EP1310672B1 - Kraftstoff-Pumpeinrichtung für ein Kraftstoffsystem einer Brennkraftmaschine sowie Kraftstoffsystem - Google Patents

Kraftstoff-Pumpeinrichtung für ein Kraftstoffsystem einer Brennkraftmaschine sowie Kraftstoffsystem Download PDF

Info

Publication number
EP1310672B1
EP1310672B1 EP20020017337 EP02017337A EP1310672B1 EP 1310672 B1 EP1310672 B1 EP 1310672B1 EP 20020017337 EP20020017337 EP 20020017337 EP 02017337 A EP02017337 A EP 02017337A EP 1310672 B1 EP1310672 B1 EP 1310672B1
Authority
EP
European Patent Office
Prior art keywords
fuel
drive motor
fuel pump
housing
pumping device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20020017337
Other languages
English (en)
French (fr)
Other versions
EP1310672A3 (de
EP1310672A2 (de
Inventor
Gottlob Haag
Martin Kessler
Michael Huebel
Bernd Schroeder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1310672A2 publication Critical patent/EP1310672A2/de
Publication of EP1310672A3 publication Critical patent/EP1310672A3/de
Application granted granted Critical
Publication of EP1310672B1 publication Critical patent/EP1310672B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors

Definitions

  • the invention initially relates to a fuel pump device for a fuel system of an internal combustion engine, in particular with direct injection, with a fuel pump and a drive motor connected thereto.
  • Such a fuel pump device known from EP 0 725 212 A2.
  • a fuel system in which a first fuel pump device promotes fuel from a fuel tank to a second fuel pumping device and from there via a high-pressure region to injectors.
  • Both fuel pumping devices each comprise a fuel pump and an electric drive motor connected to the fuel pump.
  • the delivery rate of both fuel pumping devices can be changed and adjusted via the rotational speed of the electric drive motor.
  • the non-prepublished DE 101 11 837 A1 discloses an axial piston pump and an electric drive motor, which are housed in an outwardly sealed housing.
  • the disadvantage of the known fuel pumping device is that its handling and integration into the fuel system is difficult and therefore makes the structure of the fuel system expensive. Also, the pump power does not correspond to the operating points of the Internal combustion engine meets the requirements.
  • the design of the fuel pump as a radial piston pump allows the generation of high pressures, as required in modern fuel systems for internal combustion engines with gasoline direct injection.
  • the unit consisting of the drive motor and the fuel pump can be preassembled, so that in the construction of the fuel system, for example in a motor vehicle, only one common part and not two separate parts are to be handled.
  • the accommodation of the drive motor and the fuel pump in a common fluid-tight housing further improves the handling of the thus designed fuel pump device.
  • a fluid-tight housing is already required for the fuel pump so that this does not or hardly leads to additional costs.
  • the drive motor in the fluid-tight housing it is ensured that the drive motor is protected against contamination from the outside.
  • less pollution-tolerant, but powerful electric motors can be used, which once again benefits the performance of the fuel pumping device.
  • the service life of the fuel pump device is improved by this measure.
  • the efficiency of the fuel pump device according to the invention is also improved by the fact that the otherwise required shaft seal can be omitted from the fuel pump to the drive motor.
  • Such a shaft seal is always associated with some friction and leakage, both of which reduce the efficiency of the fuel pump.
  • the omission of the shaft seal also reduces costs.
  • the fuel pump comprises a drive shaft with at least one bearing, which is at the same time a rotor shaft of the drive motor.
  • a designed fuel pump device is very compact, since it is dispensed with separate waves on the one hand for the fuel pump and on the other hand for the drive motor. Also, less bearings are required for storage of the drive shaft or the rotor shaft, resulting in smaller dimensions and lower production costs of the fuel pump device.
  • the interior of the housing of the unit formed by the fuel pump and the drive motor is flowed through by the fuel at least in the region of the drive motor.
  • the flow guide is formed in the interior of the housing of the unit formed from the fuel pump and the drive motor so that the fuel first flows through the drive motor at least partially and then passes to the fuel pump, and that in the flow path between the drive motor and fuel pump, a filter device , in particular a sieve, is present.
  • the drive motor is optimally cooled, which has an advantageous effect on its efficiency and what overall improves the delivery rate of the fuel pump device. This prevents blockages in the flow channels of the fuel pump or at their valve devices. These could be caused by parts which detach, for example, from the magnets of the drive motor made of a brittle material. In this development of the fuel pump device according to the invention, the high efficiency is thus present over the entire service life of the device.
  • the drive shaft of the fuel pump has an Exzenderabrough and arranged around the Exzenderabrough around cam ring and for each piston connected to the piston and the cam ring abutting slide, wherein in the radially outer peripheral surface of the cam ring circumferential groove and in the shoe and in the piston, a radially extending channel are present.
  • the groove and the channels can be introduced in a simple and inexpensive manner. Through the groove and the channels of the fuel can be performed with less flow resistance. The introduction of complex holes, for example, in a cylinder head of the radial piston pump thus eliminated. As a result, the costs are additionally kept low.
  • valve element of the suction valve is made of a ceramic material.
  • a ceramic valve element builds relatively easily, which has advantages in terms of valve dynamics. Further, such a valve element is insensitive to wear, so that the life of the thus configured fuel pumping device is high.
  • this comprises an electronic control part, which controls the drive motor, with a control part housing which on the housing of the fuel pump and the drive motor formed unit is attached with at least one fastening means.
  • An electronic control is required for most types of drive motors anyway to provide the required signals for the drive in the desired manner.
  • the fact that the electronics are housed in a separate control part it can be optimally pre-assembled. In particular, in the pre-assembly such mounting conditions can be met, which are required for the correct functioning of the control electronics. Subsequently, the control part housing of the control part can be fixed to the housing of the unit formed by the fuel pump and the drive motor. If this occurs before the engine is mounted on it, the assembly work on the internal combustion engine is simplified.
  • the fastening means to penetrate the wall of the housing of the unit formed by the fuel pump and the drive motor, and for the fastening means to be sealed off from the housing of the unit formed by the fuel pump and the drive motor by a sealing means.
  • the fastening means penetrates the wall of the housing of the unit formed from the fuel pump and the drive motor, a particularly secure and stable attachment of the control part housing is made possible.
  • the sealing means provided according to the invention ensures that fuel which is present in the housing can not escape from it to the control part.
  • a degassing channel leads to the outside. This ensures that, when fuel gases, which pass the sealant past or through it from the interior of the housing of the drive motor and the fuel pump to the outside, kept away from the sensitive control electronics and be discharged into the environment instead.
  • the assembly of the fuel pump device is further simplified in that the housing of the unit formed by the fuel pump and the drive motor comprises at least two parts which are fluid-tightly interconnected, wherein on the one hand the fuel pump and a rotor connected to the drive shaft and the other Part of the stator belongs. Both parts can thus be pre-assembled independently in possibly different production facilities. The final assembly is still very simple.
  • the invention also relates to a fuel system for a direct injection internal combustion engine having a first fuel pump which delivers fuel to a fuel pumping device comprising a second fuel pump and an electric drive motor connected thereto and a high pressure region into which the second fuel pump delivers and is connected to the at least one fuel injection device.
  • the second fuel pump is a radial piston pump and the drive motor and the second fuel pump unit with a common fluid-tight Form housing.
  • FIG. 1 a fuel system for an internal combustion engine as a whole carries the reference numeral 10.
  • the internal combustion engine is shown only in part in FIG. 1 and bears the reference numeral 12.
  • the fuel system 10 includes a fuel tank 14 from which a fuel pump 16 delivers the fuel. This is driven by an electric drive motor 18.
  • the fuel pump 16 conveys the fuel through a filter 19 to a fuel pumping device 20.
  • an electronic control part 28 is attached on the housing 22, an electronic control part 28 is attached.
  • the detailed structure of the fuel pumping device 20 will be discussed in detail below.
  • the fuel pumping device 20 delivers the fuel under very high pressure into a fuel rail 30 ("rail") associated with a high-pressure region in which the fuel is stored under very high pressure.
  • a fuel rail 30 (“rail") associated with a high-pressure region in which the fuel is stored under very high pressure.
  • fuel injectors 32 are connected to this several fuel injectors 32. These inject the fuel directly into corresponding combustion chambers 34 of the internal combustion engine 12.
  • the pressure in the fuel rail 30 is detected by a pressure sensor 36. It supplies corresponding signals to a control and regulating device 38. From this, in turn, control lines lead to the electronic control part 28 of the fuel pump device 20 and to the electric drive motor 18, which drives the fuel pump 16.
  • the fuel pump device 20 is constructed as follows (Figure 2): The housing 22 is in two parts with a left in Figure 2 part 40 and a right in Figure 2 part 42.
  • the left housing part 40 is executed block-like and has substantially circular cylindrical, disc-like Shape. Coaxial with its longitudinal axis 44, a blind hole 45 is introduced from the right into the left housing part 40 in FIG. In this open several, distributed over the circumference, radially extending and outwardly open blind holes 46.
  • the blind holes 46 running in the radial direction are in each case fluidically connected to the electric drive motor 24 through an opening 47. In the openings 47 a strainer insert 49 is present in each case.
  • two roller bearings 48 and 50 are used, through which a drive shaft 52 relative to the left housing part 40 is mounted friction.
  • a cover ring 53 is attached to the electric drive motor 24.
  • the drive shaft 52 has an eccentric portion 54 lying in the installed position at the level of the blind hole 46.
  • a lifting ring 56 is placed on these. In the region of a cylinder, the outer circumferential surface of the cam ring 56 is flattened in each case.
  • a bushing 58 is inserted in the radially extending blind hole 46 of a cylinder.
  • a piston 60 is slidably received in the radial direction.
  • a shoe 62 is attached at the radially inner end of the piston 60. This is acted upon by a compression spring 64, which is supported on the bushing 58, against the cam ring 56.
  • a continuous groove 66 is present in the outer, partially flattened lateral surface of the cam ring 56. With this is a bore 68 in the shoe 62 and a coaxially extending in the piston 60 bore 70 in connection.
  • the bore 70 in the piston 60 has a larger diameter in its radially outer region than in the radially inner region. In the transition between these two areas an oblique transition surface (without reference numeral) is present, which forms a valve seat for a valve ball 72 of a suction valve 74.
  • the valve ball 72 is made of a ceramic material and is acted upon by a compression spring (no reference numeral) against the valve seat.
  • a working space 78 is present between the piston 60 and the blind hole 46 radially outwardly closing cylinder head 76.
  • the working space 78 can be connected to an outlet channel 82 present in the left housing part 40. This leads to the fuel manifold 30th
  • the drive shaft 52 of the radial piston pump 26 is in Figure 2 to the right over the interface of the left housing part 40 and forms here a rotor shaft 84 of a rotor 86 of the electric drive motor 24.
  • the rotor 86 is fixed to the rotor shaft 84 by a screw 88 and opposite this secured against rotation by a locking disc 90.
  • the rotor 86 has a cup shape. On its radially outer surface magnets 92 are applied.
  • the right housing part 42 is also cup-shaped. It is sealed relative to the left housing part 40 via an O-ring 93. Windings 94 of the drive motor 24 are attached to its radially inner circumferential surface. The interior of the right housing part 42 is connected via an inlet, not shown, with the first fuel pump 16.
  • right of the right housing part 42 is the electrical control part 28.
  • the electronic components 98 are in turn driven by the control and regulating device 38.
  • the control part housing 96 is fixed to the right housing part 42 by a bolt 100. This is guided in two sleeves 102 and 104, between which an O-ring 106 is pressed in the installed position. The length of the sleeves 102 and 104 is chosen so that the O-ring 106 is still in the region of the right housing part 42. The interior of the right housing part 42 is thus fluid-tight completed.
  • power lines 108 are routed from the windings 94 to the electronic components 98.
  • the power lines 108 are possibly welded or soldered to the bolt 100.
  • the fuel from the first fuel pump 16 is compressed to approximately 4 to 6 bar. He passes with this pressure in the interior of the right housing part 42.
  • About the electronic components of the electric drive motor 18 is offset by the control and regulating unit 38 in rotation, whereby the drive shaft 52 in a rotary motion, the cam ring 56 in a circumferential stroke and the Pistons 60 are placed in a reciprocating motion.
  • the fuel flows through the interior of the right housing part 42, thereby cooling the components of the drive motor 24 and those of the power electronics 98, and then passes through the openings 47, the groove 66 in the cam 56, and the bores 68 and 70 in the shoe 62 and in the Piston 60 in the working space 78.
  • By the sieves 49 in the openings 47 contamination are kept away from the working space 78. From the working space 78, the fuel continues to flow via the outlet channel 82 to the fuel manifold 30.
  • the fuel pump device 20 is mounted as follows: First, the left housing part 40 is pre-assembled with the components of the radial piston pump 26. The rotor 86 of the electric drive motor 24 is already mounted on the rotor shaft 84. At the same time, if necessary, in another assembly plant, the right housing part 42 can be pre-assembled with the windings 94. The assembly of the control sub-housing 96 and the connection of the windings 94 with the electronic components 98 in the control sub-housing 96 is possible here.
  • an integral and compact unit which comprises the radial piston pump 26 for generating very high delivery pressures, the associated electric drive motor 24 for generating high speeds, and the electrical control part 28 for controlling the electric drive motor 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Description

  • Die Erfindung betrifft zunächst eine Kraftstoff-Pumpeinrichtung für ein Kraftstoffsystem einer Brennkraftmaschine, insbesondere mit Direkteinspritzung, mit einer Kraftstoffpumpe und einem mit dieser verbundenen Antriebsmotor.
  • Eine solche Kraftstoff-Pumpeinrichtung aus der EP 0 725 212 A2 bekannt. In dieser ist ein Kraftstoffsystem beschrieben, bei dem eine erste Kraftstoff-Pumpeinrichtung Kraftstoff aus einem Kraftstoffbehälter zu einer zweiten Kraftstoff-Pumpeinrichtung und von dort weiter über einen Hochdruckbereich zu Einspritzventilen fördert. Beide Kraftstoff-Pumpeinrichtungen umfassen jeweils eine Kraftstoffpumpe und einen mit der Kraftstoffpumpe verbundenen elektrischen Antriebsmotor. Die Förderleistung beider Kraftstoff-Pumpeinrichtungen kann über die Drehzahl des elektrischen Antriebsmotors verändert und eingestellt werden. Die nicht vorveröffentlichte DE 101 11 837 A1 offenbart eine Axialkolbenpumpe und einen elektrischen Antriebsmotor, die in einem nach außen abgedichteten Gehäuse untergebracht sind.
  • Der Nachteil der bekannten Kraftstoff-Pumpeinrichtung ist der, dass ihre Handhabung und Integration in das Kraftstoffsystem schwierig ist und daher den Aufbau des Kraftstoffsystems teuer macht. Auch entspricht die Pumpleistung nicht in allen Betriebspunkten der Brennkraftmaschine den Anforderungen.
  • Es ist daher die Aufgabe der vorliegenden Erfindung, eine Kraftstoff-Pumpeinrichtung der eingangs genannten Art so weiterzubilden, dass sie einfacher baut und dass das entsprechende Kraftstoffsystem preiswert hergestellt werden kann. Auch soll sie den insbesondere bei Brennkraftmaschinen mit Direkteinspritzung erforderlichen hohen Einspritzdruck in allen Betriebspunkten der Brennkraftmaschine bereitstellen können.
  • Diese Aufgabe wird bei einer Kraftstoff-Pumpeinrichtung der eingangs genannten Art dadurch gelöst, dass die Kraftstoffpumpe eine Radialkolbenpumpe ist und der Antriebsmotor und die Kraftstoffpumpe eine Einheit mit einem gemeinsamen fluiddichten Gehäuse bilden.
  • Die Ausbildung der Kraftstoffpumpe als Radialkolbenpumpe ermöglicht die Erzeugung hoher Drücke, wie sie bei modernen Kraftstoffsystemen für Brennkraftmaschinen mit Benzin-Direkteinspritzung erforderlich sind. Dadurch, dass der Antriebsmotor und die Kraftstoffpumpe eine Einheit bilden, wird die Handhabung beim Aufbau des Kraftstoffsystems erheblich erleichtert. So kann die aus Antriebsmotor und Kraftstoffpumpe bestehende Einheit vormontiert werden, so dass beim Aufbau des Kraftstoffsytems beispielsweise in einem Kraftfahrzeug nur noch ein gemeinsames und nicht zwei separate Teile handzuhaben sind.
  • Die Unterbringung des Antriebsmotors und der Kraftstoffpumpe in einem gemeinsamen fluiddichten Gehäuse verbessert nochmals die Handhabbarkeit der solchermaßen gestalteten Kraftstoff-Pumpeinrichtung. Dabei ist ein solches fluiddichtes Gehäuse bereits bisher für die Kraftstoffpumpe erforderlich, so dass dies nicht oder kaum zu Mehrkosten führt. Indem auch der Antriebsmotor in dem fluiddichten Gehäuse untergebracht wird, wird sichergestellt, dass der Antriebsmotor vor Verschmutzung von außen geschützt ist. Somit können weniger verschmutzungstolerante, jedoch leistungsfähige Elektromotoren verwendet werden, was nochmals der Leistungsfähigkeit der Kraftstoff-Pumpeinrichtung zugute kommt. Auch die Lebensdauer der Kraftstoff-Pumpeinrichtung wird durch diese Maßnahme verbessert.
  • Der Wirkungsgrad der erfindungsgemäßen Kraftstoff-Pumpeinrichtung wird auch dadurch verbessert, dass die sonst erforderliche Wellenabdichtung von der Kraftstoffpumpe zum Antriebsmotor hin entfallen kann. Eine solche Wellenabdichtung ist immer mit einer gewissen Reibung und einer gewissen Leckage verbunden, was beides den Wirkungsgrad der Kraftstoffpumpe verringert. Der Entfall der Wellenabdichtung reduziert ferner die Kosten.
  • Vorteilhafte Weiterbildungen der erfindungsgemäßen Kraftstoff-Pumpeinrichtung sind in Unteransprüchen angegeben.
  • So wird beispielsweise vorgeschlagen, dass die Kraftstoffpumpe eine Antriebswelle mit mindestens einem Lager umfasst, welche gleichzeitig eine Rotorwelle des Antriebsmotors ist. Eine solchermaßen gestaltete Kraftstoff-Pumpeinrichtung baut sehr kompakt, da auf separate Wellen einerseits für die Kraftstoffpumpe und andererseits für den Antriebsmotor verzichtet wird. Auch sind zur Lagerung der Antriebswelle bzw. der Rotorwelle insgesamt weniger Lager notwendig, was zu geringeren Abmessungen und geringeren Herstellkosten der Kraftstoff-Pumpeinrichtung führt.
  • Dabei wird besonders bevorzugt, wenn eine, vorzugsweise fluiddichte, Abdeckung vorhanden ist, durch welche das Lager vor Partikeln geschützt wird, welche vom Antriebsmotor kommen. Hierdurch wird die Lebensdauer des Lagers erhöht und das Lager muss insgesamt weniger robust ausgelegt werden, was insgesamt nochmals die Abmessungen und Kosten der Kraftstoff-Pumpeinrichtung reduziert.
  • Bei einer besonders bevorzugten Ausgestaltung der erfindungsgemäßen Kraftstoff-Pumpeinrichtung wird der Innenraum des Gehäuses der aus der Kraftstoffpumpe und dem Antriebsmotor gebildeten Einheit vom Kraftstoff wenigstens im Bereich des Antriebsmotors durchströmt. Dies hat den Vorteil, dass der Antriebsmotor durch den Kraftstoff gekühlt wird, was dessen Wirkungsgrad verbessert.
  • Dabei wird besonders bevorzugt, wenn die Strömungsführung im Innenraum des Gehäuses der aus der Kraftstoffpumpe und dem Antriebsmotor gebildeten Einheit so ausgebildet ist, dass der Kraftstoff zunächst den Antriebsmotor wenigstens bereichsweise durchströmt und dann zur Kraftstoffpumpe gelangt, und dass im Strömungsweg zwischen Antriebsmotor und Kraftstoffpumpe eine Filtereinrichtung, insbesondere ein Sieb, vorhanden ist.
  • Bei dieser Kraftstoff-Pumpeinrichtung wird der Antriebsmotor optimal gekühlt, was sich auf dessen Wirkungsgrad vorteilhaft auswirkt und was insgesamt die Förderleistung der Kraftstoff-Pumpeinrichtung verbessert. Dabei wird verhindert, dass es in den Strömungskanälen der Kraftstoffpumpe oder an deren Ventileinrichtungen zu Verstopfungen kommt. Diese könnten von Teilen verursacht werden, welche sich beispielsweise von den aus einem spröden Werkstoff hergestellten Magneten des Antriebsmotors ablösen. Bei dieser Weiterbildung der erfindungsgemäßen Kraftstoff-Pumpeinrichtung ist der hohe Wirkungsgrad also über die gesamte Lebensdauer der Einrichtung vorhanden.
  • Besonders kompakt baut auch jene Weiterbildung, bei welcher die Antriebswelle der Kraftstoffpumpe einen Exzenderabschnitt aufweist und ein um den Exzenderabschnitt herum angeordneter Hubring und für jeden Kolben ein mit dem Kolben verbundener und am Hubring anliegender Gleitschuh vorhanden sind, wobei in der radial äußeren Umfangsfläche des Hubrings eine umlaufende Nut und im Gleitschuh und im Kolben ein radial verlaufender Kanal vorhanden sind. Die Nut und die Kanäle können auf einfache und preisgünstige Art und Weise eingebracht werden. Durch die Nut und die Kanäle kann der Kraftstoff mit geringerem Strömungswiderstand geführt werden. Das Einbringen komplexer Bohrungen beispielsweise in einen Zylinderkopf der Radialkolbenpumpe entfällt somit. Hierdurch werden zusätzlich die Kosten gering gehalten.
  • In die gleiche Richtung zielt jene Kraftstoff-Pumpeinrichtung, bei welcher die Kraftstoff-Pumpe ein im Kolben angeordnetes Saugventil umfasst. Auch diese Maßnahme reduziert die Abmessungen der Kraftstoff-Pumpeinrichtung und die Kosten für deren Herstellung.
  • Vorgeschlagen wird ferner, dass mindestens das Ventilelement des Saugventils aus einem keramischen Material hergestellt ist. Ein solches keramisches Ventilelement baut relativ leicht, was Vorteile im Hinblick auf die Ventildynamik hat. Ferner ist ein solches Ventilelement unempfindlich gegenüber Verschleiß, so dass die Lebensdauer der solchermaßen ausgestalteten Kraftstoff-Pumpeinrichtung hoch ist.
  • Bei einer weiteren besonders bevorzugten Ausgestaltung der erfindungsgemäßen Kraftstoff-Pumpeinrichtung umfasst diese ein elektronisches Steuerteil, welches den Antriebsmotor ansteuert, mit einem Steuerteilgehäuse, welches an dem Gehäuse der aus der Kraftstoffpumpe und dem Antriebsmotor gebildeten Einheit mit mindestens einem Befestigungsmittel befestigt ist. Eine elektronische Ansteuerung ist für die meisten Arten von Antriebsmotoren ohnehin erforderlich, um die für den Antrieb erforderlichen Signale in der gewünschten Weise bereitstellen zu können. Dadurch, dass die Elektronik in einem separatem Steuerteil untergebracht ist, kann sie optimal vormontiert werden. Insbesondere können bei der Vormontage solche Montagebedingungen eingehalten werden, welche für das fehlerfreie Funktionieren der Steuerelektronik erforderlich sind. Anschließend kann das Steuerteilgehäuse des Steuerteils am Gehäuse der aus der Kraftstoffpumpe und dem Antriebsmotor gebildeten Einheit befestigt werden. Geschieht dies noch vor deren Montage an der Brennkraftmaschine, werden die Montagearbeiten an der Brennkraftmaschine vereinfacht.
  • Dabei wird wiederum bevorzugt, dass das Befestigungsmittel die Wand des Gehäuses der aus der Kraftstoffpumpe und dem Antriebsmotor gebildeten Einheit durchdringt, und dass das Befestigungsmittel gegenüber dem Gehäuse der aus der Kraftstoffpumpe und dem Antriebsmotor gebildeten Einheit durch ein Dichtmittel abgedichtet ist. Dadurch, dass das Befestigungsmittel die Wand des Gehäuses der aus der Kraftstoffpumpe und dem Antriebsmotor gebildeten Einheit durchdringt, wird eine besonders sichere und stabile Befestigung des Steuerteilgehäuses ermöglicht. Durch das erfindungsgemäß vorgesehene Dichtmittel wird gleichzeitig sichergestellt, dass Kraftstoff, welcher in dem Gehäuse vorhanden ist, aus diesem nicht zum Steuerteil hin austreten kann.
  • Dabei wird ferner bevorzugt, wenn elektrische Leitungen, welche vom Steuerteil zum Antriebsmotor führen, mit dem Befestigungsmittel verbunden sind. Die Verbindung der Steuerelektronik mit dem Antriebsmotor ist auf diese Weise einfach möglich. Dabei können die Leitungen beispielsweise in dem Befestigungsmittel vergossen oder an diesem angeschweißt oder verlötet sein, so dass die Dichtheit zwischen dem Steuerteilgehäuse und dem Gehäuse des Antriebsmotors und der Kraftstoffpumpe gewährleistet ist.
  • Ferner ist vorteilhaft, wenn vom Befestigungsmittel, vorzugsweise zwischen dem Steuerteilgehäuse und dem Gehäuse der aus der Kraftstoffpumpe und dem Antriebsmotor gebildeten Einheit, ein Entgasungskanal nach außen führt. Hierdurch wird sichergestellt, dass dann, wenn Kraftstoffgase, welche am Dichtmittel vorbei oder durch dieses hindurch aus dem Innenraum des Gehäuses des Antriebsmotors und der Kraftstoffpumpe nach außen gelangen, von der empfindlichen Steuerelektronik ferngehalten und statt dessen in die Umgebung abgeleitet werden.
  • Die Montage der Kraftstoff-Pumpeinrichtung wird nochmals dadurch vereinfacht, dass das Gehäuse der aus der Kraftstoffpumpe und dem Antriebsmotor gebildeten Einheit mindestens zwei Teile umfasst, welche fluiddicht miteinander verbunden sind, wobei zum einen Teil die Kraftstoffpumpe und ein mit der Antriebswelle verbundener Rotor und zum anderen Teil der Stator gehört. Beide Teile können somit unabhängig voneinander in ggf. unterschiedlichen Fertigungsstätten vormontiert werden. Die Endmontage ist dennoch sehr einfach.
  • Die Erfindung betrifft auch ein Kraftstoffsystem für eine Brennkraftmaschine mit Direkteinspritzung, mit einer ersten Kraftstoffpumpe, welche Kraftstoff zu einer Kraftstoff-Pumpeinrichtung fördert, die eine zweite Kraftstoffpumpe und einen mit dieser verbundenen elektrischen Antriebsmotor umfasst, und mit einem Hochdruckbereich, in den die zweite Kraftstoffpumpe fördert und an den mindestens eine Kraftstoff-Einspritzvorrichtung angeschlossen ist.
  • Um den Aufbau des Kraftstoffsystems zu vereinfachen, die Montage der Komponenten des Kraftstoffsystems sicherer und preiswerter zu gestalten und die Leistungsfähigkeit des Kraftstoffsystems zu erhöhen, wird vorgeschlagen, dass die zweite Kraftstoffpumpe eine Radialkolbenpumpe ist und der Antriebsmotor und die zweite Kraftstoffpumpe eine Einheit mit einem gemeinsamen fluiddichten Gehäuse bilden.
  • Zeichnung
  • Nachfolgend wird ein besonders bevorzugtes Ausführungsbeispiel der Erfindung unter Bezugnahme auf die beiliegende Zeichnung im Detail erläutert. In der Zeichnung zeigen:
  • Figur 1
    eine schematische Darstellung eines Kraftstoffsystems einer Brennkraftmaschine mit Direkteinspritzung, welche eine KraftstoffPumpeinrichtung umfasst; und
    Figur 2
    eine teilweise geschnittene Darstellung durch die Kraftstoff-Pumpeinrichtung von Figur 1.
    Beschreibung des Ausführungsbeispiels
  • In Figur 1 trägt ein Kraftstoffsystem für eine Brennkraftmaschine insgesamt das Bezugszeichen 10. Die Brennkraftmaschine ist in Figur 1 nur zum Teil dargestellt und trägt das Bezugszeichen 12.
  • Das Kraftstoffsystem 10 umfasst einen Kraftstoffbehälter 14, aus dem eine Kraftstoffpumpe 16 den Kraftstoff fördert. Diese wird von einem elektrischen Antriebsmotor 18 angetrieben. Die Kraftstoffpumpe 16 fördert den Kraftstoff über einen Filter 19 zu einer Kraftstoff-Pumpeinrichtung 20. Diese umfasst ein Gehäuse 22, in dem ein elektrischer Antriebsmotor 24 und eine Radialkolbenpumpe 26 untergebracht sind. Am Gehäuse 22 ist ein elektronisches Steuerteil 28 befestigt. Auf den genauen Aufbau der Kraftstoff-Pumpeinrichtung 20 wird weiter unten im Detail eingegangen.
  • Die Kraftstoff-Pumpeinrichtung 20 fördert den Kraftstoff unter sehr hohem Druck in eine zu einem Hochdruckbereich gehörende Kraftstoff-Sammelleitung 30 ("rail"), in der der Kraftstoff unter sehr hohem Druck gespeichert ist. An diese sind mehrere Kraftstoff-Einspritzvorrichtungen 32 angeschlossen. Diese spritzen den Kraftstoff direkt in entsprechende Brennräume 34 der Brennkraftmaschine 12 ein. Der Druck in der Kraftstoff-Sammelleitung 30 wird von einem Drucksensor 36 erfasst. Er liefert entsprechende Signale an ein Steuer- und Regelgerät 38. Von diesem führen wiederum Steuerleitungen zum elektronischen Steuerteil 28 der Kraftstoff-Pumpeinrichtung 20 und zum elektrischen Antriebsmotor 18, welcher die Kraftstoffpumpe 16 antreibt.
  • Die Kraftstoff-Pumpeinrichtung 20 ist wie folgt aufgebaut (Figur 2): Das Gehäuse 22 ist zweiteilig mit einem in Figur 2 linken Teil 40 und einem in Figur 2 rechten Teil 42. Das linke Gehäuseteil 40 ist blockartig ausgeführt und hat im Wesentlichen kreiszylindrische, scheibenartige Form. Koaxial zu seiner Längsachse 44 ist in Figur 2 von rechts in das linke Gehäuseteil 40 ein Sackloch 45 eingebracht. In dieses münden mehrere, über den Umfang verteilt angeordnete, radial verlaufende und nach außen offene Sacklöcher 46. In diesen befinden sich die Zylinder der Radialkolbenpumpe 26. In der Schnittebene von Figur 2 ist nur ein solcher Zylinder sichtbar. Die in radialer Richtung verlaufenden Sacklöcher 46 sind jeweils durch eine Öffnung 47 mit dem elektrischen Antriebsmotor 24 fluidisch verbunden. In den Öffnungen 47 ist jeweils ein Siebeinsatz 49 vorhanden.
  • In das Sackloch 45 sind zwei Wälzlager 48 bzw. 50 eingesetzt, durch welche eine Antriebswelle 52 gegenüber dem linken Gehäuseteil 40 reibungsarm gelagert ist. An dem stationären Teil des rechten Wälzlagers 50 ist zum elektrischen Antriebsmotor 24 hin ein Abdeckring 53 befestigt. Durch diesen wird das Wälzlager 50 vor Partikeln geschützt, welche im Betrieb vom elektrischen Antriebsmotor 24 herrühren können. Die Antriebswelle 52 weist einen in Einbaulage auf Höhe des Sacklochs 46 liegenden Exzenterabschnitt 54 auf. Auf diesen ist wiederum ein Hubring 56 aufgesetzt. Im Bereich eines Zylinders ist die äußere Mantelfläche des Hubrings 56 jeweils abgeflacht.
  • In das radial verlaufende Sackloch 46 eines Zylinders ist eine Laufbuchse 58 eingesetzt. In dieser ist wiederum ein Kolben 60 in radialer Richtung verschieblich aufgenommen. Am radial inneren Ende des Kolbens 60 ist ein Gleitschuh 62 befestigt. Dieser wird von einer Druckfeder 64, die sich an der Laufbuchse 58 abstützt, gegen den Hubring 56 beaufschlagt. In der äußeren, bereichsweise abgeflachten Mantelfläche des Hubrings 56 ist eine durchgehende Nut 66 vorhanden. Mit dieser steht eine Bohrung 68 im Gleitschuh 62 und eine koaxial im Kolben 60 verlaufende Bohrung 70 in Verbindung.
  • Die Bohrung 70 im Kolben 60 hat in ihrem radial äußeren Bereich einen größeren Durchmesser als im radial inneren Bereich. Im Übergang zwischen diesen beiden Bereichen ist eine schräge Übergangsfläche (ohne Bezugszeichen) vorhanden, welche einen Ventilsitz für eine Ventilkugel 72 eines Saugventils 74 bildet. Die Ventilkugel 72 ist aus einem keramischen Material hergestellt und wird von einer Druckfeder (ohne Bezugszeichen) gegen den Ventilsitz beaufschlagt. Zwischen dem Kolben 60 und einem das Sackloch 46 nach radial außen verschließenden Zylinderkopf 76 ist ein Arbeitsraum 78 vorhanden. Über ein als Flachsitzventil ausgebildetes Druckventil 80 kann der Arbeitsraum 78 mit einem im linken Gehäuseteil 40 vorhanden Auslasskanal 82 verbunden werden. Dieser führt weiter zur Kraftstoff-Sammelleitung 30.
  • Die Antriebswelle 52 der Radialkolbenpumpe 26 steht in Figur 2 nach rechts etwas über die Grenzfläche des linken Gehäuseteils 40 über und bildet hier eine Rotorwelle 84 eines Rotors 86 des elektrischen Antriebsmotors 24. Der Rotor 86 ist an der Rotorwelle 84 durch eine Schraube 88 befestigt und gegenüber dieser durch eine Sperrscheibe 90 drehfest gesichert. Der Rotor 86 hat Becherform. Auf seine radial äußere Mantelfläche sind Magnete 92 aufgebracht.
  • Das rechte Gehäuseteil 42 ist ebenfalls becherförmig. Es ist gegenüber dem linken Gehäuseteil 40 über einen O-Ring 93 abgedichtet. An seiner radial inneren Mantelfläche sind Wicklungen 94 des Antriebsmotors 24 befestigt. Der Innenraum des rechten Gehäuseteils 42 ist über einen nicht dargestellten Einlass mit der ersten Kraftstoffpumpe 16 verbunden.
  • In Figur 2 rechts vom rechten Gehäuseteil 42 befindet sich das elektrische Steuerteil 28. Dieses umfasst ein Gehäuse 96, in dem elektronische Komponenten 98 untergebracht sind, welche für die Ansteuerung der Wicklungen 94 des elektrischen Antriebsmotors 24 der Radialkolbenpumpe 26 erforderlich sind. Die elektronischen Komponenten 98 werden wiederum vom Steuer- und Regelgerät 38 angesteuert. Das Steuerteilgehäuse 96 ist am rechten Gehäuseteil 42 durch einen Schraubbolzen 100 befestigt. Dieser ist in zwei Hülsen 102 und 104 geführt, zwischen denen ein O-Ring 106 in Einbaulage verpresst ist. Die Länge der Hülsen 102 und 104 ist dabei so gewählt, dass der O-Ring 106 noch im Bereich des rechten Gehäuseteils 42 liegt. Der Innenraum des rechten Gehäuseteils 42 ist somit fluiddicht abgeschlossen.
  • Im Schraubbolzen 100 werden Stromleitungen 108 von den Wicklungen 94 zu den elektronischen Komponenten 98 geführt. Die Stromleitungen 108 sind ggf. am Schraubbolzen 100 angeschweißt oder verlötet. Zwischen dem Steuerteilgehäuse 96 und dem rechten Gehäuseteil 42 führt vom Schraubbolzen 100 in Form einer Nut außen auf dem Gehäuseteil 42 ein Entgasungskanal 110 radial nach außen. Durch diesen werden im Betrieb Gase, welche aus dem rechten Gehäuseteil 42 durch den O-Ring 106 hindurch gelangen, von den elektronischen Komponenten 98 ferngehalten und nach radial außen abgeleitet.
  • Im Betrieb wird der Kraftstoff von der ersten Kraftstoffpumpe 16 auf ungefähr 4 bis 6 bar verdichtet. Er gelangt mit diesem Druck in den Innenraum des rechten Gehäuseteils 42. Über die elektronischen Komponenten wird der elektrische Antriebsmotor 18 vom Steuer- und Regelgerät 38 in Drehung versetzt, wodurch auch die Antriebswelle 52 in eine Drehbewegung, der Hubring 56 in eine umlaufende Hubbewegung und die Kolben 60 in eine Hin- und Herbewegung versetzt werden. Der Kraftstoff durchströmt den Innenraum des rechten Gehäuseteils 42, kühlt dabei die Komponenten des Antriebsmotors 24 und auch jene der Leistungselektronik 98, und gelangt dann durch die Öffnungen 47, die Nut 66 im Hubring 56, und die Bohrungen 68 und 70 im Gleitschuh 62 und im Kolben 60 in den Arbeitsraum 78. Durch die Siebe 49 in den Öffnungen 47 werden Verunreinigung vom Arbeitsraum 78 ferngehalten. Vom Arbeitsraum 78 gelangt der Kraftstoff weiter über den Auslasskanal 82 zur Kraftstoff-Sammelleitung 30.
  • Die Kraftstoff-Pumpeinrichtung 20 wird folgendermaßen montiert: Zunächst wird das linke Gehäuseteil 40 mit den Komponenten der Radialkolbenpumpe 26 vormontiert. Der Rotor 86 des elektrischen Antriebsmotors 24 wird dabei bereits auf der Rotorwelle 84 befestigt. Gleichzeitig kann, ggf. in einem anderen Montagewerk, das rechte Gehäuseteil 42 mit den Wicklungen 94 vormontiert werden. Auch die Montage des Steuerteilgehäuses 96 und die Verbindung der Wicklungen 94 mit den elektronischen Komponenten 98 im Steuerteilgehäuse 96 ist hier möglich.
  • Dann erfolgt die Endmontage, bei der das rechte Gehäuseteil 42 mit den Wicklungen 94 über den Rotor 86 geschoben und am linken Gehäuseteil 40 befestigt wird. Auf diese Weise entsteht eine integrale und kompakte Einheit, welche die Radialkolbenpumpe 26 zur Erzeugung sehr hoher Förderdrücke, den hinzugehörigen elektrischen Antriebsmotor 24 zur Erzeugung hoher Drehzahlen, und das elektrische Steuerteil 28 zur Ansteuerung des elektrischen Antriebsmotors 24 umfasst.

Claims (14)

  1. Kraftstoff-Pumpeinrichtung (20) für ein Kraftstoffsystem (10) einer Brennkraftmaschine (12), insbesondere mit Direkteinspritzung, mit einer Kraftstoffpumpe (26) und einem mit dieser verbundenen elektrischen Antriebsmotor (24), dadurch gekennzeichnet, dass die Kraftstoffpumpe eine Radialkolbenpumpe (26) ist und der Antriebsmotor (24) und die Kraftstoffpumpe (26) eine Einheit mit einem gemeinsamen fluiddichten Gehäuse (22) bilden.
  2. Kraftstoff-Pumpeinrichtung (20) nach Anspruch 1, dadurch gekennzeichnet, dass die Kraftstoffpumpe (26) eine Antriebswelle (52) mit mindestens einem Lager (48, 50) umfasst, welche gleichzeitig eine Rotorwelle (84) des Antriebsmotors (24) bildet.
  3. Kraftstoff-Pumpeinrichtung (20) nach Anspruch 2, dadurch gekennzeichnet, dass eine, vorzugsweise fluiddichte, Abdeckung (53) vorhanden ist, durch welche das Lager (50) vor Partikeln geschützt wird, welche vom Antriebsmotor (24) kommen.
  4. Kraftstoff-Pumpeinrichtung (20) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Innenraum des Gehäuses (22) der aus der Kraftstoffpumpe (26) und dem Antriebsmotor (24) gebildeten Einheit vom Kraftstoff wenigstens im Bereich des Antriebsmotors (24) durchströmt wird.
  5. Kraftstoff-Pumpeinrichtung (20) nach Anspruch 4, dadurch gekennzeichnet, dass die Strömungsführung im Innenraum des Gehäuses (22) der aus der Kraftstoffpumpe (26) und dem Antriebsmotor (24) gebildeten Einheit so ausgebildet ist, dass der Kraftstoff zunächst den Antriebsmotor (24) wenigstens bereichsweise durchströmt und dann zur Kraftstoffpumpe (26) gelangt, und dass im Strömungsweg zwischen Antriebsmotor (24) und Kraftstoffpumpe (26) eine Filtereinrichtung, insbesondere ein Sieb (49), vorhanden ist.
  6. Kraftstoff-Pumpeinrichtung (20) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antriebswelle (52) der Kraftstoffpumpe (26) einen Exzenterabschnitt (54) aufweist und ein um den Exzenterabschnitt (54) herum angeordneter Hubring (56) und für jeden Kolben (60) ein mit dem Kolben (60) verbundener und am Hubring (56) anliegender Gleitschuh (62) vorhanden sind, wobei in der radial äußeren Umfangsfläche des Hubrings (56) eine durchgehende Nut (66) und im Gleitschuh (62) und im Kolben (60) ein radial verlaufender Kanal (68, 70) vorhanden sind.
  7. Kraftstoff-Pumpeinrichtung (20) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kraftstoffpumpe (26) ein im Kolben (60) angeordnetes Saugventil (74) umfasst.
  8. Kraftstoff-Pumpeinrichtung (20) nach Anspruch 7, dadurch gekennzeichnet, dass mindestens das Ventilelement (72) des Saugventils (74) aus einem keramischen Material hergestellt ist.
  9. Kraftstoff-Pumpeinrichtung (20) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie ein elektronisches Steuerteil (28) umfasst, welches den Antriebsmotor (24) ansteuert, mit einem Steuerteilgehäuse (96), welches an dem Gehäuse (22) der aus der Kraftstoffpumpe (26) und dem Antriebsmotor (24) gebildeten. Einheit mit mindestens einem Befestigungsmittel (100) befestigt ist.
  10. Kraftstoff-Pumpeinrichtung (20) nach Anspruch 9, dadurch gekennzeichnet, dass das Befestigungsmittel (100) die Wand des Gehäuses (22) der aus der Kraftstoffpumpe (26) und dem Antriebsmotor (24) gebildeten Einheit durchdringt, und dass das Befestigungsmittel (100) gegenüber dem Gehäuse (22) der aus der Kraftstoffpumpe (26) und dem Antriebsmotor (24) gebildeten Einheit durch ein Dichtmittel (106) abgedichtet ist.
  11. Kraftstoff-Pumpeinrichtung (20) nach Anspruch 10, dadurch gekennzeichnet, dass elektrische Leitungen (108), welche vom Steuerteil (28) zum Antriebsmotor (24) führen, mit dem Befestigungsmittel (100) verbunden sind.
  12. Kraftstoff-Pumpeinrichtung (20) nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass vom Befestigungsmittel (100), vorzugsweise zwischen dem Steuerteilgehäuse (96) und dem Gehäuse (22) der aus der Kraftstoffpumpe (26) und dem Antriebsmotor (24) gebildeten Einheit, ein Entgasungskanal (110) nach außen führt.
  13. Kraftstoff-Pumpeinrichtung (20) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (22) der aus der Kraftstoffpumpe (26) und dem Antriebsmotor (24) gebildeten Einheit mindestens zwei Teile (40, 42) umfasst, welche fluiddicht miteinander verbunden sind, wobei zum einen Teil (40) die Kraftstoffpumpe (26) und ein mit der Antriebswelle (52) verbundener Rotor (86) und zu dem anderen Teil (42) der Stator (94) gehört.
  14. Kraftstoffsystem (10) für eine Brennkraftmaschine (12), insbesondere mit Direkteinspritzung, mit einer ersten Kraftstoffpumpe (16), welche Kraftstoff zu einer Kraftstoff-Pumpeinrichtung (20) fördert, die eine zweite Kraftstoffpumpe (26) und einen mit dieser verbundenen elektrischen Antriebsmotor (24) umfasst, und mit einem Hochdruckbereich (30), in den die zweite Kraftstoffpumpe (26) fördert und an den mindestens eine Kraftstoff-Einspritzvorrichtung (32) angeschlossen ist, dadurch gekennzeichnet, dass die zweite Kraftstoffpumpe eine Radialkolbenpumpe (26) ist und der Antriebsmotor (24) und die zweite Kraftstoffpumpe (26) eine Einheit mit einem gemeinsamen fluiddichten Gehäuse (22) bilden.
EP20020017337 2001-11-07 2002-08-02 Kraftstoff-Pumpeinrichtung für ein Kraftstoffsystem einer Brennkraftmaschine sowie Kraftstoffsystem Expired - Lifetime EP1310672B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10154552 2001-11-07
DE2001154552 DE10154552A1 (de) 2001-11-07 2001-11-07 Kraftstoff-Pumpeinrichtung für ein Kraftstoffsystem einer Brennkraftmaschine sowie Kraftstoffsystem

Publications (3)

Publication Number Publication Date
EP1310672A2 EP1310672A2 (de) 2003-05-14
EP1310672A3 EP1310672A3 (de) 2005-06-08
EP1310672B1 true EP1310672B1 (de) 2006-10-18

Family

ID=7704838

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020017337 Expired - Lifetime EP1310672B1 (de) 2001-11-07 2002-08-02 Kraftstoff-Pumpeinrichtung für ein Kraftstoffsystem einer Brennkraftmaschine sowie Kraftstoffsystem

Country Status (3)

Country Link
EP (1) EP1310672B1 (de)
JP (1) JP2003184683A (de)
DE (2) DE10154552A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477446A (zh) * 2016-03-08 2019-03-15 K&N工程公司 通用直列式燃料过滤器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650629B2 (ja) * 2004-11-16 2011-03-16 株式会社アドヴィックス ラジアルプランジャポンプ
AT503697B1 (de) * 2006-06-02 2008-06-15 Bosch Gmbh Robert Pumpenelement für eine hochdruckpumpe
WO2009043798A1 (de) * 2007-09-28 2009-04-09 ESV Werkzeuge und Zubehör für die elektrische Stromverteilung GmbH Mobile hydraulikpumpe für hydraulisch zu betreibende werkzeuge
DE102009047176A1 (de) * 2009-11-26 2011-06-01 Robert Bosch Gmbh Pumpenanordnung für ein Hochdruckeinspritzsystem
DE102010004659A1 (de) * 2009-12-16 2011-06-22 Continental Automotive GmbH, 30165 Kraftstoffpumpe
DE102015226735A1 (de) 2015-12-28 2017-06-29 Robert Bosch Gmbh Kraftstoffsystem und Antriebsstrang
EP4392661A1 (de) * 2021-08-27 2024-07-03 Stanadyne LLC Kraftstoffversorgung für eine motorbetriebene kraftstoffhochdruckpumpe

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3811773A1 (de) * 1988-04-08 1989-10-19 Pierburg Gmbh Brennstoffversorgungseinrichtung fuer eine brennkraftmaschine
US6149073A (en) * 1994-05-18 2000-11-21 Cummins Engine Company, Inc. Ceramic plunger for internal combustion engine high pressure fuel system
JPH08210209A (ja) * 1995-02-06 1996-08-20 Zexel Corp 高圧燃料噴射装置
US5605448A (en) * 1995-07-31 1997-02-25 Martin, Sr.; Thomas B. AC fuel pump
JP3178372B2 (ja) * 1997-05-15 2001-06-18 トヨタ自動車株式会社 燃料ポンプ
DE19725563A1 (de) * 1997-06-17 1998-12-24 Mannesmann Rexroth Ag Radialkolbenpumpe
GB0100667D0 (en) * 2001-01-10 2001-02-21 Delphi Tech Inc Fuel pump
DE10111837B4 (de) * 2001-03-13 2005-09-29 Robert Bosch Gmbh Kraftstoffzumesssystem für eine Brennkraftmaschine mit einem Hochdruckpumpen (HDP)-Modul
JP2002371941A (ja) * 2001-06-18 2002-12-26 Denso Corp 燃料噴射ポンプ
JP2003028055A (ja) * 2001-07-18 2003-01-29 Toyota Industries Corp 流体圧送装置及び流体貯留用タンク

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477446A (zh) * 2016-03-08 2019-03-15 K&N工程公司 通用直列式燃料过滤器

Also Published As

Publication number Publication date
EP1310672A3 (de) 2005-06-08
JP2003184683A (ja) 2003-07-03
DE50208486D1 (de) 2006-11-30
DE10154552A1 (de) 2003-05-15
EP1310672A2 (de) 2003-05-14

Similar Documents

Publication Publication Date Title
DE102013212935B4 (de) Aktuator-Nockenwellenversteller-System für einen trockenen Riementrieb
EP1834089B1 (de) Kolbenpumpe, insbesondere kraftstoff-hochdruckpumpe für eine brennkraftmaschine
DE19531359B4 (de) Ölpumpanlage
EP3074632B1 (de) Elektromotorisch angetriebene flüssigkeitspumpe, insbesondere zur zwangsschmierung eines schaltgetriebes für kraftfahrzeuge
DE3928029C2 (de)
DE112011105490T5 (de) Kraftstoffpumpe
EP1310672B1 (de) Kraftstoff-Pumpeinrichtung für ein Kraftstoffsystem einer Brennkraftmaschine sowie Kraftstoffsystem
EP0713973B1 (de) Schmiermittelpumpe
DE102013022320B4 (de) Anbindung eines Verstellaktuators an ein Zentralventilsystem für einen trockenen Riementrieb
DE102013212943B4 (de) Anbindung eines Verstellaktuators an ein Zentralventilsystem für einen trockenen Riementrieb
DE102013212942C5 (de) Fluidversorgung, etwa eine Ölversorgung, für ein Zentralventilsystem für einen trockenen Riementrieb
EP1255666B1 (de) Bremsanlage
EP2646302B1 (de) Motor-pumpenaggregat
EP2406498B1 (de) Regelbare kühlmittelpumpe
EP2510239A2 (de) AUßENZAHNRADPUMPE
DE102015115841A1 (de) Pumpen-Motor-Einheit mit einer Kühlung eines die Pumpe antreibenden Elektromotors mittels Leckagefluid
DE10149388A1 (de) Fluidpumpe, insbesondere Hydraulik- oder Schmiermittelpumpe, für eine Brennkraftmaschine, sowie Baueinheit aus mindestens zwei Fluidpumpen für eine Brennkraftmaschine
EP3762607B1 (de) Pumpenvorrichtung für ein systemgehäuse eines fahrzeugs
DE102009028795A1 (de) Kraftstoffhochdruckpumpe
WO2011088958A1 (de) Hochdruckpumpe
DE102017218730A1 (de) Kraftstoffhochdruckpumpe
WO2015000472A1 (de) Lagerungssystem für zentralventilsysteme für trockene riementriebe
EP2872778B1 (de) Hochdruckpumpe
EP3482047B1 (de) Kfz-hilfsaggregat-vakuumpumpe mit einstückigem flanschelement
DE102020215571A1 (de) Pumpenvorrichtung für ein hydraulisches System eines Kraftfahrzeugs, hydraulisches System

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20051208

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50208486

Country of ref document: DE

Date of ref document: 20061130

Kind code of ref document: P

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20061018

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110825

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120802

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150824

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151022

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208486

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301