Publication Date Title
EP1407512B1 (en) Antenna
EP0667984B1 (en) Monopolar wire-plate antenna
FR2743199A1 (en) RECEIVING AND / OR TRANSMITTING MICROWAVE PLANE NETWORK ANTENNA AND ITS APPLICATION TO THE RECEPTION OF GEOSTATIONARY TELEVISION SATELLITES
EP0493190B1 (en) Stacked microstrip microwave antenna
EP1428294B1 (en) Reactive coupling antenna comprising two radiating elements
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
EP1690317B1 (en) Multiband dual-polarised array antenna
EP1346442B1 (en) Printed patch antenna
EP1228552A1 (en) Dual-frequency band printed antenna
EP2643886B1 (en) Planar antenna having a widened bandwidth
EP1225655A1 (en) Dual-band planar antenna and apparatus including such an antenna device
EP1550183A2 (en) Essentially square broadband, dual polarised radiating element
EP1579528B1 (en) Transition between a rectangular waveguide and a microstrip line
FR2866987A1 (en) MULTIBAND PLANAR ANTENNA
EP1399990A1 (en) Wide band printed antenna with several radiating elements
EP2316149B1 (en) Low-loss compact radiating element
WO2010106073A1 (en) Dual fin antenna
EP1376758B1 (en) Compact patch antenna with a matching circuit
EP2291923B1 (en) Frontal block with integrated antenna
WO2019110651A1 (en) Microwave component and associated manufacturing process
EP0557176B1 (en) Feeding device for a plate antenna with two crossed polarizations and array equipped with such a device
FR2911998A1 (en) Omnidirectional broadband aerial for use in e.g. portable computer, has primary sections connected to extremities of preceding and following sections through secondary sections and by extremities without connecting to two sections
WO2003012921A1 (en) Antenna
FR2903232A1 (en) SYMMETRIC ANTENNA IN MICRO-RIBBON TECHNOLOGY.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BLOT, JEAN-PIERRE

Inventor name: TOUTAIN, YANN

Inventor name: COUPEZ, JEAN-PHILIPPE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BLOT, JEAN-PIERRE

Inventor name: TOUTAIN, YANN

Inventor name: COUPEZ, JEAN-PHILIPPE

17Q First examination report despatched

Effective date: 20071217

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORANGE

18D Application deemed to be withdrawn

Effective date: 20130501