EP0493190B1 - Stacked microstrip microwave antenna - Google Patents

Stacked microstrip microwave antenna Download PDF

Info

Publication number
EP0493190B1
EP0493190B1 EP91403422A EP91403422A EP0493190B1 EP 0493190 B1 EP0493190 B1 EP 0493190B1 EP 91403422 A EP91403422 A EP 91403422A EP 91403422 A EP91403422 A EP 91403422A EP 0493190 B1 EP0493190 B1 EP 0493190B1
Authority
EP
European Patent Office
Prior art keywords
patches
radiating element
patch
element according
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91403422A
Other languages
German (de)
French (fr)
Other versions
EP0493190A1 (en
Inventor
Xavier Delestre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0493190A1 publication Critical patent/EP0493190A1/en
Application granted granted Critical
Publication of EP0493190B1 publication Critical patent/EP0493190B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration

Definitions

  • the present invention relates to paver type microwave antennas.
  • the antennas printed on a dielectric substrate are commonly used in the microwave field.
  • a double excitation of these blocks by means of two separate inputs makes it possible to emit two different types of radiation with the same radiating element.
  • the signals sent to the two inputs each generate radiation with linear polarization, the two polarizations produced being orthogonal to one another (for example one vertical and the other horizontal).
  • An appropriate distribution of the amplitudes and phases of these two signals also makes it possible to obtain radiation in circular polarization.
  • the microwave isolation of the two inputs depends essentially on the geometric shape of the block (printed metallic conductor) to which these inputs are connected (galvanically connected or by coupling).
  • the radiating elements of the network In the case of electronically scanned array antennas, it is difficult to power the radiating elements of the network when these elements each have two inputs. It is indeed necessary to use a double distribution of microwave energy. You can also switch the type of radiation from these antennas. It is then necessary to supply each radiating element through a switch with one input and two outputs, these outputs being connected to the inputs of the radiating element. Depending on the state of an electrical control signal and the type of switch used, the radiation obtained can be either linearly polarized (horizontal or vertical) or circularly polarized (left or right).
  • the external dimensions of the radiating elements used must be smaller than those of the mesh of the array. This constraint imposes a transverse attack on the radiating elements, which makes it possible to limit their size.
  • Coaxial lines are used for this purpose, the central conductors of which are electrically connected to the metal pad. The two inputs of the radiating element are therefore not isolated from each other by direct current.
  • switches for switching from linearly polarized radiation to circularly polarized radiation, and vice versa comprise one or more diodes connected directly between the two outputs of these switches. These switches can only operate if their two outputs are mutually isolated by direct current. This condition is not fulfilled when these outputs are connected to the two inputs of a paved antenna of the prior art.
  • a known, simple, more expensive solution consists in inserting a capacitor in series between one of the outputs of the switch and one of the inputs of the radiating element. This capacitor, which allows DC isolation, must have a negligible microwave impedance.
  • the known radiating elements of the “polarized” type with double polarization comprise two inputs connected directly to a single metallic conductor etched on a dielectric substrate.
  • This conductor called “source block”
  • This conductor is generally square or circular, in order to allow identical radiation according to the two polarizations.
  • one or more other blocks can be placed above the source block, electromagnetically coupled and supported by an insulating material.
  • the present invention relates to a radiating element according to claim 1, bipolarized with two isolated DC inputs, without requiring isolation capacitors, and having the smallest possible footprint.
  • the radiating element according to the invention comprises at least two superposed blocks, isolated from each other by a layer of air or of dielectric material, at least the lower block having two opposite concave sides, the lower block being printed on the upper face of a dielectric substrate whose lower face is metallized, the middle of a rectilinear side of each of the first two blocks being connected to a supply line, the lined feeding of the upper block passing near a concave side of the lower block.
  • the two opposite concave sides of the lower block are substantially parallel to the radiated electric field (by the lower block). This arrangement is the only one which allows the passage of the supply line of the upper block without crossing the lower block.
  • the bipolarized radiating element 1 shown in FIG. 1 comprises a dielectric substrate 2, the underside of which is almost entirely metallized. On the upper surface, also metallized, of the substrate 2, one or more blocks 3 are etched, for example of square shape. In line with midpoints 4 and 5 on two sides of the square 3, we drill into the substrate 2 and its metallization of the holes for the passage of the cores of coaxial conductors 6, 7 supplying the block 3.
  • the conductor 6 corresponds for example to vertical polarization, and the conductor 7 to horizontal polarization.
  • such a radiating element requires the use of galvanic isolation capacitors between the polarization switch and this element.
  • the radiating element 8, according to the invention and represented in FIG. 2 essentially comprises a first dielectric support substrate 9.
  • the underside 10 of the substrate 9 (as seen in the drawing, makes it the face opposite to the radiating face ) is metallized.
  • the upper face of the substrate 9 is metallized, then etched.
  • One or more blocks are engraved there (several to obtain a network).
  • This block 11 has a general shape of a square, but two of its opposite sides 12, 13 are slightly concave (arrow F equals approximately 10 to 20% of the length of the side of the square, see figure 3). These two sides (or more exactly the corresponding sides of the original square) are parallel to the electric field radiated by the element.
  • a solid dielectric 14 whose thickness is less than that of the substrate 9 (for example 5 to 10 times thinner) is fixed, for example by gluing ).
  • the upper face of the dielectric 14 is first metallized, then etched to form one (or more in the case of a network) radiating element (s) 15 of the same shape and dimensions as those of the element 11
  • the center of the element 15 is opposite that of the element 15, but these elements are offset by 90 ° in rotation relative to each other, that is to say that 'a concave side of one is opposite a straight side of the other.
  • the hole for the passage of the core of the conductor 21 can be made tangentially at point 19 (and perpendicular to the surface of the dielectric 14 and of the substrate 9) without there being any risk of contact between this core and the element 11.
  • the overall dimensions, in a plane perpendicular to the direction of propagation of the radiation of the radiating element is as small as possible, which can make it possible to form the densest network possible.
  • the elements 11 and 15 have been shown in plan in FIG. 3. Instead of giving them concave circular faces, two of their opposite concave faces can be formed, for example in "V" shape as shown in FIG. 4 or in trapezoid shape as shown in Figure 5. These forms are not, however, limiting. Other forms can be adopted, if an important condition is observed, which is to remove enough material in at least one side of the lower block to allow the core of the supply conductor of the upper block to pass without increasing the dimensions in directions perpendicular to the direction of propagation of the radiation of the radiating element.
  • the dielectric 14 can be replaced by a layer of air.
  • the upper block can be produced using the suspended triplate technique.
  • the upper block is formed on a thin support sheet which is fixed on small blocks of insulating material.
  • the dielectric layer 14 does not necessarily cover the entire upper face of the substrate 9. It can, for example, include recesses in line with the concave sides of the element 15. This gives easy access to the straight sides of the element 11, and in particular to its feed point 16.
  • the radiating element of the invention can be implemented in applications such as single or multi-element antennas, active or passive, which can operate in linear and / or circular polarizations, possibly switchable.
  • the blocks of this radiating element can also be supplied by other types of lines, for example microstrip lines ("microstrip").

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

La présente invention se rapporte aux antennes hyperfréquences de type pavé.The present invention relates to paver type microwave antennas.

Les antennes imprimées sur un substrat diélectrique, dites de type "pavé" ("Patch" en terminologie anglo-saxonne), sont couramment utilisées dans le domaine des hyperfréquences. Une double excitation de ces pavés au moyen de deux entrées distinctes permet d'émettre deux types de rayonnement différents avec le même élément rayonnant. Généralement, les signaux envoyés sur les deux entrées génèrent chacun un rayonnement à polarisation linéaire, les deux polarisations produites étant orthogonales entre elles (par exemple l'une verticale et l'autre horizontale). Une répartition appropriée des amplitudes et phases de ces deux signaux permet également d'obtenir un rayonnement en polarisation circulaire.The antennas printed on a dielectric substrate, called "block" type ("Patch" in English terminology), are commonly used in the microwave field. A double excitation of these blocks by means of two separate inputs makes it possible to emit two different types of radiation with the same radiating element. Generally, the signals sent to the two inputs each generate radiation with linear polarization, the two polarizations produced being orthogonal to one another (for example one vertical and the other horizontal). An appropriate distribution of the amplitudes and phases of these two signals also makes it possible to obtain radiation in circular polarization.

L'isolation en hyperfréquences des deux entrées dépend essentiellement de la forme géométrique du pavé (conducteur métallique imprimé) auquel ces entrées sont reliées (reliées galvaniquement ou par couplage).The microwave isolation of the two inputs depends essentially on the geometric shape of the block (printed metallic conductor) to which these inputs are connected (galvanically connected or by coupling).

Dans le cas des antennes réseau à balayage électronique, il est difficile d'alimenter les éléments rayonnants du réseau lorsque ces éléments possèdent chacun deux entrées. Il faut en effet utiliser une double distribution d'énergie hyperfréquence. On peut aussi commuter le type de rayonnement de ces antennes. Il est alors nécessaire d'alimenter chaque élément rayonnant à travers un commutateur à une entrée et deux sorties, ces sorties étant reliées aux entrées de l'élément rayonnant. Suivant l'état d'un signal de commande électrique et le type de commutateur utilisé, le rayonnement obtenu peut être soit à polarisation linéaire (horizontale ou verticale), soit à polarisation circulaire (gauche ou droite).In the case of electronically scanned array antennas, it is difficult to power the radiating elements of the network when these elements each have two inputs. It is indeed necessary to use a double distribution of microwave energy. You can also switch the type of radiation from these antennas. It is then necessary to supply each radiating element through a switch with one input and two outputs, these outputs being connected to the inputs of the radiating element. Depending on the state of an electrical control signal and the type of switch used, the radiation obtained can be either linearly polarized (horizontal or vertical) or circularly polarized (left or right).

Dans le cas des antennes réseau à balayage électronique, les dimensions extérieures des éléments rayonnants utilisés doivent être inférieures à celles de la maille du réseau. Cette contrainte impose une attaque transversale des éléments rayonnants, ce qui permet de limiter leur encombrement. On utilise à cet effet des lignes coaxiales dont les conducteurs centraux sont reliés électriquement au pavé métallique. Les deux entrées de l'élément rayonnant ne sont donc pas isolées entre elles en courant continu.In the case of electronically scanned array antennas, the external dimensions of the radiating elements used must be smaller than those of the mesh of the array. This constraint imposes a transverse attack on the radiating elements, which makes it possible to limit their size. Coaxial lines are used for this purpose, the central conductors of which are electrically connected to the metal pad. The two inputs of the radiating element are therefore not isolated from each other by direct current.

Les commutateurs connus permettant de passer d'un rayonnement à polarisation linéaire à un rayonnement à polarisation circulaire, et réciproquement, comportent une ou plusieurs diodes connectées directement entre les deux sorties de ces commutateurs. Ces commutateurs ne peuvent fonctionner qu'à condition que leurs deux sorties soient mutuellement isolées en courant continu. Cette condition n'est pas remplie lorsque ces sorties sont reliées aux deux entrées d'une antenne pavé de l'art antérieur.Known switches for switching from linearly polarized radiation to circularly polarized radiation, and vice versa, comprise one or more diodes connected directly between the two outputs of these switches. These switches can only operate if their two outputs are mutually isolated by direct current. This condition is not fulfilled when these outputs are connected to the two inputs of a paved antenna of the prior art.

Une solution connue, simple, plus coûteuse, consiste à insérer un condensateur en série entre une des sorties du commutateur et une des entrées de l'élément rayonnant. Ce condensateur, qui permet l'isolation en courant continu, doit présenter une impédance négligeable en hyperfréquences.A known, simple, more expensive solution consists in inserting a capacitor in series between one of the outputs of the switch and one of the inputs of the radiating element. This capacitor, which allows DC isolation, must have a negligible microwave impedance.

Les éléments rayonnants connus de type "pavé" à double polarisation comportent deux entrées connectées directement à un unique conducteur métallique gravé sur un substrat diélectrique. Ce conducteur, appelé "pavé source", est généralement de forme carrée ou circulaire, afin de permettre un rayonnement identique selon les deux polarisations. Pour élargir la bande de fonctionnement des éléments rayonnants, on peut disposer au-dessus du pavé source un ou plusieurs autres pavés couplés de manière électromagnétique et supportés par un matériau isolant.The known radiating elements of the “polarized” type with double polarization comprise two inputs connected directly to a single metallic conductor etched on a dielectric substrate. This conductor, called "source block", is generally square or circular, in order to allow identical radiation according to the two polarizations. To widen the operating band of the radiating elements, one or more other blocks can be placed above the source block, electromagnetically coupled and supported by an insulating material.

Afin de réaliser un élément rayonnant bipolarisé à deux entrées isolées en courant continu, on pourrait remplacer l'élément unique par deux éléments rayonnants monopolarisation indépendants et émettant suivant des polarisations orthogonales entre elles. Cette solution n'est en général pas applicable pour des raisons d'encombrement.In order to produce a bipolar radiating element with two isolated DC inputs, we could replace the single element by two independent monopolarizing radiating elements and emitting according to orthogonal polarizations between them. This solution is generally not applicable for reasons of space.

On connaît d'après le document US-A-4 089 003 une antenne hyperfréquences à pavés circulaires superposés, le pavé inférieur étant plus grand que le supérieur, cette antenne fonctionnant ainsi à deux fréquences différentes.Document US-A-4 089 003 discloses a microwave antenna with superimposed circular blocks, the lower block being larger than the upper, this antenna thus operating at two different frequencies.

La présente invention a pour objet un élément rayonnant selon la revendication 1, bipolarisé à deux entrées isolées en courant continu, sans nécessiter de condensateurs d'isolation, et présentant l'encombrement le plus faible possible.The present invention relates to a radiating element according to claim 1, bipolarized with two isolated DC inputs, without requiring isolation capacitors, and having the smallest possible footprint.

L'élément rayonnant conforme à l'invention, du type "pavé" à éléments imprimés sur un substrat diélectrique, comporte au moins deux pavés superposés, isolés entre eux par une couche d'air ou de matériau diélectrique, au moins le pavé inférieur ayant deux côtés opposés concaves, le pavé inférieur étant imprimé sur la face supérieure d'un substrat diélectrique dont la face inférieure est métallisée, le milieu d'un côté rectiligne de chacun des deux premiers pavés étant relié à une ligne d'alimentation, la ligned'alimentation du pavé supérieur passant près d'un côté concave du pavé inférieur. Les deux côtés opposés concaves du pavé inférieur sont sensiblement parallèles au champ électrique rayonné (par le pavé inférieur). Cette disposition est la seule qui permette le passage de la ligne d'alimentation du pavé supérieur sans traverser le pavé inférieur.The radiating element according to the invention, of the "block" type with elements printed on a dielectric substrate, comprises at least two superposed blocks, isolated from each other by a layer of air or of dielectric material, at least the lower block having two opposite concave sides, the lower block being printed on the upper face of a dielectric substrate whose lower face is metallized, the middle of a rectilinear side of each of the first two blocks being connected to a supply line, the lined feeding of the upper block passing near a concave side of the lower block. The two opposite concave sides of the lower block are substantially parallel to the radiated electric field (by the lower block). This arrangement is the only one which allows the passage of the supply line of the upper block without crossing the lower block.

L'invention sera mieux comprise à la lecture de la description détaillée de plusieurs modes de réalisation, pris à titres d'exemples non limitatifs, illustrés par le dessin annexé, sur lequel :

  • la figure 1 est une vue simplifiée en perspective d'un élément rayonnant bipolarisé selon l'art antérieur ;
  • la figure 2 est une vue simplifiée en perspective d'un élément rayonnant bipolarisé selon la présente invention, et
  • les figures 3 à 5 sont des vues en plan de différents modes de réalisation de pavés conformes à l'invention.
The invention will be better understood on reading the detailed description of several embodiments, taken by way of nonlimiting examples, illustrated by the appended drawing, in which:
  • Figure 1 is a simplified perspective view of a bipolarized radiating element according to the prior art;
  • FIG. 2 is a simplified perspective view of a bipolarized radiating element according to the present invention, and
  • Figures 3 to 5 are plan views of different embodiments of pavers according to the invention.

L'élément rayonnant bipolarisé 1 représenté en figure 1 comporte un substrat diélectrique 2 dont la face inférieure est métallisée en presque totalité. Sur la face supérieure, également métallisée, du substrat 2, on grave un ou plusieurs pavés 3, par exemple de forme carrée. Au droit des milieux 4 et 5 de deux côtés du carré 3, on perce dans le substrat 2 et sa métallisation des trous pour le passage des âmes de conducteurs coaxiaux 6, 7 d'alimentation du pavé 3. Le conducteur 6 correspond par exemple à la polarisation verticale, et le conducteur 7 à la polarisation horizontale. Comme précisé ci-dessus, un tel élément rayonnant nécessite l'emploi de condensateurs d'isolation galvanique entre le commutateur de polarisation et cet élément.The bipolarized radiating element 1 shown in FIG. 1 comprises a dielectric substrate 2, the underside of which is almost entirely metallized. On the upper surface, also metallized, of the substrate 2, one or more blocks 3 are etched, for example of square shape. In line with midpoints 4 and 5 on two sides of the square 3, we drill into the substrate 2 and its metallization of the holes for the passage of the cores of coaxial conductors 6, 7 supplying the block 3. The conductor 6 corresponds for example to vertical polarization, and the conductor 7 to horizontal polarization. As stated above, such a radiating element requires the use of galvanic isolation capacitors between the polarization switch and this element.

L'élément rayonnant 8, conforme à l'invention et représenté en figure 2 comprend essentiellement un premier substrat diélectrique de support 9. La face inférieure 10 du substrat 9 (telle que vue sur le dessin, en fait la face opposée à la face rayonnante) est métallisée. La face supérieure du substrat 9 est métallisée, puis gravée. On y grave un ou plusieurs pavés (plusieurs pour obtenir un réseau). Sur le dessin, on a représenté un seul tel pavé, référencé 11. Ce pavé 11 a une forme générale de carré, mais deux de ses côtés opposés 12, 13 sont légèrement concaves (flèche F égale environ 10 à 20% de la longueur du côté du carré, voir figure 3). Ces deux côtés (ou plus exactement les côtés correspondants du carré d'origine) sont parallèles au champ électrique rayonné par l'élément. Sur la face supérieure (celle sur laquelle est formé le pavé 11) du substrat 9, on fixe, par exemple par collage, un diélectrique solide 14 dont l'épaisseur est inférieure à celle du substrat 9 (par exemple 5 à 10 fois plus faible). La face supérieure du diélectrique 14 est d'abord métallisée, puis gravée pour y former un (ou plusieurs dans le cas d'un réseau) élément(s) rayonnant(s) 15 de mêmes forme et dimensions que celles de l'élément 11. Le centre de l'élément 15 est en vis-à-vis de celui de l'élément 15, mais ces éléments sont décalés de 90° en rotation l'un par rapport à l'autre c'est-à-dire qu'un côté concave de l'un est en vis-à-vis d'un côté rectiligne de l'autre.The radiating element 8, according to the invention and represented in FIG. 2 essentially comprises a first dielectric support substrate 9. The underside 10 of the substrate 9 (as seen in the drawing, makes it the face opposite to the radiating face ) is metallized. The upper face of the substrate 9 is metallized, then etched. One or more blocks are engraved there (several to obtain a network). In the drawing, there is shown only one such block, referenced 11. This block 11 has a general shape of a square, but two of its opposite sides 12, 13 are slightly concave (arrow F equals approximately 10 to 20% of the length of the side of the square, see figure 3). These two sides (or more exactly the corresponding sides of the original square) are parallel to the electric field radiated by the element. On the upper face (that on which the block 11 is formed) of the substrate 9, a solid dielectric 14 whose thickness is less than that of the substrate 9 (for example 5 to 10 times thinner) is fixed, for example by gluing ). The upper face of the dielectric 14 is first metallized, then etched to form one (or more in the case of a network) radiating element (s) 15 of the same shape and dimensions as those of the element 11 The center of the element 15 is opposite that of the element 15, but these elements are offset by 90 ° in rotation relative to each other, that is to say that 'a concave side of one is opposite a straight side of the other.

Au droit du milieu 16 d'un côté rectiligne de l'élément 11, on pratique dans le substrat 9 et sa métallisation un trou pour y faire passer l'âme 17 d'un conducteur coaxial d'alimentation 18. Au droit du milieu 19 d'un côté rectiligne de l'élément 15, on pratique dans le diélectrique 14, le substrat 9 et sa métallisation 10 un trou pour y faire passer l'âme 20 d'un conducteur coaxial 21 d'alimentation de l'élément 15. Etant donné que le point 19 se trouve au-dessus d'une zone de la surface supérieure du substrat 9 ne comportant pas de métallisation (grâce à la concavité du côté correspondant de l'élément 11) le trou pour le passage de l'âme du conducteur 21) peut être pratiqué tangentiellement au point 19 (et perpendiculairement à la surface du diélectrique 14 et du substrat 9) sans qu'il y ait de risque de contact entre cette âme et l'élément 11. Ainsi, l'encombrement, dans un plan perpendiculaire à la direction de propagation du rayonnement de l'élément rayonnant, est le plus faible possible, ce qui peut permettre de former un réseau le plus dense possible.In line with the middle 16 on a rectilinear side of the element 11, a hole is made in the substrate 9 and its metallization for passing the core 17 of a coaxial conductor therein. supply 18. In line with the medium 19 on a rectilinear side of the element 15, there is made in the dielectric 14, the substrate 9 and its metallization 10 a hole for passing the core 20 of a coaxial conductor 21 for supplying the element 15. Since the point 19 is located above an area of the upper surface of the substrate 9 not comprising metallization (thanks to the concavity of the corresponding side of the element 11 ) the hole for the passage of the core of the conductor 21) can be made tangentially at point 19 (and perpendicular to the surface of the dielectric 14 and of the substrate 9) without there being any risk of contact between this core and the element 11. Thus, the overall dimensions, in a plane perpendicular to the direction of propagation of the radiation of the radiating element, is as small as possible, which can make it possible to form the densest network possible.

Les éléments 11 et 15 ont été représentés en plan sur la figure 3. Au lieu de leur conférer des faces circulaires concaves, on peut conformer deux de leurs faces opposées concaves par exemple en "V" comme représenté en figure 4 ou en trapèze comme représenté en figure 5. Ces formes ne sont toutefois pas limitatives. D'autres formes peuvent être adoptées, si l'on respecte une condition importante, qui est de supprimer suffisamment de matière dans au moins un côté du pavé inférieur pour laisser passer l'âme du conducteur d'alimentation du pavé supérieur sans que cela augmente l'encombrement dans des directions perpendiculaires à la direction de propagation du rayonnement de l'élément rayonnant.The elements 11 and 15 have been shown in plan in FIG. 3. Instead of giving them concave circular faces, two of their opposite concave faces can be formed, for example in "V" shape as shown in FIG. 4 or in trapezoid shape as shown in Figure 5. These forms are not, however, limiting. Other forms can be adopted, if an important condition is observed, which is to remove enough material in at least one side of the lower block to allow the core of the supply conductor of the upper block to pass without increasing the dimensions in directions perpendicular to the direction of propagation of the radiation of the radiating element.

Selon une variante de l'invention, le diélectrique 14 peut être remplacé par une couche d'air. Dans ce cas, le pavé supérieur peut être réalisé selon la technique du triplaque suspendu. La pavé supérieur est formé sur une mince feuille de support qui est fixée sur des petits pavés en matériau isolant.According to a variant of the invention, the dielectric 14 can be replaced by a layer of air. In this case, the upper block can be produced using the suspended triplate technique. The upper block is formed on a thin support sheet which is fixed on small blocks of insulating material.

La couche diélectrique 14 ne recouvre pas nécessairement la totalité de la face supérieure du substrat 9. Elle peut, par exemple, comporter des évidements au droit des côtés concaves de l'élément 15. On peut ainsi avoir facilement accès aux côtés rectilignes de l'élément 11, et en particulier à son point d'alimentation 16.The dielectric layer 14 does not necessarily cover the entire upper face of the substrate 9. It can, for example, include recesses in line with the concave sides of the element 15. This gives easy access to the straight sides of the element 11, and in particular to its feed point 16.

De la même façon que pour un pavé source de l'art antérieur, on peut obtenir, pour l'élément de l'invention, un élargissement de la bande passante en disposant d'autres éléments, non alimentés et excités par couplage électromagnétique, au dessus de l'élément supérieur 15. Ces éléments peuvent être carrés ou presque carrés et avoir deux côtés opposés concaves, de dimensions égales ou inférieures à celles des pavés 15. Ces éléments supplémentaires peuvent aussi avoir des formes différentes de celles du pavé 15.In the same way as for a source block of the prior art, it is possible to obtain, for the element of the invention, a widening of the bandwidth by having other elements, not supplied and excited by electromagnetic coupling, at the above the upper element 15. These elements may be square or almost square and have two opposite concave sides, of dimensions equal to or less than those of the blocks 15. These additional elements may also have shapes different from those of the block 15.

L'élément rayonnant de l'invention présente les avantages suivants, en plus de sa simplicité de réalisation :

  • une isolation en courant continu de ses deux entrées ;
  • une bonne accessibilité des points d'alimentation (16, 19) de ses deux pavés rayonnants ;
  • les positions des deux éléments 11, 15 sont confondues du point de vue de leur rayonnement hyperfréquences ;
  • un coefficient de réflexion d'amplitude comparable à l'entrée des deux éléments ;
  • un découplage hyperfréquence important entre les entrées des deux éléments ;
  • des performances similaires à celles de l'élément rayonnant d'origine, et notamment une conservation de la symétrie.
The radiating element of the invention has the following advantages, in addition to its simplicity of construction:
  • DC isolation of its two inputs;
  • good accessibility of the feed points (16, 19) of its two radiating paving stones;
  • the positions of the two elements 11, 15 are combined from the point of view of their microwave radiation;
  • an amplitude reflection coefficient comparable to the input of the two elements;
  • significant microwave decoupling between the inputs of the two elements;
  • performances similar to those of the original radiating element, and in particular a conservation of symmetry.

L'élément rayonnant de l'invention peut être mis en oeuvre dans des applications telles que des antennes mono- ou multi-éléments, actives ou passives, pouvant fonctionner en polarisations linéaire et/ou circulaire, éventuellement commutables. Les pavés de cet élément rayonnant peuvent également être alimentés par d'autres types de lignes, par exemple des lignes en microruban ("microstrip").The radiating element of the invention can be implemented in applications such as single or multi-element antennas, active or passive, which can operate in linear and / or circular polarizations, possibly switchable. The blocks of this radiating element can also be supplied by other types of lines, for example microstrip lines ("microstrip").

Claims (10)

  1. Microwave radiating element of the "patch" type printed on a dielectric substrate, characterized in that it includes at least two superposed patches (11, 15) which are insulated from each other, each of the two patches emitting with a polarization orthogonal to that of the other, at least the lower patch (11) having two concave opposite sides, the lower patch being printed on the upper face of a dielectric substrate, the lower face of which is metallized, the middle of a straight side of each of the two first patches (11, 15) being connected to the feed line (18, 21) belonging to the said patch.
  2. Radiating element according to Claim 1, characterized in that the two patches are insulated from each other by a layer of dielectric material (14).
  3. Radiating element according to Claim 1, characterized in that the two patches are insulated from each other by a layer of air.
  4. Radiating element according to any one of the preceding claims, the patches of which are fed by coaxial lines, characterized in that the feed line of the upper patch (15) passes close to a concave side of the lower patch.
  5. Radiating element according to one of the preceding claims, characterized in that the two first patches are offset by 90° in rotation relative to each other.
  6. Microwave antenna characterized in that it includes at least one element according to one of the preceding claims.
  7. Antenna according to Claim 6, characterized in that it is active.
  8. Antenna according to Claim 6, characterized in that it is passive.
  9. Antenna according to one of Claims 6 to 8, characterized in that the signals sent to the two first patches of each element are such that it generates a linearly polarized radiation.
  10. Antenna according to one of Claims 6 to 9, characterized in that the phases and amplitudes of the signals sent to the two first patches of each element are such that it generates a circularly polarized radiation.
EP91403422A 1990-12-27 1991-12-17 Stacked microstrip microwave antenna Expired - Lifetime EP0493190B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9016328A FR2671234B1 (en) 1990-12-27 1990-12-27 PAVE TYPE MICROWAVE ANTENNA.
FR9016328 1990-12-27

Publications (2)

Publication Number Publication Date
EP0493190A1 EP0493190A1 (en) 1992-07-01
EP0493190B1 true EP0493190B1 (en) 1996-01-24

Family

ID=9403711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91403422A Expired - Lifetime EP0493190B1 (en) 1990-12-27 1991-12-17 Stacked microstrip microwave antenna

Country Status (4)

Country Link
US (1) US5270722A (en)
EP (1) EP0493190B1 (en)
DE (1) DE69116671T2 (en)
FR (1) FR2671234B1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486836A (en) * 1995-02-16 1996-01-23 Motorola, Inc. Method, dual rectangular patch antenna system and radio for providing isolation and diversity
US5709832A (en) * 1995-06-02 1998-01-20 Ericsson Inc. Method of manufacturing a printed antenna
WO1996038879A1 (en) * 1995-06-02 1996-12-05 Ericsson Inc. Printed monopole antenna
BR9608617A (en) * 1995-06-02 1999-05-04 Ericsson Ge Mobile Inc Printed monopole antenna
DE19535962C1 (en) * 1995-09-27 1997-02-13 Siemens Ag Doppler radar module
US6011517A (en) * 1997-09-15 2000-01-04 Matsushita Communication Industrial Corporation Of U.S.A. Supporting and holding device for strip metal RF antenna
US6259407B1 (en) * 1999-02-19 2001-07-10 Allen Tran Uniplanar dual strip antenna
US6118406A (en) * 1998-12-21 2000-09-12 The United States Of America As Represented By The Secretary Of The Navy Broadband direct fed phased array antenna comprising stacked patches
DE10037386A1 (en) 2000-08-01 2002-02-14 Bosch Gmbh Robert Combined receiver and transponder module
US6433747B1 (en) * 2001-06-08 2002-08-13 Centurion Wireless Technologies, Inc. Integrated PIFA having an embedded connector on the radome thereof
GB2383470B (en) * 2001-11-12 2004-04-28 Transense Technologies Plc Self contained radio apparatus for transmission of data
JP4323413B2 (en) * 2004-11-05 2009-09-02 新光電気工業株式会社 Patch antenna, array antenna, and mounting board having the same
US7333059B2 (en) * 2005-07-27 2008-02-19 Agc Automotive Americas R&D, Inc. Compact circularly-polarized patch antenna
US7545333B2 (en) * 2006-03-16 2009-06-09 Agc Automotive Americas R&D Multiple-layer patch antenna
EP1933419A1 (en) * 2006-12-15 2008-06-18 Seiko Epson Corporation Multiple feeding method for IC compatible multi-layer planar antennas and IC compatible multi-layer planar antenna with multiple feeding points
US8130149B2 (en) * 2008-10-24 2012-03-06 Lockheed Martin Corporation Wideband strip fed patch antenna
US8754819B2 (en) * 2010-03-12 2014-06-17 Agc Automotive Americas R&D, Inc. Antenna system including a circularly polarized antenna
TWI481205B (en) * 2013-01-21 2015-04-11 Wistron Neweb Corp Microstrip antenna transceiver
TWI533513B (en) 2014-03-04 2016-05-11 啟碁科技股份有限公司 Planar dual polarization antenna
US10439266B2 (en) * 2014-11-03 2019-10-08 Amotech Co., Ltd. Wideband patch antenna module
TWI563804B (en) 2015-01-21 2016-12-21 Wistron Neweb Corp Microstrip antenna transceiver
CN112952366B (en) * 2019-01-31 2022-09-02 展讯通信(上海)有限公司 Patch antenna unit and packaging antenna structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089003A (en) * 1977-02-07 1978-05-09 Motorola, Inc. Multifrequency microstrip antenna
IT1209322B (en) * 1979-05-30 1989-07-16 Siemens Ag SECONDARY RADAR TRANSPONDER.
US4410891A (en) * 1979-12-14 1983-10-18 The United States Of America As Represented By The Secretary Of The Army Microstrip antenna with polarization diversity
JPS5829203A (en) * 1981-08-17 1983-02-21 Nippon Telegr & Teleph Corp <Ntt> Multilayered microstrip diversity antenna
US4500887A (en) * 1982-09-30 1985-02-19 General Electric Company Microstrip notch antenna
JPS6215902A (en) * 1985-07-15 1987-01-24 Yagi Antenna Co Ltd Primary radiator and converter provided therewith

Also Published As

Publication number Publication date
EP0493190A1 (en) 1992-07-01
FR2671234A1 (en) 1992-07-03
DE69116671D1 (en) 1996-03-07
DE69116671T2 (en) 1996-06-27
US5270722A (en) 1993-12-14
FR2671234B1 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
EP0493190B1 (en) Stacked microstrip microwave antenna
EP0089084B1 (en) Flat microwave antenna structure
EP2656438B1 (en) Radio cell with two phase states for transmit array
EP0667984B1 (en) Monopolar wire-plate antenna
EP3540853B1 (en) Antenna with broadband transmitter network
WO2000014825A9 (en) Antenna
EP1346442B1 (en) Printed patch antenna
FR2632781A1 (en) FLAT ANTENNA
FR2677814A1 (en) FLAT MICROWAVE ANTENNA WITH TWO ORTHOGONAL POLARIZATIONS WITH A COUPLE OF RADIANT ORTHOGONAL SLOTS.
EP1518296B1 (en) Multiband planar antenna
EP3227960A1 (en) Self-complementary multilayer array antenna
EP0484241B1 (en) Printed circuit antenna for a dual polarized antenna array
EP2316149B1 (en) Low-loss compact radiating element
EP2432072B1 (en) Wideband balun on a multilayer circuit for a network antenna
FR2552937A1 (en) RADIANT DEVICE WITH MICROBAND STRUCTURE WITH INTERFERENCE ELEMENT
EP0456579A1 (en) Plane orientable antenna, functioning in the microwave range
EP0557176B1 (en) Feeding device for a plate antenna with two crossed polarizations and array equipped with such a device
FR2943185A1 (en) Reconfigurable polarization patch antenna, has rectangular slits coupling microstrip patch with printed line to polarize patch according to directions, which are associated with rectangular slits
FR2677493A1 (en) NETWORK OF RADIANT ELEMENTS WITH AUTOCOMPLEMENTARY TOPOLOGY, AND ANTENNA USING SUCH A NETWORK.
EP0831550B1 (en) Versatile array antenna
CA2029380A1 (en) Circular polarisation antenna, particularly for an antenna network
FR2538960A1 (en) Dual-function array antenna for radar
FR2973587A1 (en) WIDEBAND DIRECTIONAL NETWORK ANTENNA, OF THE PRINTED CIRCUIT TYPE
EP1399990A1 (en) Wide band printed antenna with several radiating elements
FR2751138A1 (en) Microstrip array antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT SE

17P Request for examination filed

Effective date: 19921125

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19940913

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69116671

Country of ref document: DE

Date of ref document: 19960307

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960308

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011119

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20011120

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011122

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051217