EP1377429B1 - Schneckenelement für gleichsinnig drehende mehrschneckenextruder - Google Patents

Schneckenelement für gleichsinnig drehende mehrschneckenextruder Download PDF

Info

Publication number
EP1377429B1
EP1377429B1 EP02722005A EP02722005A EP1377429B1 EP 1377429 B1 EP1377429 B1 EP 1377429B1 EP 02722005 A EP02722005 A EP 02722005A EP 02722005 A EP02722005 A EP 02722005A EP 1377429 B1 EP1377429 B1 EP 1377429B1
Authority
EP
European Patent Office
Prior art keywords
screw element
flight
screw
face
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02722005A
Other languages
English (en)
French (fr)
Other versions
EP1377429A1 (de
Inventor
Reinhard Uphus
Matthias Nolting
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KraussMaffei Extrusion GmbH
Original Assignee
Berstorff GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Berstorff GmbH filed Critical Berstorff GmbH
Publication of EP1377429A1 publication Critical patent/EP1377429A1/de
Application granted granted Critical
Publication of EP1377429B1 publication Critical patent/EP1377429B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/64Screws with two or more threads
    • B29C48/65Screws with two or more threads neighbouring threads or channels having different configurations, e.g. one thread being lower than its neighbouring thread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/251Design of extruder parts, e.g. by modelling based on mathematical theories or experiments
    • B29C48/2517Design of extruder parts, e.g. by modelling based on mathematical theories or experiments of intermeshing screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/402Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders the screws having intermeshing parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/507Screws characterised by the material or their manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/59Screws characterised by details of the thread, i.e. the shape of a single thread of the material-feeding screw
    • B29C48/595Screws characterised by details of the thread, i.e. the shape of a single thread of the material-feeding screw the thread having non-uniform width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Definitions

  • the invention relates to a screw element having an outer radius R a and a core radius R i for multi-screw extruder with co-rotating and intermeshing screw shafts, especially for twin-screw extruder having a profile in the axial cross section through its longitudinal axis, the only one at the two axial end faces having conventional single-start screw element for intermeshing screw shafts corresponding screw flight, the web surface between a left and a right flight edge is part of a cylinder surface with the outer radius R a, each end face i has a circular base with the core radius R of the screw shaft and a left and a right Flank which connects the ground with the left and right web edge.
  • kneading blocks are usually used, which consist of several axially successively arranged and mutually angularly offset kneading discs with Erdmenger profile.
  • the kneading discs are arranged in pairs opposite each other on the two screw shafts of the respective twin-screw extruder and mesh closely with each other.
  • the mixing process in conventional kneading blocks is to be regarded as a statistical process, that is, the mixing work done in individual volume elements is different. To achieve a high homogeneity of the mixture, therefore, a great deal of mechanical energy must be expended to ensure that as far as possible each volume element is also subjected to a shear.
  • a twin-screw extruder with two identical, closely meshing and driven in the same direction screw shafts are known, which are arranged in the bores of a common housing.
  • the worm shafts are provided with kneading disks which have a three-flighted shaft cross section, that is to say have three crests.
  • the distance of the combs to the inner surface of the housing bore and the width of the combs are different.
  • the comb with the largest comb width has the smallest distance to the inner surface of the housing bore.
  • the object of the present invention is to further develop a screw element of the generic type such that, with the same homogenization result, a significantly lower energy input into the material to be treated takes place.
  • the screw element according to the invention has in its cross-section through its longitudinal axis a front and a rear end face, which corresponds in shape to that of a catchy screw element for intermeshing screw shafts of multi-screw extruder.
  • this screw element can be combined with corresponding conventional single-start screw elements for co-rotating and intermeshing worm shafts on a common worm shaft without problems.
  • the profile geometry of the screw element is designed for a tight meshing of the screw elements.
  • the production technology necessary clearance between the screw elements and the inner wall of the extruder housing and each other usually in the range of less than a tenth of a millimeter.
  • the success of the invention can also be achieved to a substantial extent when a larger game (in the range up to several millimeters, eg 1-5 mm depending on the housing diameter) is selected and the screw elements can not touch, that is not in the strict sense comb tightly.
  • the shape of this screw element deviates significantly from the known geometry of catchy screw elements, but without losing the property of combing together or sealing combing.
  • the width of the screw web (comb angle) is reduced starting from the front end side and the direction of rotation of the screw element opposite web edge (in clockwise rotation so starting from the left web edge) along the longitudinal axis to a partial length x of the axial length I of the screw element to zero an edge.
  • the distance of this edge from the longitudinal axis initially reduces with increasing distance from the front end side and then increases again until this edge ends in the direction of rotation of the screw element corresponding web edge (in clockwise rotation in the right web edge) on the rear end side.
  • the width of the screw land decreases starting from the rear end side and the web edge corresponding to the direction of rotation (in the case of clockwise rotation, therefore, right web edge) along the web Longitudinal axis up to a partial length x of the axial length I of the screw element to 0 to an edge whose distance from the longitudinal axis is then initially reduced and then with increasing distance of the web surface from the longitudinal axis in the direction of rotation of the screw element opposite web edge ( in clockwise rotation so left ridge edge) ends at the front end.
  • this screw element instead of a single web with constant web width and constant distance of the web surface from the longitudinal axis via two with respect to the longitudinal axis symmetrically to each other extending web elements, in each case a constant land radius with decreasing web width (comb angle) and in another section a land width 0 (ie, forming an edge) and have a varying along the longitudinal axis distance from the longitudinal axis.
  • the screw element according to the invention is still characterized by a further web, namely a shear web.
  • This shearing land has a shearing land radius R s , ie a distance from the longitudinal axis of the screw element that is greater than the core radius R i and less than the outer radius R a .
  • the shearing land starts from the point on the flank corresponding to the direction of rotation of the screw element (right-hand flank) of the front end, which has the distance Rs from the longitudinal axis, and runs helically in accordance with the direction of rotation of the screw element to that opposite the direction of rotation of the screw element Flank (with clockwise rotation so left flank) of the rear end side.
  • the shear web consists in its axial length of an axial center piece with a substantially constant ridge width (ie constant ridge angle) and in each case a transition piece from the middle piece to the front or rear end face. In these transition pieces, the web width decreases in each case with increasing approach to the end face preferably continuously up to 0 to an edge which ends at the respective end face in the flank.
  • the described course of the shear bar is designed in principle so that it acts on the material to be treated gurfördemd.
  • this characteristic can be significantly influenced by superimposing an additional pitch on the shape of the screw element over at least a portion of its axial length, by twisting the shape of the screw element, ie by turning cross-sections lying one behind the other against each other. Based on the axial length of a portion of the If required, the size of the twisting element can be selected differently in individual sections.
  • the additional slope can be made by twisting the cross section relative to the front end side in the direction of the intended direction of rotation of the screw element.
  • a reduction of the return effect or even the reversal in a particularly advantageous forward conveying effect can be achieved by making the additional slope by twisting the cross section relative to the front end in the direction opposite to the intended direction of rotation of the screw element.
  • This embodiment is particularly preferred in the context of the present invention.
  • the additional pitch is superimposed on the screw element over its entire length. But it is also possible to superimpose several axially successive sections of the screw element different additional gradients.
  • the effect of the screw element according to the invention is such that the material conveyed by the respective multi-screw extruder is drawn into a screw channel, ie into the respective cavity between the screw element and the extruder cylinder surrounding the screw element, which is bounded by a shear web in the sense of a barrier and whose cross-sectional volume in Conveying direction is reduced to 0, so that the material is forced without exception over the shear web.
  • a defined shear and strain takes place for each volume element of the material to be treated.
  • this screw element according to the invention is self-cleaning, if it is designed as a tightly meshing screw element. Because of these properties, material changes and also color changes can be accomplished particularly quickly and with the least expense in an extruder installation equipped with the screw elements according to the invention.
  • FIG. 1 and 2 in a perspective view from the right front or from the left vome shown inventive screw element is how is indicated by the applied on the front end face 8 thick arrow, provided for a clockwise-rotating worm shaft.
  • the profile of the end face 8 is in the selected embodiment that of a tightly meshed single-start screw element Erdmenger.
  • the longitudinal axis of the screw element, which has an axial length 1, is designated by 10.
  • the web 1 which has a cylinder jacket-shaped surface and is formed in the frontal section as a circular arc with the radius R a around the center defined by the longitudinal axis 10.
  • the web width is defined by the crest angle ⁇ which is enclosed between the two radii R a passing through the left or right web edge 5, 6.
  • the base 2 which also has a cylindrical shell-shaped and therefore is circular in the end section.
  • the radius of the base is denoted by R i and corresponds to the core diameter of the associated worm shaft (core radius R i ).
  • the base 2 of the end face 8 as well as the web 1 extends over an angle ⁇ .
  • flanks 3, 4 which correspond in the end face 8 each have a circular arc with the radius R a + R i .
  • the circle center for the flank 4 lies on the opposite left web edge 5, while the center of the left flank 3 lies on the opposite right web edge 6.
  • the ridge angle ⁇ for the web 1 it is possible for the ridge angle ⁇ for the web 1 to be different from the crest angle for the ground 2 to choose.
  • the mating with the respective screw element counter element would have to have a correspondingly complementary other shape.
  • the front end face 8 opposite rear end face 8 ' has a completely similar profile shape.
  • the corresponding points and profile lines of the rear end face 8 ' are marked with an additional line while maintaining the numbering, as can be seen from FIGS. 1 and 2.
  • the latter shows the screw element of Figure 1 in a perspective view from the left front between the two end faces 8, 8 ', the screw element has the following shape: In the axial direction from the front end 8 to the rear end 8', the width of the web 1 increases an axial partial length x starting from the left web edge 5 to the value 0 from.
  • both web edges 5, 6 thus coincide to form a point and then continue in a common edge 11 which ends in the right web edge 6 'of the rear end side 8'.
  • the distance of the edge 11 from the longitudinal axis 10 initially decreases over a further portion of the axial length and then increases again up to the original value R a at the point 6 '.
  • the web width 1 ' starting from the right rear web edge 6' in the direction of the front end face 8, decreases to the value 0 until an axial partial length x is reached.
  • the two web edges 6 'and 5' again coincide in one point and continue in an edge 11 'until reaching the left web edge 5 in the front end face 8.
  • the edge 11 ' has a corresponding course as the edge 11, thus initially decreases with increasing approach to the end face 8 their distance from the longitudinal axis 10 from the original value R a over a certain portion of the axial length and then increases again to the original Value R a .
  • the screw element according to the invention also has a third web element in the form of a shear web 7, which at a constant distance (shear web radius R S ) From the longitudinal axis 10, starting from the right flank 4 at the front end 8 in the for the According to the invention provided screw element rotational direction (ie clockwise) up to a corresponding point 9 'on the left flank 3' at the rear end face 8 'extends.
  • the web width (measured as the shear web comb angle from the longitudinal axis 10, not shown in FIGS. 1 and 2) is constant in a middle section of the axial length I. The latter is not absolutely necessary.
  • the middle piece of the shearing land 7 is in each case in a transition piece to the two end faces 8, 8' away.
  • the distance (shearing radius R S ) to the longitudinal axis 10 remains constant.
  • the shear web 7 initially has the width 0 via a first axial section, ie it is an edge, widening in a second axial section from 0 to the shank width of the middle section of the shear path 7.
  • FIG. 3 shows the screw element according to the invention in a side view.
  • this screw element is divided into sections whose axial length are marked with the letters a - g.
  • the axial lengths of the sections a and g or b and f or c and e are equal to each other in pairs.
  • a total of 7 sections are placed transversely to the longitudinal axis 10, which are designated by the letters A-A to G-G.
  • These 7 sections are shown in detail in Figures 4 to 10. Comparable prominent points of the cross sections are each marked with P and a constant number index.
  • the numerical index is supplemented by an additional small letter (e.g., a) corresponding to each section (e.g., A-A).
  • a an additional small letter
  • the progressions of the web elements which are also indicated according to the marking of Figures 1 - 3, follow in detail.
  • the parameter data for the individual circular arcs can be inferred (corner points, radius, center point) from which the profile sections A-A to G-G are respectively composed, so that a detailed verbal description can be dispensed with.
  • ⁇ of the winding angle of the shearing land 7 is designated, this is that angle to the cross-section seen the right web edge of the shear land 7, each of the point designation P 3 (ie P 3a - P 3g ), opposite the right web edge 6 and 6 'is rotated about the longitudinal axis 10.
  • P 3 ie P 3a - P 3g
  • the value of the angle ⁇ at the beginning (initial limit angle) and at the end (end limit angle) of the respective profile section is entered. Within the respective profile section, the angle ⁇ continuously changes between these two limiting angles.
  • Table 2 it is also indicated for each profile section which value the shear web comb angle ⁇ has in each of these profile sections.
  • the angle ⁇ is always constant equal to 0 °, ie the shearing land width is 0 (edge).
  • the shearing comb angle is in each case at the value ⁇ soll , ie there is a constant shearing land width.
  • the shearing land width or the shear land comb angle ⁇ of 0 ° increases continuously up to the desired value ⁇ soll or decreases from this value ⁇ soll to 0.
  • FIGS. 4 to 6 show that the width of the web 1 lying between the points P 7 and P 1 decreases markedly from the section AA to the section CC.
  • the web 1 is no longer present and only the outgoing from him edge 11 can be seen on which the point P 1 (P 1d ) moves on ( Figures 8 - 10) in the form of points P 1e to P 1g until he finally at the rear end face 8 'coincides with the rear right web edge 6' ( Figure 3).
  • the shear web 7 With regard to the shear web 7, the following can be observed: In FIG. 4, the shear web can only be seen in the uncut rear part of the screw element. In section A, the width of the shear web 7 zero, therefore this represents only as an edge at the point P 3. In the next figure 5, the shear web 7, as can be seen from the side view of the profile section b in Figure 3, has already reached about half of its nominal value, which is indicated by the Scherstegkammwinkel ⁇ .
  • the section CC in Figure 3 shows the shear web 7 with its full nominal width, which extends between the points P 2c and P 3c .
  • This desired width of the shearing land 7 is also present in the two next sections DD (FIG. 7) and EE (FIG. 8).
  • FIG. 9 section FF
  • the two points P 2 and P 3 again move closer to one another, ie the width of the shear web 7 decreases again in the form of the shear web comb angle ⁇ .
  • Figure 9 corresponds to the illustration in Figure 5.
  • the shear web 7 is shrunk back together to an edge, which is represented by the point P 2g .
  • Figure 10 corresponds to the representation of Figure 4.
  • the individual profile points P 1 to P 12 from Figures 4 to 10 in the side view of Figure 3 can be seen, these are registered there.
  • FIGS. 11 and 12 a modification of the screw element according to FIGS. 1-3 is shown from the left or right front (in FIG. 11a as a wire model and in FIG. 12b as a surface model).
  • this additional slope corresponds to a twist by twisting the profile of the rear end face 8 'relative to the front end face 8 by an angle of rotation of 360 ° counter to the intended direction of rotation of the screw profile (ie rotation to the left).
  • the twisting of the profile cross-section was carried out uniformly over the entire axial length of the screw profile.
  • the right web edge no longer runs parallel to the longitudinal axis 10 as in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Folding Of Thin Sheet-Like Materials, Special Discharging Devices, And Others (AREA)

Description

  • Die Erfindung betrifft ein Schneckenelement mit einem Außenradius Ra und einem Kemradius Ri für Mehrschneckenextruder mit gleichsinnig drehenden und miteinander kämmenden Schneckenwellen, insbesondere für Doppelschneckenextruder, das im axialen Querschnitt durch seine Längsachse ein Profil aufweist, das an den beiden axialen Stirnseiten jeweils nur einen einem herkömmlichen eingängigen Schneckenelement-für miteinander kämmende Schneckenwellen entsprechenden Schneckensteg aufweist, dessen Stegoberfläche zwischen einer linken und einer rechten Stegkante Teil einer Zylinderoberfläche mit dem Außenradius Ra ist, wobei jede Stirnseite einen kreisförmigen Grund mit dem Kemradius Ri der Schneckenwelle und eine linke und eine rechte Flanke aufweist, die den Grund mit der linken bzw. rechten Stegkante verbindet.
  • Die Konstruktionsprinzipien zur Erstellung von Schneckenelementen für gleichsinnig drehende und dicht kämmende Mehrschneckenextruder, die auch als Erdmenger-Profile bezeichnet werden, sind seit vielen Jahren bekannt. Eine entsprechende Beschreibung befindet sich beispielsweise in der Buchveröffentlichung "Der Doppelschneckenextruder, Grundlagen und Anwendungsgebiete", VDI Verlag GmbH, Düsseldorf, 1995 (Seiten 10 - 30). In der Abbildung 1.4 (Seite 14) dieser Veröffentlichung ist beispielsweise das Profil eines eingängigen Schneckenelements der eingangs genannten Art im axialen Querschnitt dargestellt.
  • Zum dispersiven und distributiven Einmischen beispielsweise von Additiven oder sonstigen Komponenten in plastische Massen werden üblicherweise Knetblöcke eingesetzt, die aus mehreren axial hintereinander angeordneten und gegeneinander winkelversetzten Knetscheiben mit Erdmenger-Profil bestehen. Die Knetscheiben sind jeweils paarweise einander gegenüberliegend auf den beiden Schneckenwellen des jeweiligen Doppelschneckenextruders angeordnet und kämmen dicht miteinander. Der Mischprozess in herkömmlichen Knetblöcken ist als statistischer Prozess anzusehen, d.h. dass die in einzelnen Volumenelementen geleistete Mischarbeit unterschiedlich stark ist. Zur Erzielung einer hohen Homogenität der Mischung muss daher sehr viel mechanische Energie aufgewendet werden, um sicherzustellen, dass möglichst jedes Volumenelement auch einer Scherung unterzogen wird. Bezogen auf eine einzelne Knetscheibe wird jeweils ein relativ kleiner Anteil des zu behandelnden Materials extrem stark geschert, während der weitaus größte Teil des Materials dem Scherspalt zwischen Knetscheibe und Zylinderwand ausweicht und somit nur wenig geschert wird. Aus diesem Grunde sind zur Sicherstellung einer hohen Homogenität der Mischung entweder sehr lange Knetblöcke der bekannten Art oder aber hohe Drehzahlen erforderlich. In jedem Fall wird sehr viel mechanische Energie aufgewendet und in Form von Wärme in das zu behandelnde Material eingetragen. Insbesondere bei der Verarbeitung von Kautschukmischungen ist die Entstehung größerer Wärmemengen äußerst unerwünscht.
  • Aus der DE 42 39 220 A1 ist ein Doppelschneckenextruder mit zwei gleichen, dicht kämmenden und gleichsinnig angetriebenen Schneckenwellen bekannt, die in den Bohrungen eines gemeinsamen Gehäuses angeordnet sind. Die Schneckenwellen sind mit Knetscheiben versehen, welche einen dreigängigen Wellenquerschnitt besitzen, also drei Kämme aufweisen. Der Abstand der Kämme zur Innenoberfläche der Gehäusebohrung und die Breite der Kämme sind unterschiedlich. Der Kamm mit der größten Kammbreite weist dabei den geringsten Abstand zur Innenfläche der Gehäusebohrung auf. Die aus dieser Schrift bekannten Schneckenelemente sind über ihre gesamte axiale Länge dreigängig ausgebildet.
  • Aufgabe der vorliegenden Erfindung ist es, ein Schneckenelement der gattungsgemäßen Art dahin gehend weiterzubilden, dass bei gleichem Homogenisierungsergebnis ein deutlich geringerer Energieeintrag in das zu behandelnde Material erfolgt.
  • Gelöst wird diese Aufgabe nach der vorliegenden Erfindung bei einem gattungsgemäßen Schneckenelement durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Das erfindungsgemäße Schneckenelement besitzt im Querschnitt durch seine Längsachse eine vordere und eine hintere Stirnseite, die in ihrer Form derjenigen eines eingängigen Schneckenelements für miteinander kämmende Schneckenwellen von Mehrschneckenextruder entspricht. Dadurch lässt sich dieses Schneckenelement völlig problemlos mit entsprechenden herkömmlichen eingängigen Schneckenelementen für gleichsinnig drehende und miteinander kämmende Schneckenwellen auf einer gemeinsamen Schneckenwelle kombinieren. Vorzugsweise ist die Profilgeometrie des Schneckenelements auf ein dichtes Kämmen der Schneckenelemente ausgelegt. In diesem Fall ist das fertigungstechnisch notwendige Spiel zwischen den Schneckenelementen und der Innenwand des Extrudergehäuses sowie untereinander üblicherweise im Abmessungsbereich weniger Zehntel Millimeter. Der erfindungsgemäße Erfolg lässt sich aber auch noch zu einem wesentlichen Teil erreichen, wenn ein größeres Spiel (im Bereich bis zu mehreren Millimetern, z.B. 1 - 5 mm je nach Gehäusedurchmesser) gewählt wird und die Schneckenelemente sich nicht berühren können, also nicht im strengen Sinne dicht kämmen.
  • Zur Vermeidung von Missverständnissen sei darauf hingewiesen, dass sich die folgenden Ausführungen jeweils auf ein in Verfahrensrichtung rechts drehendes Schneckenpaar beziehen.
  • Über die axiale Länge zwischen der vorderen und der hinteren Stirnseite weicht die Form dieses Schneckenelements allerdings deutlich von der bekannten Geometrie eingängiger Schneckenelemente ab, ohne aber die Eigenschaft des Miteinanderkämmens bzw. Dichtkämmens zu verlieren. Die Breite des Schneckenstegs (Kammwinkel) reduziert sich ausgehend von der vorderen Stirnseite und der dem Drehsinn des Schneckenelements entgegengesetzten Stegkante (bei Rechtsdrehung also ausgehend von der linken Stegkante) entlang der Längsachse bis zu einer Teillänge x der axialen Länge I des Schneckenelements bis auf 0 zu einer Kante. Der Abstand dieser Kante von der Längsachse reduziert sich zunächst mit zunehmendem Abstand von der vorderen Stirnseite und nimmt danach allerdings wieder zu, bis diese Kante in der dem Drehsinn des Schneckenelements entsprechenden Stegkante (bei Rechtsdrehung also in der rechten Stegkante) an der hinteren Stirnseite endet. Entsprechend umgekehrt reduziert sich die Breite des Schneckenstegs ausgehend von der hinteren Stirnseite und der dem Drehsinn entsprechenden Stegkante (bei Rechtsdrehung also rechte Stegkante) entlang der Längsachse bis zu einer Teillänge x der axialen Länge I des Schneckenelements bis auf 0 zu einer Kante, deren Abstand von der Längsachse sich danach zunächst reduziert und die anschließend mit wieder größer werdendem Abstand der Stegoberfläche von der Längsachse in der dem Drehsinn des Schneckenelements entgegengesetzten Stegkante (bei Rechtsdrehung also linke Stegkante) an der vorderen Stirnseite endet. Somit verfügt dieses Schneckenelement statt eines einzelnen Stegs mit gleichbleibender Stegbreite und gleichbleibendem Abstand der Stegoberfläche von der Längsachse über zwei bezüglich der Längsachse symmetrisch zueinander verlaufende Stegelemente, die in einem Abschnitt jeweils einen konstanten Stegradius bei abnehmender Stegbreite (Kammwinkel) und in einem weiteren Abschnitt eine Stegbreite 0 (d.h. Ausbildung einer Kante) und einen sich entlang der Längsachse verändernden Abstand von der Längsachse aufweisen. Darüber hinaus ist das erfindungsgemäße Schneckenelement jedoch noch durch einen weiteren Steg gekennzeichnet, nämlich einen Schersteg. Dieser Schersteg besitzt einen Scherstegradius Rs, d.h. einen Abstand von der Längsachse des Schneckenelements, der größer als der Kemradius Ri und kleiner als der Außenradius Ra ist. Der Schersteg geht von demjenigen Punkt auf der dem Drehsinn des Schneckenelements entsprechenden Flanke (bei Rechtsdrehung also rechte Flanke) der vorderen Stirnseite aus, der die Entfernung Rs von der Längsachse besitzt, und verläuft schraubenlinienförmig entsprechend dem Drehsinn des Schneckenelements zu der dem Drehsinn des Schneckenelements entgegengesetzten Flanke (bei Rechtsdrehung also linke Flanke) der hinteren Stirnseite. Der Schersteg besteht in seiner axialen Länge aus einem axialen Mittelstück mit im wesentlichen konstanter Stegbreite (d.h. konstanter Kammwinkel) und jeweils einem Übergangsstück vom Mittelstück zur vorderen bzw. hinteren Stirnseite. In diesen Übergangsstücken vermindert sich die Stegbreite jeweils mit zunehmender Annäherung an die Stirnseite vorzugsweise kontinuierlich bis auf 0 zu einer Kante, die an der jeweiligen Stirnseite in der Flanke endet.
  • Der beschriebene Verlauf des Scherstegs ist im Grundsatz so angelegt, dass er auf das zu behandelnde Material rückfördemd wirkt. Diese Charakteristik lässt sich jedoch deutlich beeinflussen, wenn man der Form des Schneckenelements zumindest über ein Teilstück seiner axialen Länge eine zusätzliche Steigung überlagert, indem man die Form des Schneckenelements tordiert, also hintereinander liegende Querschnitte gegeneinander verdreht. Bezogen auf die axiale Länge eines Abschnitts des Schneckenelements kann die Größe der Tordierung bei Bedarf in einzelnen Abschnitten unterschiedlich gewählt werden. Zur Verstärkung des Rückfördereffektes des Scherstegs kann die zusätzliche Steigung durch Tordierung des Querschnitts gegenüber der vorderen Stirnseite in Richtung der vorgesehenen Drehrichtung des Schneckenelements vorgenommen werden. Eine Verminderung des Rückfördereffektes oder sogar die Umkehrung in einen besonders vorteilhaften Vorwärtsfördereffekt lässt sich dadurch erreichen, dass die zusätzliche Steigung durch Tordierung des Querschnitts gegenüber der vorderen Stirnseite in Richtung entgegen der vorgesehenen Drehrichtung des Schneckenelements vorgenommen wird. Diese Ausführungsform wird im Rahmen der vorliegenden Erfindung besonders bevorzugt.
  • Zweckmäßigerweise wird die zusätzliche Steigung dem Schneckenelement über seine gesamte Länge überlagert. Es ist aber auch möglich, mehreren axial hintereinander liegenden Abschnitten des Schneckenelements unterschiedliche zusätzliche Steigungen zu überlagern.
  • Die Wirkung des erfindungsgemäßen Schneckenelements ist so, dass das durch den jeweiligen Mehrschneckenextruder geförderte Material in einen Schneckenkanal, also in den jeweiligen Hohlraum zwischen Schneckenelement und dem das Schneckenelement umgebenden Extruderzylinder eingezogen wird, der von einem Schersteg im Sinne einer Barriere begrenzt wird und dessen Querschnittsvolumen in Förderrichtung bis auf 0 reduziert wird, so dass das Material ausnahmslos über den Schersteg gezwungen wird. Somit findet eine definierte Scherung und Dehnung für jedes Volumenelement des zu behandelnden Materials statt. Es sind keine besonderen Rückstauelemente erforderlich, um eine ausreichende Durchmischung sicherzustellen. Daher kann eine mit den erfindungsgemäßen Schneckenelementen bestückte Extruderanlage ohne Weiteres leer gefahren werden. Hinzu kommt, dass das Profil dieses erfindungsgemäßen Schneckenelements selbstreinigend ist, wenn es als dicht kämmendes Schneckenelement ausgelegt ist. Aufgrund dieser Eigenschaften lassen sich Materialwechsel und auch Farbwechsel bei einer mit den erfindungsgemäßen Schneckenelementen bestückten Extruderanlage besonders schnell und unter geringstem Aufwand bewerkstelligen.
  • Nachfolgend wird die vorliegende Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher erläutert. Es zeigen:
  • Fig. 1, 2
    perspektivische Ansichten eines erfindungsgemäßen Schneckenelements,
    Fig. 3
    eine Seitenansicht des Schneckenelements gemäß den Figuren 1 und 2,
    Fig. 4 - 10
    Axialschnitte gemäß Figur 3 und
    Fig. 11 - 12
    perspektivische Ansichten eines erfindungsgemäßen Schneckenelements mit zusätzlich überlagerter Steigung.
  • Das in den Fig. 1 und 2 in einer perspektivischen Ansicht von rechts vorne bzw. von links vome gezeigte erfindungsgemäße Schneckenelement (in Fig. 1a und Fig. 2a als Draht- und in Fig. 1 bund Fig. 2b als Flächenmodell) ist, wie durch den auf die vordere Stirnseite 8 aufgetragenen dicken Pfeil angedeutet ist, für eine rechtsdrehende Schneckenwelle vorgesehen. Das Profil der Stirnseite 8 ist im gewählten Ausführungsbeispiel das eines dicht kämmenden eingängigen Schneckenelements nach Erdmenger. Die Längsachse des Schneckenelements, das eine axiale Länge 1 aufweist, ist mit 10 bezeichnet. Zwischen den Punkten 5, 6, die auch als Stegkanten zu bezeichnen sind, erstreckt sich der Steg 1, der eine zylindermantelförmige Oberfläche aufweist und im stirnseitigen Schnitt als Kreisbogen mit dem Radius Ra um den durch die Längsachse 10 definierten Mittelpunkt ausgebildet ist. Die Stegbreite ist durch den Kammwinkel ϕ definiert, der zwischen den beiden durch die linke bzw. rechte Stegkante 5, 6 gehenden Radien Ra eingeschlossen ist. Diametral gegenüber dem Steg 1 liegt der Grund 2, der ebenfalls eine zylindermantelförmige Gestalt aufweist und daher im Stirnschnitt kreisförmig ist. Der Radius des Grundes ist mit Ri bezeichnet und entspricht dem Kerndurchmesser der zugehörigen Schneckenwelle (Kernradius Ri). In Umfangsrichtung erstreckt sich der Grund 2 der Stirnseite 8 ebenso wie der Steg 1 über einen Winkel ϕ. Zwischen dem Steg 1 und dem Grund 2 liegen zwei Flanken 3, 4, die in der Stirnfläche 8 jeweils einem Kreisbogen mit dem Radius Ra + Ri entsprechen. Der Kreismittelpunkt für die Flanke 4 liegt auf der gegenüberliegenden linken Stegkante 5, während der Mittelpunkt der linke Flanke 3 auf der gegenüberliegenden rechten Stegkante 6 liegt. Grundsätzlich ist es möglich, den Kammwinkel ϕ für den Steg 1 unterschiedlich zu dem Kammwinkel für den Grund 2 zu wählen. In diesem Fall würde das mit dem jeweiligen Schneckenelement kämmende Gegenelement jedoch eine entsprechend komplementär andere Form aufweisen müssen. Insbesondere aus fertigungstechnischen Gründen empfiehlt es sich, die beiden Kammwinkel wie im dargestellten Ausführungsbeispiel gemäß Figur 1 gleich zu wählen, um jeweils 2 gleichartige Schneckenelemente miteinander kämmen zu lassen.
  • Die der vorderen Stirnseite 8 gegenüberliegende hintere Stirnseite 8' weist eine völlig gleichartige Profilform auf. Zur Unterscheidung zu den Punkten bzw. Profillinien der vorderen Stirnseite 8 sind die entsprechenden Punkte und Profillinien der hinteren Stirnseite 8' unter Beibehaltung der Nummerierung mit einem zusätzlichen Strich gekennzeichnet, wie dies aus den Figuren 1 und 2 hervorgeht. Letztere zeigt das Schneckenelement aus Figur 1 in einer perspektivischen Ansicht von links vorne Zwischen den beiden Stirnseiten 8, 8' weist das Schneckenelement folgende Form auf: In axialer Richtung von der vorderen Stirnseite 8 zur hinteren Stirnseite 8' nimmt die Breite des Stegs 1 bis zu einer axialen Teillänge x ausgehend von der linken Stegkante 5 bis auf den Wert 0 ab. An der Stelle der Teillänge x fallen beide Stegkanten 5, 6 also zu einem Punkt zusammen und setzen sich danach in einer gemeinsamen Kante 11 fort, die in der rechten Stegkante 6' der hinteren Stirnseite 8' endet. Der Abstand der Kante 11 von der Längsachse 10 nimmt dabei zunächst über ein weiteres Teilstück der axialen Länge ab und steigt dann wieder bis auf den ursprünglichen Wert Ra im Punkt 6' an. Entsprechend umgekehrt nimmt die Stegbreite 1' ausgehend von der rechten hinteren Stegkante 6' in Richtung auf die vordere Stirnseite 8 bis zum Erreichen einer axialen Teillänge x auf den Wert 0 ab. Dort fallen die beiden Stegkanten 6' und 5' wiederum in einem Punkt zusammen und setzen sich in einer Kante 11' bis zum Erreichen der linken Stegkante 5 in der vorderen Stirnseite 8 fort. Die Kante 11' hat einen entsprechenden Verlauf wie die Kante 11, verringert also mit zunehmender Annäherung an die Stirnseite 8 zunächst ihren Abstand von der Längsachse 10 ausgehend vom ursprünglichen Wert Ra über ein gewisses Teilstück der axialen Länge und steigt danach wieder bis auf den ursprünglichen Wert Ra an. Neben den beiden untereinander ähnlichen Stegelementen in Gestalt des Stegs 1 und der Kante 11 bzw. des Stegs 1' und der Kante 11' verfügt das erfindungsgemäße Schneckenelement noch über ein drittes Stegelement in Gestalt eines Scherstegs 7, der sich mit gleichbleibendem Abstand (Scherstegradius RS) von der Längsachse 10 ausgehend von der rechten Flanke 4 an der vorderen Stirnseite 8 in der für das erfindungsgemäße Schneckenelement vorgesehenen Drehrichtung (also hier rechtsdrehend) bis zu einem entsprechenden Punkt 9' auf der linken Flanke 3' an der hinteren Stirnseite 8' erstreckt. Die Stegbreite (gemessen als Scherstegkammwinkel von der Längsachse 10 aus, in Fig. 1 und 2 nicht dargestellt) ist in einem mittleren Abschnitt der axialen Länge I konstant. Letzteres ist aber nicht zwingend notwendig. Zwischen der vorderen Stirnseite 8 und der hinteren Stirnseite 8' setzt sich das Mittelstück des Scherstegs 7 jeweils in einem Übergangsstück bis zu den beiden Stirnseiten 8, 8' fort. In diesem Übergangsstück bleibt der Abstand (Scherstegradius RS) zur Längsachse 10 jeweils konstant. Ausgehend von der jeweiligen Stirnseite 8, 8' hat der Schersteg 7 über ein erstes axiales Teilstück zunächst die Breite 0, ist also eine Kante, und verbreitert sich in einem zweiten axialen Teilstück von 0 bis auf die Scherstegbreite des Mittelstücks des Scherstegs 7.
  • Die Figur 3 zeigt das erfindungsgemäße Schneckenelement in einer Seitenansicht. Über die axiale Länge I ist dieses Schneckenelement in Teilstücke aufgeteilt, deren axiale Länge mit den Buchstaben a - g gekennzeichnet sind. Im gewählten Ausführungsbeispiel sind die axialen Längen der Teilstücke a und g bzw. b und f bzw. c und e paarweise untereinander gleich. Durch die einzelnen Teilstücke sind jeweils quer zur Längsachse 10 insgesamt 7 Schnitte gelegt, die mit den Buchstaben A-A bis G-G bezeichnet sind. Diese 7 Schnitte sind in den Figuren 4 bis 10 im einzelnen dargestellt. Vergleichbare markante Punkte der Querschnitte sind jeweils mit P und einem gleich bleibenden Zahlenindex gekennzeichnet. Zur Unterscheidung der einzelnen Schnitte ist der Zahlenindex durch einen dem jeweiligen Schnitt (z.B. A-A) entsprechenden zusätzlichen kleinen Buchstaben (z.B. a) ergänzt. Durch Vergleich der einzelnen Schnitte sind die Verläufe der Stegelemente, die entsprechend der Kennzeichnung aus den Figuren 1 - 3 ebenfalls angegeben sind, im einzelnen verfolgen. Aus der Tabelle 1 sind zu jedem der sieben Profilschnitte die Parameterangaben zu den einzelnen Kreisbögen entnehmbar (Eckpunkte, Radius, Mittelpunkt), aus denen die Profilschnitte A-A bis G-G jeweils zusammengesetzt sind, so dass auf eine ausführliche verbale Beschreibung verzichtet werden kann.
  • Stellvertretend für die übrigen Schnittbilder (Figur 5 bis 10) sind in Figur 4 die Radien von vier für die Konstruktion wichtigen Kreisen eingetragen, nämlich der Außenradius Ra, der Scherstegradius RS, der Kemradius Ri und ein Radius Ri + Ra - RS. Weiterhin ist der Kammwinkel ϕ des Scherstegs 1 angegeben. Mit dem Winkel α ist der Winkel bezeichnet, um den die rechte Stegkante 6' um die Längsachse 10 (= Mittelpunkt des jeweiligen Profilschnitts) gegenüber der Vertikalen verdreht ist. Dieser Winkel α hat auf die Konstruktion des Profilquerschnitts aber keinen Einfluss. Mit β ist der Windungswinkel des Scherstegs 7 bezeichnet, dabei handelt es sich um denjenigen Winkel, um den im Querschnitt gesehen die rechte Stegkante des Scherstegs 7, die jeweils die Punktbezeichnung P3 (also P3a - P3g) trägt, gegenüber der rechten Stegkante 6 bzw. 6' um die Längsachse 10 verdreht ist. In der Tabelle 2 ist für jeden der gemäß Figur 3 festgelegten Profilabschnitte a - g eingetragen, welchen Wert der Winkel β am Anfang (Anfangsgrenzwinkel) und am Ende (Endgrenzwinkel) des jeweiligen Profilabschnitts aufweist. Innerhalb des jeweiligen Profilabschnitts verändert sich der Winkel β kontinuierlich zwischen diesen beiden Grenzwinkeln. Zusätzlich ist in Tabelle 2 auch zu jedem Profilabschnitt angegeben, welchen Wert der Scherstegkammwinkel δ in diesen Profilabschnitten jeweils aufweist. In den Profilabschnitten a und g ist der Winkel δ jeweils konstant gleich 0°, d.h. die Scherstegbreite ist 0 (Kante). In den Profilabschnitten c, d und e liegt der Scherstegkammwinkel jeweils bei dem Wert δsoll, d.h. es liegt eine konstante Scherstegbreite vor. In den beiden Abschnitten b und f nimmt die Scherstegbreite bzw. der Scherstegkammwinkel δ von 0° kontinuierlich bis auf den gewünschten Wert δsoll zu bzw. nimmt von diesem Wert δsoll bis auf 0 ab.
  • Die Figuren 4 bis 6 zeigen, dass die Breite des zwischen den Punkten P7 und P1 liegenden Steges 1 vom Schnitt A-A bis zum Schnitt C-C deutlich abnimmt. In Figur 7 ist der Steg 1 nicht mehr vorhanden und nur noch die aus ihm hervorgehende Kante 11 erkennbar, auf der der Punkt P1 (P1d) weiterwandert (Figuren 8 - 10) in Form der Punkte P1e bis P1g, bis er schließlich an der hinteren Stirnseite 8' mit der hinteren rechten Stegkante 6' zusammenfällt (Figur 3). Entsprechendes gilt für den Steg 1',der an der hinteren Stirnseite 8' von den beiden Stegkanten 5' und 6' begrenzt ist, wenn man die Figuren 4 bis 10 der Reihenfolge rückwärts betrachtet und dabei das Wandern der Punkte P10 (P10g, P10f) und P6 (P6g - P6a) verfolgt.
  • Im Hinblick auf den Schersteg 7 ist folgendes festzustellen: In Figur 4 ist der Schersteg nur in dem ungeschnittenen hinteren Teil des Schneckenelements erkennbar. Im Schnitt A-A ist die Breite des Scherstegs 7 null, dieser also nur als Kante im Punkt P3a repräsentiert. In der nächsten Figur 5 hat der Schersteg 7, wie dies auch aus der Seitenansicht des Profilabschnitts b in Figur 3 hervorgeht, bereits etwa die Hälfte seines Sollwertes erreicht, was durch den Scherstegkammwinkel δ angedeutet wird.
  • Der Schnitt C-C in Figur 3 zeigt den Schersteg 7 mit seiner vollen Sollbreite, die sich zwischen den Punkten P2c und P3c erstreckt. Diese Sollbreite des Scherstegs 7 liegt auch in den beiden nächsten Schnitten D-D (Figur 7) und E-E (Figur 8) vor. In Figur 9 (Schnitt F-F) rücken die beiden Punkten P2 und P3 wieder näher aneinander, d.h. dass die Breite des Scherstegs 7 in Gestalt des Scherstegkammwinkel δ wieder abnimmt. Insoweit entspricht die Figur 9 der Darstellung in Figur 5. In Figur 10 ist der Schersteg 7 wieder zu einer Kante zusammengeschrumpft, die durch den Punkt P2g repräsentiert wird. Insoweit entspricht Figur 10 der Darstellung von Figur 4. Soweit die einzelnen Profilpunkte P1 bis P12 aus den Figuren 4 bis 10 in der Seitenansicht der Figur 3 erkennbar sind, sind diese dort eingetragen.
  • In den Figuren 11 und 12 ist eine Abwandlung des Schneckenelements gemäß den Figuren 1 - 3 von links bzw. rechts vorne dargestellt (in Fig. 11a als Draht- und in Fig 12b als Flächenmodell). Dieses unterscheidet sich lediglich dadurch, dass dem Schneckenelement eine zusätzliche.Steigung überlagert worden ist. Im vorliegenden Beispiel entspricht diese zusätzliche Steigung einer Tordierung durch Verdrehung des Profils der hinteren Stirnseite 8' gegenüber der vorderen Stirnseite 8 um einen Verdrehwinkel von 360° entgegen der vorgesehenen Drehrichtung des Schneckenprofils (also Verdrehung nach links). Im vorliegenden Fall wurde die Tordierung des Profilquerschnitts gleichmäßig über die gesamte axiale Länge des Schneckenprofils vorgenommen. Dadurch verläuft die rechte Stegkante nicht mehr wie in Figur 3 parallel zur Längsachse 10, sondern windet sich mit einem Linksdrall um die Längsachse 10. Die linke Stegkante 5 windet sich nicht mehr wie in Figur 2 mit einem Rechtsdrall um die Längsachse 10, sondern ebenfalls mit einem Linksdrall. Entsprechendes gilt für die Kante 11, in der sich die linke und die rechte Stegkante 5, 6 fortsetzen. Weiterhin erkennt man aus Figur 11 den Verlauf des Scherstegs 7, der sich nicht mehr um mehr als 180° rechtsdrehend um die Längsachse 10 windet, sondern jetzt linksdrehend über einen Winkel von weniger als 180° von der Flanke 4 aus dem Nahbereich der rechten Stegkante 6 der vorderen Stirnseite bis zur linken Flanke 3' in den Nahbereich der linken Stegkante 5' der hinteren Stirnseite 8' verläuft.
  • Im vorliegenden Ausführungsbeispiel wurde jeweils eine lineare Änderung des Winkels β zu Grunde gelegt, die also proportional zum jeweiligen axialen Abstand eines Profilschnitts von der vorderen Stirnseite ist. Selbstverständlich ist es auch möglich, eine andersartige veränderliche Zunahme des Winkels β als Funktion der axialen Länge festzulegen. Entsprechendes gilt auch für die Zunahme des Winkels δ von 0° auf den gewünschten Sollwert. Zu letzterem ist anzumerken, dass dieser Sollwert, also die Scherstegbreite im axialen Mittelbereich des Schneckenelements, nicht unbedingt streng konstant sein muss. Eine konstante Scherstegbreite bedeutet eine über die axiale Länge des Scherstegs konstante Größe der Scherung.
  • Bezugszeichenliste:
  • 1,1'
    Schneckensteg
    2, 2'
    Grund
    3, 3'
    linke Flanke
    4, 4'
    rechte Flanke
    5, 5'
    linke Stegkante
    6,6'
    rechte Stegkante
    7
    Schersteg
    8, 8'
    vordere bzw. hintere Stirnseite
    9, 9'
    Punkt
    10
    Längsachse
    11, 11'
    Kante
    x
    axiale Teillänge
    I
    axiale Länge
    α
    Verdrehwinkel des Profils
    β
    Windungswinkel des Scherstegs
    δ
    Schersteg-Kammwinkel
    ϕ
    Kammwinkel
    Ra
    Außenradius
    Ri
    Kemradius
    Rs
    Scherstegradius
    P1a - P12g
    Punkte in den Profilschnitten A-A bis G-G
    a-g
    Profilabschnitt in axialer Richtung
    Tabelle 1
    Profilschnitt Parameterangaben zu den Kreisbögen der Profilschnitte
    A-A Endpunkte P1a, P3a P3a, P4a P4a, P5a P5a, P6a P6a, P7a P7a, P1a
    Radius Ra+ Ri Ra + Ri Ri Ra + Ri Ra + Ri Ra
    Mittelpunkt P6a P7a 10 P1a P3a 10
    B-B Endpunkte P1b, P2b P2b, P3b P3b, P4b P4b, P5b P5b, P6b P6b, P8b P8b, P7b P7b, P1b
    Radius Ra + Ri RS Ra + Ri Ri Ra+ Ri Ri + Ra - Rs Ra + Ri Ra
    Mittelpunkt P6b 10 P7b 10 P1b 10 P3b 10
    C-C Endpunkte P1c, P2c P2c, P3c P3c, P4c P4c, P5c P5c, P6c P6c, P9c P9c, P8c P8c, P7c P7c, P1c
    Radius Ra + Ri RS Ra + Ri Ri Ra + Ri Ra + Ri Ri + Ra - RS Ra + Ri Ra
    Mittelpunkt P6c 10 P7c 10 P1c P2c 10 P3c 10
    D-D Endpunkte P1d, P2d P2d, P3d P3d, P6d P6d, P9d P9d, P8d P8d, P1d
    Radius Ra+Rl RS Ra + Rl Ra + Rl Rl + Ra - RS Ra + Rl
    Mittelpunkt P6d 10 P1d P2d 10 P3d
    E-E Endpunkte P1e, P11e P11e, P12e P12e, P2e P2e, P3e P3e, P6e P6e, P10e P10e, P9e P9e, P8e P8e, P1e
    Radius Ra + Rl Ri Ra + Rl RS Ra + Rl Ra Ra + Ri Rl + Ra - RS Ra + Rl
    Mittelpunkt P6e 10 P10e 10 P1e 10 P2e 10 P3e
    F-F Endpunkte P1f, P11f P11f, P12f P12f, P2f P2f, P3f P3f, P6f P6f, P10f P10f, P9f P9f, P1f
    Radius Ra + Rl Rl Ra + Rl RS Ra + Ri Ra Ra + Ri Ri + Ra - RS
    Mittelpunkt P6f 10 P10f 10 P1f 10 P2f 10
    G-G Endpunkte P1g, P11g P11g, P12f P12g, P2g P2g, P6g P6g, P10g P10g, P1g
    Radius Ra + Ri Ri Ra + Ri Ra + Ri Ra Ra + Ri
    Mittelpunkt P6g 10 P10g P1g 10 P2g
    Tabelle 2
    Profilabschnitt Anfangsgrenzwinkel Endgrenzwinkel
    a δ = 0 °
    Figure imgb0001
    δ = 0 °
    Figure imgb0002
    (Schnitt A - A) β = arccos ( Ra 2 + Rs 2 - ( Ri + Ra ) 2 RaRs
    Figure imgb0003
    β = 180 ° - arccos Ri + Ra 2 - Ra 2 - Ri + Ra - Rs 2 - 2 Ra Ri + Ra - Rs
    Figure imgb0004
    - arccos 1 - Ri + Ra 2 Ra 2
    Figure imgb0005
    b δ = 0 °
    Figure imgb0006
    δ = δ Soll
    Figure imgb0007
    (Schnitt B - B) β = 180 ° - arccos R i + Ra - Ra 2 - Ri + Ra - Rs - 2 Ra Ri + Ra - Rs
    Figure imgb0008
    β = 180 ° - arccos Ri + Ra 2 - Ra 2 - Ri + Ra - Rs 2 - 2 Ra ( Ri + Ra - Rs ) + δ soll
    Figure imgb0009
    c δ = δ Soll
    Figure imgb0010
    δ = δ Soll
    Figure imgb0011
    (Schnitt C - C) β = 180 ° - arccos Ri + Ra 2 - Ra 2 - Ri + Ra - Rs 2 - 2 Ra Ri + Ra - Rs + δ Soll
    Figure imgb0012
    β = arccos Ra 2 + Rs 2 - Ri + Ra 2 / 2 RaRs
    Figure imgb0013
    d δ = δ Soll
    Figure imgb0014
    δ = δ Soll
    Figure imgb0015
    (Schnitt D - D) β = arccos Ra 2 + Rs 2 - Ri - Ra 2 / 2 RaRs
    Figure imgb0016
    β = 360 ° - arccos 2 Ra 2 - Ri + Ra 2 2 Ra 2 - arccos Ra 2 + Rs 2 - Ri + Ra 2 2 RaRs + δ Soll
    Figure imgb0017
    e δ = δ Soll
    Figure imgb0018
    δ = δ Soll
    Figure imgb0019
    (Schnitt E - E) β = 360 ° - arccos 2 Ra 2 - Ri + Ra 2 2 Ra 2 - arccos Ra 2 + Rs 2 - Ri + Ra 2 2 RaRs + δ Soll
    Figure imgb0020
    β = 180 ° + arccos Ra 2 + Ri + Ra - Rs 2 - Ri + Ra 2 2 Ra ( Ri + Ra - Rs ) - arccos 2 Ra 2 - Ri + Ra 2 ) 2 Ra 2
    Figure imgb0021
    f δ = δ Soll
    Figure imgb0022
    δ = 0 °
    Figure imgb0023
    (Schnitt F - F) β = 180 ° + arccos Ra 2 + Ri + Ra - Rs 2 - Ri + Ra 2 2 Ra ( Ri + Ra - Rs ) - arccos 2 Ra 2 - Ri + Ra 2 2 Ra 2
    Figure imgb0024
    β = 180 ° + arccos Ra 2 + Ri + Ra - Rs 2 - Ri + Ra 2 2 Ra ( Ri + Ra - Rs ) - arccos 2 Ra 2 - Ri + Ra 2 2 Ra 2
    Figure imgb0025
    9 δ = 0 °
    Figure imgb0026
    δ = 0 °
    Figure imgb0027
    (Schnitt G - G) β = 180 ° + arccos Ra 2 + Ri + Ra - Rs 2 - Ri + Ra 2 2 Ra ( Ri + Ra - Rs ) - arccos 2 Ra 2 - Ri + Ra 2 2 Ra 2
    Figure imgb0028
    β = 360 ° - arccos 2 Ra 2 - Ri + Ra 2 2 Ra 2 - arccos Ra 2 + Rs 2 - Ri + Ra 2 2 RaRs + arccos 1 - Ri + Ra 2 2 Ra 2
    Figure imgb0029

Claims (7)

  1. Schneckenelement mit einem Außenradius Ra und einem Kemradius Ri für Mehrschneckenextruder mit gleichsinnig drehenden und miteinander kämmenden Schneckenwellen, insbesondere für Doppelschneckenextruder, das im axialen Querschnitt durch seine Längsachse (10) ein Profil aufweist, das an den beiden axialen Stirnseiten (vordere Stirnseite 8, hintere Stirnseite 8') jeweils nur einen einem herkömmlichen eingängigen Schneckenelement für miteinander kämmende Schneckenwellen entsprechenden Schneckensteg (1, 1') aufweist, dessen Stegoberfläche zwischen einer linken (5, 5') und einer rechten Stegkante (6, 6') Teil einer Zylinderoberfläche mit dem Außenradius Ra ist, wobei jede Stirnseite (8, 8') einen kreisförmigen Grund (2, 2') mit dem Kemradius Ri der Schneckenwelle und eine linke (3, 3') und eine rechte Flanke (4, 4') aufweist, die den Grund (2, 2') mit der linken (5, 5') bzw. rechten Stegkante (6, 6') des Schneckenstegs (1, 1') verbindet,
    dadurch gekennzeichnet,
    - dass die Breite (Kammwinkel ϕ) des Schneckenstegs (1) sich ausgehend von der vorderen Stirnseite (8) und der dem Drehsinn des Schneckenelements entgegengesetzten Stegkante (bei Rechtsdrehung die linke Stegkante 5) entlang der Längsachse (10) bis zu einer Teillänge a der axialen Länge I des Schneckenelements bis auf 0 zu einer Kante (11) reduziert, deren Abstand von der Längsachse (10) sich danach zunächst reduziert und die anschließend mit wieder größer werdendem Abstand von der Längsachse (10) in der dem Drehsinn des Schneckenelements entsprechenden Stegkante (bei Rechtsdrehung die rechte Stegkante 6') an der hinteren Stirnseite (8') endet,
    - dass entsprechend umgekehrt die Breite (Kammwinkel ϕ) des Schneckenstegs (1') sich ausgehend von der hinteren Stirnseite (8') und der dem Drehsinn entsprechenden Stegkante (6') entlang der Längsachse bis zu einer Teillänge a der axialen Länge I des Schneckenelements bis auf 0 zu einer Kante (11') reduziert, deren Abstand von der Längsachse (10) sich danach zunächst reduziert und die anschließend mit wieder größer werdendem Abstand von der Längsachse (10) in der dem Drehsinn des Schneckenelements entgegengesetzten Stegkante (5) an der vorderen Stirnseite (8) endet,
    - und dass ein Schersteg (7) mit konstantem Scherstegradius Rs, der größer als Ri und kleiner als Ra ist, ausgehend (Punkt 9) von der dem Drehsinn des Schneckenelements entsprechenden Flanke (4) der vorderen Stirnseite (8) schraubenlinienförmig entsprechend dem Drehsinn des Schneckenelements zu der dem Drehsinn des Schneckenelements entgegengesetzten Flanke (3') der hinteren Stirnseite (8') (Punkt 9') verläuft, wobei der Schersteg (7) in seiner axialen Länge aus einem axialen Mittelstück mit im wesentlichen konstanter Stegbreite (Stegwinkel) und daran anschließend zu den beiden Punkten (9, 9') auf den Flanken (4, 3') hin aus jeweils einem Übergangsstück zusammengesetzt ist, dessen Stegbreite sich zur jeweiligen Stirnseite (8, 8') hin zunächst auf 0 reduziert und das dann als Kante in dem jeweiligen Punkt (9, 9') der Flanke (4, 3') an der Stirnseite (8, 8') endet.
  2. Schneckenetement nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das Profil auf ein dichtes Kämmen der Schneckenelemente ausgelegt ist.
  3. Schneckenelement nach Anspruch 2,
    dadurch gekennzeichnet,
    dass der Form des Schneckenelements mindestens über ein Teilstück seiner axialen Länge I eine zusätzliche Steigung (Querschnittstordierung) überlagert ist.
  4. Schneckenelement nach Anspruch 3,
    dadurch gekennzeichnet,
    dass die zusätzliche Steigung zur Verstärkung eines Rückfördereffektes des Schneckenelements durch Tordierung des Querschnitts gegenüber der vorderen Stirnseite in Richtung der vorgesehenen Drehrichtung des Schneckenelements erzeugt ist.
  5. Schneckenelement nach Anspruch 3,
    dadurch gekennzeichnet,
    dass die zusätzliche Steigung zur Verminderung eines Rückfördereffektes oder zur Erzeugung eines Vorwärtsfördereffektes durch Tordierung des Querschnitts gegenüber der vorderen Stirnseite in Richtung entgegen der vorgesehenen Drehrichtung des Schneckenelements erzeugt ist.
  6. Schneckenelement nach einem der Ansprüche 4 - 5,
    dadurch gekennzeichnet,
    dass die zusätzliche Steigung dem Schneckenelement über seine gesamte axiale Länge I überlagert ist.
  7. Schneckenelement nach einem der Ansprüche 1 - 5,
    dadurch gekennzeichnet,
    dass mehreren axialen Abschnitten des Schneckenelements unterschiedliche zusätzliche Steigungen überlagert sind.
EP02722005A 2001-03-22 2002-03-08 Schneckenelement für gleichsinnig drehende mehrschneckenextruder Expired - Lifetime EP1377429B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10114727 2001-03-22
DE10114727A DE10114727B4 (de) 2001-03-22 2001-03-22 Schneckenelement für gleichsinnig drehende Mehrschneckenextruder
PCT/DE2002/000901 WO2002076707A1 (de) 2001-03-22 2002-03-08 Schneckenelement für gleichsinnig drehende mehrschneckenextruder

Publications (2)

Publication Number Publication Date
EP1377429A1 EP1377429A1 (de) 2004-01-07
EP1377429B1 true EP1377429B1 (de) 2006-11-29

Family

ID=7679030

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02722005A Expired - Lifetime EP1377429B1 (de) 2001-03-22 2002-03-08 Schneckenelement für gleichsinnig drehende mehrschneckenextruder

Country Status (9)

Country Link
US (1) US6974243B2 (de)
EP (1) EP1377429B1 (de)
JP (1) JP4187531B2 (de)
CN (1) CN1239309C (de)
AT (1) ATE346737T1 (de)
CA (1) CA2441329C (de)
DE (2) DE10114727B4 (de)
TW (1) TW515749B (de)
WO (1) WO2002076707A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6908573B2 (en) 2003-04-17 2005-06-21 General Electric Polymeric resin blends and methods of manufacture thereof
US20070047380A1 (en) * 2005-08-30 2007-03-01 Benjamin Craig A Extruder screw tip
DE102008029304A1 (de) * 2008-06-20 2009-12-24 Bayer Technology Services Gmbh Verfahren zur Erzeugung von Schneckenelementen
DE102008029306A1 (de) * 2008-06-20 2009-12-24 Bayer Technology Services Gmbh Schneckenelemente mit reduziertem Energieeintrag beim Druckaufbau
JP5318709B2 (ja) * 2009-08-26 2013-10-16 ポリプラスチックス株式会社 スクリューエレメントピース及びスクリュー
KR101732206B1 (ko) 2009-09-29 2017-05-02 코페리온 게엠베하 다축 웜 기계에서 재료를 처리하기 위한 처리요소, 및 다축 웜 기계
DE102009059072A1 (de) 2009-12-18 2011-06-22 Bayer Technology Services GmbH, 51373 Schneckenelemente zur Extrusion viskoelastischer Massen
CN102225316A (zh) * 2011-06-10 2011-10-26 北京化工大学 转子三角形排列的三转子连续混炼机组
CN102228817A (zh) * 2011-06-10 2011-11-02 北京化工大学 转子一字型排列的锥形三转子连续混炼机组
EP2747980B1 (de) * 2012-02-28 2016-07-20 Steer Engineering Private Limited Extrudermischelement
CN103112193B (zh) * 2013-02-19 2015-04-29 广东轻工职业技术学院 具有拉伸作用同向自洁双螺杆挤出机及其加工方法
FR3007685B1 (fr) * 2013-06-27 2016-02-05 Clextral Element de vis pour une extrudeuse bivis corotative, ainsi qu'extrudeuse bivis corotative correspondante
CN105984110B (zh) * 2015-03-23 2019-10-15 思蒂亚工程私人有限公司 一种用于同向旋转的双螺杆加工设备的元件
JP7180244B2 (ja) * 2018-09-27 2022-11-30 セイコーエプソン株式会社 可塑化装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1180718B (de) * 1962-04-11 1964-11-05 Bayer Ag Knetvorrichtung mit zwei oder mehr Schnecken
JPS5829733B2 (ja) * 1977-11-19 1983-06-24 積水化学工業株式会社 押出機
GB8804313D0 (en) * 1988-02-24 1988-03-23 Apv Plc Improvements in/relating to mixers
DE4239220C2 (de) * 1992-11-21 1996-08-22 Blach Verfahrenstechnik Gmbh Gleichdrall - Doppelschneckenextruder
US5573332A (en) * 1993-09-02 1996-11-12 Werner & Pfleiderer Gmbh Screw element for a screw-like extrusion machine
US6062719A (en) * 1996-09-24 2000-05-16 The Dow Chemical Company High efficiency extruder
US6116771A (en) * 1999-02-05 2000-09-12 Krupp Werner & Pfleiderer Corporation Multi-shaft extruder screw bushing and extruder

Also Published As

Publication number Publication date
CN1239309C (zh) 2006-02-01
DE10114727A1 (de) 2002-10-02
EP1377429A1 (de) 2004-01-07
US20040114455A1 (en) 2004-06-17
US6974243B2 (en) 2005-12-13
DE50208845D1 (de) 2007-01-11
WO2002076707A1 (de) 2002-10-03
JP2004521780A (ja) 2004-07-22
CN1494475A (zh) 2004-05-05
TW515749B (en) 2003-01-01
JP4187531B2 (ja) 2008-11-26
CA2441329C (en) 2007-01-30
DE10114727B4 (de) 2005-05-12
ATE346737T1 (de) 2006-12-15
CA2441329A1 (en) 2002-10-03

Similar Documents

Publication Publication Date Title
EP1377429B1 (de) Schneckenelement für gleichsinnig drehende mehrschneckenextruder
EP2483051B1 (de) Behandlungselement zur behandlung von material in einer mehrwellen-schneckenmaschine sowie mehrwellen-schneckenmaschine
DE2731301A1 (de) Vorrichtung zum kontinuierlichen mischen
EP1523403B1 (de) Extruder
DE1502335B2 (de) Schneckenstrangprese fuer die verarbeitung von kunststoff
DE2608307B2 (de) Mehrgängige Extruderschnecke
DE2262016A1 (de) Mischeinrichtung
DE102019129717A1 (de) Einschneckenextruder
DE4439535A1 (de) Selbstschneidende Schraube
EP3093119A1 (de) Extruderschnecke und verfahren zu ihrer umrüstung
DE10130759A1 (de) Plastifiziersystem, Mischsystem für Flüssigkeiten und Verfahren zur Verarbeitung von Kunststoffmaterial mit einem Einschnecken-Plastifiziersystem
EP0490362B1 (de) Hochleistungsextruder mit konstanter Gangzahl im Einlauf- und Auslaufbereich eines Transferscherteiles
DE2365132A1 (de) Befestigungsmittel mit einem sperroder klemmgewinde
DE4120016C1 (de)
DE3134479C2 (de) Vorrichtung zum kontinuierlichen Aufschmelzen und Mischen von Kunststoffen
DE3533225C2 (de)
DE1909009B2 (de) Mehrgaengige extruderschnecke
DE4114610C2 (de) Stifttransferextruder
DE102017111284B4 (de) Extruderschneckenwellenpaar für einen Doppel-schneckenextruder
DE3839621A1 (de) Planetwalzenextruder
DE8427830U1 (de) Schneckenextruder
DE1802593A1 (de) Doppelschneckenpresse
EP2535165B1 (de) Doppelschneckenextruder mit wellenförmigem Steg
DE2317617C3 (de) Mehrschneckenextruder zum Plastizieren von thermoplastischen Kunststoffen
DE10230118A1 (de) Extruder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061129

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061129

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061129

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50208845

Country of ref document: DE

Date of ref document: 20070111

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070312

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070430

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061129

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140319

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140312

Year of fee payment: 13

Ref country code: FR

Payment date: 20140319

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140319

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140319

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 346737

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150308

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150308

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150308

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160324

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170308

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50208845

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B29C0047400000

Ipc: B29C0048400000

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50208845

Country of ref document: DE

Representative=s name: ROIDER, STEPHAN, DIPL.-ING. (FH), DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50208845

Country of ref document: DE

Representative=s name: WILHELM, LUDWIG, DIPL.-PHYS., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50208845

Country of ref document: DE

Representative=s name: ROIDER, STEPHAN, DIPL.-ING. (FH), DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50208845

Country of ref document: DE

Owner name: KRAUSSMAFFEI EXTRUSION GMBH, DE

Free format text: FORMER OWNER: KRAUSSMAFFEI BERSTORFF GMBH, 30625 HANNOVER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50208845

Country of ref document: DE

Representative=s name: WILHELM, LUDWIG, DIPL.-PHYS., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50208845

Country of ref document: DE

Representative=s name: WILHELM, LUDWIG, DIPL.-PHYS., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200320

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208845

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001