EP1344929B1 - Kraftstoffeinspritzventil für Brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für Brennkraftmaschinen Download PDF

Info

Publication number
EP1344929B1
EP1344929B1 EP03003081A EP03003081A EP1344929B1 EP 1344929 B1 EP1344929 B1 EP 1344929B1 EP 03003081 A EP03003081 A EP 03003081A EP 03003081 A EP03003081 A EP 03003081A EP 1344929 B1 EP1344929 B1 EP 1344929B1
Authority
EP
European Patent Office
Prior art keywords
valve
external
control
space
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03003081A
Other languages
English (en)
French (fr)
Other versions
EP1344929A1 (de
Inventor
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1344929A1 publication Critical patent/EP1344929A1/de
Application granted granted Critical
Publication of EP1344929B1 publication Critical patent/EP1344929B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • F02M45/086Having more than one injection-valve controlling discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/46Valves, e.g. injectors, with concentric valve bodies

Definitions

  • the invention relates to a fuel injection valve for Internal combustion engines from, as is the genus of the claim 1 corresponds and for example from the published patent application DE 41 15 477 A1 is known.
  • the one shown there Fuel injection valve has a housing in which a Bore is formed. At the end of the bore on the combustion chamber side is formed a valve seat in which two rows of Injection openings are formed, each in one Radial plane to the longitudinal axis of the bore are arranged. In the bore is an outer valve needle and one in it guided inner valve needle arranged, both valve needles are longitudinally displaceable.
  • the outer valve needle points a valve sealing surface on its combustion chamber end, with which they use the valve seat to control the outer Injection opening row cooperates in that at Valve seat lifted valve sealing surface fuel from a between the outer valve needle and the wall of the bore formed pressure space between the valve sealing surface and the valve seat through the first row of injection openings accrues.
  • the valve sealing surface of the outer valve needle lies on the other hand at the valve seat, this is the fuel flow interrupted:, the outer row of injection openings is closed.
  • the movement of the outer valve needle is hereby by a force ratio of an opening and a Closing force controlled, the opening force by the Pressurizing a pressure shoulder on the outer valve needle is applied by the fuel pressure in the pressure chamber is acted upon.
  • This hydraulic opening force opposing closing force is provided by a separate Device generated, for example a spring. about the control of the pressure in the pressure chamber or through The force ratio can be changed by changing the closing force change between the opening force and the closing force and thereby a movement of the outer valve needle in the longitudinal direction produce.
  • the inner valve needle also points a pressure shoulder on that from the fuel pressure in the pressure chamber however, fuel pressure is only applied when the outer valve needle has lifted off the valve seat.
  • a closing force acts on the inner valve needle, and as soon as the hydraulic opening force on the inner valve needle exceeds the closing force, the inner valve needle moves away from the valve seat and gives the inner row of injectors free.
  • the interaction between the at the inner valve needle trained valve sealing surface and The valve seat is analogous to the outer valve needle.
  • the closing force on the inner valve needle is determined by the hydraulic pressure generated in a control room that in the housing of the fuel injection valve is formed.
  • the Pressure in the control room acts either directly or indirectly via connecting elements on the inner valve needle, see above that the closing force is set via the pressure in the control room can be.
  • the known fuel injection valve has in particular the disadvantage that the closing force on the outside Valve needle is generated by a spring.
  • the closing movement the outer valve needle takes place relatively slowly, since the balance of forces is the opening force of the hydraulic force and constant closing force through the Spring changes only by lowering the opening force.
  • short-term injections in particular with a small amount of fuel not or not with the necessary Realize precision. But this is critical, though Fuel injectors for quiet engine running, one low fuel consumption and low pollutant emissions should be optimized.
  • the fuel injector according to the invention with the characteristic Features of claim 1, however, points the advantage that the closing force on the outside Valve needle also hydraulic by pressure in one Control room is generated and that to end the injection Fuel under high pressure in both control rooms is initiated so that the closing force on the valve needles rises very quickly and therefore quick needle closing is made possible.
  • This allows very short-term Injections with very small injection quantities with high ones Realize precision and thereby in particular injections, which is divided into a pre, a main and a post injection divided.
  • a control valve is arranged in the housing, the one Control room and a control valve member movably arranged therein having.
  • the valve control room is via an outlet throttle with the outer control room and over another Flow restrictor connected to the inner control room.
  • the valve control chamber also has an inlet throttle, which the valve control room with the high pressure fuel chamber connects and a valve drain channel that connects to the control room connects with a leak oil chamber.
  • valve member closes the valve outlet throttle in one end position and leaves all other connections of the valve control room open. hereby can fuel in the valve inlet throttle Flow valve control chamber of the control valve and from there the two flow restrictors in the inner and outer Control room, so that there is quickly a high fuel pressure builds up and thus a high closing force the inner or outer valve needle results.
  • the subject of Invention closes the valve member in the second end position the outlet throttle of the inner control chamber while the valve drain channel of the valve control room is opened.
  • the pressure drops through the open valve drain channel in the valve control room and thus also in the outer control room. Because the inner drain throttle that the valve control room with connects the inner control room, closed by the valve member the pressure in the inner control room is maintained, so the inner valve needle is not off the valve seat takes off. In this way it can be achieved that only the outer Valve needle opens while the inner valve needle is in its The closed position remains.
  • valve member in the second end position the valve inlet throttle of the valve control chamber, while the valve outlet throttle of the valve control room is opened.
  • This will both control rooms, both the inner control room, the inner one Valve needle, as well as the outer control chamber, which creates the closing force on the outer valve needle relieved at the same time so that both valve needles open at the same time.
  • valve member moves when moving in the valve control chamber Longitudinal movement and arrives in one end position a first valve seat and in the second end position a second valve seat opposite the first valve seat to the system so that both valve seats face each other.
  • first valve seat is conical
  • second Valve seat is designed as a flat seat.
  • a spherical valve sealing surface on the valve member is formed with the conical valve seat cooperates while the valve sealing surface that with the flat seat interacts, is just trained. Thereby a good seal can be achieved on both valve seats.
  • this is Valve member connected to an actuator which is the valve member moved in the valve control room.
  • the actuator preferably designed as an electrical actuator, the electrical actuator being particularly advantageous to train as a piezo actuator. This makes it possible Valve element very quickly and with very low power in the Move the valve control room and it is also possible to move along the two end positions of the valve member any intermediate positions of the valve member between these two end positions to approach.
  • FIG 1 is a longitudinal section through an inventive Fuel injector with its essential components shown.
  • the fuel injection valve has a housing 1, which has a valve holding body 3 and a valve body 5 comprises, the valve body 5 by means of a Clamping nut 2 is clamped against the valve holding body 3.
  • a bore 9 is formed, on the Combustion chamber end formed a conical valve seat 21 is.
  • Figure 2 shows an enlargement of the designated II Detail in the area of the valve seat 23.
  • the outer row of injection ports 120 further from Combustion chamber is located remotely as the inner row of injectors 220.
  • Both rows of injection openings 120, 220 consist of several, preferably evenly over the Scope of the fuel injector is distributed Injection ports.
  • an outer valve needle 10 arranged in a section facing away from the combustion chamber is sealingly guided in the bore 9.
  • the outer Valve needle 10 is designed as a hollow needle and has a conical outer end at the combustion chamber Valve sealing surface 24.
  • the outer valve sealing surface 24 has an opening angle that is greater than the opening angle of the conical valve seat 23. This is the outer edge of the outer valve sealing surface 24 as the outer Sealing edge 25 formed in the closed position of the outer Valve needle 10 comes to rest on valve seat 23.
  • the outer valve needle 10 tapers, starting from it guided section, forming a pressure shoulder 16 the valve seat 23. This will between the wall Bore 9 and the outer valve needle 10 a pressure chamber 14 formed over one in the valve body 5 and in the valve holding body 3 running high pressure channel 7 with fuel under high pressure can be filled.
  • the high pressure channel 7 opens thereby in a radial expansion of the pressure chamber 14 which Height of the pressure shoulder 16 of the outer valve needle 10 is formed is.
  • An inner valve needle 12 is located in the outer valve needle 10 arranged longitudinally displaceable on its combustion chamber side End a conical inner valve sealing surface 26 and one also has conical end surface 33, at the transition the inner valve sealing surface 26 to the end surface 33 an inner Sealing edge 27 is formed. In the closed position of the inner Valve needle 12 on valve seat 23 comes this inner Sealing edge 27 on the valve seat 23 to the system, so that a Fuel flow to the inner row of injection openings 220 is prevented becomes.
  • a central bore 18 is formed in the valve holding body 3, in which a guide piston 40 is arranged to be longitudinally displaceable is.
  • the guide piston 40 is located on the side facing away from the combustion chamber End of the outer valve needle 10 and moves thus in synchronism with the outer valve needle 10 in Longitudinal direction.
  • Between the end face 50 of the guide piston 40 and the end of the central one designed as a blind bore Bore 18 has an outer control chamber 55, by its pressure a hydraulic force on the face 50 of the guide piston 40 is exercised and thus also on the outer valve needle 10.
  • a closing spring 57 is arranged under pressure, which the guide piston 40 and thus the outer valve needle 10 always subjected to a closing force, the force the closing spring 57 only serves the outer valve needle 10 with the internal combustion engine switched off in their Hold closed position.
  • the outer control room 55 is over an inlet throttle 62 with the inlet channel 7 High pressure chamber connected and via an external outlet throttle 60 with a valve control chamber 77, which is further below is described.
  • the guide piston 40 has a piston bore 21, in which a pressure piston 20 is arranged to be longitudinally displaceable.
  • the Pressure piston 20 lies on inner valve needle 12 on and moves synchronously with it in the longitudinal direction.
  • an inner control chamber 42 formed by the pressure of a hydraulic Force on the end face 22 of the pressure piston 20 and thus is also exerted on the inner valve needle 12.
  • the inner one Control chamber 42 is formed in a guide piston 40 Cross bore 44 with an inner channel Outlet throttle 46 connected and via an inner inlet throttle 48 with the high pressure duct 7.
  • the mode of operation of the two valve needles and the associated one Control rooms is as follows: At the beginning of the injection cycle prevails both in the inner control room 42 and in the outer Control room 55 a high fuel pressure. Because the face 50 of the guide piston 40 is significantly larger than the pressure shoulder 16 of the outer valve needle 10, the predominates Closing force on the outer valve needle 10, and the outer Valve sealing surface 24 is pressed against the valve seat 23. Similar conditions result for the inner valve needle 12, since the end face 22 of the pressure piston 20 from the pressure is acted upon in the control room 42 and no corresponding one Counteracts opening force on the inner valve needle 12. If an injection is to take place, the pressure in the outside Control room 55 lowered, which also means the hydraulic Force on the end face 50 of the guide piston 40 is reduced.
  • the pressure control in the outside is schematic Control room 55 and shown in the inner control room 42, the with the help of a control valve 74.
  • the control valve 74 is integrated in the housing 1 of the fuel injection valve and has a valve control space 77 in which a Valve member 75 is slidably disposed.
  • the outer outlet throttle 65 connects the outer control room 55 and the inner outlet throttle 67, the inner control chamber 42 with the Valve control room 77. It opens into valve control room 77
  • a valve inlet throttle 68, the valve control room 77 always connects to a high-pressure fuel chamber, for example with the high pressure duct 7.
  • valve control room 77 also opens a valve drain channel 79, that connects the valve control chamber 77 to a leakage oil chamber, in which there is always a very low fuel pressure and which is not shown in the drawing.
  • a first valve seat 80 is formed which has a conical shape and on which the valve member 75 with a first valve sealing surface 84 cooperates.
  • the first Valve sealing surface 84 is spherical or hemispherical educated.
  • second valve sealing surface 86 is formed, which is flat and cooperates with a second valve seat 82, which is formed in the valve control chamber 77 and the Shape of a flat seat.
  • the valve member 75 is through a valve spring 88 in arranged in the valve control chamber 77 Directed the first valve seat 80 to at switched off internal combustion engine, the valve member in the first end position, i.e. in contact with the first valve seat 80 bring.
  • the valve member 75 is with an electrical actuator 70 connected, which is preferably designed as a piezo actuator is so that by an appropriately applied voltage a longitudinal movement of the valve member 75 in the valve control chamber 77 can be achieved.
  • the valve member 75 from the first end position, i.e. from the plant on the first Valve seat 80, in the second end position, that is the system at the second valve seat 82.
  • a piezo actuator it is also possible to valve member 75 in any intermediate position between the two end positions bring to.
  • valve 74 The operation of the control valve 74 is as follows: At the beginning of the injection, the valve member 75 is in the first End position, i.e. in contact with the first valve seat 80, and thus closes the valve drain channel 79 against the Valve control room 77. Through the connection via the valve inlet throttle 68 is the same in the valve control room 77 High pressure as in the high pressure room and therefore the same pressure as in the outer control room 55 and in the inner control room 42. Should an injection only through the outer row of injection openings 120 take place, the valve member 75 moves from the electrical actuator 70 from the first end position to the second end position, i.e. in attachment to the second Valve seat 82.
  • valve outlet channel 79 is opened and the inner drain restrictor 67 of the inner control space 42 closed.
  • valve outlet channel 79 and the valve inlet throttle 68 in connection with the dimensioning of the outer outlet throttle 65 a pressure drop is achieved in the valve control room 77, which is so strong that despite the external inlet throttle 62 also the pressure in the outer control chamber 55 drops.
  • This opens the in the manner described above outer valve needle 10 and gives the outer row of injection openings 120 free. This ends when the injection ends Valve member 75 again in the first end position, so that by the through the valve inlet throttle 68 and the outer Inlet throttle 62 fuel flowing in again the high pressure in the valve control room 77 and in the outer control room 55 builds.
  • valve member 75 is going out from the first end position on the first valve seat 80, into a Intermediate position moved between the two end positions.
  • the valve drain channel 79 is thereby opened and closed a suitable dimensioning of all inlet and outlet throttles a pressure drop is achieved in the valve control chamber 77 and thus, through the connection via the outer outlet throttle 65 and the inner outlet throttle 67 of the outer control chamber 55 or the inner control room 42, too in the outer control room 55 and 42 in the inner control room open both the inner valve needle 12 and the outer one Valve needle 10 in the manner described above.
  • valve drain channel 79 is closed and due to the fuel flowing in through the valve inlet throttle 68 rebuilds itself very quickly in the valve control room 77 the old high fuel pressure.
  • the fuel pressure in the outer control room 55 and in the inner control room 42 now both through the fuel flowing through the outer inlet throttle 62 or the inner inlet throttle 48 in the control rooms flow in as well as through the fuel, from the valve control chamber 77 via the outer flow restrictor 65 or the inner outlet throttle 67 the outer Control room 55 or the inner control room 42 inflows, rebuilt. This gives you a faster one Pressure build-up in the control rooms 42, 55 than this alone due to the fuel flowing in through the inlet throttles 62, 48 would be possible.
  • FIG. 4 is another embodiment of the Control valve for the fuel injection valve according to the invention shown.
  • the structure corresponds essentially to that Structure of the control valve 74 shown in FIG. 3 with the difference that the control valve member 75 compared to that in Figure 3 shown control valve is rotated by 180 °.
  • the electrical actuator 70 is now on the first Valve sealing surface 84 opposite side of the valve member 75 and is shown in FIG. 4 for the sake of clarity not shown. Because the operation of the control valve 74 in Figure 4 exactly the operation of that shown in Figure 3 Control valve 74 corresponds to a detailed Description to be omitted here.
  • FIG 5 is another embodiment of the control valve 74 shown.
  • the control of the outer control room 55 and the inner control chamber 42 via the flow restrictors 65, 67 and the inlet throttles 62, 48 is analogous to that in Figure 3 or control valve shown in Figure 4 74.
  • the control valve 74 also has a valve control chamber here 77, which has a first conical valve seat 80 and a second valve seat 82 designed as a flat seat having.
  • the valve inlet throttle opens into the valve control chamber 77 68 and the valve drain channel 79.
  • Both the outer Flow restrictor 65 and the inner flow restrictor 67 open into the valve control chamber 77, the inlet of which in the Valve control chamber 77 cannot be closed by valve member 75 is.
  • valve drain channel 79 In contact with the valve member 75 on the first valve seat 80, the valve drain channel 79 is closed, and in the opposite end position of the valve member 75 closes this by contacting the second valve seat 82 Valve inlet throttle 68.Should both valve needles 10, 12 are opened, the valve member 75 moves from the first Valve seat 80 in contact with the second valve seat 82 and thus closes the valve inlet throttle 68. By opening of the valve drain channel 79, the pressure in the valve control chamber drops 77 from and thus also in the outer control room 55 and in the inner control room 42. Thereupon both the inner open Valve needle 12 and the outer valve needle 10 and give both rows of injection openings 120, 220 free.
  • valve member 75 moves back into contact to the first valve seat 80, so that via the valve inlet throttle 68 fuel flows into the valve control chamber 77 and from the valve control chamber 77 via the valve flow restrictors 65, 67 into the control rooms 55, 42.
  • the rapid achieved thereby Pressure build-up in both control rooms 55, 42 causes quick needle closing.
  • an intermediate position possible. In this Fall can be done by appropriate dimensioning of the inlet throttles 62, 48 or the flow restrictors 65, 67 achieved that the two valve needles open successively.
  • valve member 75 moves into an intermediate position the first valve seat 80 and the second valve seat 82, the pressure in the control chamber 77 falls despite the valve inlet throttle 68 from. This also reduces the pressure on the outside Control room 55, so that the outer valve needle 10 opens.
  • By appropriately dimensioning the internal discharge throttle 67 is achieved that the pressure in the inner control room 42 only drops with a certain delay to such an extent that the inner valve needle 12 opens.
  • FIG. 6 shows a variant of the control valve shown in FIG. 5 74, with the first valve seat 80 here and second valve seat 82 are interchanged and so is the location of the control valve member 75.
  • the electric actuator 70 is located thus on the opposite side of the first valve sealing surface 84 Side of the valve member 75 and is the clarity not shown in Figure 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen aus, wie es der Gattung des Patentanspruchs 1 entspricht und beispielsweise aus der Offenlegungsschrift DE 41 15 477 A1 bekannt ist. Das dort gezeigte Kraftstoffeinspritzventil weist ein Gehäuse auf, in dem eine Bohrung ausgebildet ist. Am brennraumseitigen Ende der Bohrung ist ein Ventilsitz ausgebildet, in dem zwei Reihen von Einspritzöffnungen ausgebildet sind, die jeweils in einer Radialebene zur Längsachse der Bohrung angeordnet sind. In der Bohrung ist eine äußere Ventilnadel und eine in dieser geführte innere Ventilnadel angeordnet, wobei beide Ventilnadeln längsverschiebbar sind. Die äußere Ventilnadel weist an ihrem brennraumseitigen Ende eine Ventildichtfläche auf, mit der sie mit dem Ventilsitz zur Steuerung der äußeren Einspritzöffnungsreihe insofern zusammenwirkt, als bei vom Ventilsitz abgehobener Ventildichtfläche Kraftstoff aus einem zwischen der äußeren Ventilnadel und der Wand der Bohrung gebildeten Druckraum zwischen der Ventildichtfläche und dem Ventilsitz hindurch der ersten Einspritzöffnungsreihe zufließt. Liegt die Ventildichtfläche der äußeren Ventilnadel hingegen am Ventilsitz an, so ist dieser Kraftstofffluss unterbrochen:,die äußere Einspritzöffnungsreihe ist verschlossen. Die Bewegung der äußeren Ventilnadel wird hierbei durch ein Kräfteverhältnis einer Öffnungs- und einer Schließkraft gesteuert, wobei die Öffnungskraft durch die Druckbeaufschlagung einer Druckschulter an der äußeren Ventilnadel aufgebracht wird, die vom Kraftstoffdruck im Druckraum beaufschlagt ist. Die dieser hydraulischen Öffnungskraft entgegengerichtete Schließkraft wird durch eine separate Vorrichtung erzeugt, beispielsweise eine Feder. Über die Steuerung des Drucks im Druckraum beziehungsweise durch Veränderung der Schließkraft lässt sich das Kräfteverhältnis zwischen der Öffnungskraft und der Schließkraft verändern und dadurch eine Bewegung der äußeren Ventilnadel in Längsrichtung erzeugen. Die innere Ventilnadel weist ebenfalls eine Druckschulter auf, die vom Kraftstoffdruck im Druckraum jedoch erst dann mit Kraftstoffdruck beaufschlagt wird, wenn die äußere Ventilnadel vom Ventilsitz abgehoben hat. Auch auf die innere Ventilnadel wirkt eine Schließkraft, und sobald die hydraulische Öffnungskraft auf die innere Ventilnadel die Schließkraft übersteigt, bewegt sich die innere Ventilnadel vom Ventilsitz weg und gibt die innere Einspritzöffnungsreihe frei. Das Zusammenspiel zwischen der an der inneren Ventilnadel ausgebildeten Ventildichtfläche und dem Ventilsitz erfolgt hierbei analog zur äußeren Ventilnadel. Die Schließkraft auf die innere Ventilnadel wird durch den hydraulischen Druck in einem Steuerraum erzeugt, der im Gehäuse des Kraftstoffeinspritzventils ausgebildet ist. Der Druck im Steuerraum wirkt entweder unmittelbar oder mittelbar über Verbindungselemente auf die innere Ventilnadel, so dass über den Druck im Steuerraum die Schließkraft eingestellt werden kann.
Das bekannte Kraftstoffeinspritzventil weist hierbei insbesondere den Nachteil auf, dass die Schließkraft auf die äußere Ventilnadel durch eine Feder erzeugt wird. Die Schließbewegung der äußeren Ventilnadel erfolgt hierbei relativ langsam, da sich das Kräfteverhältnis aus Öffnungskraft der hydraulischen Kraft und konstanter Schließkraft durch die Feder nur durch die Absenkung der Öffnungskraft ändert. Dadurch lassen sich insbesondere kurzzeitige Einspritzungen mit geringer Kraftstoffmenge nicht oder nicht mit der nötigen Präzision realisieren. Dies ist aber entscheidend, wenn Kraftstoffeinspritzventile für einen leisen Motorlauf, einen geringen Kraftstoffverbrauch und niedrige Schadstoffemissionen optimiert werden sollen.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass die Schließkraft auf die äußere Ventilnadel ebenfalls hydraulisch durch den Druck in einem Steuerraum erzeugt wird und dass zur Beendigung der Einspritzung Kraftstoff unter hohem Druck in beide Steuerräume eingeleitet wird, so dass die Schließkraft auf die Ventilnadeln sehr rasch ansteigt und dadurch ein schnelles Nadelschließen ermöglicht wird. Dadurch lassen sich sehr kurzzeitige Einspritzungen mit sehr kleinen Einspritzmengen mit hoher Präzision realisieren und dadurch insbesondere Einspritzungen, die sich in eine Vor-, eine Haupt- und eine Nacheinspritzung gliedern. Sowohl der innere Steuerraum, der die innere Ventilnadel zumindest mittelbar mit einer Schließkraft beaufschlagt, als auch der äußere Steuerraum, durch dessen Druck die Schließkraft auf die äußere Ventilnadel ausgeübt wird, sind über jeweils eine Zulaufdrossel mit einem im Gehäuse ausgebildeten Kraftstoffhochdruckraum verbunden, in dem stets Kraftstoff unter hohem Druck vorhanden ist. Im Gehäuse ist ein Steuerventil angeordnet, das einen Steuerraum und ein darin beweglich angeordnetes Steuerventilglied aufweist. Der Ventilsteuerraum ist über eine Ablaufdrossel mit dem äußeren Steuerraum und über eine weitere Ablaufdrossel mit dem inneren Steuerraum verbunden. Darüber hinaus weist der Ventilsteuerraum eine Zulaufdrossel auf, die den Ventilsteuerraum mit dem Kraftstoffhochdruckraum verbindet und einen Ventilablaufkanal, der den Steuerraum mit einem Leckölraum verbindet. Das Ventilglied verschließt in einer Endposition die Ventilablaufdrossel und lässt dabei alle anderen Verbindungen des Ventilsteuerraums offen. Hierdurch kann Kraftstoff über die Ventilzulaufdrossel in den Ventilsteuerraum des Steuerventils strömen und von dort über die beiden Ablaufdrosseln in den inneren beziehungsweise äußeren Steuerraum, so dass sich dort rasch ein hoher Kraftstoffdruck aufbaut und sich damit eine hohe Schließkraft auf die innere beziehungsweise äußere Ventilnadel ergibt.
In einer vorteilhaften Ausgestaltung des Gegenstandes der Erfindung verschließt das Ventilglied in der zweiten Endposition die Ablaufdrossel des inneren Steuerraums, während der Ventilablaufkanal des Ventilsteuerraums geöffnet wird. Durch den aufgesteuerten Ventilablaufkanal fällt der Druck im Ventilsteuerraum ab und damit auch im äußeren Steuerraum. Da die innere Ablaufdrossel, die den Ventilsteuerraum mit dem inneren Steuerraum verbindet, durch das Ventilglied verschlossen wird, bleibt der Druck im inneren Steuerraum erhalten, so dass die innere Ventilnadel nicht vom Ventilsitz abhebt. Hierdurch lässt sich erreichen, dass nur die äußere Ventilnadel öffnet, während die innere Ventilnadel in ihrer Schließposition verharrt.
In einer weiteren vorteilhaften Ausgestaltung verschließt das Ventilglied in der zweiten Endposition die Ventilzulaufdrossel des Ventilsteuerraums, während die Ventilablaufdrossel des Ventilsteuerraums geöffnet wird. Hierdurch werden beide Steuerräume, sowohl der innere Steuerraum, der die innere Ventilnadel beaufschlagt, als auch der äußere Steuerraum, der die Schließkraft auf die äußere Ventilnadel erzeugt, gleichzeitig entlastet, so dass beide Ventilnadeln gleichzeitig öffnen.
In einer vorteilhaften Ausgestaltung der Erfindung vollführt das Ventilglied bei seiner Bewegung im Ventilsteuerraum eine Längsbewegung und kommt dabei in der einen Endposition an einem ersten Ventilsitz und in der zweiten Endposition an einem dem ersten Ventilsitz entgegengesetzten zweiten Ventilsitz zur Anlage, so dass beide Ventilsitze einander gegenüberliegen. Besonders vorteilhaft ist hierbei, wenn der erste Ventilsitz konisch ausgebildet ist, während der zweite Ventilsitz als Flachsitz ausgebildet ist. Besonders vorteilhaft ist hierbei, wenn am Ventilglied eine ballige Ventildichtfläche ausgebildet ist, die mit dem konischen Ventilsitz zusammenwirkt, während die Ventildichtfläche, die mit dem Flachsitz zusammenwirkt, eben ausgebildet ist. Dadurch lässt sich eine gute Dichtung an beiden Ventilsitzen erreichen. In einer weiteren vorteilhaften Ausgestaltung ist das Ventilglied mit einem Stellglied verbunden, welches das Ventilglied im Ventilsteuerraum bewegt. Hierbei ist das Stellglied vorzugsweise als elektrisches Stellglied ausgebildet, wobei es besonders vorteilhaft ist, das elektrische Stellglied als Piezo-Steller auszubilden. Dadurch lässt sich das Ventilglied sehr schnell und mit sehr geringer Leistung im Ventilsteuerraum verschieben und es ist auch möglich, neben den beiden Endpositionen des Ventilglieds beliebige Zwischenstellungen des Ventilglieds zwischen diesen beiden Endpositionen anzufahren.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung und den Zeichnungen entnehmbar.
Zeichnung
In der Zeichnung sind verschiedene Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Es zeigt
  • Figur 1 einen Längsschnitt durch ein Kraftstoffeinspritzventil in seinen wesentlichen Bestandteilen,
  • Figur 2 eine Vergrößerung von Figur 1 im mit II bezeichneten Ausschnitt und die
  • Figuren 3, 4, 5 und 6 zeigen schematisch die hydraulische Ansteuerung der beiden Steuerräume mit Hilfe eines einzigen Steuerventils.
Beschreibung der Ausführungsbeispiele
In Figur 1 ist ein Längsschnitt durch ein erfindungsgemäßes Kraftstoffeinspritzventil mit seinen wesentlichen Bestandteilen gezeigt. Das Kraftstoffeinspritzventil weist ein Gehäuse 1 auf, das einen Ventilhaltekörper 3 und einen Ventilkörper 5 umfasst, wobei der Ventilkörper 5 mittels einer Spannmutter 2 gegen den Ventilhaltekörper 3 verspannt ist. Im Ventilkörper 5 ist eine Bohrung 9 ausgebildet, an deren brennraumseitigem Ende ein konischer Ventilsitz 21 ausgebildet ist. Figur 2 zeigt eine Vergrößerung des mit II bezeichneten Ausschnittes im Bereich des Ventilsitzes 23. Im Ventilsitz 23 sind zwei Reihen von Einspritzöffnungen ausgebildet, wobei die äußere Einspritzöffnungsreihe 120 weiter vom Brennraum entfernt angeordnet ist als die innere Einspritzöffnungsreihe 220. Beide Einspritzöffnungsreihen 120, 220 bestehen aus mehreren, vorzugsweise gleichmäßig über den Umfang des Kraftstoffeinspritzventils verteilt angeordneten Einspritzöffnungen. In der Bohrung 9 ist eine äußere Ventilnadel 10 angeordnet, die in einem brennraumabgewandten Abschnitt in der Bohrung 9 dichtend geführt ist. Die äußere Ventilnadel 10 ist hierbei als Hohlnadel ausgeführt und weist an ihrem brennraumseitigen Ende eine konische äußere Ventildichtfläche 24 auf. Die äußere Ventildichtfläche 24 weist einen Öffnungswinkel auf, der größer ist als der Öffnungswinkel des konischen Ventilsitzes 23. Dadurch ist die äußere Kante der äußeren Ventildichtfläche 24 als äußere Dichtkante 25 ausgebildet, die in Schließstellung der äußeren Ventilnadel 10 am Ventilsitz 23 zur Anlage kommt.
Die äußere Ventilnadel 10 verjüngt sich, ausgehend von ihrem geführten Abschnitt, unter Bildung einer Druckschulter 16 dem Ventilsitz 23 zu. Hierdurch wird zwischen der Wand der Bohrung 9 und der äußeren Ventilnadel 10 ein Druckraum 14 gebildet, der über einen im Ventilkörper 5 und im Ventilhaltekörper 3 verlaufenden Hochdruckkanal 7 mit Kraftstoff unter hohem Druck befüllbar ist. Der Hochdruckkanal 7 mündet dabei in eine radiale Erweiterung des Druckraums 14, die auf Höhe der Druckschulter 16 der äußeren Ventilnadel 10 ausgebildet ist.
In der äußeren Ventilnadel 10 ist eine innere Ventilnadel 12 längsverschiebbar angeordnet, die an ihrem brennraumseitigen Ende eine konische innere Ventildichtfläche 26 und eine ebenfalls konische Endfläche 33 aufweist, wobei am Übergang der inneren Ventildichtfläche 26 zur Endfläche 33 eine innere Dichtkante 27 ausgebildet ist. In Schließstellung der inneren Ventilnadel 12 am Ventilsitz 23 kommt dieses innere Dichtkante 27 am Ventilsitz 23 zur Anlage, so dass ein Kraftstoffzufluss zur inneren Einspritzöffnungsreihe 220 unterbunden wird.
Im Ventilhaltekörper 3 ist eine zentrale Bohrung 18 ausgebildet, in der ein Führungskolben 40 längsverschiebbar angeordnet ist. Der Führungskolben 40 liegt hierbei am brennraumabgewandten Ende der äußeren Ventilnadel 10 an und bewegt sich somit synchron mit der äußeren Ventilnadel 10 in Längsrichtung. Zwischen der Stirnfläche 50 des Führungskolbens 40 und dem Ende der als Sackbohrung ausgeführten zentralen Bohrung 18 ist ein äußerer Steuerraum 55 ausgebildet, durch dessen Druck eine hydraulische Kraft auf die Stirnfläche 50 des Führungskolbens 40 ausgeübt wird und damit auch auf die äußere Ventilnadel 10. Im äußeren Steuerraum 55 ist eine Schließfeder 57 unter Druckvorspannung angeordnet, die den Führungskolben 40 und damit die äußere Ventilnadel 10 stets mit einer Schließkraft beaufschlagt, wobei die Kraft der Schließfeder 57 lediglich dazu dient, die äußere Ventilnadel 10 bei ausgeschalteter Brennkraftmaschine in ihrer Schließstellung zu halten. Der äußere Steuerraum 55 ist über eine Zulaufdrossel 62 mit dem als Zulaufkanal 7 ausgebildeten Hochdruckraum verbunden und über eine äußere Ablaufdrossel 60 mit einem Ventilsteuerraum 77, der weiter unten näher beschrieben wird.
Der Führungskolben 40 weist eine Kolbenbohrung 21 auf, in der ein Druckkolben 20 längsverschiebbar angeordnet ist. Der Druckkolben 20 liegt hierbei an der inneren Ventilnadel 12 an und bewegt sich synchron mit dieser in Längsrichtung.
Zwischen der Stirnfläche 22 und dem Grund der als Sackbohrung ausgeführten Kolbenbohrung 21 ist ein innerer Steuerraum 42 ausgebildet, durch dessen Druck eine hydraulische Kraft auf die Stirnfläche 22 des Druckkolbens 20 und damit auch auf die innere Ventilnadel 12 ausgeübt wird. Der innere Steuerraum 42 ist über eine im Führungskolben 40 ausgebildeten Querbohrung 44 mit einer als Kanal ausgebildeten inneren Ablaufdrossel 46 verbunden und über eine innere Zulaufdrossel 48 mit dem Hochdruckkanal 7.
Die Arbeitsweise der beiden Ventilnadeln und der dazugehörigen Steuerräume ist wie folgt: Zu Beginn des Einspritzzyklus herrscht sowohl im inneren Steuerraum 42 als auch im äußeren Steuerraum 55 ein hoher Kraftstoffdruck. Da die Stirnfläche 50 des Führungskolbens 40 deutlich größer ist als die Druckschulter 16 der äußeren Ventilnadel 10, überwiegt die Schließkraft auf die äußere Ventilnadel 10, und die äußere Ventildichtfläche 24 wird gegen den Ventilsitz 23 gepresst. Ähnliche Verhältnisse ergeben sich bei der inneren Ventilnadel 12, da die Stirnfläche 22 des Druckkolbens 20 vom Druck im Steuerraum 42 beaufschlagt ist und keine entsprechende Öffnungskraft auf die innere Ventilnadel 12 entgegenwirkt. Soll eine Einspritzung erfolgen, so wird der Druck im äußeren Steuerraum 55 abgesenkt, was damit auch die hydraulische Kraft auf die Stirnfläche 50 des Führungskolbens 40 verringert. Sobald die hydraulische Kraft auf die Druckschulter 16 gegenüber der Schließkraft auf den Führungskolben 40 überwiegt, bewegt sich die äußere Ventilnadel 10 vom Ventilsitz 23 weg und gibt die äußere Einspritzöffnungsreihe 120 frei. Dadurch strömt Kraftstoff aus dem Druckraum 14 zwischen der äußeren Ventildichtfläche 24 und dem Ventilsitz 23 hindurch zur äußeren Einspritzöffnungsreihe 120 und wird von dort in den Brennraum der Brennkraftmaschine eingespritzt. Soll nur durch die äußere Einspritzöffnungsreihe 120 Kraftstoff eingespritzt werden, so wird der Druck im inneren Steuerraum 42 nicht abgesenkt, was die innere Ventilnadel 12 in ihrer Schließstellung am Ventilsitz 23 hält. Ist jedoch beabsichtigt, eine Einspritzung von Kraftstoff durch beide Einspritzöffnungsreihen 120, 220 durchzuführen, so wird auch der Druck im inneren Steuerraum 42 abgesenkt, so dass sich die hydraulische Kraft auf die Stirnfläche 22 des Druckkolbens 20 vermindert und die hydraulische Kraft auf die innere Ventildichtfläche 26 gegenüber der Schließkraft überwiegt. Dann bewegt sich die innere Ventilnadel 12 in Längsrichtung vom Ventilsitz 23 weg und gibt auch die innere Einspritzöffnungsreihe 220 frei. Durch eine Druckerhöhung im äußeren Steuerraum 55 beziehungsweise im inneren Steuerraum 42 wird zur Beendigung der Einspritzung wieder ein hoher Kraftstoffdruck aufgebaut, der sowohl die innere Ventilnadel 12 als auch die äußere Ventilnadel 10 zurück in ihre Schließstellung drückt.
In Figur 3 ist schematisch die Druckregelung im äußeren Steuerraum 55 und im inneren Steuerraum 42 aufgezeigt, die mit Hilfe eines Steuerventils 74 erfolgt. Das Steuerventil 74 ist im Gehäuse 1 des Kraftstoffeinspritzventils integriert und weist einen Ventilsteuerraum 77 auf, in dem ein Ventilglied 75 verschiebbar angeordnet ist. Die äußere Ablaufdrossel 65 verbindet den äußeren Steuerraum 55 und die innere Ablaufdrossel 67 den inneren Steuerraum 42 mit dem Ventilsteuerraum 77. In den Ventilsteuerraum 77 mündet darüber hinaus eine Ventilzulaufdrossel 68, die den Ventilsteuerraum 77 stets mit einem Kraftstoffhochdruckraum verbindet, beispielsweise mit dem Hochdruckkanal 7. In den Ventilsteuerraum 77 mündet darüber hinaus ein Ventilablaufkanal 79, der den Ventilsteuerraum 77 mit einem Leckölraum verbindet, in dem stets ein sehr niedriger Kraftstoffdruck herrscht und der in der Zeichnung nicht näher dargestellt ist. Im Ventilsteuerraum 77 ist ein erster Ventilsitz 80 ausgebildet, der eine konische Form hat und an welchem das Ventilglied 75 mit einer ersten Ventildichtfläche 84 zusammenwirkt. Die erste Ventildichtfläche 84 ist hierbei ballig oder halbkugelförmig ausgebildet. An der gegenüberliegenden Seite des Ventilglieds 75 ist eine zweite Ventildichtfläche 86 ausgebildet, die eben ist und mit einem zweiten Ventilsitz 82 zusammenwirkt, der im Ventilsteuerraum 77 ausgebildet ist und die Form eines Flachsitzes hat. Das Ventilglied 75 wird durch eine im Ventilsteuerraum 77 angeordnete Ventilfeder 88 in Richtung des ersten Ventilsitzes 80 beaufschlagt, um bei ausgeschalteter Brennkraftmaschine das Ventilglied in die erste Endposition, d.h. in Anlage am ersten Ventilsitz 80 zu bringen. Das Ventilglied 75 ist mit einem elektrischen Steller 70 verbunden, der vorzugsweise als Piezo-Aktor ausgebildet ist, so dass durch eine entsprechend angelegte Spannung eine Längsbewegung des Ventilglieds 75 im Ventilsteuerraum 77 erreicht werden kann. Hierdurch kann das Ventilglied 75 von der ersten Endposition, d.h. von der Anlage am ersten Ventilsitz 80, in die zweite Endposition, das ist die Anlage am zweiten Ventilsitz 82, gebracht werden. Bei Verwendung eines Piezo-Stellers ist es auch möglich, das Ventilglied 75 in jede beliebige Zwischenposition zwischen den beiden Endpositionen zu bringen.
Die Funktionsweise des Steuerventils 74 ist wie folgt: Zu Beginn der Einspritzung ist das Ventilglied 75 in der ersten Endposition, d.h. in Anlage am ersten Ventilsitz 80, und verschließt somit den Ventilablaufkanal 79 gegen den Ventilsteuerraum 77. Durch die Verbindung über die Ventilzulaufdrossel 68 herrscht im Ventilsteuerraum 77 der gleiche Hochdruck wie im Hochdruckraum und damit der gleiche Druck wie im äußeren Steuerraum 55 und im inneren Steuerraum 42. Soll eine Einspritzung nur durch die äußere Einspritzöffnungsreihe 120 erfolgen, so fährt das Ventilglied 75 bewegt vom elektrischen Steller 70 von der ersten Endposition in die zweite Endposition, d.h. in Anlage an den zweiten Ventilsitz 82. Hierdurch wird der Ventilablaufkanal 79 aufgesteuert und die innere Ablaufdrossel 67 des inneren Steuerraums 42 verschlossen. Durch eine geeignete Dimensionierung des Ventilablaufkanals 79 und der Ventilzulaufdrossel 68 in Verbindung mit der Dimensionierung der äußeren Ablaufdrossel 65 erreicht man einen Druckabfall im ventilsteuerraum 77, der so stark ist, dass trotz der äußeren Zulaufdrossel 62 auch der Druck im äußeren Steuerraum 55 abfällt. Dadurch öffnet in der oben beschriebenen Art und Weise die äußere Ventilnadel 10 und gibt die äußere Einspritzöffnungsreihe 120 frei. Zur Beendigung der Einspritzung fährt das Ventilglied 75 wieder in die erste Endposition, so dass sich durch den durch die Ventilzulaufdrossel 68 und die äußere Zulaufdrossel 62 nachströmenden Kraftstoff wieder der Hochdruck im Ventilsteuerraum 77 und im äußeren Steuerraum 55 aufbaut.
Soll durch beide Einspritzöffnungsreihen 120, 220 Kraftstoff eingespritzt werden, so wird das Ventilglied 75, ausgehend von der ersten Endposition am ersten Ventilsitz 80, in eine Zwischenposition zwischen den beiden Endpositionen gefahren. Der Ventilablaufkanal 79 wird dadurch aufgesteuert und durch eine geeignete Dimensionierung sämtlicher Zu- und Ablaufdrosseln erreicht man einen Druckabfall im Ventilsteuerraum 77 und damit, durch die Verbindung über die äußere Ablaufdrossel 65 und die innere Ablaufdrossel 67 des äußeren Steuerraums 55 beziehungsweise des inneren Steuerraums 42, auch im äußeren Steuerraum 55 und im inneren Steuerraum 42. Damit öffnen sowohl die innere Ventilnadel 12 als auch die äußere Ventilnadel 10 in der oben beschriebenen Art und Weise. Fährt man das Ventilglied 75 wieder in die erste Endposition zurück, so wird der Ventilablaufkanal 79 verschlossen und durch den nachströmenden Kraftstoff durch die Ventilzulaufdrossel 68 baut sich im Ventilsteuerraum 77 sehr rasch wieder der alte hohe Kraftstoffdruck auf. Der Kraftstoffdruck im äußeren Steuerraum 55 und im inneren Steuerraum 42 wird nun sowohl durch den Kraftstoff, der über die äußere Zulaufdrossel 62 beziehungsweise die innere Zulaufdrossel 48 in die Steuerräume nachströmt als auch durch den Kraftstoff, der aus dem Ventilsteuerraum 77 über die äußere Ablaufdrossel 65 beziehungsweise die innere Ablaufdrossel 67 dem äußeren Steuerraum 55 beziehungsweise dem inneren Steuerraum 42 zufließt, erneut aufgebaut. Dadurch erhält man einen rascheren Druckaufbau in den Steuerräumen 42, 55 als dies allein durch den nachströmenden Kraftstoff durch die Zulaufdrosseln 62, 48 möglich wäre.
In Figur 4 ist ein weiteres Ausführungsbeispiel für das Steuerventil zum erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Der Aufbau entspricht im Wesentlichen dem Aufbau des in Figur 3 gezeigten Steuerventils 74 mit dem Unterschied, dass das Steuerventilglied 75 gegenüber dem in Figur 3 gezeigten Steuerventil um 180° gedreht ist. Der elektrische Steller 70 befindet sich jetzt auf der der ersten Ventildichtfläche 84 gegenüberliegenden Seite des Ventilglieds 75 und ist der Übersichtlichkeit halber in Figur 4 nicht dargestellt. Da die Funktionsweise des Steuerventils 74 in Figur 4 genau der Funktionsweise des in Figur 3 gezeigten Steuerventils 74 entspricht, kann auf eine detaillierte Beschreibung hier verzichtet werden.
In Figur 5 ist ein weiteres Ausführungsbeispiel des Steuerventils 74 gezeigt. Die Ansteuerung des äußeren Steuerraums 55 und des inneren Steuerraums 42 über die Ablaufdrosseln 65, 67 und die Zulaufdrosseln 62, 48 ist analog zu dem in Figur 3 beziehungsweise in Figur 4 gezeigten Steuerventil 74. Das Steuerventil 74 weist hier ebenfalls einen Ventilsteuerraum 77 auf, der einen ersten konischen Ventilsitz 80 und einen zweiten, als Flachsitz ausgebildeten Ventilsitz 82 aufweist. In den Ventilsteuerraum 77 mündet die Ventilzulaufdrossel 68 und der Ventilablaufkanal 79. Sowohl die äußere Ablaufdrossel 65 als auch die innere Ablaufdrossel 67 münden in den Ventilsteuerraum 77, wobei deren Zulauf in den Ventilsteuerraum 77 durch das Ventilglied 75 nicht verschließbar ist. In Anlage des Ventilglieds 75 am ersten Ventilsitz 80 wird der Ventilablaufkanal 79 verschlossen, und in der gegenüberliegenden Endposition des Ventilglieds 75 verschließt dieses durch Anlage am zweiten Ventilsitz 82 die Ventilzulaufdrossel 68. Sollen beide Ventilnadeln 10, 12 aufgesteuert werden, so fährt das Ventilglied 75 vom ersten Ventilsitz 80 in Anlage an den zweiten Ventilsitz 82 und verschließt somit die Ventilzulaufdrossel 68. Durch das Aufsteuern des Ventilablaufkanals 79 fällt der Druck im Ventilsteuerraum 77 ab und damit auch im äußeren Steuerraum 55 und im inneren Steuerraum 42. Daraufhin öffnen sowohl die innere Ventilnadel 12 als auch die äußere Ventilnadel 10 und geben beide Einspritzöffnungsreihen 120, 220 frei. Zur Beendigung der Einspritzung fährt das Ventilglied 75 wieder in Anlage an den ersten Ventilsitz 80, so dass über die Ventilzulaufdrossel 68 Kraftstoff in den Ventilsteuerraum 77 strömt und vom Ventilsteuerraum 77 über die Ventilablaufdrosseln 65, 67 in die Steuerräume 55, 42. Der dadurch erreichte rasche Druckaufbau in beiden Steuerräumen 55, 42 bewirkt ein schnelles Nadelschließen. Neben den beiden Endpositionen, die das Ventilglied 75 ansteuern kann, ist auch in diesem Ausführungsbeispiel eine Zwischenposition möglich. In diesem Fall kann durch eine geeignete Dimensionierung der Zulaufdrosseln 62, 48 beziehungsweise der Ablaufdrosseln 65, 67 erreicht werden, dass die beiden Ventilnadeln sukzessiv öffnen. Fährt das Ventilglied 75 in eine Zwischenstellung zwischen dem ersten Ventilsitz 80 und dem zweiten Ventilsitz 82, so fällt der Druck im Steuerraum 77 trotz der Ventilzulaufdrossel 68 ab. Hierdurch fällt auch der Druck im äußeren Steuerraum 55 ab, so dass die äußere Ventilnadel 10 öffnet. Durch eine geeignete Dimensionierung der inneren Ablaufdrossel 67 wird erreicht, dass der Druck im inneren Steuerraum 42 erst mit einer gewissen Verzögerung so weit abfällt, dass die innere Ventilnadel 12 öffnet. Je nach Stellung des Ventilglieds 75 kommt es zu einem mehr oder weniger schnellem Abfall des Drucks im Ventilsteuerraum 77 und über diese Dynamik lässt sich auch die Zeitspanne bestimmen, die zwischen dem Öffnen der äußeren Ventilnadel 10 und dem Öffnen der inneren Ventilnadel 12 liegt.
In Figur 6 ist eine Variante des in Figur 5 gezeigten Steuerventils 74 dargestellt, wobei hier der erste Ventilsitz 80 und zweite Ventilsitz 82 vertauscht sind und ebenso die Lage des Steuerventilglieds 75. Der elektrische Steller 70 befindet sich also an der der ersten Ventildichtfläche 84 gegenüberliegenden Seite des Ventilglieds 75 und ist der Übersichtlichkeit halber in Figur 6 nicht dargestellt., Diese Anordnung des Steuerventilglieds 75 und des Ventilablaufkanals 79 beziehungsweise der Ventilzulaufdrossel 68 kommt insbesondere dann in Frage, wenn der Leckölraum, in den der Ventilablaufkanal 79 mündet, auf diese Weise leichter mit dem Steuerventil 74 verbindbar ist.

Claims (10)

  1. Kraftstoffeinspritzventil mit einem Gehäuse (1) und einer darin ausgebildeten Bohrung (9), die an ihrem brennraumseitigen Ende von einem Ventilsitz (23) begrenzt wird, wobei im Ventilsitz (23) eine innere Einspritzöffnungsreihe (220) und eine äußere Einspritzöffnungsreihe (120) ausgebildet sind, und mit einer in der Bohrung (9) längsverschiebbar angeordneten äußeren Ventilnadel (10), die an ihrem brennraumseitigen Ende eine äußere Ventildichtfläche (24) aufweist, mit der sie mit dem Ventilsitz (23) zur Steuerung der äußeren Einspritzöffnungsreihe (120) insofern zusammenwirkt, als bei vom Ventilsitz (23) abgehobener äußerer Ventildichtfläche (24) die äußere Einspritzöffnungsreihe (120) mit einem zwischen der Wand der Bohrung (9) und der äußeren Ventilnadel (10) ausgebildeten Druckraum (14) verbunden ist und bei Anlage der äußeren Ventildichtfläche (24) am Ventilsitz (23) die äußere Einspritzöffnungsreihe (120) verschlossen wird, und mit einer in der äußeren Ventilnadel (10) geführten inneren Ventilnadel (12), die in gleicher Weise wie die äußere Ventilnadel (10) mit einer inneren Ventildichtfläche (26) mit dem Ventilsitz (23) zur Steuerung der inneren Einspritzöffnungsreihe (220) zusammenwirkt, wobei sowohl die innere Ventilnadel (12) als auch die äußere Ventilnadel (10) von einer Schließkraft in Richtung des Ventilsitzes (23) gedrückt werden und beide Ventilnadeln (10; 12) Druckflächen aufweisen, die vom Kraftstoffdruck im Druckraum (14) beaufschlagbar sind, wodurch die Ventilnadeln (10; 12) eine der Schließkraft entgegengerichtete Öffnungskraft erfahren, dadurch gekennzeichnet, dass im Gehäuse (1) ein innerer Steuerraum (42) ausgebildet ist, durch dessen Druck zumindest mittelbar eine Schließkraft auf die innere Ventilnadel (12) ausgeübt wird, und dass im Gehäuse (1) ein äußerer Steuerraum (55) ausgebildet ist, durch dessen Druck zumindest mittelbar eine Schließkraft auf die äußere Ventilnadel (10) ausgeübt wird, wobei beide Steuerräume (42; 55) durch jeweils eine Zulaufdrossel (62; 48) mit einem Kraftstoffhochdruckraum (7) verbunden sind, und dass ein Steuerventil (74) im Gehäuse (1) angeordnet ist, das einen Ventilsteuerraum (77) aufweist, wobei der Ventilsteuerraum (77) über eine äußere Ablaufdrossel (65) mit dem äußeren Steuerraum (55) verbunden ist und über eine innere Ablaufdrossel (67) mit dem inneren Steuerraum (42) verbindbar ist, und dass eine Ventilzulaufdrossel (68) vorhanden ist, über die der Ventilsteuerraum (77) mit dem Kraftstoffhochdruckraum (7) verbindbar ist, und dass eine Ventilablaufdrossel (79) vorhanden ist, über die der Ventilsteuerraum (77) mit einem Leckölraum verbindbar ist, und dass ein bewegliches Ventilglied (75) im Ventilsteuerraum (77) angeordnet ist, das zwischen zwei Endpositionen beweglich ist und in einer Endposition die Ventilablaufdrossel (79) verschließt und alle anderen Verbindungen des Ventilsteuerraums (77) offen lässt.
  2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass das Ventilglied (75) in der zweiten Endposition die innere Ablaufdrossel (67) des inneren Steuerraums (42) verschließt und die Ventilablaufdrossel (79) des Ventilsteuerraums (77) öffnet.
  3. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass das Ventilglied (75) in der zweiten Endposition die Ventilzulaufdrossel (68) des Ventilsteuerraums (77) verschließt und die Ventilablaufdrossel (79) des Ventilsteuerraums (77) öffnet.
  4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass das Ventilglied (75) zwischen seinen beiden Endpositionen eine Längsbewegung durchführt und dabei an jeweils einem erste Ventilsitz (80) und einem zweiten Ventilsitz (82) im Ventilsteuerraum (77) zur Anlage kommt, wobei sich die beiden Ventilsitze (80; 82) einander gegenüberliegen.
  5. Kraftstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet, dass der erste Ventilsitz (80) konisch ausgebildet ist und mit einer ersten, balligen Ventildichtfläche (84), die am Ventilglied (75) ausgebildet ist, zusammenwirkt, und dass der zweite Ventilsitz (82) als Flachsitz ausgebildet ist und mit einer zweiten am Ventilglied (75) ausgebildeten, ebenen Ventildichtfläche (86) zusammenwirkt.
  6. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass das Ventilglied (75) mit einem Steller (70) verbunden ist, welcher das Ventilglied (75) im Ventilsteuerraum (77) bewegt.
  7. Kraftstoffeinspritzventil nach Anspruch 6, dadurch gekennzeichnet, dass der Steller ein elektrischer Steller (70) ist.
  8. Kraftstoffeinspritzventil nach Anspruch 7, dadurch gekennzeichnet, dass der elektrische Steller ein Piezo-Steller (70) ist.
  9. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass der Hochdruckraum (7) im Gehäuse (1) als Hochdruckkanal ausgebildet ist, durch den dem Druckraum (14) Kraftstoff unter hohem Druck zugeführt wird.
  10. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass das Ventilglied (75) in einer Zwischenposition zwischen den beiden Endpositionen gehalten werden kann, in welcher Zwischenposition keine der Zuläufe des Ventilsteuerraums (77) verschlossen ist.
EP03003081A 2002-03-13 2003-02-13 Kraftstoffeinspritzventil für Brennkraftmaschinen Expired - Lifetime EP1344929B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10210927 2002-03-13
DE10210927A DE10210927A1 (de) 2002-03-13 2002-03-13 Kraftstoffeinspritzventil für Brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP1344929A1 EP1344929A1 (de) 2003-09-17
EP1344929B1 true EP1344929B1 (de) 2004-12-01

Family

ID=27762890

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03003081A Expired - Lifetime EP1344929B1 (de) 2002-03-13 2003-02-13 Kraftstoffeinspritzventil für Brennkraftmaschinen

Country Status (3)

Country Link
EP (1) EP1344929B1 (de)
JP (1) JP2003269282A (de)
DE (2) DE10210927A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10304605A1 (de) * 2003-02-05 2004-08-19 Robert Bosch Gmbh Kraftstoffeinspritzventil mit zwei koaxialen Ventilnadeln
DE10334209A1 (de) * 2003-07-26 2005-02-10 Robert Bosch Gmbh Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine
DE10338228A1 (de) * 2003-08-20 2005-03-10 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10348923A1 (de) * 2003-10-18 2005-05-19 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
DE10348925A1 (de) * 2003-10-18 2005-05-12 Bosch Gmbh Robert Kraftstoffinjektor mit mehrteiligem, direktgesteuertem Einspritzventilglied
DE102004028521A1 (de) * 2004-06-11 2005-12-29 Robert Bosch Gmbh Kraftstoffinjektor mit mehrteiligem Einspritzventilglied und mit Druckverstärker
DE102004055267A1 (de) * 2004-11-17 2006-05-18 Robert Bosch Gmbh Kraftstoffeinspitzvorrichtung
ES2285646T3 (es) 2005-01-19 2007-11-16 Delphi Technologies, Inc. Inyector de combustible.
EP1693561B1 (de) * 2005-01-19 2008-03-05 Delphi Technologies, Inc. Kraftstoffeinspritzventil
JP4239995B2 (ja) * 2005-03-28 2009-03-18 トヨタ自動車株式会社 内燃機関の燃料噴射装置
JP6828443B2 (ja) * 2017-01-10 2021-02-10 株式会社デンソー 燃料噴射装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3824467A1 (de) * 1988-07-19 1990-01-25 Man B & W Diesel Ag Einspritzventil
DE4115477C2 (de) * 1990-05-17 2003-02-06 Avl Verbrennungskraft Messtech Einspritzdüse für eine Brennkraftmaschine
AT3763U3 (de) * 1999-08-05 2000-12-27 Avl List Gmbh Nockenbetätigte einspritzeinrichtung für eine brennkraftmaschine
GB0021296D0 (en) * 2000-08-30 2000-10-18 Ricardo Consulting Eng A dual mode fuel injector

Also Published As

Publication number Publication date
DE10210927A1 (de) 2003-10-02
JP2003269282A (ja) 2003-09-25
EP1344929A1 (de) 2003-09-17
DE50300174D1 (de) 2005-01-05

Similar Documents

Publication Publication Date Title
EP1478840B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE69922087T2 (de) Brennstoffeinspritzdüse
EP1507972B1 (de) KRAFTSTOFFEINSPRITZVENTIL FüR BRENNKRAFTMASCHINEN
DE19732802A1 (de) Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE19709794A1 (de) Ventil zum Steuern von Flüssigkeiten
EP1344929B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2008049669A1 (de) Injektor mit axial-druckausgeglichenem steuerventil
DE102005010453A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19954288A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1658427B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102004046191B3 (de) Servoventil und Einspritzventil
DE10031574A1 (de) Druckgesteuerter doppelschaltender Hochdruckinjektor
EP2798192B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10357769B4 (de) Kraftstoffeinspritzventil
EP1576276A1 (de) Kraftstoffeinspritzvorrichtung mit einem 3/3-wege-steuerventil zur einspritzverlaufsformung
DE102007012302A1 (de) Federhülse für Kraftstoffinjektor
DE10132248A1 (de) Kraftstoffinjektor mit 2-Wege-Ventilsteuerung
DE10121340A1 (de) Common-Rail-Injektor
DE102010043110A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102005057748A1 (de) Düsenbaugruppe für ein Einspritzventil
DE19947196A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
EP2156044A1 (de) Injektor mit druckausgeglichenem steuerventil
WO2007017303A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102004051756A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102005005713A1 (de) Düsenbaugruppe und Einspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20040317

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): CZ DE FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CZ DE FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041201

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50300174

Country of ref document: DE

Date of ref document: 20050105

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050216

Year of fee payment: 3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050320

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050902

ET Fr: translation filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090417

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901