EP1312661B1 - Procédé de conversion de fractions lourdes petrolieres incluant un lit bouillonnant pour produire des distillats moyens de faible teneur en soufre - Google Patents

Procédé de conversion de fractions lourdes petrolieres incluant un lit bouillonnant pour produire des distillats moyens de faible teneur en soufre Download PDF

Info

Publication number
EP1312661B1
EP1312661B1 EP02290433A EP02290433A EP1312661B1 EP 1312661 B1 EP1312661 B1 EP 1312661B1 EP 02290433 A EP02290433 A EP 02290433A EP 02290433 A EP02290433 A EP 02290433A EP 1312661 B1 EP1312661 B1 EP 1312661B1
Authority
EP
European Patent Office
Prior art keywords
pipe
hydrogen
gas
fraction
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02290433A
Other languages
German (de)
English (en)
Other versions
EP1312661A1 (fr
Inventor
Christophe Gueret
Pierre Marion
Cécile Plain
Jérôme Bonnardot
Eric Benazzi
Olivier Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1312661A1 publication Critical patent/EP1312661A1/fr
Application granted granted Critical
Publication of EP1312661B1 publication Critical patent/EP1312661B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/007Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 in the presence of hydrogen from a special source or of a special composition or having been purified by a special treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil

Definitions

  • the present invention relates to a method and an installation for the treatment of heavy hydrocarbon feedstocks containing sulfur impurities. It relates to a process for converting at least in part such a hydrocarbon feedstock, for example a vacuum distillate obtained by the direct distillation of a crude oil, into diesel corresponding to the 2005 sulfur specifications, that is to say having less than 50 ppm sulfur, and a heavier product that can be advantageously used as a feedstock for catalytic cracking (such as catalytic cracking in a fluid bed).
  • FR-A-2 791 354 describes a process for converting heavy petroleum fractions comprising a step of hydroconnection into bouillon beds and a hydrotreating step. Until 2000, the sulfur content allowed in diesel was 350 ppm.
  • the treated feeds are heavy, i.e., 80% wt boiling above 340 ° C.
  • Their initial boiling point is usually at least 340 ° C, often at least 370 ° C or above 400 ° C.
  • the process makes it possible to treat fillers having a final boiling temperature of at least 450 ° C. and which may even be greater than 700 ° C.
  • the sulfur content is at least 0.05 wt%, often at least 1% and very often at least 2% or even at least 2.5 wt%. Charges with 3% or more sulfur are well suited in this process.
  • the fillers which can be treated in the context of the present invention are straight-run vacuum distillates, vacuum distillates resulting from conversion processes such as, for example, those resulting from coking, from fixed-bed hydroconversion (such as those from HYVAML® methods of treatment of heavy developed by the applicant) or of hydrotreatment processes of heavy ebullated bed (such as those from process H-oIL ®) or deasphalted oils to solvent (for example propane, butane, or pentane) from the deasphalting of residuum under direct distillation vacuum, or residues from HYVAHL ® and H-OIL processes.
  • the fillers can also be formed by mixing these various fractions.
  • the feedstocks which are treated are preferably vacuum distillates, DAO-type feedstocks, that is to say containing metals and / or asphalenes, and for example more than 10 ppm of metals and more than 10 ppm of metals. 1000 ppm of asphaltenes.
  • the said hydrocarbon feedstock is treated in a treatment section in the presence of hydrogen, the said section comprising at least one triphasic reactor, containing at least one hydroconversion catalyst, the mineral support of which is at least partially amorphous, in a bubbling bed, operating an upflow of liquid and gas, said reactor comprising at least one means for withdrawing the catalyst from said reactor located near the bottom of the reactor and at least one fresh catalyst booster means in said reactor located near the top of said reactor; reactor.
  • the process is usually carried out under an absolute pressure of 2 to 35 MPa, often 4 to 20 MPa and most often 6 to 20 MPa at a temperature of about 300 to about 550 ° C and often about 350 to about 470 ° C. .
  • the hourly space velocity (VVH) with respect to the catalyst volume and the hydrogen partial pressure are important factors that are chosen according to the characteristics of the product to be treated and the desired conversion. Most often the VVH relative to the catalyst volume is in a range from about 0.1 h -1 to about 10 h -1 and preferably about 0.5 h -1 to about 5 h -1 .
  • the amount of hydrogen mixed with the feed is usually from about 50 to about 5000 normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of liquid feed and most often from about 100 to about 1500 Nm 3 / m 3 and preferably from about 200 to about 500 Nm 3 / m 3 .
  • the conversion of the feed into fractions lighter than 360 ° C is usually between 10-80% by weight, usually 25-60%.
  • a conventional hydroconversion granular catalyst comprising, on an amorphous support, at least one metal or metal compound having a hydrodehydrogenating function can be used.
  • This catalyst may be a catalyst comprising Group VIII metals, for example nickel and / or cobalt, most often in combination with at least one Group VIB metal, for example molybdenum and / or tungsten.
  • a catalyst comprising from 0.5 to 10% by weight of nickel and preferably from 1 to 5% by weight of nickel (expressed as nickel oxide NiO) and from 1 to 30% by weight of molybdenum of preferably from 5 to 20% by weight of molybdenum (expressed as MoO 3 molybdenum oxide) on an amorphous mineral support.
  • This support will for example be chosen from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals.
  • This support may also contain other compounds and for example oxides chosen from the group formed by boron oxide, zirconia, titanium oxide and phosphoric anhydride. Most often we use a alumina support and very often a support of alumina doped with phosphorus and possibly boron.
  • the concentration of phosphorus pentoxide P 2 O 5 is usually less than about 20% by weight and most often less than about 10% by weight. This P 2 O 5 concentration is usually at least 0.001% by weight.
  • the concentration of boron trioxide B 2 O 3 is usually from about 0 to about 10% by weight.
  • the alumina used is usually a ⁇ or ⁇ alumina. This catalyst is most often in the form of extruded.
  • the total content of Group VI and VIII metal oxides is often from about 5 to about 40% by weight and generally from about 7 to 30% by weight and the weight ratio of metal oxide (or metals) to metal oxide Group VI group VIII metal (or metals) is generally from about 20 to about 1 and most often from about 10 to about 2.
  • the spent catalyst is partly replaced by fresh catalyst by withdrawal at the bottom of the reactor and introduction to the top of the fresh or new catalyst reactor at regular time interval, that is to say for example by puff or almost continuously.
  • fresh catalyst can be introduced every day.
  • the replacement rate of spent catalyst with fresh catalyst may be, for example, from about 0.05 kilograms to about 10 kilograms per cubic meter of charge.
  • This withdrawal and replacement are performed using devices for the continuous operation of this hydroconversion step.
  • the unit usually comprises a recirculation pump for maintaining the bubbling bed catalyst by continuously recycling at least a portion of the liquid withdrawn from step a) and reinjected into the bottom of the zone of step a). It is also possible to send the spent catalyst withdrawn from the reactor into a regeneration zone in which the carbon and sulfur contained therein are removed and then to return this regenerated catalyst to the hydroconversion stage b).
  • This step is to separate the gases from the liquid, and in particular to recover hydrogen and most of the hydrogen sulfide H 2 S formed in step a), and then obtain a liquid effluent free of H 2 S dissolved.
  • the liquid effluent devoid of H 2 S and optionally added stabilized naphtha is distilled to obtain at least one distillate cut including a gas oil fraction, and at least a heavier fraction than the diesel fuel.
  • the distillate cut may be a diesel cut or a diesel fuel cut mixed with naphtha. It feeds step c).
  • the heavier liquid fraction than the diesel-type fraction may optionally be sent to a catalytic cracking process in which it is advantageously treated under conditions making it possible to produce a gaseous fraction, a gasoline fraction, a diesel fraction and a heavier fraction. that the diesel fraction often referred to by those skilled in the art slurry fraction.
  • this heavier liquid fraction than the diesel fraction can be used as a low sulfur industrial fuel or as a thermal cracking feedstock.
  • the naphtha When the naphtha is not sent to the mixture with the diesel fuel in step c), it is distilled.
  • the naphtha fraction obtained can advantageously be separated into heavy gasoline, which will preferably be a feedstock for a reforming process, and light gasoline which preferably will be subjected to a paraffin isomerization process.
  • the diesel fuel cutter most often has a sulfur content of between 100 and 500 ppm by weight and the gasoline cutter most often has a sulfur content of at most 200 ppm by weight.
  • the diesel cut does not meet the 2005 specifications for sulfur.
  • the other characteristics of diesel are also at a low level; for example, the cetane is of the order of 45 and the aromatic content is greater than 20% by weight.
  • the conditions are generally chosen such that the initial boiling point of the heavy fraction is from about 340 ° C to about 400 ° C and preferably from about 350 ° C to about 380 ° C. for example, about 360 ° C.
  • the boiling point is between about 120 ° C and 180 ° C.
  • the diesel is between the naphtha and the heavy fraction.
  • the cutting points given here are indicative but the operator will choose the cutting point according to the quality and quantity of the desired products, as is generally done.
  • Step c) wherein at least a portion, and preferably all, of the distillate cut undergoes hydrotreatment to reduce the sulfur content below 50 ppm by weight, and most often below 10 ppm.
  • This hydrocarbon fraction may for example be chosen from the group formed by LCOs (light cycle oil from catalytic cracking in a fluidized bed).
  • the temperature in this step is usually from about 300 to about 500 ° C, often from about 300 ° C to about 450 ° C and very often from about 350 to about 420 ° C. This temperature is usually adjusted according to the desired level of hydrodesulfurization and / or saturation of the aromatics and must be compatible with the desired cycle time.
  • the hourly space velocity (VVH) and the hydrogen partial pressure are chosen according to the characteristics of the product to be treated and the desired conversion. Most often the VVH is in a range from about 0.1 h -1 to about 10 h -1 and preferably 0.1 h -1 - 5 h -1 and preferably from about 0.2 h -1 to about 2 h - 1 .
  • the total amount of hydrogen mixed with the feedstock is usually about 200 to about 5000 normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of liquid feed and most often about 250 to 2000 Nm 3 / m 3 and preferably from about 300 to 1500 Nm 3 / m 3 .
  • the same operation is carried out with a partial pressure of reduced hydrogen sulfide compatible with the stability of the sulfurized catalysts.
  • the partial pressure of hydrogen sulfide is preferably less than 0.05 MPa, preferably 0.03 MPa, more preferably 0.01 MPa.
  • the ideal catalyst In the hydrodesulfurization zone, the ideal catalyst must have a high hydrogenating power so as to achieve a deep refining of the products and to obtain a significant lowering of sulfur.
  • the hydrotreatment zone operates at a relatively low temperature, which is in the direction of a deep hydrogenation, hence an improvement in the aromatic content of the product and its cetane and a limitation of the product. coking. It is not within the scope of the present invention to use in the hydrotreating zone simultaneously or successively a single catalyst or several different catalysts. Usually this step is carried out industrially in one or more reactors with one or more catalytic beds and downflow of liquid.
  • At least one fixed bed of hydrotreatment catalyst comprising a hydrodehydrogenating function and an amorphous support is used.
  • a catalyst is used, the support of which is for example chosen from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals.
  • This support may also contain other compounds and for example oxides chosen from the group formed by boron oxide, zirconia, titanium oxide and phosphoric anhydride. Most often a support of alumina and better alumina n or ⁇ is used.
  • the hydrogenating function is provided by at least one Group VIII metal and / or Group VIB.
  • the total content of metal oxides of groups VI and VIII is often from about 5 to about 40% by weight and generally from about 7 to 30% by weight and the weight ratio expressed as metal oxide between metal (metal) group VI on metal Group VIII (or metals) is generally from about 20 to about 1 and most often from about 10 to about 2.
  • the ideal catalyst must have a high hydrogenating power so as to achieve a deep refining of the products and to obtain a significant lowering of sulfur.
  • This catalyst may be a catalyst comprising Group VIII metals, for example nickel and / or cobalt, most often in combination with at least one Group VIB metal, for example molybdenum and / or tungsten.
  • a NiMo catalyst will be used.
  • the desulfurization of a NiMo catalyst is greater than that of a CoMo catalyst because the first shows a hydrogenating function more important than the second.
  • a catalyst comprising from 0.5 to 10% by weight of nickel and preferably from 1 to 5% by weight of nickel (expressed as nickel oxide NiO) and from 1 to 30% by weight of molybdenum and preferably from 1 to 30% by weight of molybdenum may be used. at 20% by weight of molybdenum (expressed as molybdenum oxide (MoO 3 ) on an amorphous mineral support.
  • nickel oxide NiO nickel oxide
  • MoO 3 molybdenum oxide
  • the catalyst may also contain an element such as phosphorus and / or boron. This element may have been introduced into the matrix or may have been deposited on the support. It is also possible to deposit silicon on the support, alone or with phosphorus and / or boron.
  • the concentration of said element is usually less than about 20% by weight (calculated oxide) and most often less than about 10% by weight and is usually at least 0.001% by weight.
  • concentration of boron trioxide B 2 O 3 is usually from about 0 to about 10% by weight.
  • Preferred catalysts contain silicon deposited on a support (such as alumina), optionally with P and / or B also deposited, and also containing at least one metal of GVIII (Ni, Co) and at least one metal of GVIB (W, MB).
  • a support such as alumina
  • P and / or B also deposited, and also containing at least one metal of GVIII (Ni, Co) and at least one metal of GVIB (W, MB).
  • gasolines and gas oils resulting from conversion processes are very refractory to hydrotreating if they are compared with gas oils directly derived from the atmospheric distillation of crudes.
  • the critical point is the conversion of the most refractory species, particularly the di- and trialkylated or more dibenzothiophenes for which the access of the sulfur atom to the catalyst is limited by the alkyl groups.
  • the route of the hydrogenation of an aromatic ring before desulfurization by breaking the Csp3-S bond is faster than the direct desulfurization by breaking the Csp2-S bond.
  • Conversion gas oils therefore require very severe operating conditions to achieve future sulfur specifications. If it is desired to hydrotreat these conversion gas oils under operating conditions making it possible to maintain moderate investments with a reasonable cycle time of the hydrotreatment catalyst, optimization of the integration of the process equipment is necessary.
  • step c) of hydrotreatment additional hydrogen is introduced into step c) of hydrotreatment.
  • the amount of additional hydrogen introduced in this step c) is greater than the chemical consumption of hydrogen necessary to obtain the performances set under the operating conditions set for this step c).
  • the quantity of additional hydrogen is at least equal to the difference in the material balance, the difference found corresponds approximately to the chemical consumption of hydrogen.
  • An appropriate means for measuring the hydrogen content in the feedstock or the liquid effluent is the 1 H-NMR measurement.
  • the chromatographic analysis is suitable for the gaseous effluent.
  • step c) All the makeup hydrogen necessary for the process is introduced in step c). Therefore, the quantity supplied will also take into account the chemical consumption of hydrogen on step a) so as to bring the hydrogen necessary for the hydrogenation sought in step a) also.
  • Another consequence is that it is possible to optimize the hydrogen filling in step c) according to the refractory level of the gas oil to be treated.
  • the invention thus makes it possible to substantially improve the performance of the hydrotreatment catalyst and in particular the hydrodesulfurization for given temperature and total pressure conditions and which correspond to industrially practicable values. Indeed, it makes it possible to maximize the hydrogen partial pressure, therefore the performance, on step c), while maintaining a total pressure of steps a) and c) (and therefore their investment cost) almost identical.
  • the residual sulfur content of the gas oil can be reduced by about 30% compared to a process in which all the additional hydrogen would be introduced in step a) or the additional hydrogen supplied to the reactor.
  • step c) would be just equal to the chemical consumption of hydrogen in step c).
  • Step d) final separation on at least part, and preferably all of the hydrotreated effluent from step c).
  • the hydrogen is separated from the effluent. It contains small amounts of hydrogen sulfide and usually does not require treatment.
  • the hydrogen sulphide is also separated from the liquid effluent and thus a gas oil is obtained at most 50 ppm by weight of sulfur, and most often at less than 10 ppm by weight of sulfur. Naphtha is also obtained in general.
  • the hydrogen-containing gas which has been separated in step b) is, if necessary, at least partly treated to reduce its H 2 S content (preferably by washing with at least one amine) before recycling it into step a) and possibly in step c).
  • the recycle gas preferably contains an amount of H 2 S greater than 0% and up to 1% mol.
  • this amount is at least 15 ppm, preferably at least 0.1%, or even at least 0.2% mol.
  • At least a portion of the gaseous fraction can be sent to an amine wash section where the H 2 S is removed in its entirety; the other part can pass the amine wash section and be sent directly to recycling after compression.
  • H 2 S is useful for maintaining the catalysts in the sulfurized state in steps a) and c), but an excess of H 2 S could reduce hydrodesulfurization.
  • step d With the hydrogen from step b) optionally purified, is added the hydrogen separated in step d). The mixture is re-compressed and then recycled to step a) and possibly to step c).
  • step c) may not be necessary, when all the additional hydrogen is introduced in step c).
  • the gas oil obtained has a sulfur content of less than 50 ppm by weight, generally less than 20 ppm, and most often less than 10 ppm.
  • the cetane has been improved from 1 to 12 points, generally from 1 to 7, or from 1 to 5 points with respect to the diesel entering hydrotreating. Its total amount of aromatics has also been reduced by at least 10%, the reduction can even go up to 90%.
  • the amount of polyaromatics in the final gas oil is at most 11% wt.
  • the liquid effluent is sent to a separator (6), which is preferably a steam stripper, to separate the hydrogen sulfide from the hydrocarbon effluent. At the same time, at least a portion of the naphtha fraction can be separated with the hydrogen sulfide.
  • the hydrogen sulfide with said naphtha exits the line (7) while the hydrocarbon effluent is obtained in the line (8).
  • the hydrocarbon effluent then passes into a distillation column (9) and is separated at least one distillate cut including a gas oil fraction and found in the pipe (11), it is also separated a heavier fraction than the diesel fuel and found in the pipe (10).
  • the naphtha separated at the separator (6) is stabilized (H 2 S removed).
  • the stabilized naphtha is injected into the effluent entering column (9).
  • the naphtha can be separated in an additional pipe not shown on the figure 1 .
  • the column (9) separates a diesel fraction mixed with the naphtha in the line (11).
  • the fraction of the pipe (10) is advantageously sent to the zone (V) of catalytic cracking.
  • the naphtha obtained separately, optionally added naphtha separated in the zone (IV) is advantageously separated into gasoline heavy and light, the heavy gasoline being sent to a reforming zone and the light gasoline in an area where isomerization is carried out paraffins.
  • the distillate cut is then sent (alone or optionally added a cut) naphtha and / or diesel outside the process) in a hydrotreating zone (III) provided with at least one fixed bed of a hydrotreatment catalyst.
  • the hydrotreated effluent obtained exits via the pipe (12) to be sent to the separation zone (IV) schematically in dotted lines on the figure 1 .
  • separator preferably a cold separator, wherein are separated a gaseous phase exiting through the pipe (14) and a liquid phase exiting through the pipe (15).
  • the liquid phase is sent to a separator (16) preferably a stripper, to remove the hydrogen sulfide exiting in the pipe (17), usually mixed with the naphtha.
  • a diesel fraction is withdrawn through the line (18), which fraction meets the sulfur specifications, ie less than 50 ppm wt sulfur is generally less than 10 ppm.
  • the H 2 S-naphtha mixture is then optionally treated to recover the purified naphtha fraction.
  • the method and the installation according to the invention also advantageously comprise a hydrogen recycling loop for the 2 zones (I) and (II) and which is now described from the figure 1 .
  • the gas containing hydrogen (gaseous phase of the pipe (4) separated in the zone (II)) is treated to reduce its sulfur content and possibly eliminate the hydrocarbon compounds that may have passed during the separation.
  • the gaseous phase of the pipe (4) is sent into an air cooler (19) after being washed by the water injected by the pipe (20) and partially condensed by a hydrocarbon fraction sent by the line (21).
  • the effluent of the dry cooler is sent to a zone (22) of separation where are separated the water which is withdrawn by the pipe (23), a hydrocarbon fraction by the pipe (21) and a gaseous phase by the pipe ( 24).
  • Part of the hydrocarbon fraction of the pipe (21) is sent to the separation zone (II), and advantageously to the pipe (5).
  • the gaseous phase obtained in the pipe (24) freed from the hydrocarbon compounds is, if necessary, sent to a treatment unit (25) to reduce the sulfur content.
  • it is a treatment with at least one amine.
  • the hydrogen-containing gas thus optionally purified is then re-compressed in the compressor (27).
  • the compressed mixture is then recycled partly to the hydrotreatment zone (III) (Step c) and partly to the hydroconversion zone (1) (step a) through the pipes (28) and the pipe (29) respectively. .
  • recycle hydrogen is introduced at the inlet of the reaction zones with the liquid feed.
  • Part of the hydrogen can also be introduced between the catalytic beds in order to control the inlet temperature of the bed ("quench").
  • a preferred mode for bringing hydrogen to zone (III) is to provide a recycle line and a make-up line.
  • the invention operates at moderate pressures, investments are reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

  • La présente invention concerne un procédé et une installation pour le traitement des charges lourdes hydrocarbonées contenant des impuretés soufrées. Elle concerne un procédé permettant de convertir au moins en partie une telle charge d'hydrocarbures, par exemple un distillat sous vide obtenu par distillation directe d'un pétrole brut, en gazole répondant aux spécifications 2005 en soufre c'est-à-dire ayant moins de 50 ppm de soufre, et en un produit plus lourd pouvant être avantageusement utilise comme charge pour le craquage catalytique (tel que le craquage catalytique en lit fluide).
    FR-A-2 791 354 décrit un procédé de conversion de fractions lourdes pétrolières comprenant une étape d'hydroconnexion en lits bouillonants et une étape d'hydrotraitement.
    Jusqu'en 2000, la teneur en soufre autorisée dans le diesel était de 350 ppm. Or des valeurs drastiquement plus contraignantes sont attendues pour 2005 puisque cette teneur maximale va être réduite à 50 ppm.
    Le déposant a donc recherché un procédé permettant d'atteindre ce but Ce lisant, il a constaté que le but a été largement dépasse puisque des teneurs inférieures à 20 ppm et même à 10 ppm ont été généralement obtenues.
  • Plus précisément, l'invention concerne un procédé de traitement de charges pétrolières dont au moins 80 % pds bout au-dessus de 340°C, et contenant au moins 0,05 % pds de soufre, pour produire au moins une coupe gazole à teneur en soufre d'au plus 50 ppm pds, ledit procédé comprenant les étapes suivantes :
    1. a) hydroconversion en lit bouillonnant en présence d'un catalyseur d'hydroconversion au moins en partie amorphe fonctionnant à courant ascendant de liquide et de gaz, à une température de 300 - 550°C, une pression de 2-35 MPa, une vitesse spatiale horaire de 0,1 h-1-10 h-1 et en présence de 50 5000 Nm3 d'hydrogéne/cm3 de charge, la conversion nette en produits bouillant en-dessous de 360°C étant de 10-80% % pds,
    2. b) séparation à partir de l'effluent d'un gaz contenant de l'hydrogène, du sulfate d'hydrogène formé dans l'étape a) et d'une fraction plus lourde que le gazole, à l'issue de laquelle ledit gaz contenant de l'hydrogène est recyclé vers l'étape a),
    3. c) hydrotraitement par contact avec au moins un catalyseur, d'au moins une coupe distillat obtenue dans l'étape b) et incluant une fraction gazole, une température de 300-500°C, une pression de 2-12 MPa, une vitesse spatiale horaire de 0,1 - 10 h-1 et en présence de 200 - 5000 Nm3 d'hydrogène/m3 de charge,
    4. d) séparation de l'hydrogène, des gaz et d'au moins une coupe gazole à teneur en soufre inférieure à 50 ppm pds, l'hydrogène séparé additionné de l'hydrogène issu de l'étage b) est recomprimé, puis recyclé vers l'étape a),
      procédé dans lequel la totalité de l'hydrogène d'appoint nécessaire au procédé est amené à l'étape c).
  • Les charges traitées sont lourdes, c'est-à-dire que 80 % pds bout au-dessus de 340°C. Leur point d'ébullition initial s'établit généralement à au moins 340°C , souvent à au moins 370°C voir au moins 400°C. Très avantageusement le procédé permet de traiter des charges ayant une température finale d'ébullition d'au moins 450°C et qui peut même aller au-delà de 700°C.
    La teneur en soufre est d'au moins 0.05 % pds, souvent d'au moins 1 % et très souvent d'au moins 2 %, voire d'au moins 2,5 % pds. Des charges à 3 % de soufre ou plus conviennent bien dans ce procédé.
    Les charges que l'on peut traiter dans le cadre de la présente invention sont des distillats sous vide de distillation directe, des distillats sous vide issus de procédé de conversion tels que par exemple ceux provenant du coking, d'une hydroconversion en lit fixe (tels que ceux issus des procédés HYVAML® de traitement des lourds mis au point par la demanderesse) ou des procédés d'hydrotraitement des lourds en lit bouillonnant (tels que ceux issus des procédés H-OIL®), ou encore des huiles désasphaltées au solvent (par exemple au propane, au butane, ou au pentane) venant du désasphaltage de résidu sous vide de distillation directe, ou de résidus issus des procédés HYVAHL® et H-OIL. Les charges peuvent aussi être formées par mélange de ces diverses fractions. Elles peuvent également contenir des coupes gazoles et gazoles lourds provenant du cracking catalytique ayant en général un intervalle de distillation d'environ 150°C à environ 370°C. Elles peuvent aussi contenir des extraits aromatiques et des paraffines obtenus dans le cadre de la fabrication d'huiles lubrifiantes. Selon la présente invention, les charges que l'on traite sont de préférence des distillats sous vide, des charges type DAO c'est à dire contenant des métaux et/ou des asphalènes, et par exemple plus de 10 ppm de métaux et plus de 1000 ppm d'asphaltènes.
  • Etape a) d'hydroconversion où la charge décrite ci-dessous est traitée dans un réacteur en lit bouillonnant.
  • On traite la dite charge hydrocarbonée dans une section de traitement en présence d'hydrogène ladite section comprenant au moins un réacteur triphasique, contenant au moins un catalyseur d'hydroconversion, dont le support minéral est au moins en partie amorphe, en lit bouillonnant, fonctionnant à courant ascendant de liquide et de gaz, ledit réacteur comportant au moins un moyen de soutirage du catalyseur hors dudit réacteur situé à proximité du bas du réacteur et au moins un moyen d'appoint de catalyseur frais dans ledit réacteur situé à proximité du sommet dudit réacteur.
  • On opère habituellement sous une pression absolue 2 à 35 MPa, souvent de 4 à 20 MPa et le plus souvent de 6 à 20 MPa à une température d'environ 300 à environ 550 °C et souvent d'environ 350 à environ 470 °C. La vitesse spatiale horaire (VVH) par rapport au volume de catalyseur et la pression partielle d'hydrogène sont des facteurs importants que l'on choisit en fonction des caractéristiques du produit à traiter et de la conversion souhaitée. Le plus souvent la VVH par rapport au volume de catalyseur se situe dans une gamme allant d'environ 0,1 h-1 à environ 10 h-1 et de préférence environ 0,5 h-1 à environ 5 h-1. La quantité d'hydrogène mélangé à la charge est habituellement d'environ 50 à environ 5000 normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide et le plus souvent d'environ 100 à environ 1500 Nm3/m3 et de préférence d'environ 200 à environ 500 Nm3/m3.
    La conversion de la charge en fractions plus légères que 360°C est habituellement comprise entre 10-80% pds, le plus souvent de 25-60%.
  • On peut utiliser un catalyseur granulaire classique d'hydroconversion comprenant, sur un support amorphe, au moins un métal ou composé de métal ayant une fonction hydrodéshydrogénante. Ce catalyseur peut être un catalyseur comprenant des métaux du groupe VIII par exemple du nickel et/ou du cobalt le plus souvent en association avec au moins un métal du groupe VIB par exemple du molybdène et/ou du tungstène. On peut par exemple employer un catalyseur comprenant de 0,5 à 10 % en poids de nickel et de préférence de 1 à 5 % en poids de nickel (exprimé en oxyde de nickel NiO) et de 1 à 30 % en poids de molybdène de préférence de 5 à 20 % en poids de molybdène (exprimé en oxyde de molybdène MoO3) sur un support minéral amorphe. Ce support sera par exemple choisi dans le groupe formé par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux. Ce support peut également renfermer d'autres composés et par exemple des oxydes choisis dans le groupe formé par l'oxyde de bore, la zircone, l'oxyde de titane, l'anhydride phosphorique. On utilise le plus souvent un support d'alumine et très souvent un support d'alumine dopée avec du phosphore et éventuellement du bore. La concentration en anhydride phosphorique P2O5 est habituellement inférieure à environ 20 % en poids et le plus souvent inférieure à environ 10 % en poids. Cette concentration en P2O5 est habituellement d'au moins 0,001 % en poids. La concentration en trioxyde de bore B2O3 est habituellement d'environ 0 à environ 10 % en poids. L'alumine utilisée est habituellement une alumine γ ou η. Ce catalyseur est le plus souvent sous forme d'extrudé. La teneur totale en oxydes de métaux des groupes VI et VIII est souvent d'environ 5 à environ 40 % en poids et en général d'environ 7 à 30 % en poids et le rapport pondéral exprimé en oxyde métallique entre métal (ou métaux) du groupe VI sur métal (ou métaux) du groupe VIII est en général d'environ 20 à environ 1 et le plus souvent d'environ 10 à environ 2.
  • Le catalyseur usagé est en partie remplacé par du catalyseur frais par soutirage en bas du réacteur et introduction en haut du réacteur de catalyseur frais ou neuf à intervalle de temps régulier c'est-à-dire par exemple par bouffée ou de façon quasi continue. On peut par exemple introduire du catalyseur frais tous les jours. Le taux de remplacement du catalyseur usé par du catalyseur frais peut être par exemple d'environ 0,05 kilogramme à environ 10 kilogrammes par mètre cube de charge. Ce soutirage et ce remplacement sont effectués à l'aide de dispositifs permettant le fonctionnement continu de cette étape d'hydroconversion. L'unité comporte habituellement une pompe de recirculation permettant le maintien du catalyseur en lit bouillonnant par recyclage continu d'au moins une partie du liquide soutiré de l'étape a) et réinjecté dans le bas de la zone de l'étape a). Il est également possible d'envoyer le catalyseur usé soutiré du réacteur dans une zone de régénération dans laquelle on élimine le carbone et le soufre qu'il renferme puis de renvoyer ce catalyseur régénéré dans l'étape b) d'hydroconversion.
  • Etape b) dans laquelle ledit effluent hydroconverti est soumis au moins en partie, et de préférence en totalité, à une ou plusieurs séparations.
  • Le but de cette étape est de séparer les gaz du liquide, et notamment, de récupérer l'hydrogène et l'essentiel du sulfure d'hydrogène H2S formé dans l'étape a), puis obtenir un effluent liquide exempt de H2S dissous.
  • Lors de la séparation de H2S du liquide, une partie de naphta peut être séparée. Cette partie est alors stabilisée (enlèvement H2S).
  • L'effluent liquide dépourvu de H2S et éventuellement additionné du naphta stabilisé est distillé pour obtenir au moins une coupe distillat incluant une fraction gazole, et au moins une fraction plus lourde que le gazole.
  • La coupe distillat peut être une coupe gazole ou une coupe gazole mélangée au naphta. Elle alimente l'étape c).
  • La fraction liquide plus lourde que la fraction de type gazole peut éventuellement être envoyée dans un procédé de craquage catalytique dans lequel est elle est avantageusement traitée dans des conditions permettant de produire une fraction gazeuse, une fraction essence, une fraction gazole et une fraction plus lourde que la fraction gazole souvent dénommée par les homme du métier fraction slurry.
  • Dans d'autres cas, cette fraction liquide plus lourde que la fraction gazole peut être utilisée comme fuel industriel basse teneur en soufre ou comme charge de craquage thermique.
  • Lorsque le naphta n'est pas envoyé au mélange avec le gazole à l'étape c), il est distillé. La fraction naphta obtenue peut avantageusement être séparée en essence lourde, qui de préférence sera une charge pour un procédé de reformage, et en essence légère qui, de préférence sera soumise à un procédé d'isomérisation des paraffines.
  • A la sortie de l'étape b), la coupe gazole présente le plus souvent une teneur en soufre comprise entre 100 et 500 ppm poids et la coupe essence présente le plus souvent une teneur en soufre comprise d'au plus 200 ppm poids. La coupe gazole ne répond donc pas aux spécifications 2005 en soufre. Les autres caractéristiques du gazole sont également à un faible niveau ; par exemple, le cétane est de l'ordre de 45 et la teneur en aromatiques est supérieure à 20% pds.
  • A la distillation les conditions sont généralement choisies de manière à ce que le point d'ébullition initial de la fraction lourde soit d'environ 340°C à environ 400°C et de préférence d'environ 350°C à environ 380°C et par exemple environ 360°C.
  • Pour le naphta, le point final d'ébullition est compris entre environ 120°C et 180°C.
  • Le gazole se situe entre le naphta et la fraction lourde.
  • Les points de coupe donnés ici sont des indicatifs mais l'exploitant choisira le point de coupe en fonction de la qualité et de la quantité des produits souhaités, comme cela se pratique généralement.
  • Etape c) dans laquelle au moins une partie, et de préférence la totalité de la coupe distillat subit un hydrotraitement afin de réduire la teneur en soufre en dessous de 50 ppm pds, et le plus souvent en dessous de 10 ppm.
  • A ladite coupe distillat, il est possible d'additionner une coupe produite à l'extérieur du procédé selon l'invention, et qui n'est normalement pas incorporable directement au pool gazole. Cette fraction d'hydrocarbures peut être par exemple choisie dans le groupe formé par les LCO (Light cycle oil provenant de craquage catalytique en lit fluidisé).
  • On opère habituellement sous une pression absolue d'environ 2 à 12 MPa, souvent d'environ 2 à 10 MPa et le plus souvent d'environ 4 à 9 MPa ; il est également possible de travailler sous 3 à 7 MPa. La température dans cette étape est habituellement d'environ 300 à environ 500°C, souvent d'environ 300°C à environ 450°C et très souvent d'environ 350 à environ 420°C. Cette température est habituellement ajustée en fonction du niveau souhaité d'hydrodésulfuration et/ou de saturation des aromatiques et doit être compatible avec la durée de cycle recherchée. La vitesse spatiale horaire (VVH) et la pression partielle d'hydrogène sont choisis en fonction des caractéristiques du produit à traiter et de la conversion souhaitée. Le plus souvent la VVH se situe dans une gamme allant d'environ 0.1 h-1 à environ 10 h-1 et de préférence 0.1 h-1 - 5 h-1 et avantageusement d'environ 0.2 h-1 à environ 2 h-1.
  • La quantité totale d'hydrogène mélangée à la charge est habituellement d'environ 200 à environ 5 000 normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide et le plus souvent d'environ 250 à 2000 Nm3/m3 et de préférence d'environ 300 à 1500 Nm3/m3.
  • On opère de même utilement avec une pression partielle de l'hydrogène sulfuré réduite compatible avec la stabilité des catalyseurs sulfurés. Dans le cas préférée de la présente invention, la pression partielle de l'hydrogène sulfuré est de préférence inférieure à 0.05 MPa, de préférence à 0.03 MPa, encore mieux à 0.01 MPa.
  • Dans la zone d'hydrodésulfuration, le catalyseur idéal doit avoir un fort pouvoir hydrogénant de façon à réaliser un raffinage profond des produits et à obtenir un abaissement important du soufre. Dans le cas préféré de réalisation, la zone d'hydrotraitement opère à température relativement basse ce qui va dans le sens d'une hydrogénation profonde donc d'une amélioration de la teneur en aromatique du produit et de son cétane et d'une limitation du cokage. On ne sortirait pas du cadre de la présente invention en utilisant dans la zone d'hydrotraitement de manière simultanée ou de manière successive un seul catalyseur ou plusieurs catalyseurs différents. Habituellement cette étape est effectuée industriellement dans un ou plusieurs réacteurs avec un ou plusieurs lits catalytiques et à courant descendant de liquide.
  • Dans la zone d'hydrotraitement on utilise au moins un lit fixe de catalyseur d'hydrotraitement comprenant une fonction hydrodéshydrogénante et un support amorphe. On utilisera de préférence un catalyseur dont le support est par exemple choisi dans le groupe formée par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux. Ce support peut également renfermer d'autres composés et par exemple des oxydes choisis dans le groupe formé par l'oxyde de bore, la zircone, l'oxyde de titane, l'anhydride phosphorique. On utilise le plus souvent un support d'alumine et mieux d'alumine n ou γ.
  • La fonction hydrogénante est assurée par au moins un métal du groupe VIII et/ou du groupe VIB.
  • Dans un cas avantageux, la teneur totale en oxydes de métaux des groupes VI et VIII est souvent d'environ 5 à environ 40 % en poids et en général d'environ 7 à 30 % en poids et le rapport pondéral exprimé en oxyde métallique entre métal (métaux) du groupe VI sur métal (ou métaux) du groupe VIII est en général d'environ 20 à environ 1 et le plus souvent d'environ 10 à environ 2.
  • Le catalyseur idéal doit avoir un fort pouvoir hydrogénant de façon à réaliser un raffinage profond des produits et à obtenir un abaissement important du soufre. Ce catalyseur peut être un catalyseur comprenant des métaux du groupe VIII par exemple du nickel et/ou du cobalt le plus souvent en association avec au moins un métal du groupe VIB par exemple du molybdène et/ou du tungstène. De préférence on utilisera un catalyseur à base de NiMo. Pour les gazoles difficiles à hydrotraiter et pour de très fort taux d'hydrodésulfuration, il est connu de l'homme de l'art que la désulfuration d'un catalyseur à base de NiMo est supérieure à celle d'un catalyseur CoMo car le premier montre une fonction hydrogénante plus importante que le second. On peut par exemple employer un catalyseur comprenant de 0.5 à 10 % en poids de Nickel et de préférence 1 à 5 % en poids de Nickel (exprimé en oxyde de nickel NiO) et de 1 à 30 % en poids de molybdène et de préférence 5 à 20 % en poids de molybdène (exprimé en oxyde de molybdène (MoO3) sur un support minéral amorphe.
  • Le catalyseur peut également contenir un élément tel que du phosphore et/ou du bore. Cet élément peut avoir été introduit dans la matrice ou avoir été déposé sur le support. On peut également déposer du silicium sur le support, seul ou avec le phosphore et/ou le bore.
  • La concentration en ledit élément est habituellement inférieur à environ 20 % en poids (calculé oxyde) et le plus souvent inférieur à environ 10 % en poids et elle est habituellement d'au moins 0.001 % en poids. La concentration en trioxyde de bore B2O3 est habituellement d'environ 0 à environ 10 % en poids.
  • Des catalyseurs préférés contiennent du silicium déposé sur un support (tel que alumine), éventuellement avec P et/ou B déposés également, et contenant aussi au moins un métal du GVIII (Ni, Co) et au moins un métal du GVIB (W, Mo).
  • Dans le procédé selon l'invention, les essences et les gazoles issus de procédé de conversion, comme par exemple l'hydroconversion, sont très réfractaires à l'hydrotraitement si on les compare à des gazoles issus directement de la distillation atmosphérique des bruts.
  • Pour obtenir des teneurs en soufre très faibles, le point critique est la conversion des espèces les plus réfractaires, particulièrement les dibenzothiophènes di et trialkylés ou plus pour lesquels l'accès de l'atome de soufre au catalyseur est limité par les groupements alkyls. Pour cette famille de composés, la voie de l'hydrogénation d'un cycle aromatique avant la désulfuration par rupture de la liaison Csp3-S est plus rapide que la désulfuration directe par rupture de la liaison Csp2-S.
  • Les gazoles de conversion nécessitent donc des conditions opératoires très sévères pour atteindre les futures spécifications en soufre. Si l'on veut hydrotraiter ces gazoles de conversion dans des conditions opératoires permettant de maintenir des investissements modérés avec une durée de cycle raisonnable du catalyseur d'hydrotraitement, une optimisation de l'intégration des équipements du procédé est nécessaire.
  • Nous avons découvert qu'il est possible d'obtenir des gazoles de bonne qualité tout en minimisant les investissements par maximisation de la pression partielle d'hydrogène dans la deuxième étape.
  • Pour ce faire, selon l'invention, il est introduit de l'hydrogène d'appoint dans l'étape c) d'hydrotraitement.
  • De préférence, la quantité d'hydrogène d'appoint introduite à cette étape c), est supérieure à la consommation chimique d'hydrogène nécessaire pour obtenir les performances fixées dans les conditions opératoires fixées pour cette étape c).
  • Cela signifie que cette quantité est supérieure à celle nécessaire pour le niveau recherché d'hydrogénation des composés hydrogénables.
  • Si on réalise un bilan matière hydrogène entre l'entrée correspondant à la charge hydrocarbonée et la sortie correspondant aux effluents liquide et gazeux hors hydrogène séparé, la quantité d'hydrogène d'appoint est au moins égale à la différence du bilan matière, la différence trouvée correspond approximativement à la consommation chimique d'hydrogène.
  • Un moyen approprié de mesure de la teneur en hydrogène dans la charge ou l'effluent liquide est la mesure RMN-1H. Pour l'effluent gazeux, l'analyse chromatographique convient.
  • La totalité de l'hydrogène d'appoint nécessaire au procédé est introduite dans l'étape c).
    Dès lors, la quantité amenée tiendra également compte de la consommation chimique d'hydrogène sur l'étape a) de façon à amener l'hydrogène nécessaire pour l'hydrogénation recherchée dans l'étape a) également.
  • Ainsi, dans le procédés, l'hydrogène d'appoint est introduit :
    • au niveau de l'étape c) uniquement.
  • Une autre conséquence est qu'il est possible d'optimiser l'appoint en hydrogène dans l'étape c) selon le niveau réfractaire des gazole à traiter.
  • L'invention permet ainsi d'améliorer sensiblement les performances du catalyseur d'hydrotraitement et en particulier l'hydrodésulfuration pour des conditions de température et de pression totale données et qui correspondent à des valeurs industriellement praticables.
    En effet, elle permet de maximiser la pression partielle hydrogène, donc la performance, sur l'étape c), tout en maintenant une pression totale des étapes a) et c) (et donc leur coût en investissement) quasiment identique.
  • Ainsi on peut diminuer la teneur résiduelle en soufre du gazole de l'ordre de 30% par rapport à un procédé où tout l'hydrogène d'appoint serait amené dans l'étape a) ou bien l'hydrogène d'appoint amené à l'étape c) serait juste égal à la consommation chimique d'hydrogène dans l'étape c).
  • Pour des charges de l'étape a) très soufrées (par exemple ayant au moins 1 % pds de soufre, au au moins 2 %) qui produisent des gazoles de conversion réfractaires et soufrés, il est ainsi devenu possible d'obtenir des distillats moyens de bonnes qualités en particulier avec une faible teneur en soufre dans des conditions notamment de pression relativement basse et ainsi de limiter le coût des investissements nécessaires.
  • Etape d) de séparation finale sur une partie au moins, et de préférence 1a totalité de l'effluent hydrotraité issu de l'étape c).
  • L'hydrogène est séparé de l'effluent. Il contient de faibles quantités de sulfure d'hydrogène et ne nécessite habituellement pas de traitement.
  • Le sulfure d'hydrogène est également séparé de l'effluent liquide et ainsi il est obtenu un gazole à au plus 50 ppm pds de soufre, et le plus souvent à moins de 10 ppm pds de soufre.
    Du naphta est également obtenu en général.
  • Traitement et recyclage de l'hydrogène
  • Le gaz contenant l'hydrogène qui a été séparé dans l'étape b) est, si nécessaire, au moins en partie traité pour réduire sa teneur en H2S (de préférence par lavage avec au moins une amine) avant de le recycler dans l'étape a) et éventuellement dans l'étape c).
  • Le gaz de recyclage contient, de préférence, une quantité H2S supérieure à 0 % et jusqu'à 1 % mol. Avantageusement cette quantité est au moins 15 ppm, de préférence d'au moins 0, 1 %, voire d'au au moins 0.2 % mol.
  • Ainsi, par exemple, au moins une partie de la fraction gazeuse peut être envoyée dans une section de lavage aux amines où l'H2S est enlevé en totalité ; l'autre partie peut bi passer la section de lavage aux amines et être directement envoyée en recyclage après compression.
  • La présence de l' H2S est utile pour maintenir les catalyseurs à l'état sulfuré dans les étapes a) et c) mais un excès de H2S pourrait réduire l'hydrodésulfuration.
  • A l'hydrogène issu de l'étape b) éventuellement purifié, est additionné l'hydrogène séparé dans l'étape d). Le mélange est re-comprimé puis recyclé vers l'étape a) et éventuellement vers l'étape c).
  • En effet, le recycle vers l'étape c) peut ne pas être nécessaire, lorsque tout l'hydrogène d'appoint est introduit à l'étape c).
  • On peut avantageusement introduire l'hydrogène de recycle avec la charge entrant dans l'étape a) et/ou sous forme de quench entre les lits de catalyseurs.
  • Le gazole obtenu présente une teneur en soufre inférieure à 50 ppm pds, généralement inférieur à 20 ppm, et le plus souvent inférieure à 10 ppm.
    Par ailleurs, le cétane a été amélioré de 1 à 12 points, généralement de 1 à 7, ou encore de 1 à 5 points par rapport au gazole entrant en hydrotraitement.
    Sa quantité totale d'aromatiques a été également réduite d'au moins 10 %, la réduction peut aller même jusqu'à 90 %.
    La quantité de polyaromatiques dans le gazole final est d'au plus 11 % pds.
  • Installation
  • L'invention concerne également une installation de traitement de charges pétrolières dont au moins 80 % pds bout au-dessus de 340°C et contenant au moins 0,05 % de soufre comprenant :
    1. a) une zone (I) d'hydroconversion en lit bouillonnant de catalyseur d'hydroconversion et munie d'une conduite (1) pour l'introduction de la charge à traiter, d'une conduite (2) pour la sortie de l'effluent hydroconverti, d'au moins une conduite (31) pour le soutirage de catalyseur et d'au moins une conduite (32) pour l'apport de catalyseur frais, ainsi que d'une conduite (29) pour l'introduction de l'hydrogène, ladite zone opérant avec un courant ascendant de charge et de gaz,
    2. b) une zone (II) de séparation incluant au moins un séparateur (3) (6) pour séparer le gaz riche en hydrogène par la conduite (4), pour séparer dans la conduite (7) le sulfure d'hydrogène et obtenir dans la conduite (8) une fraction liquide, et incluant également une colonne de distillation (9) pour séparer au moins une coupe distillat incluant une fraction gazole dans la conduite (11) et une fraction lourde dans la conduite (10),
    3. c) une zone (III) d'hydrotraitement contenant au moins un lit fixe de catalyseur d'hydrotraitement pour traiter une fraction gazole obtenue à l'issue de l'étape b), munie d'une conduite (30) pour l'introduction de la totalité de l'hydrogène d`appoint et d'une conduite (12) pour la sortie de l'effluent hydrotraité,
    4. d) une zone (IV) de séparation incluant au moins un séparateur (13) (16) pour séparer l'hydrogène par la conduite (14), pour séparer dans la conduite (17) le sulfure d'hydrogène et par la conduite (18) un gazole ayant une teneur en soufre inférieure à 50 ppm,
    l'installation comportant une zone (25 de traitement pour abaisser la teneur en H2S du gaz contenant de l'hydrogène de la conduite (4), un compresseur (27) recomprimant le gaz issu de la zone (25) et l'hydrogène amené par la conduite (14), et une conduite (29) de recyclage de l'hydrogène dans la zone (I).
    Elle sera mieux comprise à partir de la figure 1 qui illustre un mode réalisation préféré de l'invention.
    La charge à traiter (telle que définie précédemment) entre par une conduite (1) dans une zone (I) d'hydroconversion en lit bouillonnant d'un catalyseur d'hydroconversion. L'effluent obtenu dans la conduite (2) est envoyé dans la zone (II) de séparation.
    La zone (I) comporte également au moins une conduite (31) pour le soutirage du catalyseur et au moins une conduite (32) pour rapport de catalyseur frais.
    L'effluent passe d'abord dans un séparateur (3) séparant d'une part un gaz contenant de l'hydrogène (phase gazeuse) dans la conduite (4) et d'autre part un effluent liquide dans la conduite (5). On peut utiliser un séparateur chaud suivi d'un séparateur froid (préféré) où un séparateur froid uniquement.
    Une partie de l'effluent liquide obtenu peut être avantageusement extrait pour être recyclé par la conduite (33) en bas du lit bouillonnant de l'étape a) afin de maintenir le catalyseur en lit bouillonnant.
  • L'effluent liquide est envoyé dans un séparateur (6), et qui est de préférence un strippeur à la vapeur, pour séparer le sulfure d'hydrogène de l'effluent hydrocarboné. Dans le même temps, au moins une partie de la fraction naphta peut être séparée avec le sulfure d'hydrogène. Le sulfure d'hydrogène avec ledit naphta sort par la conduite (7) tandis que l'effluent hydrocarboné est obtenu dans la conduite (8).
  • L'effluent hydrocarboné passe ensuite dans une colonne à distiller (9) et il est séparé au moins une coupe distillat incluant une fraction gazole et se retrouvant dans la conduite (11), il est également séparé une fraction plus lourde que le gazole et se retrouvant dans la conduite (10).
  • En général le naphta séparé au niveau du séparateur (6) est stabilisé (H2S éliminé). Dans une disposition avantageuse, le naphta stabilisé est injecté dans l'effluent entrant à 1a colonne (9).
  • Au niveau de la colonne (9), le naphta peut être séparé dans une conduite supplémentaire non représentée sur la figure 1.
  • Selon le figure 1, la colonne (9) sépare une fraction gazole mélangée au naphta dans la conduite (11). La fraction de la conduite (10) est avantageusement envoyée dans la zone (V) de craquage catalytique.
  • Le naphta obtenu séparément, additionné éventuellement du naphta séparé dans la zone (IV) est avantageusement séparé en essences lourde et légère, l'essence lourde étant envoyée dans une zone de reformage et l'essence légère dans une zone où est réalisée l'isomérisation des paraffines.
  • Sur la figure 1, on a schématisé en lignes pointillées la zone (II) de séparation formée de séparateurs (3) (6) et de la colonne (9).
  • La coupe distillat est ensuite envoyée (seule ou éventuellement additionnée d'une coupe) naphta et/ou gazole extérieure au procédé) dans une zone (III) d'hydrotraitement munie d'au moins un lit fixe d'un catalyseur d'hydrotraitement.
  • L'effluent hydrotraité obtenu sort par la conduite (12) pour être envoyé dans la zone (IV) de séparation schématisée en pointillés sur la figure 1.
  • Elle comporte ici un séparateur (13), de préférence un séparateur froid, où sont séparés une phase gazeuse sortant par la conduite (14) et une phase liquide sortant par la conduite (15).
  • La phase liquide est envoyée dans un séparateur (16) de préférence un strippeur, pour enlever le sulfure d'hydrogène sortant dans la conduite (17), le plus souvent en mélange avec le naphta. Il est soutiré une fraction gazole par la conduite (18), fraction qui est conforme aux spécifications sur le soufre i.e. ayant moins de 50 ppm pds de soufre est généralement moins de 10 ppm. Le mélange H2S -naphta est ensuite éventuellement traité pour récupérer la fraction naphta purifiée.
  • Le procédé et l'installation selon l'invention comportent également avantageusement une boucle de recyclage de l'hydrogène pour les 2 zones (I) et (II) et qui est maintenant décrite à partir de la figure 1.
  • Le gaz contenant l'hydrogène (phase gazeuse de la conduite (4) séparé dans la zone (II)) est traité pour réduire sa teneur en soufre et éventuellement éliminer les composés hydrocarbonés qui ont pu passer lors de la séparation.
  • Avantageusement et selon la figure 1, la phase gazeuse de la conduite (4) est envoyée dans un aéroréfrigérant (19) après avoir été lavée par l'eau injectée par la conduite (20) et en partie condensée par une fraction hydrocarbonée envoyée par la ligne (21). L'effluent de l'aéroréfrigérant est envoyé dans une zone (22) de séparation où sont séparés l'eau qui est soutirée par la conduite (23),une fraction hydrocarbonée par la conduite (21) et une phase gazeuse par la conduite (24).
    Une partie de la fraction hydrocarbonée de la conduite (21) est envoyée dans la zone (II) de séparation, et avantageusement dans la conduite (5).
  • On a décrit ici un mode de réalisation particulier pour séparer les composés hydrocarbonés entraînés, tout autre mode connu de l'homme du métier convient.
  • La phase gazeuse obtenue dans la conduite (24) débarrassée des composés hydrocarbonés est, si nécessaire, envoyée dans une unité (25) de traitement pour réduire la teneur en soufre.
  • Avantageusement, il s'agit d'un traitement avec au moins une amine.
  • Dans certains cas, il suffit qu'une partie seulement de la phase gazeuse soit traitée. Dans d'autre cas, la totalité devra être traitée, c'est ce qui est illustré sur la fig 1, où une partie de la phase gazeuse ans la conduite (26) ne passe pas dans l'unité (25).
  • Le gaz contenant l'hydrogène ainsi éventuellement purifié est alors ré-comprimé dans le compresseur (27).
  • Avant la compression, il est ajouté l'hydrogène séparé dans la conduite (14).
  • Le mélange comprimé est alors recyclé en partie vers la zone (III) d'hydrotraitement (Etape c) et en partie vers la zone (1) d'hydroconversion (étape a) par respectivement les conduites (28) et la conduite (29).
  • Sur la figure 1, on montre que l'hydrogène de recyclage est introduite à l'entrée des zones réactionnelles avec la charge liquide. On peut également introduire une partie de l'hydrogène entre les lits catalytiques afin de contrôler la température d'entrée du lit ("quench").
  • Sur la figure 1, la totalité de l'hydrogène d'appoint est introduit par la conduite (30) au niveau de la zone (II).
  • Comme montré figure 1, un mode préféré pour amener l'hydrogène à la zone (III) consiste à prévoir une conduite pour le recyclage et une conduite pour l'appoint.
  • L'invention ainsi décrite présente de nombreux avantages. Outre ceux déjà décrits, on peut noter que, dans le mode de réalisation préféré où les pressions sont identiques pour les étapes a) et c), du fait du système unique de re-circulation des gaz il est permis de n'utiliser qu'un seul compresseur de recyclage pour les deux zones réactionnelles réduisant ainsi encore les investissements.
  • L'invention fonctionnant à des pressions modérées, les investissements sont réduits.
  • Par ailleurs, il est produit une charge de très bonne qualité pour le craquage catalytique (basse teneur en soufre et azote, enrichissement modéré en hydrogène).

Claims (15)

  1. Procédé de traitement de charges pétrolières dont au moins 80 % pds bout au-dessus de 340°C, et contenant au moins 0,05 % pds de soufre, pour produire au moins une coupe gazole à teneur en soufre d'au plus 50 ppm pds, ledit procédé comprenant les étapes suivantes :
    a) hydroconversion en lit bouillonnant en Présence d'un catalyseur d'hydroconversion au moins en partie amorphe fonctionnant à courant ascendant de liquide et de gaz, à une température de 300 - 550°C, une pression de 2-35 MPa, une vitesse spatiale horaire de 0,1 h-1-10 h-1 et en présence de 50-5000 Nm3 d'hydrogène/m3 de charge, la conversion nette en produits bouillant en-dessous de 360°C étant de 10-80 % pds,
    b) séparation à partir de l'effluent d'un gaz contenant de l'hydrogène, du sulfure d'hydrogène formé dans l'étape a) et d'une fraction plus lourde que le gazole, à l'issue de laquelle ledit gaz contenant de l'hydrogène est recyclé vers l'étape a),
    c) hydrotraitement, par contact avec au moins un catalyseur, d'au moins une coupe distillat obtenue dans l'étape b) et incluant une fraction gazole, à une température de 300-500°C, une pression de 2-12 MPa, une vitesse spatiale horaire de 0,1 - 10 h-1 et en présence de 200 - 5000 Nm3 d'hydrogène/m3 de charge ,
    d) séparation de l'hydrogène, des gaz et d'au moins une coupe gazole à teneur en soufre inférieure à 50 ppm pds, l'hydrogène séparé additionné de l'hydrogène issu de l'étape b), est recomprimé, puis recyclé vers l'étape a),
    procédé dans lequel la totalité de l'hydrogène d'appoint nécessaire au Procédé est amené à l'étape c).
  2. Procédé selon la revendication 1 dans lequel la quantité d'hydrogène d'appoint introduite à l'étape c) est supérieure à la consommation chimique d'hydrogène nécessaire pour obtenir les performances fixées dans les conditions opératoires fixées pour l'étape c).
  3. Procédé selon l'une des revendications précédentes dans lequel ladite fraction lourde est envoyée dans un procédé de craquage catalytique.
  4. Procédé salon l'une des revendications précédentes dans lequel la pression partielle H2S en sortie de l'étape c) est inférieure à 0,05 MPa.
  5. Procédé selon l'une des revendications précédentes dans lequel à l'étape b) on sépare également le naphta et il passe dans l'étape c) une fraction gazole.
  6. Procédé selon l'une des revendications 1 à 3 dans lequel Il passe dans l'étape c) une fraction gazole mélangée au naphta.
  7. Procédé selon l'une des revendications précédentes dans lequel une partie au moins du gaz contenant de l'hydrogène séparé à l'étape b) est traité pour réduire sa teneur en sulfure d'hydrogène puis recyclé vers l'étape a), le gaz de recyclage contenant du sulfure d'hydrogène et à raison de 1 % mol au plus.
  8. Procédé selon la revendication 7 dans lequel le traitement est un lavage avec au moins une amine.
  9. Procédé selon l'une des revendications 7 à 8 dans lequel l'hydrogène est également recyclé dans l'étape c).
  10. Procédé selon l'une des revendications précédentes dans lequel les fractions séparées aux étapes b) et d) sont séparées en essences lourde et légère, l'essence lourde étant envoyée en réformage et l'essence légère en Isomérisation des paraffines.
  11. Installation de traitement de charges pétrolières dont au moins 80 % pds bout au-dessus de 340°C et contenant au moins 0.05 % de soufre comprenant :
    a) une zone (I) d'hydroconversion en lit brouillonnant de catalyseur d'hydroconversion et munie d'une conduite (1) pour l'introduction de la charge à traiter, d'une conduite (2) pour la sortie de l'effluent hydroconverti, d'au moins une conduite (31) pour le soutirage de catalyseur et d'au moins une conduite (32) pour l'apport de catalyseur frais, ainsi que d'une conduite (29) pour l'introduction de l'hydrogène, ladite zone opérant avec un courant ascendant de charge et de gaz,
    b) une zone (II) de séparation Incluant au moins un séparateur (3) (6) pour séparer le gaz riche en hydrogène par la conduite (4), pour séparer dans la conduite (7) le sulfure d'hydrogène et obtenir dans la conduite (8) une fraction liquide, et incluant également une colonne de distillation (9) pour séparer au moins une coupe distillat incluant une fraction gazole dans la conduite (11) et une fraction lourde dans la conduite (10),
    c) une zone (III) d'hydrotraitement contenant au moins un lit fixe de catalyseur d'hydrotraitement pour traiter une fraction gazole obtenue à l'issue de l'étape b), munie d'une conduite (30) pour l'introduction de la totalité de l'hydrogène d'appoint et d'une conduite (12) pour la sortie de l'effluent hydrotraité,
    d) une zone (IV) de séparation incluant au moins un séparateur (13) (16) pour séparer l'hydrogène par la conduite (14), pour séparer dans la conduite (17) le sulfure d'hydrogène et par la conduite (18) un gazole ayant une teneur en soufre inférieure à 50 ppm,
    l'installation comportant une zone (25) de traitement pour abaisser la teneur en H2S du gaz contenant de l'hydrogène de la conduite (4), un compresseur (27) recomprimant le gaz issu de la zone (25) et l'hydrogène amené par la conduite (14), et une conduite (29) de recyclage de l'hydrogène dans la zone (I).
  12. Installation selon la revendication 11, comportent également une zone (V) de craquage catalytique dans laquelle est envoyée ladite fraction lourde par la conduite (10).
  13. Installation selon l'une des revendications 11 ou 12 dans laquelle la zone (II) comporte un séparateur gaz/liquide (3) pour séparer un gaz contenant de l'hydrogène par la conduite (4), puis un séparateur (6) admettant l'effluent issu du séparateur (3) pour séparer le sulfure d'hydrogène et du naphta par la conduite (7) et obtenir une fraction liquide dans la conduite (8), ladite zone (II) comportant également une colonne (9) de distillation pour séparer par la conduite (11) une coupe naphta - gazole et par la conduite (10) une fraction plus lourde que le gazole et la conduite (10) est reliée à une zone (V) de craquage catalytique.
  14. Installation selon l'une des revendications 11 à 13 dans laquelle la zone (II) comporte un séparateur gaz liquide (3) pour séparer un gaz contenant de l'hydrogène par la conduite (4), puis un séparateur (6) admettant l'affluent issu du séparateur (3) pour séparer le sulfure d'hydrogène et du naphta par la conduite (7) et obtenir une fraction liquide dans la conduite (8), sur la conduite (7) est disposé un stabilisateur pour enlever le sulfure d'hydrogène, le naphta purifié étant envoyé dans la conduite (8), ladite zone (II) comportant également une colonne (8) de distillation pour séparer le naphta, une fraction plus lourde que le gazole par la conduite (10), et une coupe gazole par la conduite (11), la conduite (10) étant relié à la zone (V) de craquage catalytique.
  15. Installation salon la revendication 11 également munie d'une conduite (28) de recyclage de l'hydrogène dans la zone (III).
EP02290433A 2001-11-12 2002-02-22 Procédé de conversion de fractions lourdes petrolieres incluant un lit bouillonnant pour produire des distillats moyens de faible teneur en soufre Expired - Lifetime EP1312661B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0114594 2001-11-12
FR0114594A FR2832159B1 (fr) 2001-11-12 2001-11-12 Procede de conversion de fractions lourdes petrolieres incluant un lit bouillonnant pour produire des distillats moyens de faible teneur en soufre

Publications (2)

Publication Number Publication Date
EP1312661A1 EP1312661A1 (fr) 2003-05-21
EP1312661B1 true EP1312661B1 (fr) 2011-06-08

Family

ID=8869294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02290433A Expired - Lifetime EP1312661B1 (fr) 2001-11-12 2002-02-22 Procédé de conversion de fractions lourdes petrolieres incluant un lit bouillonnant pour produire des distillats moyens de faible teneur en soufre

Country Status (5)

Country Link
EP (1) EP1312661B1 (fr)
AT (1) ATE512207T1 (fr)
CA (1) CA2372619C (fr)
ES (1) ES2367677T3 (fr)
FR (1) FR2832159B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857370B1 (fr) * 2003-07-07 2005-09-02 Inst Francais Du Petrole Procede de production de distillats et d'huiles lubrifiantes
US7704377B2 (en) 2006-03-08 2010-04-27 Institut Francais Du Petrole Process and installation for conversion of heavy petroleum fractions in a boiling bed with integrated production of middle distillates with a very low sulfur content
US7938953B2 (en) * 2008-05-20 2011-05-10 Institute Francais Du Petrole Selective heavy gas oil recycle for optimal integration of heavy oil conversion and vacuum gas oil treating

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3380910A (en) * 1966-05-17 1968-04-30 Chemical Construction Corp Production of synthetic crude oil
FR2791354B1 (fr) * 1999-03-25 2003-06-13 Inst Francais Du Petrole Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydroconversion en lits bouillonnants et une etape d'hydrotraitement

Also Published As

Publication number Publication date
CA2372619C (fr) 2010-05-11
ATE512207T1 (de) 2011-06-15
CA2372619A1 (fr) 2003-05-12
EP1312661A1 (fr) 2003-05-21
ES2367677T3 (es) 2011-11-07
FR2832159A1 (fr) 2003-05-16
FR2832159B1 (fr) 2004-07-09

Similar Documents

Publication Publication Date Title
EP2106431A2 (fr) Procede de conversion de charges issues de sources renouvelables pour produire des bases carburants gazoles de faible teneur en soufre et de cetane ameliore
EP2788458B1 (fr) Procede d'hydroconversion de charges petrolieres en lits fixes pour la production de fiouls a basse teneur en soufre
EP3018188B1 (fr) Procede de conversion de charges petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape d'hydrocraquage en lit bouillonnant, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments
EP3303523B1 (fr) Procede de conversion de charges comprenant une etape d'hydrotraitement, une etape d'hydrocraquage, une etape de precipitation et une etape de separation des sediments pour la production de fiouls
CA2301985C (fr) Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydroconversion en lits bouillonnants et une etape d'hydrotraitement
CA2248882C (fr) Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydroconversion en lit bouillonnant et une etape d'hydrotraitement
FR2964387A1 (fr) Procede de conversion de residu integrant une etape de desasphaltage et une etape d'hydroconversion avec recycle de l'huile desasphaltee
WO2012085407A1 (fr) Procède de conversion de charge hydrocarbonate comprenant une huile de schiste par hydre conversion en lit bouillonnant, fractionnement par distillation atmosphérique, et hydrocraquage
FR2964386A1 (fr) Procede de conversion de residu integrant une etape de desashphaltage et une etape d'hydroconversion
WO2014096591A1 (fr) Procede de conversion d'une charge hydrocarbonee lourde integrant un desasphaltage selectif avec recycle de l'huile desasphaltee
EP1157084B1 (fr) Procede flexible de production d'huiles medicinales et eventuellement de distillats moyens
CA2215575C (fr) Procede en plusieurs etapes de conversion d'un residu petrolier
WO2019134811A1 (fr) Procede d'hydrocraquage deux etapes comprenant au moins une etape de separation haute pression a chaud
CA2607252C (fr) Procede et installation de conversion de fractions lourdes petrolieres en lit fixe avec production integree de distillats moyens a tres basse teneur en soufre
EP1312661B1 (fr) Procédé de conversion de fractions lourdes petrolieres incluant un lit bouillonnant pour produire des distillats moyens de faible teneur en soufre
FR2969650A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique et extraction liquide/liquide de la fraction lourde
EP1310544B1 (fr) Procédé de conversion de fractions lourdes pétrolières pour produire une charge de craquage catalytique et des distillats moyens de faible teneur en soufre
WO2012085408A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par decontamination, hydroconversion en lit bouillonnant, et fractionnement par distillation atmospherique
FR2906813A1 (fr) Procede de conversion tres profonde de residus petroliers par hydroconversion suivie de desasphaltage
FR2970478A1 (fr) Procede d'hydroconversion en lit fixe d'un petrole brut, etete ou non, un fractionnement, puis un desasphaltage de la fraction lourde pour la production d'un brut synthetique preraffine
FR3084372A1 (fr) Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, deux desasphaltages et un hydrocraquage en lit bouillonnant de l'asphalte
CA2937194A1 (fr) Optimisation de l'utilisation d'hydrogene pour l'hydrotraitement de charges hydrocarbonees
CA2472906C (fr) Procede de production de distillats et d'huiles lubrifiantes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031121

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20051108

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60240220

Country of ref document: DE

Effective date: 20110721

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20110401903

Country of ref document: GR

Effective date: 20110916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2367677

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111010

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60240220

Country of ref document: DE

Effective date: 20120309

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120222

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210223

Year of fee payment: 20

Ref country code: GR

Payment date: 20210222

Year of fee payment: 20

Ref country code: IT

Payment date: 20210223

Year of fee payment: 20

Ref country code: FR

Payment date: 20210223

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210317

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210329

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60240220

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20220221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220223