EP1356729B1 - Dispositif de mesure pour machine agricole - Google Patents

Dispositif de mesure pour machine agricole Download PDF

Info

Publication number
EP1356729B1
EP1356729B1 EP03005674A EP03005674A EP1356729B1 EP 1356729 B1 EP1356729 B1 EP 1356729B1 EP 03005674 A EP03005674 A EP 03005674A EP 03005674 A EP03005674 A EP 03005674A EP 1356729 B1 EP1356729 B1 EP 1356729B1
Authority
EP
European Patent Office
Prior art keywords
map
map image
distance
working
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP03005674A
Other languages
German (de)
English (en)
Other versions
EP1356729A1 (fr
Inventor
Norbert Dr. Diekhans
Helmut Homburg
Jochen Huster
Manfred Pollklas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Claas Selbstfahrende Erntemaschinen GmbH
Original Assignee
Claas Selbstfahrende Erntemaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=28051059&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1356729(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Claas Selbstfahrende Erntemaschinen GmbH filed Critical Claas Selbstfahrende Erntemaschinen GmbH
Publication of EP1356729A1 publication Critical patent/EP1356729A1/fr
Application granted granted Critical
Publication of EP1356729B1 publication Critical patent/EP1356729B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/14Mowing tables
    • A01D41/141Automatic header control

Definitions

  • the present invention relates to methods and measuring devices for determining the Distance between an agricultural machine and the ground, where the agricultural machine from a self-propelled working machine and a Attachment consists and at least one sensor the distance between the attachment and the surface of the field determined without contact,
  • a mechanical floor button This determines the distance of the attachment to the surface of the field.
  • a downstream control device controls the height of the attachment over the surface of the field in dependence of sensed distance.
  • DE 38 07 610 C2 several floor buttons distributed over the working width on the attachment to order. The sensed distances are controlled by a controller for automatic height control of the attachment above the field or for automatic Control of the bank of the attachment, used.
  • the floor buttons are spring-loaded and act mechanically on the crop or on the ground.
  • a boom assembly is known, for example, on a Tractor is arranged and receives a spray device.
  • a plurality of sensors 51-54 are arranged, which the distance determine the boom 10 in such a way that is made up of field soil and plant growth resulting surface is detected.
  • the sensors used have thus the disadvantage that in the dense field vegetation the distance to the plant and do not determine the distance to the ground.
  • the object is achieved in that the agricultural machine at least one sensor is assigned, by means of at least one of the field vegetation penetrating electromagnetic wave at least the distance to the Ground determined without contact.
  • the use of such electromagnetic Wave allows a safe detection of the distance to the ground, since they the Field vegetation penetrates and reflects on the ground.
  • a radar sensor is used as the at least one sensor.
  • the electromagnetic waves emitted by the radar sensor penetrate the field even over long distances and are reliably reflected by the surface of the ground. From the location of the sensor on the agricultural machine and its orientation to the ground, the distance of the ground to the agricultural machine in conjunction with the received signal of the electromagnetic wave can be easily calculated.
  • the at least one radar sensor worked with a frequency of 24 GHz. This frequency is advantageous for the penetration of field crops occurring in agriculture and is at the same time an internationally freely usable frequency.
  • the transmission signal of the at least one radar sensor is sinusoidally frequency-modulated.
  • the transmission signal of the at least one radar sensor is linearly frequency-modulated. This advantageously makes it possible to determine a plurality of distance values from a received signal by means of only one radar sensor.
  • the object is also achieved in that the agricultural machine is associated with at least one sensor which determines by means of at least one focused at least approximately perpendicular to the ground focused electromagnetic wave to the field vegetation over the distance to the ground without contact.
  • the approximately vertical orientation allows a scan along the field growth to the ground with the least possible interference by the vertically grown field vegetation, such as blades of grass or stubble.
  • the scanning of the scanning beam is punctiform and requires only a minimal viewing window to the ground to be able to feel this safe. In particular, this scanning beam penetrates as far as possible past the field vegetation to the ground.
  • at least one sensor is a laser sensor.
  • the field growth is advantageously scanned and constantly run over new windows to the ground, so that the ground is continuously detectable.
  • inventively proposed solutions enable one hand the location of the sampling point on the ground relative to the agricultural machine choose freely and on the other hand, the attachment of the sensor to the agricultural Free to adapt machine to the equipment and their training.
  • the possible scanning distances and the achievable measuring accuracies of the used sensors are advantageous in the required areas and exceed the well-known mechanical floor buttons.
  • a soil copying the attachment also when harvesting with larger cutting heights possible.
  • inventively non-contact scanning of the ground is for cornering or for the reverse drive of the agricultural machine a special constructive design of the sensors not required.
  • the at least one sensor determines the distance to the ground by an oscillating scanning signal in several places.
  • This oscillating Movement of the scanning signal advantageously provides a plurality of distance values within a short time and increases the likelihood of the distance to Bottom scanned through a window. For this variety of Measured values can then be advantageously selected the most probable measured value, which corresponds to the distance to the ground.
  • a sensor works with several scanning signals, which are then the ground area scan and advantageous information about the contour and in particular provide the slope of the soil with respect to the agricultural machine. Further allows the multitude of distance values to be evaluated with respect to one another and thus incorrect measurements in tracks, holes or on mounds.
  • the determination of a plurality of distance values to the ground can be detected by at least one moving scanning beam or a moving sensor or multiple sensors.
  • at least two transverse to the direction of Distance values determined by a sensor are selected according to the greatest distance value become.
  • a plurality of distance values of a plurality of sensors in stored in a memory and according to the largest distance values or certain Selection criteria such as maximum / minimum values are selected.
  • At least one non-contact sensor is in a further embodiment of the invention advantageously possible that the at least a sensor the distance to the ground in the direction of travel of the agricultural machine anticipatory determined. This is an early detection of changes in the soil profile before harvesting or picking up crops advantageous through the field growth through or past this possible.
  • An automatic Bodenkopêt of the attachment can thus be controlled in advance become.
  • the wear caused by ground contact with female elements like fingers or tines, as well as knife bars and floor parts on the attachment can be advantageously reduced and largely avoided.
  • the at least one determined distance to Floor for automatic control of the distance of the attachment to the ground used is guaranteed.
  • a strong understory has, for example, weeds in a grain inventory no influence on the height guidance and a uniform stubble height is achieved advantageously.
  • the at least one sensor determines the distance to the ground and at least one further distance to the field vegetation. hereby can advantageously by means of a sensor more height information on the sensed Field area are derived. For example, the height of the field vegetation or a swath lying on the field or the stubble height determined become.
  • the invention can be designed such that at least two transverse to Driving direction of the agricultural machine determined distance values for tracking used in the agricultural machine.
  • the distance values determined by at least one sensor transversely to the direction of travel to determine the distance to the ground and to locate the location a processing edge are used.
  • a sensor is advantageous, the with a transversely moving to the direction of scanning signal and a focused electromagnetic wave works.
  • the at least one sensor determines at least one further parameter of the field growth.
  • this parameter can additionally be determined by a sensor according to the invention for distance measurement and then provides the operator of the agricultural machine with important information for setting and controlling the machine.
  • this parameter is detected and made available before harvesting.
  • the radar sensor according to the invention is suitable for determining an additional parameter such as the density and / or the moisture of the field growth.
  • the at least one, of at least one Sensor determined parameters for automatic adjustment and / or control of agricultural machine used is thereby possible, in particular, the agricultural Machine even before harvesting the sensed field vegetation on the appropriate Parameter automatically set. This happens contactless and without additional sensor.
  • an optimized setting of agricultural Machine harvested or the tracking are improved.
  • the at least one sensor is arranged on the attachment.
  • These Arrangement allows early detection of the at least one distance to the ground. Furthermore, the at least one arranged there sensor with a smaller Measurement distance / scanning distance are designed, thereby reducing the cost of the sensor will be smaller.
  • Another advantage arises with this arrangement by the direct change of the measured distance with an adjustment of the Attachment capable of the ground. The changed setting is directly from the detected at least one sensor, so that to further sensors for detecting the Position of the attachment and a conversion of the determined distance value to the necessary intent level can be waived.
  • An arrangement of at least a sensor on the attachment instead of the bottom button provides at low working height the same functionality of the ground copying for the attachment. however at higher working heights the difference is apparent.
  • the sensors according to the invention do not lose contact with the ground and a soil copying even with larger ones Working heights are guaranteed. Also, this arrangement provides without much effort the possibility of the scanning of a laser sensor perpendicular or respectively to align perpendicular to the ground.
  • the at least one sensor is in one Divider of the attachment arranged.
  • This attachment advantageously allows a protected, located just above the bottom mounting the sensor and allowed a simple predictive determination of the distance to the ground.
  • Advantageous become the manufacturing costs of a sensor through this mounting location and the so achievable, shorter scan distance reduced.
  • one in the compartment arranged laser sensor has the advantage that by the Abteiler the field vegetation pressed apart and the view to the ground is improved.
  • the invention Passing the focused electromagnetic wave past the field vegetation is hereby additionally improved and an approximately vertical orientation the scanning beam at the same time predictive scanning of the soil is continue to allow in a simple manner advantageous.
  • a further advantageous embodiment of the invention is characterized in that that the at least one sensor above the unharvested field vegetation in the direction of travel the agricultural machine is arranged in advance.
  • This arrangement allows for a predictive scan of the surface of the standing or unearned field growth with the smallest possible scanning distance.
  • this also advantageously a vertical or vertical determination of the distance to the ground anticipatory possible, thereby a simple evaluation and a direct use of the distance values for soil copying and for tracking is enabled.
  • FIG. 1 shows a combine harvester 20 with a plurality of measuring devices 46; 48 and 50 arranged in advance in the direction of travel 15. These keys scan the distance to the ground in the direction of travel 15 in a contactless manner at several points and enable premature detection of changes in the height profile of the ground as well as a timely thereto Reaction of control of the soil copying of the grain cutter 21.
  • the grain cutter 21 is carried by the intake passage 45 and can be adjusted in height with respect to the ground.
  • the bank of the cereal cutter 21 is made possible by a corresponding recording on two height-adjustable trunnions on the intake duct 45 and its control.
  • a reel 44 is arranged at the grain cutting unit 21, a reel 44 is arranged.
  • a radar sensor 50 is arranged to be vertically movable on a holding arm 43 above the crop field 35 at half the working width.
  • the height of the radar sensor 50 can be adjusted by a lifting cylinder 57 and in conjunction with the height adjustment of the reel 44 done. The least possible visual obstruction for the operator of the combine harvester 20 and the closest possible alignment of the radar sensor 50 to the existing surface is thus possible.
  • the radar sensor 50 includes two horn antennas 51 and 54. Each horn antenna 51; 54 concentrates an electromagnetic wave and directs it toward the bottom of the field 69.
  • the transmission signals of the radar sensor 50 penetrate the grain stock 35 and are reflected on the surface of the soil.
  • the so-called CW (continuous wave) radar sensor is particularly suitable as radar sensor 50.
  • This works with electromagnetic waves in the microwave range with an internationally approved frequency of 24GHz, for example. It has also been shown in experiments that the use of this frequency is particularly suitable for penetrating field crops 35, 36 occurring in agriculture. Radar signals with other frequencies are quite usable, with the use of higher frequencies being influenced more strongly and lower frequencies being less influenced or reflected by the field vegetation 35, 36.
  • the radar sensors 50 used can be used adapted to the particular application.
  • a sinusoidal frequency modulation (SFM) or a linear frequency modulation (LFM) of the carrier frequency is suitable for the distance measurement according to the invention.
  • a radar signal transmitted by the SFM method can be used to determine the distance to a target, whereby a radar signal transmitted by the LFM method makes it possible to determine several distances to the multiple targets.
  • the radar sensor 50 is equipped with an FFT evaluation (Fast Fourier Transformation) and corresponding hardware with a digital signal processor (DSP). From the received signal, the respective distance to a destination is determined on the basis of a frequency analysis.
  • FFT evaluation Fast Fourier Transformation
  • DSP digital signal processor
  • the radar sensor 50 used here operates according to the LFM method and determines from the received signal, the distance to a first detection area 52 "bottom” and to a further detection area 53 "grain surface". On the basis of these determined values, the setting of the combine harvester 20 and in particular the grain cutting unit 21 can be automatically guided in height or the position of the cutter bar and the reel 44 can be automatically adapted to the grain stock 35 and the desired stubble height. Furthermore, an evaluation of the noise signal from the received signal between the two detection areas 52, 53 is possible. This noise signal contains information about the density or the moisture of the grain stock 35. The radar sensor 50 can evaluate this information and provide it for display or adjustment and / or control of the combine harvester 20.
  • Corresponding mapping of crop level 35, crop density and moisture associated with a navigated position on field 69 will provide a corresponding map of location information and allow later assessment and use of this information via field 69.
  • the radar sensor 50 is equipped with another horn antenna 54 and determines the distance to further detection areas 55 and 56, wherein the horn antenna 54 is arranged aligned with the radar sensor 50, that the detection areas 55 and 56 respectively adjacent to the detection areas 52 and 53 occur.
  • the double adjacent detection of grain stock 35 and the soil allows for improved detection of the distance and the further information of the grain field 35. This can be incorrect measurements by lanes eliminate and derive a statement about the height profile of the soil and the grain surface also transverse to the direction of travel 15.
  • the SFM method is also suitable.
  • the determination according to the invention of the distance to the ground through the grain field 35 is thereby possible.
  • the distance value is determined by a simple evaluation of the received signal in conjunction with the transmission signal on the basis of an amplitude and phase position evaluation.
  • Relative to the radar sensors 50 which operate according to the LFM method there is a simple lower cost hardware of the radar sensor 50.
  • the arrangement of two horn antennas 51 and 54 on the radar sensor 50, in conjunction with the use of the SFM method, further enables a measurement of the distance to the ground
  • a simple arrangement of the radar sensor 50 with only one horn antenna 51 or 54 is also conceivable and allows at least the measurement of the distance to the ground.
  • a particular combination of a radar sensor 50 for ground detection and a laser sensor 46, 48 for surface detection instead of the radar sensor 50 shown is possible.
  • each have a laser sensor 46 and 48 are arranged. These detect with punctiform scanning rays 47, 49, which are oriented approximately perpendicular to the ground, the height of the grain cutting unit 21 above the ground.
  • the distance values determined by the laser sensors 46, 48 are fed to an evaluation unit 16 arranged on the intake channel 45. From the distance values of the laser sensors 46, 48, this evaluation unit 16 determines the corresponding control signals for a further control device, not shown, in order to be able to guide the grain cutting unit 21 with a respective equal distance from the ground and also with a predetermined target working height.
  • the evaluation unit 16 can also be arranged on the cereal cutting unit 21 itself or be part of a central control of the combine harvester 20.
  • the distance values determined by the radar sensor 50 can also be fed to the bottom of said evaluation unit 16 and used for soil copying of the grain cutting unit 21, in particular in conjunction with the distance values of the laser sensors 46;
  • the position of the laser sensor 46 is predetermined by its arrangement on the divider 31 within the grain field 35.
  • the scanning beam 47 in the direction of travel 15 scans the distance to the ground along a line one behind the other, resulting in a scanning effect of the rigidly directed scanning beam 47.
  • the determined distance values are stored in a memory in, for example, the sensor or the evaluation unit. From the determined samples, a height profile in the direction of travel 15 can be created by the evaluation unit. On the basis of the maximum distance values occurring in the height profile, these distance values are defined by definition as distance values to the ground and then used at least for height guidance of the grain cutting unit 21. Furthermore, a ring memory may be present in a sensor or in an evaluation unit in which the distance values of a sensor determined one behind the other are stored. The largest distance value located in the memory is then used according to the invention for controlling the soil leveling of the grain cutting unit 21.
  • the laser sensor 48 mounted in the left divider 30 does not differ from the function of the laser sensor 46 in the right hand divider 31, but is arranged outside the cereal field 35 in the area of the stubble field 36, as shown in FIG. Depending on the working height of the divider 31, the scanning beam 49 then scans the distance to the stubble, the underbrush and to the ground.
  • a combine harvester 20 with a plurality of measuring devices 32, 33, 34 mounted thereon is shown in a plan view. Seen in the direction of travel 15, these measuring devices 32, 33, 34 are designed as radar sensors 32, 33, 34, each having two antennas 51, 54 and arranged in front of the cutter bar 28.
  • the radiation characteristic of a radar sensor 50 can be influenced by a shaping of the antennas 51, 54, in particular by shaped horn antennas 51, 54, so that, for example, also in connection with the attachment shown by an oval configuration of the opening surface of the horn, an approximately circular scanning surface 37 38; 39; 40; 41; 42 can be produced on the floor of the field 69.
  • a first radar sensor 32 is arranged on the left divider 30 of the grain cutting unit 21 and scans the distance to a first scanning surface 37 at the bottom of the stubble field 36 without contact with a first scanning signal 25. On another scanning surface 38, this radar sensor 32 determines with a further scanning signal 25 a further distance to the bottom of the grain field 35.
  • a further radar sensor 33 is arranged on a holding arm 43 in the middle of the grain cutting unit 21 above the grain field 35.
  • first scanning signal 25 This determined by a first scanning signal 25, the distance to a first scanning surface 39 and another scanning signal 25, the distance to another scanning 40 each within the grain field 35.
  • a further radar sensor 34 is attached at the right divider 31 of the grain cutting unit 21, . This determines at two transversely to the direction of travel 15 spaced apart locations the distance to the ground in the grain field 35. With a first scanning signal 25, the distance to the first scanning 41 and determined by another scanning signal 25, the distance to the other scanning 42.
  • the distance values determined in pairs by one radar sensor 32, 33, 34 each are offset by the radar sensors 32, 33, 34 with one another to form a distance value.
  • a mean distance value can be generated or, after a corresponding evaluation, only one of the two values can be selected for further use.
  • the individual distance values can also be supplied to a common evaluation unit 16, evaluated accordingly and used to control the soil copying of the grain cutting unit 21.
  • only two distance values from two sensors 32, 33, 34 for controlling the ground copying of the grain cutting unit 21 can be selected from a plurality of distance signals, and the further distance values can be discarded as lying in a track or on a ground elevation. In particular, this selection is possible by the determination of a straight line which proceeds with the smallest possible error deviation through all distance values.
  • the distance values that lie with the least error deviation from the particular straight line are selected as relevant distance values and used for ground copying.
  • the radar sensors 32, 33, 34 can also be replaced by measuring devices according to the invention with, for example, moving scanning signals 25, for example a moving antenna 51, 54 or also by two laser sensors 46, 48 or by a respective laser scanner. These then alternatively determine at least one distance value in each case at the locations of the scanning surfaces 37, 38, 39, 40, 41, 42 shown. Wherein at least the distance values determined by the outer sensors 32, 34 can also be used for tracking the combine harvester 20.
  • FIG. 3 shows a combine harvester 20 in a front view with a plurality of measuring devices 24 arranged below the grain cutting unit 21.
  • a plurality of measuring devices 24 distributed over the entire working width, four arranged as radar sensors 24 measuring devices 24 are arranged, which determine the distance to the ground 23 by means of an electromagnetic wave according to the invention.
  • the radar sensors 24 are aligned so that by means of the respective scanning signal 25 directly the vertical distance to the bottom 23 can be determined.
  • the respective radar sensor 24 has a planar antenna and is arranged at the same distance in the direction of travel 15 behind the cutter bar 28 of the grain cutting unit 21.
  • the illustrated cutting heights 26, 27 are the same size in the illustrated example and are automatically controlled according to a desired height. If unevennesses occur on the floor 23 of the field, they are detected by at least one radar sensor 24 by a change in distance.
  • the automatic control of the soil copying controls the distance of the cutter bar 28 in height above the ground 23 and in the bank so that the cereal cutter 21 is kept out as possible without ground contact and parallel to the soil profile.
  • the mounted below the cereal cutter 21 skids 22 do not touch the ground 23 in the illustration shown, but protect the radar sensors 24 from damage and especially when the cereal cutter 21 is used guided close to the ground 23.
  • An arrangement of the radar sensors 24 behind the runners 22 is also possible and would further increase the protection against damage.
  • the four radar sensors 24 shown can each have a separate evaluation and control device for determining the distance and transmit the determined distance value via known electrical connection paths to a device for the automatic ground copying of the grain cutting unit 21.
  • the electromagnetic wave used according to the invention and the corresponding modulation of the transmission signal for the radar sensors 24 can be generated by a device and transmitted in multiplexer mode to the individual antennas. A corresponding evaluation of the received signals can likewise be carried out by an evaluation device for all radar sensors 24.
  • the respective received signal is successively supplied to an evaluation device by means of a high-speed switch (multiplexer) and the respective distance is determined by the evaluation device accordingly.
  • a high-speed switch multiplexer
  • each laser sensor 46, 48 it is also possible according to the invention for each laser sensor 46, 48 to be used, wherein the scanning signals 25 shown are then formed only by a rigid laser beam 47, 49.
  • the use of a laser scanner instead of a radar sensor 24 is possible.
  • the scanning signal 25 shown indicates a scanning plane in which the punctiform laser beam 47; 49 moves in an oscillating manner and scans the distance to the base 23 at a plurality of locations transverse to the direction of travel 15.
  • the largest distance determined in each case is defined as the distance to the ground and used to control the automatic ground copying of the grain cutting unit 21.
  • FIG. 4 shows a plan view of a field 69 with plants 60 distributed thereon. These plants 60 represent the field vegetation, which is hereinblättrige Plants such as weeds. These are disordered, distributed on grown to the ground 23.
  • the height profile of the field 69 by means of the radar sensors 24, 32, 33, 34, 50 or the laser sensors 46, 48 are scanned. The resolution will thereby of the driving speed of the combine harvester 20, the sensing surface and the Sample rate of the sensor 24, 32, 33, 46, 48, 50 determined.
  • the scanning line 67 shows the result of a scanning of the field 69 according to the invention with a rigid scanning beam 47, 49 oriented in the direction of the bottom 23.
  • the laser sensor 46, 48 is arranged, for example, in the divider 30, 31 of a grain cutting unit 21. This is moved by a combine harvester 20 in the direction of travel 15 over the field 69, wherein the distance of the adjacent sampling points 62, 64 from the driving speed of the combine harvester 20 and the sampling rate of the laser sensor 46, 48 is determined.
  • the laser sensor 46, 48 emits focused electromagnetic waves in the form of light signals at a certain rate and determines the distance to a reflecting object 23, 60 over the travel time of the scanning beam 47, 49. In the example shown, this may be plant 60 or soil 23.
  • the scanning beam 47, 49 hits at least partially on a plant 60, this is reflected to the laser sensor 46, 48 and the measured transit time between the transmission and reception of the electromagnetic wave is recognized as a distance value 64 "near". If there is no plant 60 in the way of the laser beam, it will be reflected at the bottom 23 and a corresponding greater distance will be recognized as the distance value 62 "far”.
  • the laser sensor 46; 48 itself or a downstream evaluation unit assigns the determined distance values, for example, to a near / far characteristic and only supplies the distance values with the character "far" to a height or bank angle control for the grain cutting unit 21, in which case using the determined distances the automatic floor copying is done.
  • distance jumps between the scanning of a ground-separated plant 60 and the ground 23 are shown. These distance jumps also occur during the scanning of earth piles, stones and straws lying on the ground. Since the soil profile usually does not have such jumps, these distance jumps can be used to select the distance value and thus filter out unrelevant distance values for soil cultivation.
  • the distance value can be recorded in a memory and the distance values occurring after a detected distance jump can be observed first. If the distance values determined after the distance jump continue (a plurality of distance values have approximately the same value), this is a persistent change in the soil profile, whereupon this value is recognized as the distance to the ground 23 and used to control the soil copying. However, if the distance jump is followed immediately by another distance jump, then a visual obstruction to the bottom or a depression in the bottom from the scanning beam 47, 49 has been previously scanned and this previously determined sample discarded for use in controlling ground copying.
  • inventive laser sensors 46, 48 arranged distributed over the working width of the grain cutting unit 21 and the Distance values generated by the individual laser sensors 46, 48 from a higher-order Evaluation unit 16 evaluated accordingly, the control for the soil copying be supplied.
  • a paired arrangement, for example, at a distance of 0.5m below the cereal cutting plant 21 has been found to be advantageous for this.
  • the individual laser sensors 46, 48 then evaluate first as described inventive method, the distance values, the distance to the Specify floor 23, and then forward them via known electrical means, for example via a CAN bus connection to the common evaluation unit 16.
  • the evaluation unit 16 can also be part of the control for the Be floor copying.
  • An optimal setting of the grain chopper 21 for compliance a predetermined working height over the entire working width is according to the invention thereby ensured.
  • FIG. 4 also shows by way of example further embodiments of the invention. These are embodiments in which according to the invention At least one scanning beam 47, 49 of a laser sensor 46, 48 in the rest position to the ground directed approximately perpendicular, transverse to the direction 63 around the rest position oscillating moves the bottom 23 several times over the scan width 65 of a scan band 68 scans.
  • the individual embodiments shown are different in the respective sampling rate of the laser sensor 46; 48.
  • the laser sensor 46; 48 thus scans pointwise transversely to the direction of travel 15 of the combine harvester 20 a portion of the field 69 off.
  • the bottom 23 can only be determined on the basis of three of the five sampling points.
  • Row 66 shows another example where the sampling of range values is performed at a higher sampling rate. This can be seen at the plurality of sample points 62, 64 within the sample width 65.
  • the sampling points provided with the reference numeral 71 include parts of a plant 60 and therefore fall under the characteristic "near" (field vegetation / plant).
  • sampling points "Nah” recognized and therefore make no contribution to the control for the soil copying of the grain cutting unit 21.
  • the scanning beam 47, 49 used here is further stronger than the scanning beam 47, 49 shown in the previous examples focussed so that the scanning surface 61 is narrower and the scanning beam 47, 49 according to the invention with a higher probability by a smaller viewing window can reach the ground.
  • a zigzag scan 72 within the scanband 68 will occur shown.
  • This form of sampling is caused by an oscillating movement of the Scanning beam 47,49 with a lower frequency than in the previously described and shown examples 61, 66, 70 and a uniform driving speed of the combine harvester 20 across the field 69.
  • the evaluation of the individual determined distances to the sampling points 62, 64, 71 can be carried out within a time span, a sampling width 65 or on the basis of a number of sampling points 62, 64, 71. From a sum of distance values, the greatest distance value is selected according to the invention and used at least for a height control of the attachment. A corresponding averaging over a number of measured distance values as well as a comparison or an evaluation in connection with the previously selected distance values or those used for soil copying can also be carried out.
  • the scanning width 65 is another adjustable parameter of the measuring device according to the invention. In particular, this parameter is varied in conjunction with the scanning distance such that at different scanning heights, in each case within the scanning band 68, 65 distance values are determined over an approximately uniform scanning width.
  • the examples described and shown above can also be transferred to measuring devices which do not work with laser beams.
  • the measuring devices 24 according to the invention shown in the figures; 32; 33; 34; 46; 48; 50 are shown arranged at different locations on a combine 20. Furthermore, different evaluation methods for the scanning signals used according to the invention. It is obvious to a person skilled in the art The invention also to be used on forage harvesters according to the invention and the Examples given by deviating attachments or by others separate or combined evaluation procedures, to further develop.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Catching Or Destruction (AREA)
  • Soil Working Implements (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Claims (21)

  1. Procédé pour déterminer la distance entre une machine agricole et le sol, la machine agricole étant constituée.d'une machine de travail automotrice et d'un engin frontal, et au moins un senseur déterminant sans contact la distance entre l'engin frontal et la surface du champ, caractérisé en ce qu'à la machine agricole (20) est associé au moins un senseur (24 ; 34 ; 50) qui, à l'aide d'au moins une onde électromagnétique traversant la végétation (35 ; 36 ; 60) du champ, détermine sans contact au moins la distance au sol (23).
  2. Procédé selon la revendication 1, caractérisé en ce que le senseur, au nombre d'au moins un, est un senseur radar (24 ; 33 ; 50).
  3. Procédé selon au moins une des revendications précédentes 1 ou 2, caractérisé en ce que le senseur radar (24 ; 33 ; 50), au nombre d'au moins un, fonctionne à une fréquence de 24 GHz.
  4. Procédé selon au moins une des revendications précédentes 1 à 3, caractérisé en ce que le signal de senseur du senseur radar (24 ; 33 ; 50), au nombre d'au moins un, fait l'objet d'une modulation sinusoïdale de fréquence (MSF).
  5. Procédé selon au moins une des revendications précédentes 1 à 4, caractérisé en ce que le signal de senseur du senseur radar (24 ; 33 ; 50), au nombre d'au moins un, fait l'objet d'une modulation linéaire de fréquence (MLF).
  6. Procédé pour déterminer la distance entre une machine agricole et le sol, la machine agricole étant constituée d'une machine de travail automotrice et d'un engin frontal, et au moins un senseur déterminant sans contact la distance entre l'engin frontal et la surface du champ, caractérisé en ce qu'à la machine agricole (20) est associé au moins un senseur (46 ; 48) qui, à l'aide d'au moins une onde électromagnétique focalisée orientée au moins approximativement perpendiculairement au sol (23), détermine sans contact la distance au sol (23) en longeant la végétation (35 ; 36 ; 60) du champ.
  7. Procédé selon la revendication 6, caractérisé en ce que le senseur, au nombre d'au moins un, est un senseur laser (46 ; 48).
  8. Procédé selon au moins une des revendications précédentes 1 à 7, caractérisé en ce que le senseur (24 ; 33 ; 46 ; 50), au nombre d'au moins un, détermine la distance au sol (23) en plusieurs endroits (39 ; 40 ; 52 ; 55 ; 62) à l'aide d'un signal de palpage oscillant (25 ; 47).
  9. Procédé selon au moins une des revendications précédentes 1 à 8, caractérisé en ce que la distance au sol (23) est déterminée en plusieurs endroits (39 ; 40 ; 52 ; 55 ; 62) transversalement à la direction de déplacement (15) de la machine agricole (20).
  10. Procédé selon au moins une des revendications précédentes 1 à 9, caractérisé en ce qu'au moins deux valeurs de distance déterminées d'un senseur (24 ; 33 ; 46 ; 50) sont enregistrées dans une mémoire, et la valeur de distance maximale est définie en tant que valeur de distance au sol (23).
  11. Procédé selon au moins une des revendications précédentes 1 à 10, caractérisé en ce que le senseur (24 ; 33 ; 46 ; 50), au nombre d'au moins un, détermine la distance au sol (23) en précurseur dans la direction de déplacement (15) de la machine agricole (20)..
  12. Procédé selon au moins une des revendications précédentes 1 à 11, caractérisé en ce que la distance au sol déterminée (23), au nombre d'au moins une, est utilisée pour la commande automatique de la distance (26 ; 27) de l'engin frontal (21) au sol (23).
  13. Procédé selon au moins une des revendications précédentes 1 à 12, caractérisé en ce qu'au moins deux distances au sol déterminées (23), distantes l'une de l'autre transversalement à la direction de déplacement (15) de la machine agricole (20), sont utilisées pour la commande de l'inclinaison transversale de l'engin frontal (21).
  14. Procédé selon au moins une des revendications précédentes 1 à 13, caractérisé en ce que le senseur (24 ; 33 ; 46 ; 50), au nombre d'au moins un, détermine la distance au sol (23) et au moins une distance supplémentaire à la végétation (35 ; 36 ; 60) du champ.
  15. Procédé selon au moins une des revendications précédentes 1 à 14, caractérisé en ce qu'au moins deux valeurs de distance déterminées transversalement à la direction de déplacement (15) de la machine agricole (20) sont utilisées pour le guidage de la machine agricole (20).
  16. Procédé selon au moins une des revendications précédentes 1 à 15, caractérisé en ce que le senseur (24 ; 33 ; 46 ; 50), au nombre d'au moins un, détermine au moins un paramètre supplémentaire de la végétation (35 ; 36 ; 60) du champ.
  17. Procédé selon la revendication 16, caractérisé en ce que le paramètre déterminé à titre supplémentaire est la densité et/ou l'humidité de la végétation (35 ; 36 ; 60) du champ.
  18. Procédé selon au moins une des revendications précédentes 1 à 17, caractérisé en ce que le paramètre, au nombre d'au moins un, déterminé par au moins un senseur (24 ; 33 ; 46 ; 50) est utilisé pour le réglage et/ou la commande automatiques de la machine agricole (20).
  19. Dispositif de mesure pour la mise en oeuvre du procédé selon au moins une des revendications 1 à 18, caractérisé en ce que le senseur (24, 33, 46, 50), au nombre d'au moins un, est implanté sur l'engin frontal (21).
  20. Dispositif de mesure pour la mise en oeuvre du procédé selon au moins une des revendications 1 à 19, caractérisé en ce que le senseur (24, 33, 46, 50), au nombre d'au moins un, est implanté dans un diviseur (30, 31).
  21. Dispositif de mesure pour la mise en oeuvre du procédé selon au moins une des revendications 1 à 20, caractérisé en ce que le senseur (24, 33, 46, 50), au nombre d'au moins un, est implanté en précurseur au-dessus de la végétation non récoltée (35) du champ dans la direction de déplacement (15) de la machine agricole (20).
EP03005674A 2002-04-02 2003-03-13 Dispositif de mesure pour machine agricole Revoked EP1356729B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10214648 2002-04-02
DE10214648A DE10214648A1 (de) 2002-04-02 2002-04-02 Messeinrichtung an einer landwirtschaftlichen Maschine

Publications (2)

Publication Number Publication Date
EP1356729A1 EP1356729A1 (fr) 2003-10-29
EP1356729B1 true EP1356729B1 (fr) 2005-11-09

Family

ID=28051059

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03005674A Revoked EP1356729B1 (fr) 2002-04-02 2003-03-13 Dispositif de mesure pour machine agricole

Country Status (5)

Country Link
US (1) US6791488B2 (fr)
EP (1) EP1356729B1 (fr)
AT (1) ATE308877T1 (fr)
DE (2) DE10214648A1 (fr)
DK (1) DK1356729T3 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813142A1 (fr) 2006-01-31 2007-08-01 Alois Pöttinger Maschinenfabrik GmbH Machine agricole
EP2272312A1 (fr) 2009-07-09 2011-01-12 Alois Pöttinger Maschinenfabrik GmbH Appareil agricole
DE102011100054A1 (de) 2011-04-29 2012-10-31 Alois Pöttinger Maschinenfabrik Gmbh Landwirtschaftliche Maschine

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10235686A1 (de) * 2002-08-03 2004-02-19 Claas Saulgau Gmbh Vorrichtung und Verfahren zur Lageregelung eines Vorsatzgerätes einer landwirtschaftlichen Maschine
WO2019099748A1 (fr) 2017-11-15 2019-05-23 Precision Planting Llc Capteurs de fermeture de sillon de semis
DE102004063104A1 (de) * 2004-12-22 2006-07-13 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
DE102005000770B3 (de) * 2005-01-05 2006-07-20 Langlott, Jürgen Verfahren zur Steuerung der Arbeitsorgane und der Fahrgeschwindigkeit eines Mähdreschers
US8253619B2 (en) 2005-02-15 2012-08-28 Techtronic Power Tools Technology Limited Electromagnetic scanning imager
DE102005015615B4 (de) * 2005-04-05 2010-12-09 Mulag Fahrzeugwerk Heinz Wössner GmbH u. Co KG Verfahren und Vorrichtung zur Steuerung eines Arbeitskopfes
DE102005056553A1 (de) * 2005-11-25 2007-05-31 Claas Selbstfahrende Erntemaschinen Gmbh Verteileinrichtung für Gutstrom
FR2899764B1 (fr) * 2006-04-12 2010-04-23 France Champignon Dispositif de coupe de matiere organique
WO2008036811A1 (fr) * 2006-09-20 2008-03-27 Eastway Fair Company Limited Dispositif et procédé pour déterminer l'emplacement d'un objet
US7401455B1 (en) * 2007-01-03 2008-07-22 Cnh America Llc System and method for controlling the base cutter height of a sugar cane harvester
US9615501B2 (en) * 2007-01-18 2017-04-11 Deere & Company Controlling the position of an agricultural implement coupled to an agricultural vehicle based upon three-dimensional topography data
US7973654B2 (en) * 2008-03-24 2011-07-05 Cnh America Llc Cutterbar failure detection system and method
US8666550B2 (en) * 2010-01-05 2014-03-04 Deere & Company Autonomous cutting element for sculpting grass
FR2965454B1 (fr) 2010-10-05 2012-09-07 Exel Ind Engin agricole de pulverisation et procede de pulverisation d'un liquide phytosanitaire sur un terrain cultive au moyen d'un tel engin
DE102011017621A1 (de) 2011-04-27 2012-10-31 Deere & Company Anordnung und Verfahren zur Erfassung der Menge von Pflanzen auf einem Feld
DE102011051784A1 (de) * 2011-07-12 2013-01-17 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zum Betreiben einer selbstfahrenden Erntemaschine
US8452501B1 (en) * 2011-11-09 2013-05-28 Trimble Navigation Limited Sugar cane harvester automatic cutter height control
EP2679085A1 (fr) * 2012-06-26 2014-01-01 Norac Systems International Inc. Commande de hauteur
AU2014202349A1 (en) 2012-08-02 2014-05-22 Harnischfeger Technologies, Inc. Depth-related help functions for a wheel loader training simulator
US9574326B2 (en) 2012-08-02 2017-02-21 Harnischfeger Technologies, Inc. Depth-related help functions for a shovel training simulator
CN103120150B (zh) * 2013-01-09 2014-07-23 南京农业大学 自走式果园对靶风送喷雾机
BE1021123B1 (nl) * 2013-01-14 2015-12-14 Cnh Industrial Belgium Nv Kalibreren van een afstandssensor op een landbouwvoertuig
GB2577796B (en) 2013-08-29 2020-09-23 Joy Global Underground Mining Llc Detecting sump depth of a miner
EP2851704B1 (fr) * 2013-09-19 2019-12-11 Pepperl+Fuchs AG Dispositif et procédé de détermination optique de distances par rapport à des objets dans une zone de surveillance
BE1021107B1 (nl) 2013-10-28 2016-01-18 Cnh Industrial Belgium Nv Zwadsensor voor veldhakselaar
US10371561B2 (en) * 2013-11-01 2019-08-06 Iowa State University Research Foundation, Inc. Yield measurement and base cutter height control systems for a harvester
US20150195991A1 (en) 2014-01-15 2015-07-16 Cnh America Llc Header height control system for an agricultural harvester
EP3122170B1 (fr) * 2014-03-28 2021-01-20 AGCO Corporation Procédé d'estimation de la qualité d'alimentation de la luzerne à mesure qu'elle est coupée
DE102014208070A1 (de) 2014-04-29 2015-12-17 Deere & Company Die Fahrzeugdynamik berücksichtigendes Kontrollsystem zur Positionssteuerung eines Geräts für ein landwirtschaftliches Arbeitsfahrzeug
US9807933B2 (en) 2014-10-20 2017-11-07 Cnh Industrial America Llc Sensor equipped agricultural harvester
DE102015101982A1 (de) * 2015-02-11 2016-08-11 Lemken Gmbh & Co. Kg Landwirtschaftliche Feldspritze
WO2016182906A1 (fr) 2015-05-08 2016-11-17 Precison Planting Llc Imagerie et analyse de couche de travail pour surveillance d'outil, commande et retour d'informations à l'opérateur
US9646430B2 (en) * 2015-06-15 2017-05-09 Deere & Company Vehicle operation management system with automatic sequence detection
US9585309B2 (en) 2015-07-14 2017-03-07 Cnh Industrial America Llc Header height control system for an agricultural harvester
DE102015011496A1 (de) * 2015-09-09 2017-03-09 Rauch Landmaschinenfabrik Gmbh Verteilmaschine mit einer Einrichtung zur Ermittlung des Streuringsektors
DE202015009576U1 (de) * 2015-10-23 2018-05-14 Deere & Company System zur Beeinflussung einer Fahrzeuglage
DE102015118767A1 (de) * 2015-11-03 2017-05-04 Claas Selbstfahrende Erntemaschinen Gmbh Umfelddetektionseinrichtung für landwirtschaftliche Arbeitsmaschine
BE1023243B1 (nl) 2015-11-24 2017-01-06 Cnh Industrial Belgium Nv Controlesysteem voor een oogstmachine en oogstmachine
EP3195719B1 (fr) * 2016-01-20 2018-10-24 CLAAS E-Systems KGaA mbH & Co KG Machine agricole
JP6754594B2 (ja) * 2016-03-23 2020-09-16 株式会社小松製作所 モータグレーダ
WO2017197292A1 (fr) 2016-05-13 2017-11-16 Precision Planting Llc Systèmes de détection de profondeur de sillon de semis
DE102016116809A1 (de) 2016-09-08 2018-03-08 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Regelsystem, landwirtschaftliches Nutzfahrzeug, Verwendung eines Radarsensors für ein Regelsystem, Verfahren zur Steuerung und/oder Regelung eines landwirtschaftlichen Nutzfahrzeuges
DE102016116808A1 (de) 2016-09-08 2018-03-08 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Regelsystem, landwirtschaftliches Nutzfahrzeug, Verwendung eines Radarsensors für ein Regelsystem, Verfahren zur Steuerung und/oder Regelung eines landwirtschaftlichen Nutzfahrzeuges
DE102016118651A1 (de) 2016-09-30 2018-04-05 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrende landwirtschaftliche Arbeitsmaschine
BR112019009310B8 (pt) 2016-11-07 2023-04-04 Climate Corp Sistemas de geração de imagem de solo
US11041284B2 (en) * 2017-02-20 2021-06-22 Cnh Industrial America Llc System and method for coupling an implement to a work vehicle
DE102017122711A1 (de) 2017-09-29 2019-04-04 Claas E-Systems Kgaa Mbh & Co. Kg Verfahren für den Betrieb einer selbstfahrenden landwirtschaftlichen Arbeitsmaschine
DE102017122710A1 (de) * 2017-09-29 2019-04-04 Claas E-Systems Kgaa Mbh & Co. Kg Verfahren für den Betrieb einer selbstfahrenden landwirtschaftlichen Arbeitsmaschine
EP4205520A1 (fr) 2017-10-17 2023-07-05 Precision Planting LLC Systèmes de détection de sol et instruments de détection de différents paramètres pédologiques
US10869426B2 (en) * 2017-11-27 2020-12-22 Lely Patent N.V. Mowing device
DE102018204301B4 (de) 2018-03-21 2020-06-18 Robert Bosch Gmbh Verfahren zum Ermitteln einer Bestandhöhe von Feldpflanzen
BE1025780B1 (nl) * 2018-05-07 2019-07-08 Cnh Industrial Belgium Nv Systeem en werkwijze voor het lokaliseren van een aanhangwagen ten opzichte van een landbouwmachine
US10750656B2 (en) 2018-06-29 2020-08-25 Cnh Industrial America Llc System and method for monitoring the frame levelness of an agricultural implement
EP3607815B1 (fr) * 2018-08-07 2023-03-22 Kverneland Group Kerteminde AS Appareil de traitement agricole
US11041716B2 (en) 2018-10-16 2021-06-22 Cnh Industrial America Llc System and method for monitoring operational parameters associated with a tillage implement during the performance of a field operation
US10973171B2 (en) 2018-10-17 2021-04-13 Cnh Industrial America Llc System and method for monitoring field profiles based on data from multiple types of sensors
BR112021009507A2 (pt) * 2018-11-16 2021-08-17 Cnh Industrial America Llc plataforma de colheitadeira tendo um sistema de controle de segmentos
US11540443B2 (en) * 2019-01-31 2023-01-03 Deere & Company System and method for measurement of harvested material in a cleaning assembly
US11202410B2 (en) * 2019-04-30 2021-12-21 Deere & Company Light-emitting mechanism on crop divider rod of harvesting header
DE102019119126A1 (de) * 2019-07-15 2021-01-21 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Erntemaschine
US11659785B2 (en) * 2019-10-23 2023-05-30 Cnh Industrial America Llc Method and system for controlling the height of an agricultural implement relative to the ground
DE102019217026A1 (de) * 2019-11-05 2021-05-06 Zf Friedrichshafen Ag Verfahren zur Spurführung eines Fahrzeugs
WO2021133755A1 (fr) * 2019-12-23 2021-07-01 Cnh Industrial America Llc Ensemble rabetteur avec bras de capteur rétractable pour une table de coupe agricole
US11533851B2 (en) * 2019-12-23 2022-12-27 Cnh Industrial America Llc Reel assembly for an agricultural header
AR120844A1 (es) * 2019-12-23 2022-03-23 Cnh Ind America Llc Conjunto de molinete para un cabezal agrícola
DE102020112230A1 (de) 2020-05-06 2021-11-11 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine mit Sensoranordnung
US12004452B2 (en) * 2020-10-29 2024-06-11 Cnh Industrial America Llc Radar-transparent components for headers of agricultural vehicles and related systems
US11980131B2 (en) * 2020-12-29 2024-05-14 Agco Corporation Skid plate for sensor integration
US11793187B2 (en) 2021-01-15 2023-10-24 Cnh Industrial America Llc System and method for monitoring agricultural fluid deposition rate during a spraying operation
US11856891B2 (en) 2021-03-26 2024-01-02 Cnh Industrial America Llc Systems and methods for controlling an agricultural header
US20220322598A1 (en) * 2021-04-07 2022-10-13 Cnh Industrial America Llc Mounting apparatus for agricultural header sensors
EP4201189A1 (fr) * 2021-12-22 2023-06-28 CNH Industrial Belgium N.V. Table de coupe de moissonneuse avec agencement radar
WO2023230079A1 (fr) * 2022-05-23 2023-11-30 Cnh Industrial America Llc Système de support pour un élément d'une table de coupe agricole
DE102023100618A1 (de) 2023-01-12 2024-07-18 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Erntemaschine mit einem Vorsatzgerät

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3227975A1 (de) * 1982-07-27 1984-02-09 Claas Ohg, 4834 Harsewinkel Selbstfahrender maehdrescher
US4620192A (en) * 1983-09-29 1986-10-28 Raytheon Company Continuous wave radar with ranging capability
GB8407913D0 (en) * 1984-03-27 1984-05-02 British Res Agricult Eng Boom assemblies
GB2184633A (en) * 1985-12-19 1987-07-01 Billericay Farm Services Ltd Boom mounting arrangement
EP0260113A3 (fr) * 1986-09-08 1989-09-20 Agtronics Pty. Ltd. Système à ultrasons de commande de hauteur
DE3807610A1 (de) 1988-03-09 1989-09-21 Claas Ohg Vorrichtung und verfahren zur lageregelung eines maehwerkes
GB2285566B (en) * 1991-08-06 1995-11-08 Benest Eng Ltd Method and apparatus for crop spraying
US5348226A (en) * 1992-11-12 1994-09-20 Rhs Fertilizing/Spraying Systems Spray boom system with automatic boom end height control
DE4406892A1 (de) * 1994-03-03 1995-09-07 Bosch Gmbh Robert Vorrichtung zur Regelung des Bodenabstandes einer Bearbeitungseinheit einer landwirtschaftlichen Maschine
GB9423669D0 (en) * 1994-11-23 1995-01-11 Dowler David A vehicle
DE19601420C2 (de) * 1996-01-17 1999-10-14 Deere & Co Vorrichtung zum Führen eines Gerätes, insbesondere eines Erntebergungsvorsatzes, relativ zu einer von dem Gerät überfahrenen Oberfläche
DE19623754A1 (de) * 1996-06-14 1997-12-18 Claas Ohg Erntemaschine mit einem in seiner Arbeitslage gegenüber dem Boden höhenverstellbaren Vorsatzbearbeitungsgerät
DE19800524A1 (de) * 1998-01-09 1999-07-15 Klaus Bastian Sensorgesteuerte Hubwerksregulierung
DE19922867C5 (de) * 1999-05-19 2015-04-23 Deere & Company Erntemaschine mit einer Meßeinrichtung zur Messung von Inhaltsstoffen in und/oder Eigenschaften von Erntegut
US6919959B2 (en) * 1999-06-30 2005-07-19 Masten Opto-Diagnostics Co. Digital spectral identifier-controller and related methods
US6522290B2 (en) * 2001-05-29 2003-02-18 Lockheed Martin Corporation Transmit phase removal in FM homodyne radars
US6615570B2 (en) * 2001-06-28 2003-09-09 Deere & Company Header position control with forward contour prediction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813142A1 (fr) 2006-01-31 2007-08-01 Alois Pöttinger Maschinenfabrik GmbH Machine agricole
EP2272312A1 (fr) 2009-07-09 2011-01-12 Alois Pöttinger Maschinenfabrik GmbH Appareil agricole
DE102009032437A1 (de) 2009-07-09 2011-01-13 Alois Pöttinger Maschinenfabrik Gmbh Landwirtschaftliches Gerät
DE102011100054A1 (de) 2011-04-29 2012-10-31 Alois Pöttinger Maschinenfabrik Gmbh Landwirtschaftliche Maschine
EP2517543A2 (fr) 2011-04-29 2012-10-31 Alois Pöttinger Maschinenfabrik Ges. m.b.H. Machine agricole

Also Published As

Publication number Publication date
EP1356729A1 (fr) 2003-10-29
ATE308877T1 (de) 2005-11-15
DE50301586D1 (de) 2005-12-15
US6791488B2 (en) 2004-09-14
DK1356729T3 (da) 2006-02-13
DE10214648A1 (de) 2003-10-16
US20030184747A1 (en) 2003-10-02

Similar Documents

Publication Publication Date Title
EP1356729B1 (fr) Dispositif de mesure pour machine agricole
EP3165062B1 (fr) Machine de travail agricole avec un dispositif de détection d'environnement
EP1630574B1 (fr) Dispositif monté sur des machines agricoles destiné au balayage sans contact de contours sýétendant sur le sol
EP0906720B1 (fr) Appareil et méthode pour la reconnaissance sans contact des limites de la zone de travail ou de sa taille correspondante
EP1332659B1 (fr) Système de localisation pour véhicule de travail agricole automoteur
EP0878121B1 (fr) Machine de récolte à direction automatique
US11154011B2 (en) System and method for sensing an edge
EP2517543B1 (fr) Machine agricole
DE10221948A1 (de) Verfahren und System zum volumenspezifischen Beeinflussen von Boden und Pflanzen
EP1266554A2 (fr) Dispositif de direction automatique pour véhicule de travail agricole
EP3300561A1 (fr) Machine agricole automotrice
EP3738420B1 (fr) Procédé de fonctionnement d'un engin agricole automatique
DE102017130694A1 (de) Landwirtschaftliche Arbeitsmaschine und Verfahren zum Steuern einer landwirtschaftlichen Arbeitsmaschine
DE2455836C3 (de) Einrichtung zur selbsttätigen Führung landwirtschaftlicher Arbeitsmaschinen
DE10346541A1 (de) Einrichtung und Verfahren zum Messen der Ausbildung von Pflanzenbeständen
DE102006016740A1 (de) Vorrichtung für eine Landmaschine zum Erkennen störender Objekte
EP4052550B1 (fr) Dispositif de compensation de la suspension latérale pour la viticulture
US20240188478A1 (en) System and method for selectively activating soil sensors of an agricultural implement
EP2057875A1 (fr) Procédé et agencement destinés à l'établissement de la constitution de plantes sur des machines agricoles
DE29724570U1 (de) Vorrichtung zur berührungslosen Erkennung von Bearbeitungsgrenzen oder entsprechenden Leitgrößen
EP4155775A1 (fr) Procédé d'identification d'objets, ainsi que machine de travail agricole
DE102021124481A1 (de) Verfahren zur Detektion des Bodenniveaus auf einer von einer landwirtschaftlichen Arbeitsmaschine zu bearbeitenden Fläche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040429

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20040712

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051109

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051109

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051109

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051109

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051109

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50301586

Country of ref document: DE

Date of ref document: 20051215

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060209

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060410

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060510

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: AMAZONEN-WERKE H. DREYER GMBH & CO. KG

Effective date: 20060807

Opponent name: OCTROOIBUREAU VAN DER LELY N.V.

Effective date: 20060804

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051109

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051109

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 50301586

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 50301586

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20110314

Year of fee payment: 9

Ref country code: FR

Payment date: 20110404

Year of fee payment: 9

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110209

Year of fee payment: 9

Ref country code: GB

Payment date: 20110321

Year of fee payment: 9

Ref country code: BE

Payment date: 20110311

Year of fee payment: 9

RDAD Information modified related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSCREV1

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20110412

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20110412

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 308877

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 50301586

Country of ref document: DE

Effective date: 20120510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20120322

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120328

Year of fee payment: 10