EP1391608B1 - Doseur avec unité de compensation thermique - Google Patents

Doseur avec unité de compensation thermique Download PDF

Info

Publication number
EP1391608B1
EP1391608B1 EP20020018666 EP02018666A EP1391608B1 EP 1391608 B1 EP1391608 B1 EP 1391608B1 EP 20020018666 EP20020018666 EP 20020018666 EP 02018666 A EP02018666 A EP 02018666A EP 1391608 B1 EP1391608 B1 EP 1391608B1
Authority
EP
European Patent Office
Prior art keywords
housing
piezoelectric actuator
fluid chamber
compensator
hydraulic piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20020018666
Other languages
German (de)
English (en)
Other versions
EP1391608A1 (fr
Inventor
Fabrizio Biagetti
Marco Pulejo
Marco Siringo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive Italy SpA
Original Assignee
Siemens VDO Automotive SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VDO Automotive SpA filed Critical Siemens VDO Automotive SpA
Priority to EP20020018666 priority Critical patent/EP1391608B1/fr
Priority to DE2002604565 priority patent/DE60204565T2/de
Publication of EP1391608A1 publication Critical patent/EP1391608A1/fr
Application granted granted Critical
Publication of EP1391608B1 publication Critical patent/EP1391608B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/167Means for compensating clearance or thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means

Definitions

  • the present invention relates to a metering device for dosing pressurized fluids, particularly an injection valve for a fuel injection system in an internal combustion engine.
  • the metering device is of the type which comprises a housing having a metering opening, controllable by the movement of an axially moveable valve needle, the housing comprising a material having a first thermal coefficient of expansion, an axially extendable piezoelectric actuator cooperating with the valve needle to control its axial movement, the piezoelectric actuator comprising a material having a second thermal coefficient of expansion, and a thermal compensator unit cooperating with the piezoelectric actuator and the housing to compensate for different thermal expansion of the housing and the piezoelectric actuator to ensure elastic contact between an end stop of the housing, the piezoelectric actuator and the valve needle.
  • the piezoelectric actuator having a lower coefficient of thermal expansion than the outer housing, would not maintain Hertzian contact between its fixed end stop surface and the top end of the valve needle.
  • the injector valve is typically equipped with a hydraulic thermal compensation unit.
  • the thermal compensation unit recovers the clearance that would otherwise be created between the valve needle and the piezoelectric actuator, thereby avoiding incorrect and potentially hazardous operation conditions.
  • current designs have the disadvantages that an excessive number of pieces is required, that the manufacturing costs are high and that some of the parts, such as the bellows are critical.
  • WO 02 31344 A discloses a fuel injector with a piezoelectric actuator acting on a needle.
  • the fuel injector further comprises a hydraulic thermal compensator unit with a compensator housing and a hydraulic piston disposed axially slidable within the compensator housing.
  • the compensator housing and the piston form a first fluid chamber, a second fluid chamber and a throttling passage connecting the first and second fluid chamber.
  • An upper surface of the compensator housing is connected to the end stop of the housing of the fuel injector and a lower surface of the hydraulic piston is connected to the piezoelectric actuator.
  • An axial extension of the piezoelectric actuator is transmitted to the compensator housing or to the piston to urge a hydraulic fluid from thea first fluid chamber to a second fluid chamber in an activation phase of the piezoelectric actuator.
  • An object of the present invention is to provide a metering device with an improved thermal compensation unit.
  • the metering devices comprises a thermal compensator unit comprising a compensator housing and a hydraulic piston, disposed axially slidable within the compensator housing, the compensator housing and the piston forming a first fluid chamber, a second fluid chamber and a throttling passage connecting the first and second fluid chamber, and means for transmitting an axial extension of the piezoelectric actuator to the compensator housing or to the piston to urge a hydraulic fluid from the first fluid chamber to the second fluid chamber in an activation phase of the piezoelectric actuator.
  • the means for transmitting the axial extension of the piezoelectric actuator may, for example, be formed by a separate element disposed between the piezoelectric actuator and the compensator housing or the piston, or simply by a common contact surface of those elements.
  • an upper surface of the compensator housing is connected to the end stop of the housing, and a lower surface of the hydraulic piston is connected to the piezoelectric actuator.
  • the upper surface of the compensator housing is connected to the bottom end of the piezoelectric actuator, and a lower surface of the hydraulic piston is connected to the top of the valve needle.
  • the hydraulic piston has an upper part sliding within the compensator housing and a lower part sliding within a surrounding moveable ring member.
  • a bellows is connected to the compensator housing and the moveable ring member.
  • the first fluid chamber is formed between the piston and the compensator housing and the second fluid chamber is formed between the piston and the bellows.
  • the thermal compensator unit further comprises restoring means to return the hydraulic piston to its initial position and to return the hydraulic fluid from the second fluid chamber (38) to the first fluid chamber (36) in a deactivation phase of the piezoelectric actuator (28).
  • a return passage for the hydraulic fluid between the second and first fluid chamber is provided inside the hydraulic piston for rapidly returning the hydraulic fluid in a deactivation phase of the piezoelectric actuator.
  • the return passage through the piston may, in an advantageous embodiment of the metering device, have an opening in the first fluid chamber, the opening being covered by a spot-welded metal strip which is pressed on the opening in the activation phase and which bends away form the opening in the deactivation phase due to the pressure exerted by the hydraulic fluid, to rapidly return the hydraulic fluid to the first fluid chamber.
  • the restoring means may advantageously comprise a helical spring acting on the hydraulic piston via an end stop plate connected to an end portion of the hydraulic piston, the helical spring being precompressed during the assembly process, the oil being pressurized and the piston applying a pre-load contact force to the piezoelectric actuator and the valve needle, at any operating condition.
  • the helical spring is further compressed by an axial extension of the piezoelectric actuator.
  • the throttling passage may advantageously be formed by a small gap between the piston and the compensator housing.
  • the metering device provides Hertzian contact between the fixed end stop surface of the outer injector housing and the top end of the valve needle under all operating conditions.
  • the thermal compensator unit according to the invention further provides high stiffness to the compression produced during the activation of the piezoelectric actuator and allows at the same time a rapid recovery of the initial position during the deactivation phase of the piezoelectric actuator. Elastic contact between the components needle, actuator, and the end stop of the outer housing is thus maintained at all times.
  • FIG 1 shows an injection valve 10 for direct-injection gasoline engines.
  • the injection valve 10 has a double tube design in which the housing 12 comprises an outer tubular member 121 and an inner tubular member 123, forming an annular fluid supply passage 14 between them.
  • Gasoline under pressure is provided to an inlet fitting 16, from where it is flows through the annular supply passage 14 and enters into an axial outlet passage 20, projecting through the lower part of the housing 12.
  • the outlet passage 20 terminates in a metering opening 22 surrounded by a valve seat which is opened or closed by the axial movement of a valve needle passing through the outlet passage 20.
  • a piezoelectric actuator 28 Upon activation of a piezoelectric actuator 28, gasoline is injected into the engine cylinder. When an excitation voltage is applied to the piezoelectric actuator 28, its length in axial direction increases by a predetermined amount. The extension in length is transmitted to the valve needle which lifts from the valve seat and begins the injection of pressurized gasoline. When the excitation voltage is terminated, the length of the piezoelectric actuator 28 decreases to its normal value and the valve needle is pushed back in its closing position.
  • the outer steel housing 12 has a higher thermal coefficient of expansion than the material of the piezoelectric actuator 28, changes in the operation temperature need to be compensated by a thermal compensator unit 30 to ensure safe operation of the injector.
  • FIG. 2 shows a schematic axial cross section of a thermal compensator unit 30 of Fig. 1 in detail, which does not form part of the invention.
  • the compensator housing 32 contains a hydraulic piston 34 which is able to slide axially inside it.
  • the housing 32 rests via its upper surface 54 on the fixed end stop of the injector 10, while the lower end rod 48 of the piston 34 is in contact with the piezoelectric actuator 28.
  • the piston 34 and the compensator housing form a first fluid chamber 36, a second fluid chamber 38 and a small annular throttling gap 40 connecting the two fluid chambers.
  • the fluid chambers 36, 38 are filled with a hydraulic fluid, for example with silicone oil.
  • the piston 34 is pushed upward by the expansion of the piezoelectric actuator 28 and this forces the silicone oil contained inside the chamber 36 through the peripheral throttling gap 40 of the piston 34 sliding in the housing 32, thereby filling the lower oil chamber 38.
  • the ring element 42 moves downward, the lower oil chamber 38 expands during the activation phase.
  • Two rubber seals 44 and 46 seal the silicone oil containing chambers against the surrounding.
  • the volume of oil contained in the second chamber 38 can move back toward the first chamber 36 either via the annular throttling gap 40 or via a channel formed in the head of the piston 34 that connects the chambers 36 and 38 to each other.
  • a metal strip may then be spot-welded to the upper face of the piston 34, offering hydraulic leak tightness during the activation phase of the actuator and a pathway for the silicone oil during the subsequent deactivation phase, owing to the way the metal strip bends.
  • FIG. 3 shows a schematic axial cross section of an other thermal compensator unit 60, which does not also form part of the invention.
  • same reference numbers relate to same or corresponding parts.
  • the compensator housing 32 contains a piston 34 mounted axially slideable inside it.
  • the housing 32 rests via its upper surface 54 on the fixed end stop of the injector, while the lower end of the piston 34 is in contact with the piezoelectric actuator 28.
  • First 36 and second 38 fluid chambers and a small annular throttling gap 40 are formed between the piston 34 and the compensator housing 32, the two chambers 36 and 38 having the same radial cross section.
  • the piston 34 is pushed upward by the expansion of the piezoelectric actuator 28 and this forces the silicone oil contained inside the chambers 36 by the two seals 46 and 44 through the peripheral throttling gap 40, filling the lower oil chamber 38.
  • the volume of oil contained in the second chamber 38 can move back toward the first chamber 36 either via the annular throttling gap 40 or via a channel formed in the head of the piston 34 that connects the chambers 36 and 38 to each other.
  • a metal strip offering hydraulic leak tightness during the activation phase of the actuator and a pathway for the silicone oil during the subsequent deactivation phase may be spot-welded to the upper face of the piston 34.
  • the invention is shown in the schematic cross section of Fig. 4.
  • the compensator housing 32 of the thermal compensator unit 70 contains a piston 34, whose upper part is disposed axially slideable inside the housing 32.
  • the lower part of the piston 34 slides inside a moveable ring member 82 against which it is sealed.
  • the housing 32 rests via its upper surface 54 on the fixed end stop of the injector, while the lower end of the piston 34 is in contact with the piezoelectric actuator 28.
  • the first fluid chamber 36 is formed between the top surface of the piston 34 and the compensator housing 32.
  • a bellows 72 is connected to the compensator housing 32 and to the moveable ring member 82.
  • the second fluid chamber 38 is formed between the piston 34 and the bellows 72 and a small annular gap between the piston 34 and the housing 32 forms the throttling gap 40.
  • the piston 34 is pushed upward by the expansion of the piezoelectric actuator 28 and this forces the silicone oil contained inside the chamber 36 through the peripheral throttling gap 40, filling the lower oil chamber 38, which will expand as the ring member 82 moves downward.
  • the continual movements of oil between the chambers 36 and 38 require the presence of the bellows 72 welded to the compensator housing 32 and to the moveable ring member 82.
  • the volume of oil contained in the second chamber 38 can move back toward the first chamber 36 either via the annular throttling gap 40 or via a channel 74 formed in the head of the piston 34.
  • the opening 76 facing the first fluid chamber 36 is covered with a metal strip 80, while the opening 78 facing the second fluid chamber 38 remains uncovered.
  • the strip 80 prevents leakage of oil during activation of the actuator 28 and is able to bend under the pressure of the returning oil to open a gap for the oil to move back from the second fluid chamber 38 to the first fluid chamber 36 during the deactivation phase of the actuator 28.
  • FIG. 5 A further design of a thermal compensator unit 90, which does not form part of the invention is shown in Fig. 5.
  • the housing 32 contains a piston 34 able to slide axially inside it.
  • a closing element 96 rests via its upper surface on the fixed end stop of the injector 10 while the lower end of the housing 32 is in contact with the piezoelectric actuator 28.
  • a moveable ring member 92 is provided in a borehole 100 of the piston 34, the ring member 92 being connected to a helical spring 94 acting on the ring member 92 and the closing element 96.
  • the first fluid chamber 36 is formed between the lower surface of the piston 34 and the compensator housing 32
  • the second fluid chamber 38 is formed between the inside surface of the borehole 100 and the ring member 92.
  • a throttling passage between the first and second fluid chamber 36 and 38 is formed by a straight passage 102, extending through the lower portion of the piston 34.
  • the straight passage 102 is covered by a perforated strip 98 having a small hole to provide high hydraulic resistance to the flow of oil during the expansion of the actuator 28.
  • the piston 34 is pushed downward by the expansion of the piezoelectric actuator 28 during the activation phase of the piezoelectric actuator 28. This movement forces the silicone oil contained inside the chambers 36 through the hole formed in the strip 98, slowly filling the second fluid chamber 38.
  • the volume of oil contained in the second chamber 38 can move back toward the first chamber 36 due to the bending of the strip 98, which is welded to the piston at two points of its outer circumference only.
  • the strip 98 provides good hydraulic resistance to the flow of oil during the expansion of the actuator and is able to bend, opening a gap for the oil to move back from the first fluid chamber 38 to the second fluid chamber 36 during the deactivation phase of the actuator 28.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (6)

  1. Doseur permettant de doser des fluides sous pression, en particulier une soupape d'injection pour un système d'injection de carburant dans un moteur à combustion interne, comprenant :
    un boítier (12) doté d'une ouverture de dosage (22), contrôlable par le mouvement d'un pointeau de soupape axialement mobile, le boítier (12) comprenant un matériau ayant un premier coefficient de dilatation thermique,
    un actionneur piézoélectrique (28) extensible de manière axiale coopérant avec le pointeau de soupape pour contrôler son mouvement axial, l'actionneur piézoélectrique (28) comprenant un matériau ayant un second coefficient de dilatation thermique, et
    une unité de compensation thermique (30 ; 60 ; 70 ; 90) coopérant avec l'actionneur piézoélectrique (28) et le boítier (12) pour compenser la dilatation de différence thermique du boítier (12) et de l'actionneur piézoélectrique (28) afin de garantir le contact élastique entre une butée d'extrémité du boítier (12), l'actionneur piézoélectrique (28) et le pointeau de soupape, l'unité de compensation thermique (30 ; 60 ; 70 ; 90) comprenant :
    un boítier de compensateur (32) et un piston hydraulique (34), disposé de manière axiale, pouvant coulisser à l'intérieur du boítier de compensateur (32) et le piston hydraulique (34) formant une première chambre de fluide (36), une seconde chambre de fluide (38) et un passage d'étranglement (40 ; 102) raccordant les première (36) et seconde (38) chambres de fluide, avec une surface supérieure du boítier de compensateur (32) qui est raccordée à la butée d'extrémité du boítier (12) et une surface inférieure du piston hydraulique (34) qui est raccordée à l'actionneur piézoélectrique (28), et
    des moyens pour transmettre une extension axiale de l'actionneur piézoélectrique (28) au boítier de compensateur (32) ou au piston hydraulique (34) pour pousser un fluide hydraulique de la première chambre de fluide (36) à la seconde chambre de fluide (38) dans une phase d'activation de l'actionneur piézoélectrique (28), dans lequel
    le piston hydraulique (34) a une partie supérieure coulissant dans le boítier de compensateur (32) et une partie inférieure coulissant à l'intérieur d'un élément d'anneau mobile périphérique (82), caractérisé en ce qu'un soufflet (72) est raccordé au boítier de compensateur (32) et à l'élément d'anneau mobile (82), dans lequel la première chambre de fluide (36) est formée entre le piston hydraulique (34) et le boítier de compensateur (32) et la seconde chambre de fluide (38) est formée entre le piston hydraulique (34) et le soufflet (72).
  2. Doseur permettant de doser des fluides sous pression, en particulier une soupape d'injection pour un système d'injection de carburant dans un moteur à combustion interne, comprenant :
    un boítier (12) doté d'une ouverture de dosage (22), contrôlable par le mouvement d'un pointeau de soupape mobile de manière axiale, le boítier (12) comprenant un matériau ayant un premier coefficient de dilatation thermique,
    un actionneur piézoélectrique (28) extensible de manière axiale coopérant avec le pointeau de soupape pour contrôler son mouvement axial, l'actionneur piézoélectrique (28) comprenant un matériau ayant un second coefficient de dilatation thermique, et
    une unité de compensation thermique (30 ; 60 ; 70 ; 90) coopérant avec l'actionneur piézoélectrique (28) et le boítier (12) pour compenser la dilatation de différence thermique du boítier (12) et de l'actionneur piézoélectrique (28) afin de garantir le contact élastique entre une butée d'extrémité du boítier (12), l'actionneur piézoélectrique (28) et le pointeau de soupape, l'unité de compensation thermique (30 ; 60 ; 70 ; 90) comprenant :
    un boítier de compensateur (32) et un piston hydraulique (34), disposé de manière axiale, pouvant coulisser à l'intérieur du boítier de compensateur (32), le boítier de compensateur (32) et le piston hydraulique (34) formant une première chambre de fluide (36), une seconde chambre de fluide (38) et un passage d'étranglement (40 ; 102) raccordant les première (36) et seconde (38) chambres de fluide, et
    des moyens pour transmettre une extension axiale de l'actionneur piézoélectrique (28) au boítier de compensateur (32) ou au piston (34) pour pousser un fluide hydraulique de la première chambre de fluide (36) à la seconde chambre de fluide (38) dans une phase d'activation de l'actionneur piézoélectrique (28), dans lequel le piston (34) possède une partie supérieure coulissant à l'intérieur du boítier de compensateur (32) et une partie inférieure coulissant à l'intérieur d'un élément d'anneau mobile périphérique (82),
       caractérisé en ce qu'une surface supérieure du boítier de compensateur (32) est raccordée à l'extrémité inférieure de l'actionneur piézoélectrique (28) et une surface inférieure du piston hydraulique (34) est raccordée à la partie supérieure du pointeau de soupape, un soufflet (72) est raccordé au boítier de compensateur (32) et à l'élément d'anneau mobile (82), dans lequel la première chambre de fluide (36) est formée entre le piston hydraulique (34) et le boítier de compensateur (32) et la seconde chambre de fluide (38) est formée entre le piston hydraulique (34) et le soufflet (72).
  3. Doseur selon la revendication 1 ou 2, caractérisé en ce que l'unité de compensation thermique (30 ; 60 ; 70 ; 90) comprend en outre des moyens de rappel (50 ; 62 ; 94) pour faire revenir le piston hydraulique (34) à sa position initiale et renvoyer le fluide hydraulique de la seconde chambre de fluide (38) à la première chambre de fluide (36) dans une phase de désactivation de l'actionneur piézoélectrique (28).
  4. Doseur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un passage de retour (74 ; 102) pour le fluide hydraulique entre les seconde (38) et première (36) chambres de fluide est prévu à l'intérieur du piston hydraulique (34) pour faire revenir rapidement le fluide hydraulique dans une phase de désactivation de l'actionneur piézoélectrique (28).
  5. Doseur selon la revendication 4, caractérisé en ce que le passage de retour (74 ; 102) dans le piston hydraulique (34) possède une ouverture (76) dans la première chambre de fluide (36), l'ouverture (76) étant recouverte par une bande métallique soudée par points (80 ; 98) qui est comprimée sur l'ouverture (76) dans la phase d'activation et qui fléchit à distance de l'ouverture (76) dans la phase de désactivation en raison de la pression exercée par le fluide hydraulique, pour renvoyer rapidement le fluide hydraulique dans la première chambre de fluide (36).
  6. Doseur selon la revendication 1 ou 2, caractérisé en ce que les moyens de rappel comprennent un ressort hélicoïdal (50) agissant sur le piston hydraulique (34) via une plaque de butée d'extrémité (52) raccordée à une partie d'extrémité du piston hydraulique (34), le ressort hélicoïdal (50) étant précomprimé pendant le processus d'assemblage, le fluide hydraulique étant sous pression et le piston hydraulique (34) appliquant une force de contact de précharge sur l'actionneur piézoélectrique (28) et le pointeau de soupape, dans n'importe quelle condition de fonctionnement, le ressort hélicoïdal (50) étant en outre comprimé par une extension axiale de l'actionneur piézoélectrique (28).
EP20020018666 2002-08-20 2002-08-20 Doseur avec unité de compensation thermique Expired - Fee Related EP1391608B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20020018666 EP1391608B1 (fr) 2002-08-20 2002-08-20 Doseur avec unité de compensation thermique
DE2002604565 DE60204565T2 (de) 2002-08-20 2002-08-20 Dosiergerät mit Thermalkompensationseinheit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20020018666 EP1391608B1 (fr) 2002-08-20 2002-08-20 Doseur avec unité de compensation thermique

Publications (2)

Publication Number Publication Date
EP1391608A1 EP1391608A1 (fr) 2004-02-25
EP1391608B1 true EP1391608B1 (fr) 2005-06-08

Family

ID=30775825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020018666 Expired - Fee Related EP1391608B1 (fr) 2002-08-20 2002-08-20 Doseur avec unité de compensation thermique

Country Status (2)

Country Link
EP (1) EP1391608B1 (fr)
DE (1) DE60204565T2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6983895B2 (en) * 2003-10-09 2006-01-10 Siemens Aktiengesellschaft Piezoelectric actuator with compensator
DE102005025953A1 (de) * 2005-06-06 2006-12-07 Siemens Ag Einspritzventil und Ausgleichselement für ein Einspritzventil
EP1887216B1 (fr) * 2006-08-02 2010-01-06 Continental Automotive GmbH Arrangement thermique de compensation dans une valve d'injection
DE102007012920A1 (de) * 2007-03-19 2008-09-25 Robert Bosch Gmbh Hydraulischer Koppler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1046809B1 (fr) * 1999-04-20 2005-08-10 Siemens Aktiengesellschaft Dispositif de dosage d'un fluide
US6564777B2 (en) * 1999-10-15 2003-05-20 Westport Research Inc. Directly actuated injection valve with a composite needle
JP3958683B2 (ja) * 2000-10-11 2007-08-15 シーメンス ヴィディーオー オートモーティヴ コーポレイション アクチュエーターの補償器を有する燃料噴射器及び補償方法

Also Published As

Publication number Publication date
EP1391608A1 (fr) 2004-02-25
DE60204565D1 (de) 2005-07-14
DE60204565T2 (de) 2005-11-03

Similar Documents

Publication Publication Date Title
US7886993B2 (en) Injection valve
US6499471B2 (en) Hydraulic compensator for a piezoelectrical fuel injector
KR20000015898A (ko) 압전적 또는 자기 변형적 작동자를 가진 연료 분사 밸브
US6564777B2 (en) Directly actuated injection valve with a composite needle
WO2002095214A1 (fr) Soupape d'injection a commande directe equipee d'une aiguille ferromagnetique
KR20010101058A (ko) 액체 제어 밸브
US6749126B1 (en) Fuel injector and method for its operation
US6932278B2 (en) Fuel injection valve
KR100853645B1 (ko) 연료 분사 밸브
EP3482063B1 (fr) Ensemble de soupape pour soupape d'injection, soupape d'injection et procédé d'injection
EP1391608B1 (fr) Doseur avec unité de compensation thermique
US6681999B1 (en) Fuel injection valve
US6899284B1 (en) Fuel-injection valve
KR20050027047A (ko) 연료 분사 밸브
KR20040111432A (ko) 연료 분사 밸브
EP1813805A1 (fr) Ensemble de compensation pour un injecteur
EP1464828B1 (fr) Compensateur pour la compensation de dilatations thermiques pour un dispositif de dosage
EP2273099B1 (fr) Injecteur de carburant avec compensateur de jeu
JP4253590B2 (ja) 燃料噴射弁
US7422006B2 (en) Fuel injector
EP1391609B1 (fr) Appareil de dosage avec une bague hydraulique
JP2008008281A (ja) 燃料噴射弁
JP5592741B2 (ja) 燃料噴射弁
EP2067981B1 (fr) Ensemble de vanne pour soupape d'injection, et soupape d'injection
EP1445480B1 (fr) Dispositif de dosage avec joint d'étanchéité dynamique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE FR IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 60204565

Country of ref document: DE

Date of ref document: 20050714

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080822

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080813

Year of fee payment: 7

Ref country code: IT

Payment date: 20080822

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090820